

OPTimised Industrial IoT and Distributed Control Platform
for Manufacturing and Material Handling

Deliverable 3.5

User Guide for Distributed Control Platform

Deliverable type: Document

Deliverable reference number: ITEA 16043 | D3.5

Related Work Package: WP 3

Due date: 2021-04-30

Actual submission date: 2021-05-31

Responsible organisation: ifak

Editor: M. Riedl

Dissemination level: Public

Revision: Final | Version 0.5

Abstract:

Short description about design principles of programs
running on the DCP. The principles will be used in a
small example program incl. a simple animation of the
behavior.

Keywords:
DCP, design concepts for DPC programs, simple
example, engineering tool

Table_head Name 1 (partner) Name 2 (partner) Approval date (1 / 2)

Approval at WP level K. Meisberger (NXP) H. Borstel (THORSIS) 2021-05-05 / 2021-05-
06

Veto Review by All
Partners

No Vetos 2021-05-28

, D3.5, VERSION 0.5, 2021-05-10

 - 1 -

Editor
M. Riedl (ifak)

Contributors
D. L. Tran (ifak)
Tianzhe Yu (ifak)

, D3.5, VERSION 0.5, 2021-05-10

 - 2 -

Executive Summary
This document provides an overview how to use the Distributed Control Platform (DCP).
Therefore, information about supported platforms and the way of deployment are given. In
order to use a secured communication, the handling of certificates is shortly described.
In order to develop programs based on the DCP, application design principles are described.
In order to split the program complexity of controller application into smaller parts, objects
are used. An object is responsible for specific sub tasks of the overall program. Here especially
the interfaces of the objects, their data and control flow as well as the synchronization of the
objects is described.
Finally, a small example demonstrates how the DCP can be used. It enhances the pure
demonstration of correctness of the functionality by means of a simple visualization of the
dynamics in the control program. By means of this information, control programs can be
designed, implemented and commissioned.

, D3.5, VERSION 0.5, 2021-05-10

 - 3 -

Table of Content
1 Introduction ... 6

2 Deployment ... 6

3 Preconditions ... 6

4 Deployment of Application Programs ... 6

5 Handling of Certificates .. 6

6 Application Design ... 7

6.1 General Considerations ... 7

6.2 Object Synchronization ... 8

6.3 Kind of Objects .. 8

6.3.1 Active Objects ... 8

6.3.2 Objects .. 9

6.4 Interfaces of Objects ... 9

6.5 Synchronization of Objects.. 9

6.5.1 Asynchronous Call .. 11

6.5.2 Synchronous Call .. 12

6.6 Object Development ... 12

6.6.1 Module Information and Usage of Other Sources 12

6.6.2 Ports .. 13

6.6.3 Classes .. 14

6.6.4 Active Classes ... 16

6.7 Predefined Streams for Text Messages ... 17

6.7.1 Aim .. 17

6.7.2 Stream audit() ... 17

6.7.3 Stream info() ... 17

6.7.4 Stream debug() ... 17

7 Application Example..17

7.1 Introduction ... 17

7.2 Create the Crankshaft ... 17

7.3 Create the cylinder .. 18

7.4 Use common File for Port Definitions ... 28

7.5 Compilation of the classes ... 29

7.6 Design of the Application .. 29

7.7 Simple Visualization ... 34

7.8 How to distribute? ... 35

8 Summary ..35

9 Abbreviations..36

, D3.5, VERSION 0.5, 2021-05-10

 - 4 -

10 References ..36

, D3.5, VERSION 0.5, 2021-05-10

 - 5 -

Figures
Figure 1: Structure of Certificates .. 7

Figure 2: Actor Model ... 8

Figure 3: Synchronization between execution contexts .. 9

Figure 4: Sequence of asynchronous method invocation .. 10

Figure 5: Synchronization inside same execution contexts ... 11

Figure 6: Sequence of asynchronous method invocation with internal invocation 11

Figure 7: Sequence of synchronous method invocation .. 12

Figure 8: Meta information of a module / library .. 13

Figure 9: Code of port type 'angle_port' .. 13

Figure 10: Code of class 'angle_per_tick' ... 15

Figure 11: Code of port type 'tick_port' ... 18

Figure 12: Code of class 'cylinder' .. 28

Figure 13: Example to reuse code via import .. 29

Figure 14: Settings for compiler tool chain .. 29

Figure 15: Class and port definitions of the example .. 30

Figure 16: Crankshaft emulation by angle calculation ... 31

Figure 17: Connection between timer and crankshaft .. 31

Figure 18: Port Connections in detail ... 32

Figure 19: Complete example .. 32

Figure 20: Build results ... 33

Figure 21: Successful initialization of the application .. 34

Figure 22: Showing the debug stream in engineering tool .. 34

Figure 23: Representation of the working of the cylinder ... 34

Figure 24: Assignment of ports the graphical attributes ... 35

Figure 25: Definition of nodes and tool chains .. 35

Tables

, D3.5, VERSION 0.5, 2021-05-10

 - 6 -

1 Introduction
The Distributed Control Platform (DCP) can be seen as a middleware. It combines specific
services and makes them available in a parameterizable form. The intention of this document
is to provide an overview about provided packages for the different platforms and describe
the design principles from a developer’s perspective. For beginners, it includes a small
example inclusively animation of the program behavior.

2 Deployment
The runtime will be deployed for following platforms:

 Linux, Ubuntu x86 based as Debian-Package
 Linux, ARM V7, Rasbian OS, as Debian-Package
 Win10, x64 based, as part of the engineering tool “DOME Studio”

3 Preconditions
DCP is based on DOME [1] and uses for the first contact at a controller node a fixed Ethernet
port. This port is defined as 39179. All connections established at runtime use dynamic
assigned port numbers. The runtime uses freely available ports. This implies that the operating
system has to provide a dedicated number of free Ethernet ports.
Furthermore, the runtime requires root privileges e.g. to access hardware interfaces.

4 Deployment of Application Programs
The automation objects building the application program for the distributed control
application will be deployed in form of binary libraries. This binary libraries contain the
compiled objects for the specific controller platform. The libraries can be deployed manually
e.g. via command line access to the controller node or by means of the engineering tool DOME
Studio as introduced in [2]. The part of the distributed application running at a specific node
will be loaded dynamically during start-up of the distributed application by means of
configuration files (see section 6.1). The DCP runtime loads the referenced libraries
automatically and instantiates the needed automation objects.

5 Handling of Certificates
In order to realize authentication and secure communication between DCPs, certificates and
credentials are required. The structure and usage of certificates are implemented as follows
(see also Figure 1):

1. DOME Studio imports a Certificate Authority (CA) certificate retrieved from Optimum
webservice / from file system and save it as Dome 'Root' CA Certificate. When there
is no such service, DOME Studio will generate a self-signed Root CA Certificate.

2. Two Sub CAs will be generated in DOME Studio with Dome 'Root' CA Certificate. These
two Sub CAs issue End Certificates to DCP. ReadWrite/ReadOnly access level can be
distinguished by checking the certificate issuer.

3. A DCP will ask DOME Studio for an End Certificate issued by one of the Sub CAs. CA
Certificates (Dome 'Root' CA Certificate + Dome ReadOnly Sub CA Certificate + Dome
ReadWrite Sub CA Certificate) will also be sent along with End Certificate. These
certificates will be used in the TLS communication.

, D3.5, VERSION 0.5, 2021-05-10

 - 7 -

Figure 1: Structure of Certificates

6 Application Design

6.1 General Considerations

The application running in DCP is organized as network of interconnected objects. The
interfaces of objects are called port. Only by means of such ports the information and
invocation flow can be designed.
An object algorithm itself is implemented by means of an object-oriented language. C++ is
used as low-level language, efficient and portable solution. For this programming language
there are predefined toolchains for a wide area of hardware platforms.
The interconnection points, the ports and their types, are defined by the DOME-L language as
introduced in [2].
Finally, the interactions are engineered as links. These connections can be expressed using
either a special configuration language DOME-C (as introduced in [2]) or the generic scripting
language Lua [3].

, D3.5, VERSION 0.5, 2021-05-10

 - 8 -

DCP follows the concept of Actor Pattern [4]. This design pattern defines that each object
interacts with other objects by means of messages. Depending on the contents of a received
message, the object can process its own business rules (internal algorithm). This means the
object can e.g. interact with IO sub-systems or generate own messages send to other objects.
Following this approach, each object has to be an actor.

Figure 2: Actor Model

This concept is an ideally basis for concurrent or distributed computation, given that each
object has its (own) execution context and there is a communication system transporting the
messages.

6.2 Object Synchronization

Any kind of code and also objects according the object oriented programming paradigm will
be executed in an execution context. Normally, a program is executed in a process
environment managed by the operating system. Depending on the operating system, smaller
environments such as threads are also available. The program execution starts at a specific
entry point, e.g. the main() function in C/C++ or a specific function for a thread, that is
defined by the program specifically. The sequence of instructions performed by the process
or thread are defined inside the program or by means of control statements like loops,
conditional jumps or subroutine invocations (function or method calls).

6.3 Kind of Objects

In DCP, two types of objects are known in principle: Active Objects and 'normal' Objects. The
following subsections introduce these object types.

6.3.1 Active Objects

An Active Object will be instantiated by a special class dome_active_class defined in
DOME-L. An Active Object has its own execution context, implemented as a thread.
Furthermore, there is a predefined method, which will be called by the thread. It depends on

, D3.5, VERSION 0.5, 2021-05-10

 - 9 -

the task of the object, what kind of code is implemented there. For instance a timer would fire
an event by a required port in a loop within a predefined period.

6.3.2 Objects

In contrast to an 'Active Object', a ‘normal’ Object requires an external execution context.
So, except the developer has not implemented its own concurrent execution of code, all data
inside this object is thread safe, because synchronization is done from outside. Such an object
will be instantiated by the class dome_class in DOME-L.

6.4 Interfaces of Objects

An object in DOME provides interfaces in form of ports. A port can be seen as a specific
connection point for sending or receiving messages. A port is of a specific type that defines
the data, the data types and the directions of the data flow. Following a service oriented
approach, an object offers services. If an object consumes services from other objects, it
requires such services for its own business logic. By means of this, the roles of ports are called
service ports and required ports.
Messages are transmitted between ports. For compatible message types, each port is typed
and only type compatible ports can be interconnected.

6.5 Synchronization of Objects

The synchronization between message handling or method invocations is done by means of
message queues. Each message send by a remote object to one of the objects organized in
the same execution context is put into a message queue of the execution context (Nb 1 in
Figure 3). This means, the message is not transmitted directly to the receiving port of the
object. If the operating system scheduler activates the execution context, a message is taken
from the queue and handed over to the receiving port of the object (Nb 2 in Figure 3). The
port unmarshalls the message parameters and invokes the associated method.

Figure 3: Synchronization between execution contexts

In case of higher priority tasks, the method execution may be interrupted by the operating
system. When this method call is completed, the next message is taken from the queue, if the

, D3.5, VERSION 0.5, 2021-05-10

 - 10 -

execution context has the ability to do so or during next activation (Nb 3 in Figure 3). Figure 4
shows the sequence diagram of this scenario.

Figure 4: Sequence of asynchronous method invocation

The sequence of invocations is different, if a method invocation has to communicate with
other objects of the same execution context. In this case, the requirement port of the object
transmits without any interruption the invocation to the related object's port and the
associated method is also invoked immediately (Nb 3 in Figure 5). Such behavior is analogous
to method invocation from one object to another in normal object-oriented programming
languages. This implies, that the next message coming from a remote execution context is
handled after the sequence described above (Nb. 4).

, D3.5, VERSION 0.5, 2021-05-10

 - 11 -

Figure 5: Synchronization inside same execution contexts

Figure 6 shows the sequence diagram of this scenario.

Figure 6: Sequence of asynchronous method invocation with internal invocation

6.5.1 Asynchronous Call

Asynchronous calls can be performed between objects of different execution contexts, if the
port definition does not require any return parameter (out parameter or return values).

, D3.5, VERSION 0.5, 2021-05-10

 - 12 -

In order to ensure, that the DOME middleware has not to wait for responses of the port
invocation, the port shall be annotated with nonblocking flag.
However, this special asynchronous port annotation is not affecting port invocations between
objects running inside the same execution context. Such invocations are always synchronous.

6.5.2 Synchronous Call

Synchronous calls will always be performed between objects of the same execution context.
In addition, if the port is annotated as blocking, the port invocation between objects of
different execution contexts is done synchronous. In this case, output values, return values or
exceptions are responded to the invoking instance.

Figure 7: Sequence of synchronous method invocation

The requirement port has to wait for the response, i.e. the complete processing of the remote
service. The transport of the response message works analogous to the invocation, except the
encoding in the message queue detects the message type and unblocks the waiting
requirement port.

6.6 Object Development

6.6.1 Module Information and Usage of Other Sources

To create an object for DCP the source code has to be written in textual form with a text editor
or by means of the engineering tool. One or more objects can be put in same library or module.

, D3.5, VERSION 0.5, 2021-05-10

 - 13 -

For documentation reasons extensive concepts in the form of comments are available. Helpful
information about the module like version number and a description of the module is possible
to define.
version = 0#1;

description = "Short description of the OPTIMUM example module.";

help = "Author: Matthias Riedl"

 "Vendor: ifak e.V., Magdeburg, Germany"

 "Definition of objects need for small example";

Figure 8: Meta information of a module / library

The version of the module is handled by the developer on its own. This number is
composed by two sub numbers - the main version and the sub version. Changes in the main
version document incompatible modifications according to earlier versions, changes in the
sub version explain bug fixes respectively modifications, which do not effect interface
definitions.
The description has the purpose of a short description of the functionality inside the
module. The developer is responsible for the contents.
More detailed information about the module like vendor/author information can be lodged
in the help entry. The developer is responsible for the contents.
Furthermore, the usage of source code of the target language is prepared (see A.1). The
following features are supported:

 IMPORT - content of code (e.g. include files) will be copied before the namespace of
the type declarations

 EXTERN - content of code (e.g. extern-definitions) will be copied inside the
namespace before the type declarations

 EXPORT - content of code will be copied inside the namespace behind the type
declarations

 GLOBAL - content of code will be copied before the namespace of the implementation
 LOCAL - content of code will be copied behind the namespace of the implementation

6.6.2 Ports

An optional special documentation (see above) can be defined before the port description.
/**

 * Source documentation area, e.g. for the port definition

 */

dome_port angle_port [nonblocking]

<

 description = "Transport of an uint16 value";

 help = "The value may be interpreted as an angle, range 0-360";

 return = void;

 args = uint16 angle;

>
Figure 9: Code of port type 'angle_port'

The example defines a port for the transport of a dome::int16 value. Following the
keyword dome_port the unique name of the port is required (unique inside the module).

, D3.5, VERSION 0.5, 2021-05-10

 - 14 -

After the name of the port follows an optional flag about the blocking/non-blocking
functionality of the port. If this flag is omitted, the default blocking behavior is used. The
non-blocking behavior is required for the asynchronous communication between
automation objects in different groups.
Each port can have its own optional description entry about the idea of this interface and
should explain the signature and return value of the port. For more detailed information, the
optional help entry can be used. The developer is responsible for both contents.
The entry of return defines the type of return of the port. If the port has set the non-
blocking flag, a return type of void is required (this will be checked by the DOME-L
compiler).
For each port an unrestricted number of formal parameters can be defined. This will be done
with the args entry. The formal parameter definition consists of the type and the name of
the parameter, the parameters are separated by ','.

6.6.3 Classes

An automation object of DCP will be defined in DOME-L by the keyword dome_class or
dome_active_class. Before the class description an optional special documentation
(see above) can be defined. Each class has a unique name inside the module and can inherit
from another class of an automation object. If no base class is referenced, the class
dome::ClassObject of the DCP runtime will be used.

, D3.5, VERSION 0.5, 2021-05-10

 - 15 -

/**

 * Automation object documentation

 */

dome_class angle_per_tick

<

 help = "Calculates a new values of the angle per tick";

 description = "Calculates a new values of the angle per tick, range
0...360 degree";

 "The different of the angel is set by property
_delta_angle.";

 requires dome_port recent_angle: angle_port;

 property _delta_angle[type = uint16, access = readwrite];

 attributes

 {

 uint16 _angle;

 }

 prepare_init

 {

 _angle = 0;

 }

 construct

 {

 _delta_angle = 10;

 }

 service dome_port tick: tick_port

 {

 _angle = (_angle + _delta_angle) % 360;

 //debug("tick, new angle: %d\n", _angle);

 recent_angle(_angle);

 }

>
Figure 10: Code of class 'angle_per_tick'

Each class can have its own optional description entry about the idea of this class. For
more detailed information the optional help entry can be used. The developer is responsible
for both contents.
After these entries, the definition of the service and requirement ports of the class can be
done. These port definitions determine the interface of the class. The beginning keywords
service and require define the role of a port type in relation to the class. Then the class
internal name of the port and the port type must be defined.
The ports of the role services implement an algorithm. Therefore the source code of the
target language shall be placed inside the curly braces, e.g. the source code in C++ as shown
in the example.

, D3.5, VERSION 0.5, 2021-05-10

 - 16 -

The ports of the role requires have no implementation. They can be used inside the
algorithms as a function call (with actual parameters and return values, if defined).
Furthermore, following optional, special methods can be defined:

 construct – the constructor of the class, values of attributes and properties should
be initialized

 destruct – the destructor of the class
 init – this method will be called, when the state machine is set to RUN with the INIT

command; if the class supports the functionality of reset to default values, this should
be done here

 save – method for saving the object state into a persistent stream
 restore – method for restoring the object state from a persistent stream

The section attributes offers the possibility to define class internal attributes. By default,
the visibility of the attributes is private. Other access modifiers are possible. Inside this section,
the target language specific syntax must be used, e.g. C++.
The keyword property starts a definition for a public attribute, called property. A property
value can be read/set with the help of the runtime. Following the keyword, the name of the
property is required. After that, the definition of the data type of the property and its access
right shall be defined. If none access right is defined, the property value can be read and
written.
The last possibility inside the dome_class declaration is the definition of internal methods.
Such methods have the access right of protected. Before the method description an optional
special documentation (see above) can be defined. The start of a method definition is
initialized by the keyword method. After that, the data type of the return value must be
defined in the target language, enclosed in ‘ ‘ signs. The same syntax has to be used for the
definition of the formal parameters.

6.6.4 Active Classes

In contrast to normal classes, that show activity only when triggered by a service, active classes
have their own behavior. Active classes and normal classes share most features. The list below
shows the differences.

 Active classes do not reside in groups
 Active classes must implement its behavior in a work() method. It is executed by a

unique thread.
 Active classes may be decorated by an attribute delay.
 The keyword dome_active_class is used to create active classes (instead of

dome_class).
If delay is specified, the value of the attribute shall contain the time ∆t microseconds. If
specified, work is called every ∆t microseconds. If delay is not provided, work() is executed
as often as possible. Active classes may not inherit classes. Classes may not inherit active
classes. If an active class inherits another active class, the base classes work() and delay
definitions are ignored for the inheriting active class.

, D3.5, VERSION 0.5, 2021-05-10

 - 17 -

6.7 Predefined Streams for Text Messages

6.7.1 Aim

Text messages help during development and commissioning of the objects or the overall
application. The runtime provides three streams to push test messages which can be used by
the developers. The stream can be connected to different targets, depending on the specific
needs.
All streams expect a format string parameter following the syntax of printf() [5] of
programming language C.

6.7.2 Stream audit()

The stream audit() is used to continuously record all changes to an object. Such logbooks
are required, for example, in the food or chemical industry to prove the quality of products.

6.7.3 Stream info()

The stream info() is intended to provide information about an object, a method invocation
etc. Default is to print to stdout of a shell, if this stream target is available.

6.7.4 Stream debug()

The stream debug() is intended to provide information about an object, a method
invocation etc. during development. The code has not to be changed. If the object code is
compiled with no debugging information, such stream invocations are filtered out. Default is
to print to stdout of a shell, if this stream target is available.

7 Application Example

7.1 Introduction

A small example should demonstrate the functionality. The example does not require any
hardware specifics input / output. It shows the executions and flexibility of the DCP concepts
and the feature of the engineering tool. In principle the example can be created also without
the engineering tool. In this case, the configuration has to do manually.
The example emulates a motor engine of a four stroke engine (Otto or Diesel). Therefore one
needs a crankshaft and a cylinder. These objects have to be modelled. In addition we need a
stimulation for the rotation of the crankshaft. The stimulation is done by means of a trigger to
move the crankshaft for a predefined angle.
In the end, the results should be visualized. This will be done via the streams explained above
and via the graphical visualization integrated in engineering tool.

7.2 Create the Crankshaft

The source code of the crankshaft is already shown in Figure 10. The behavior is emulated by
a conversion from time tick into new angle, were the delta is defined by the property
_delta_angle. The need time tick is provided by another object, what is shown later. The
class defines a service port tick, receiving the time ticks. The definition of this port does not
require any formal parameter. Such port type is equivalent to an event. The code snipped
shows the shortest definition of a port:

, D3.5, VERSION 0.5, 2021-05-10

 - 18 -

dome_port tick_port [nonblocking]

<

>

Figure 11: Code of port type 'tick_port'

Inside the implementation of tick, the new angle is calculated and passed to the required
port recent_angle. Where this new value is used in a control application, is out of the
scope of the class 'angle_per_tick'.

7.3 Create the cylinder

The cylinder shall emulate the four phases of the four stroke engine. Depending on the overall
construction of a motor engine, a specific cylinder has a specific angle in reference to the
crankshaft and a specific status of the phase. Such configuration will be set during initialization
of the object.
dome_class cylinder

<

 description = "Emulation of a cylinder of a four-stroke engine";

 /**

 * Offset angle of the cylinder in relation to the crankshaft

 */

 property _offset[type = int16, access = readwrite];

 /**

 * Name of the cyclinder instance.

 */

 property _name[type = string, access = readwrite];

 /**

 * initial status of cylinder (0-3)

 */

 property _init_status[type = int16, access = readwrite];

 requires dome_port position : animation_position;

 requires dome_port status : animation_status;

 attributes

 {

 /**

 * angle of the cylinder

 */

 int16 _angle;

 /**

 * next expected angle with changes

 */

 int16 _next_expected;

, D3.5, VERSION 0.5, 2021-05-10

 - 19 -

 /**

 * status changed, so explosion happens once

 */

 bool _print_peng;

 /**

 * strokes of a 4-stroke engine

 */

 enum class stroke_type

 {

 SUCKING = 0,

 COMPENSING,

 WORKING,

 EJECTION

 };

 stroke_type _clock_stroke;

 }

 prepare_init

 {

 _offset = _offset % 360;

 _angle = _offset;

 _clock_stroke = static_cast<stroke_type>(_init_status());

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 _next_expected = 180;

 break;

 case stroke_type::COMPENSING:

 _next_expected = 0;

 break;

 case stroke_type::WORKING:

 _next_expected = 180;

 break;

 case stroke_type::EJECTION:

 _next_expected = 0;

 break;

 }

 _print_peng = false;

 }

 /**

 * Initials the angle by the offset

 */

 construct

 {

 _angle = 0;

 _offset = 0;

, D3.5, VERSION 0.5, 2021-05-10

 - 20 -

 _name = "Cyl_XYZ";

 _clock_stroke = COMPENSING;

 _print_peng = false;

 }

 /**

 * The new angle of the crankshaft is passed. The cyclinder calculates
new intenal angle and the new status

 */

 service dome_port set_angle: angle_port

 {

 int intern_angle_mod_360 = (_offset + angle) % 360;

 int intern_angle_mod_180 = intern_angle_mod_360 % 180;

 int last_angle_mod_180 = _angle % 180;

 bool change_state = false;

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 case stroke_type::WORKING:

 if ((intern_angle_mod_180 > _next_expected)||

 (last_angle_mod_180 > intern_angle_mod_180))

 {

 change_state = true;

 _next_expected = 0;

 }

 break;

 case stroke_type::COMPENSING:

 case stroke_type::EJECTION:

 if ((_next_expected > intern_angle_mod_180) ||

 (last_angle_mod_180 > intern_angle_mod_180))

 {

 change_state = true;

 _next_expected = 180;

 }

 break;

 }

 if (change_state)

 {

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 {

 _clock_stroke = stroke_type::COMPENSING;

 break;

 }

 case stroke_type::COMPENSING:

 {

 _print_peng = true;

, D3.5, VERSION 0.5, 2021-05-10

 - 21 -

 _clock_stroke = stroke_type::WORKING;

 break;

 }

 case stroke_type::WORKING:

 {

 _clock_stroke = stroke_type::EJECTION;

 break;

 }

 case stroke_type::EJECTION:

 {

 _clock_stroke = stroke_type::SUCKING;

 break;

 }

 }

 }

 _angle = intern_angle_mod_360;

 show_status();

 float32 val;

 if ((0 <= _angle) && (180 > _angle))

 val = (float32)_angle;

 else

 val = (float32)(360 - _angle);

 position(val*100/180);

 int32 color = cyl_color_val();

 status(color);

 }

 /**

 * Shows the status of the cylinder in 4-stroke engine in debug stream.

 */

 method "void"

 show_status()

 {

 if (_print_peng)

 {

 debug("%s ! ! ! P E N G ! ! ! \n", _name().c_str());

 _print_peng = false;

 }

 std::string str_phase = phase();

 debug("%s: Angle: %d, Phase: %s\n", _name().c_str(), _angle,
str_phase.c_str());

 } // show_status

 /**

, D3.5, VERSION 0.5, 2021-05-10

 - 22 -

 * Provides a human readable string about the status of the cylinder in
4-stroke engine.

 * \return const string - status of the cyliner

 */

 method "const string"

 phase()

 {

 string ret = "phase";

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 {

 ret = "SUCKING_IN";

 break;

 }

 case stroke_type::COMPENSING:

 {

 ret = "COMPENSING";

 break;

 }

 case stroke_type::WORKING:

 {

 ret = "WORKING";

 break;

 }

 case stroke_type::EJECTION:

 {

 ret = "EJECTION";

 break;

 }

 }

 return ret;

 } // phase

 /**

 * Provides the coded color of the cylinder for the animation:

 * SUCKING, COMPENSING: 0

 * WORKING, EJECTION: 1

 * \return const int32: coded color

 */

 method "const int32"

 cyl_color_val()

 {

 int32 ret = 0;

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

, D3.5, VERSION 0.5, 2021-05-10

 - 23 -

 {

 ret = 0;

 break;

 }

 case stroke_type::COMPENSING:

 {

 ret = 0;

 break;

 }

 case stroke_type::WORKING:

 {

 ret = 1;

 break;

 }

 case stroke_type::EJECTION:

 {

 ret = 1;

 break;

 }

 }

 return ret;

} // cyl_color_val

>

Figure 12 shows one example how the source code of the class could be implemented.
dome_class cylinder

<

 description = "Emulation of a cylinder of a four-stroke engine";

 /**

 * Offset angle of the cylinder in relation to the crankshaft

 */

 property _offset[type = int16, access = readwrite];

 /**

 * Name of the cyclinder instance.

 */

 property _name[type = string, access = readwrite];

 /**

 * initial status of cylinder (0-3)

 */

 property _init_status[type = int16, access = readwrite];

 requires dome_port position : animation_position;

 requires dome_port status : animation_status;

 attributes

, D3.5, VERSION 0.5, 2021-05-10

 - 24 -

 {

 /**

 * angle of the cylinder

 */

 int16 _angle;

 /**

 * next expected angle with changes

 */

 int16 _next_expected;

 /**

 * status changed, so explosion happens once

 */

 bool _print_peng;

 /**

 * strokes of a 4-stroke engine

 */

 enum class stroke_type

 {

 SUCKING = 0,

 COMPENSING,

 WORKING,

 EJECTION

 };

 stroke_type _clock_stroke;

 }

 prepare_init

 {

 _offset = _offset % 360;

 _angle = _offset;

 _clock_stroke = static_cast<stroke_type>(_init_status());

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 _next_expected = 180;

 break;

 case stroke_type::COMPENSING:

 _next_expected = 0;

 break;

 case stroke_type::WORKING:

 _next_expected = 180;

 break;

 case stroke_type::EJECTION:

 _next_expected = 0;

 break;

, D3.5, VERSION 0.5, 2021-05-10

 - 25 -

 }

 _print_peng = false;

 }

 /**

 * Initials the angle by the offset

 */

 construct

 {

 _angle = 0;

 _offset = 0;

 _name = "Cyl_XYZ";

 _clock_stroke = COMPENSING;

 _print_peng = false;

 }

 /**

 * The new angle of the crankshaft is passed. The cyclinder calculates
new intenal angle and the new status

 */

 service dome_port set_angle: angle_port

 {

 int intern_angle_mod_360 = (_offset + angle) % 360;

 int intern_angle_mod_180 = intern_angle_mod_360 % 180;

 int last_angle_mod_180 = _angle % 180;

 bool change_state = false;

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 case stroke_type::WORKING:

 if ((intern_angle_mod_180 > _next_expected)||

 (last_angle_mod_180 > intern_angle_mod_180))

 {

 change_state = true;

 _next_expected = 0;

 }

 break;

 case stroke_type::COMPENSING:

 case stroke_type::EJECTION:

 if ((_next_expected > intern_angle_mod_180) ||

 (last_angle_mod_180 > intern_angle_mod_180))

 {

 change_state = true;

 _next_expected = 180;

 }

 break;

 }

 if (change_state)

, D3.5, VERSION 0.5, 2021-05-10

 - 26 -

 {

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 {

 _clock_stroke = stroke_type::COMPENSING;

 break;

 }

 case stroke_type::COMPENSING:

 {

 _print_peng = true;

 _clock_stroke = stroke_type::WORKING;

 break;

 }

 case stroke_type::WORKING:

 {

 _clock_stroke = stroke_type::EJECTION;

 break;

 }

 case stroke_type::EJECTION:

 {

 _clock_stroke = stroke_type::SUCKING;

 break;

 }

 }

 }

 _angle = intern_angle_mod_360;

 show_status();

 float32 val;

 if ((0 <= _angle) && (180 > _angle))

 val = (float32)_angle;

 else

 val = (float32)(360 - _angle);

 position(val*100/180);

 int32 color = cyl_color_val();

 status(color);

 }

 /**

 * Shows the status of the cylinder in 4-stroke engine in debug stream.

 */

 method "void"

 show_status()

 {

 if (_print_peng)

, D3.5, VERSION 0.5, 2021-05-10

 - 27 -

 {

 debug("%s ! ! ! P E N G ! ! ! \n", _name().c_str());

 _print_peng = false;

 }

 std::string str_phase = phase();

 debug("%s: Angle: %d, Phase: %s\n", _name().c_str(), _angle,
str_phase.c_str());

 } // show_status

 /**

 * Provides a human readable string about the status of the cylinder in
4-stroke engine.

 * \return const string - status of the cyliner

 */

 method "const string"

 phase()

 {

 string ret = "phase";

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 {

 ret = "SUCKING_IN";

 break;

 }

 case stroke_type::COMPENSING:

 {

 ret = "COMPENSING";

 break;

 }

 case stroke_type::WORKING:

 {

 ret = "WORKING";

 break;

 }

 case stroke_type::EJECTION:

 {

 ret = "EJECTION";

 break;

 }

 }

 return ret;

 } // phase

 /**

 * Provides the coded color of the cylinder for the animation:

 * SUCKING, COMPENSING: 0

, D3.5, VERSION 0.5, 2021-05-10

 - 28 -

 * WORKING, EJECTION: 1

 * \return const int32: coded color

 */

 method "const int32"

 cyl_color_val()

 {

 int32 ret = 0;

 switch (_clock_stroke)

 {

 case stroke_type::SUCKING:

 {

 ret = 0;

 break;

 }

 case stroke_type::COMPENSING:

 {

 ret = 0;

 break;

 }

 case stroke_type::WORKING:

 {

 ret = 1;

 break;

 }

 case stroke_type::EJECTION:

 {

 ret = 1;

 break;

 }

 }

 return ret;

} // cyl_color_val

>

Figure 12: Code of class 'cylinder'

The class defined the constructor as well as the initialization of the object by means of the
properties. Depending on the given angle offset and the start status the internal parameters
will be calculated.
There are two requirement port used for the animation only. By means of these ports the
movement of the cylinder and the phase can be visualized.

7.4 Use common File for Port Definitions

The separation of class definitions into separate files is common in object oriented
programming. Following this approach, global type definitions or port definitions have to be
declared more than once. This is error prone and should be avoided. In the simple example,

, D3.5, VERSION 0.5, 2021-05-10

 - 29 -

al port definitions are summarized in one file and will be included in the class definitions where
needed.
import "port_definitions.dome";

Figure 13: Example to reuse code via import

7.5 Compilation of the classes

The example application shall run on the same Windows 10 computer as the program is
developed on. E.g. the "Visual Studio Build Tools 2019" are available for this purpose, for
example (free download). The following instructions are based on these compiler tools. If
another compiler tool chain has been installed, the settings must be adjusted accordingly.
The engineering tool DOME Studio offers option to configure the tool chain to use. Via
Configure/Settings/C++ the tool chain can be adjusted. Figure 14 shows the default settings
that should work.

Figure 14: Settings for compiler tool chain

7.6 Design of the Application

The design of the application is also done by the engineering tool DOME Studio, see Figure 15.
The classes can be defined in textual form. All files belonging to an application are grouped in
a project, represented as a tree.
The class can be compiled by using the tool internal Build function, see button in Figure 15.
Warnings or error messages are listed in an output window at the bottom of the tool.

, D3.5, VERSION 0.5, 2021-05-10

 - 30 -

Figure 15: Class and port definitions of the example

The distributed application can be designed graphically. For this, each project provides at least
one *.config file. By default, the name of this file is derived from the project name. We will
create a new configuration file for using on cylinder in the engine. Via the main menu, section
New File, select DOME Configuration and name the file
engine_demo_1_cyl.config. The new file is activated automatically and an empty
drawing area is shown. In order to instantiate objects in the application, use the tab Library
in the project window. Now, the available classes can be seen. Besides the classes defined for
the example, there are predefined classes Delay and Timer, which nearly each project
needs.
Inside the library one selects the class to instantiate and drags this on the drawing area. After
this, the object settings should be adapted: name the object correctly, assign the object to a
process and to an execution context and finally set the properties. The name of the process
can be adapted by a sub dialog, we will call it engine. The process shall run on the same
machine (localhost). The execution context will be named grp_angle.
As shown above, the call provides one property delta_angle, the values will be adapted
e.g. to 10, see Figure 16

, D3.5, VERSION 0.5, 2021-05-10

 - 31 -

Figure 16: Crankshaft emulation by angle calculation

The next step is to introduce a timer object in order to get time ticks. The ticks shall be
forwarded to the object named crankshaft. The instantiation of the time is analogous to
the action described before. The instance will be renamed to timer, the execution context
is set to grp_active and the property cycle is set to 200. This means, every 200ms the
timer creates an event. To do this automatically, the property autorun has to be set to true.
As next the connection between the TimeEvent port and the tick of the crankshaft
we be established. Drawing a connection b pressing the left mouse button from requirement
port of service port. That’s it, see Figure 17.

Figure 17: Connection between timer and crankshaft

The dashed line represents connections between the objects. If one of the related objects is
selected, that the connected ports are visible, see Figure 18.

, D3.5, VERSION 0.5, 2021-05-10

 - 32 -

Figure 18: Port Connections in detail

Figure 19 shows the final program. Therefore the last object is instantiated. It is called cyl1
and represents one cylinder of the engine. The properties are set with _offset to 0, _name
of the instance to see in logging messages is set to “Cyl1” and finally the _intit_status is
set to 0, meaning the phase “SUCKING“. In this case, there is no offset between the crankshaft
and the cylinder.

Figure 19: Complete example

After this is done, the application can be built via DOME/Build. The result is shown in the
bottom, see Figure 20.

, D3.5, VERSION 0.5, 2021-05-10

 - 33 -

Figure 20: Build results

When the build process is finished successfully, the program can be started. The engineering
tool transfers the needed libraries and the information about object instances and port
connections to the involved nodes of the distributed application. The recent example creates
an instance of the runtime and loads the program to it. It can be observed by viewing the
command line window, see Figure 21.
The functionality of the program can be seen by means of the debug stream. The engineering
tool connects to this stream and prints the results in the output window, see Figure 22.

, D3.5, VERSION 0.5, 2021-05-10

 - 34 -

Figure 21: Successful initialization of the application

Figure 22: Showing the debug stream in engineering tool

7.7 Simple Visualization

For application developers such kind of presenting the program results may be acceptable,
but the engineering tool offers also some simple kinds of visualization. The visualization allow
to draw rectangles or circles. The movement of the piston in cylinder can be represented by
means of the height of a rectangle, the “cold” phases SUCKING and COMPENSING by the
color blue and the “hot” phases WORKING and EJECTION by the color orange, see Figure 23.

Figure 23: Representation of the working of the cylinder

The feature can be used via DOME/Animation. It opens a drawing area, where the graphical
objects may be positioned. In order to animate such objects, some attributes can be set from
the program. Therefore, objects should provide requirement ports and push recent values via
these ports to the animation. In recent case, the class cylinder provides two ports
position and status. They provide float or integer values which can be used in the
animation by assigned the attribute of the graphical object with the port, see Figure 24.

, D3.5, VERSION 0.5, 2021-05-10

 - 35 -

Figure 24: Assignment of ports the graphical attributes

7.8 How to distribute?

The example is running in one process of the Windows machine. Internally it uses three
execution contexts. This means the objects run in concurrently. During instantiating the
objects, the process where the objects will run, can be defined. At this place, additional
processes can be added. Additional nodes can be added via DOME/Node Management. Figure
25 shows the options. It is possible to add nodes (name, IP-address or DNS-name) and to
define the tool chain in order to create target code for these nodes.

Figure 25: Definition of nodes and tool chains

8 Summary
The document presents a conceptual overview of the implementation of the Distributed
Control Platform and its prepared packages for the deployment. In addition, it explains for the
developers of distributed application the essentials of object synchronization and the
language concepts to develop such objects. Finally, there is a small example demonstrating
the process to develop a distributed control application using a simple (not distributed)
example.

, D3.5, VERSION 0.5, 2021-05-10

 - 36 -

9 Abbreviations

DCP Distributed Control Platform

DOME Distributed Object Model Environment

DOME-C DOME Configuration

DOME-L DOME Language

10 References
[1] Riedl, M.: Distributed Object Model Environment: Ein objektorientiertes Softwaremodell

für verteilte Automatisierungssysteme. Otto von Guericke University Magdeburg, ISBN 3-
8322-4644-4, 2005

[2] OPTIMUM: Deliverable 4.6 - Final Implementation of control application development
tools and App Store (2nd prototypes), OPTIMUM project, 2021-02-28

[3] Lua.org: The programming language Lua, https://www.lua.org
[4] Actor model: https://en.wikipedia.org/wiki/Actor_model
[5] ISO/IEC: ISO/IEC 9899:2018- C programming language, www.iso.org, 2018

