

OPTimised Industrial IoT and Distributed Control Platform

for Manufacturing and Material Handling

Deliverable 2.4

Final Implementation of IIoT platform, API and SDK
(2nd prototype)

Deliverable type: Software

Deliverable reference number: ITEA 16043 | D2.4

Related Work Package: WP 2

Due date: 2021-04-30

Actual submission date: 2021-05-31

Responsible organisation: University of Rostock

Editor: Hannes Raddatz

Dissemination level: Public

Revision: Final | Version 1.01

Abstract:

Description of the IIoT-Platform functionality, its

purpose in the context of the OPTIMUM project and

implementation details with information about the

MQTT and OPC UA APIs as well as the data model.

Keywords: OPTIMUM IIoT Platform, MQTT, OPC UA, M2M

Table_head Name 1 (partner) Name 2 (partner) Approval date (1 / 2)

Approval at WP level Fabian Hölzke (URO) Metin Tekkalmaz
(ERSTE)

2021-05-05 / 2021-
05-07

Veto Review No Vetos 2021-05-31

, D2.4, VERSION 1.01, 2021-04-30

 - I -

Editor

Hannes Raddatz (University of Rostock)

Contributors

Metin Tekkalmaz (ERSTE)

Fabian Hölzke (University of Rostock)

, D2.4, VERSION 1.01, 2021-04-30

 - II -

Executive Summary

The Deliverable 2.4 targets the open-source publication of the IIoT-Platform software. This
document provides a description of the IIoT-Platform implementation and information about
its context in the OPTIMUM project. This includes details about:

 External OPC UA interface

 Internal MQTT interface

 OPTIMUM Data Model

 Implementation Details

 IIoT Platform in OPTIMUM Demonstrators

, D2.4, VERSION 1.01, 2021-04-30

 - III -

Table of Content

1 Introduction ... 5

2 OPTIMUM Architecture .. 5

3 IIoT Platform .. 6

3.1 OPC UA Interface ... 6

3.2 MQTT Interface ... 6

3.2.1 MQTT Topic iiot-common ... 7

3.2.2 MQTT Topic iiot-modify-data ... 10

3.3 Data Model .. 11

3.3.1 OPC UA for Machinery .. 14

3.3.2 Semi-Autonomous Functions ... 15

3.4 Additional Features under Development .. 26

3.4.1 Security ... 26

3.4.2 OPC UA Discovery ... 26

3.5 IIoT-Platform in Demonstrators .. 26

3.5.1 DEMAG ... 26

3.5.2 NXP ... 26

3.5.3 IFAK ... 26

3.5.4 ETRI ... 27

3.5.5 ERMETAL ... 27

3.5.6 MAGTEL .. 28

4 Implementation Details ...29

5 References ..30

6 Abbreviations..30

, D2.4, VERSION 1.01, 2021-04-30

 - IV -

Figures

Figure 1: Message flow of read request ... 8

Figure 2: Message flow of method call .. 9

Figure 3: Data Model Example Crane in UAExpert .. 11

Figure 4: OPTIMUM Data Model - Object Relations .. 11

Figure 5: Machine Folder of OPC UA for Machinery CS ... 14

Figure 6: Identification data structure of OPC UA for Machinery CS 15

Figure 7: Identification object of OPC UA for Machinery CS .. 15

Figure 8: Visualization of Method GoTo .. 19

Figure 9: Visualization of Method_ComeTo ... 20

Figure 10: Visualization of Method_Follow ... 22

Figure 11: Message flow of Method_ComeTo, requested by component via MQTT, in
case of OPC UA HMI/client step 2 is entry point .. 21

Figure 12: Final implementation of ERMETAL demonstrator .. 27

Tables

Table 1: MQTT Topic iiot-common ... 7

Table 2: MQTT topic iiot-modify-data .. 10

Table 3: OPC UA Object Type TargetType .. 12

Table 4: OPC UA Object Type MobileTargetType .. 12

Table 5: OPC UA Object Type MaterialHandlingTarget ... 13

Table 6: OPC UA Object Type Smart_MH_SystemType ... 13

Table 7: Common NodeIDs for OPTIMUM demonstrators .. 14

Table 8: OPC UA Method Output Arguments .. 16

Table 9: Response Node Mechanism ... 16

Table 10: FollowMachine Parameter Set ... 17

Table 11: OPC UA Method Reservation ... 18

Table 12: OPC UA Method Stop ... 18

Table 13: OPC UA Method GoTo .. 19

Table 14: OPC UA Method ComeTo ... 19

Table 15: Method Follow ... 22

Table 16: OPC UA Method JSON .. 23

Table 17: OPC UA Method ManualTandem ... 24

Table 18: OPC UA CraneMode ... 24

Table 19: OPC UA Method AGV GoTo .. 25

Table 20: Overview of IIoT-Platform External Library Dependencies 29

file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102847
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102848
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102849
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102850
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102851
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102852
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102853
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102854
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102855
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102856
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102857
file:///C:/Users/hr243/ownCloud/Temp/OPTIMUM/OPTIMUM_Del_2.4.docx%23_Toc71102857

, D2.4, VERSION 1.01, 2021-04-30

 - 5 -

1 Introduction

The Industrial Internet of Things (IIoT)-Platform is one of the central components of the
OPTIMUM architecture and enables machine-to-machine (M2M) communication for industry
4.0 applications. This document describes the IIoT-Platform in general, the information data
model as well as its internal and external interfaces.

2 OPTIMUM Architecture

The OPTIMUM project targets to equip existing machines with additional functionality to allow
for semi-autonomous functionality in the smart material handling and smart manufacturing
domains. To achieve such functionalities, enhanced devices require location awareness,
distributed control and M2M interfaces. A component-based software approach is used to
accomplish this target. Devices like cranes that are capable of semi-autonomous functionality
are categorized as Smart Material Handling Systems and contain in the minimal configuration
an IIoT-Platform and Distributed Control Platform (DCP). Machines such as forklifts that are
only upgraded with a location awareness function are called targets and contain the
lightweight IIoT platform as their only component. Therefore, such devices provide only an
OPC UA server and no MQTT interface.

, D2.4, VERSION 1.01, 2021-04-30

 - 6 -

3 IIoT Platform

The IIoT-Platform is responsible for non-deterministic 1communication between machines
and between human and machine. The human, called operator in the following, uses a
Human-Machine-Interface (HMI) to interact with the machines. This HMI can be a computer,
tablet or smartphone.

The platform has three main components: external OPC UA interface, internal MQTT interface
and a device information data model. The combination of these components allows the IIoT
Platform to forward OPC UA request from outside to other components of the same device
via MQTT messages and vice versa. The data model of the platform can be access via OPC UA
(read-only) and MQTT (only internal, write access). Further information on the components is
presented in the following.

3.1 OPC UA Interface

The IIoT-Platform contains an OPC UA server that can be accessed by other devices in the
same network that fulfill the security requirements (see section 3.4.1). Both versions of the
IIoT-Platform (complete and lightweight) provide an OPC UA server that contains the data
model described in section 3.3 which provides read-only access to the variable values. The
complete IIoT-Platform for smart material handling systems and smart manufacturing
contains additional device-specific method calls to invoke semi-autonomous and
corresponding functions. These method calls can be triggered by either an operator’s HMI or
another machine that is equipped with an IIoT-Platform. Also, a conventional OPC UA client
can be used but manual handling of the response node mechanism is required.

Response Node Mechanism

Every method invocation provokes an MQTT message to another component of the device.
Since the response time of the component remains unknown, the IIoT-Platform responds to a
method invocation immediately after checking the consistency of the request. The response
contains information about a new variable in the data model of the IIoT-Platform that is
unique for every method invocation. If the requesting device is interested in intermediate and
final status information of its request, it needs to subscribe to this new variable. The IIoT-
Platform will notify the requesting device about a status changes. The target component uses
the MQTT interface to update the status information.

The MQTT interface can trigger the instantiation of an OPC UA client in a separate thread to
retrieve information from another OPTIMUM device or any other OPC UA server. The OPC UA
client will either read the variables in the data model of the targeted OPC UA server or invoke
methods on the IIoT-Platform that will use the response node mechanism to provide
intermediate and final request status information. See also section 3.3.2.2.

3.2 MQTT Interface

The MQTT interface maps internal to external requests and vice versa. It forwards requests
that are received from other devices via OPC UA method invocations to components of the
same device and transmits requests or answer payloads of internal components to external
devices using OPC UA. The payload of the specific MQTT topics that contain the request and
answer data is encoded using JSON. The following chapters provide a detailed description of

1 The term non-deterministic relates to the assumption that in case of a delayed message no critical or safety

issues are expected

, D2.4, VERSION 1.01, 2021-04-30

 - 7 -

the available topics, the mechanisms that use these interfaces and the corresponding JSON
encoding schemas.

3.2.1 MQTT Topic iiot-common

A component of the same device can request data of another device in the network by sending
a JSON encoded MQTT message to the MQTT interface of the IIoT-Platform using the MQTT
topic “iiot-common”. The OPC UA interface will be used to fetch this information by using a
separate OPC UA client thread. A device’s component can instruct the IIoT-Platform of the
same device to read the requested data once or on a subscription basis until the component
decides to cancel the subscription.

The same topic can be used to send requests or commands to components of other OPTIMUM
devices. In this case, the IIoT-Plaforms of the requesting and target device are using a response
mechanism developed in OPTIMUM project to send intermediate and the final response to
the requesting component. Further information on this response mechanism can be found in
sections 3.1, 3.3.2.1 and 3.3.2.2.

Table 1: MQTT Topic iiot-common

Comm. Protocol MQTT

Topic Name iiot-common

Published By Device internal component

Subscribed By IIoT-Platform

Description Request data or send commands of/to another device by
instructing IIoT-Platform to forward request via OPC UA

Message Payload

with JSON data
encoding

only in case of read
command

{"answer_topic" : <string>,

 "req_id" : <string>,

 "command" : <string>,

 "device" : <string>,

 "component" : <string>,

 "data" : [<string>,…],

 "subscription" : <string>}

Parameter Details

answer_topic: The response of the request is send to this MQTT
topic

req_id: arbitrary but unique identifier of the request

command:

 “read”: one-time read or subscription of/to data of another
device’s IIoT-Platform

 “methodcall”: send a request or command to a component
(e.g. DCP) of another device via the IIoT-Platforms of both
devices

device: URL of target device’s IIoT-Platform or OPC UA server

component: Name of target component on other device (e.g.
“iiot”, “dcp”)

data: depending on command

, D2.4, VERSION 1.01, 2021-04-30

 - 8 -

Examples

The following data request via MQTT requests location coordinates (X,Y,Z) with a one-time
read request from another device’s IIoT-Platform, issued by DCP component (with escape
characters for string parsing). The flow of data and sequence of invocations between
components and devices is visualized in Figure 1:

MQTT Topic: “iiot-common”

Payload: "{\"answer_topic\":\"dcp-common\",

 \"req_id\":\"dcp1\",

 \"command\":\"read\",

 \"device\":\"opc.tcp://iiot_platform-2:4840\",

 \"component\":\"iiot\",

 \"data\":[\"1042\",\"1043\",\"1056\"],

 \"subscription\":\"false\"

}"

*Further details on
DCP request structure
are described in
section 3.3.2.4

 “read”: Array of OPC UA variable NodeIDs

 “methodcall”: structure depended on target component,
structure of DCP* request:
{"dev_id":<string>,
 "cmd":<string>,
 "arguments":{key:value,…}}

Figure 1: Message flow of read request

, D2.4, VERSION 1.01, 2021-04-30

 - 9 -

The next example presents a reservation request (see section 3.3.2.4.1) send from an internal
DCP component to the DCP of another device via the IIoT-Platforms of both devices (with
escape characters for parsing):

MQTT Topic: “iiot-common”

Payload: "{\"answer_topic\":\"dcp-common\",

 \"req_id\":\"dcp2\",

 \"command\":\"methodcall\",

 \"device\":\"opc.tcp://iiot_platform-2:4840\",

 \"component\":\"dcp\",

 \"data\":{\"dev_id\":\"hmi1\",\"cmd\":\"reservation\"}

}"

Figure 2: Message flow of method call

, D2.4, VERSION 1.01, 2021-04-30

 - 10 -

3.2.2 MQTT Topic iiot-modify-data

The information in the data model of the IIoT-Platform can be altered by the device
components. The IIoT-Platform listens on the MQTT topic “iiot-modify-data” for this purpose
and requires MQTT messages with the following syntax:

Table 2: MQTT topic iiot-modify-data

Example

The following MQTT message will set new values for the coordinates X (NodeID 1042), Y
(NodeID 1043) and Z (NodeID 1056) of the device:

MQTT Topic: "iiot-modify-data"

Payload: "{\"nodes\":{\"1042\":2,\"1043\":20,\"1056\":200}}"

Comm. Protocol MQTT

Topic Name iiot-modify-data

Published By Device internal component

Subscribed By IIoT-Platform

Description Modify variable values in the OPC UA data model of the IIoT-
Platform

Payload {"nodes":{"<NodeID>":<value>,…}}

Parameter Details <NodeID>: OPC UA NodeID of variable to be modified

<value>: new value of the variable, requires data type of target
variable

, D2.4, VERSION 1.01, 2021-04-30

 - 11 -

3.3 Data Model

There was no common OPC UA data model for the material handling domain when the
OPTIMUM project started. As a consequence, a data model has been developed to fulfill the
needs of the OPTIMUM platform. As soon as there is an official Companion Specification for
the material handling domain available, the data model can be modified to fulfill the
requirements of such an official specification. However, the developed data model
incorporates the OPC UA for Machinery profile, which can be seen as a digital nameplate for
machines, to allow basic communication with other OPC UA devices outside of the OPTIMUM
project. The defined object types of the data model are available as an XML-file. In the
following, the OPTIMUM data model is described without the additional elements of the OPC
UA for Machinery specification.

Figure 4: OPTIMUM Data Model - Object Relations

Figure 3: Data Model Example
Crane in UAExpert

, D2.4, VERSION 1.01, 2021-04-30

 - 12 -

Table 3: OPC UA Object Type TargetType

Table 4: OPC UA Object Type MobileTargetType

OPC UA Object Type TargetType

Namespace http://optimum-itea3.eu/MaterialHandling/

Description The Target Type is the basic element of the data model and defines
a device that is aware of its own location in relation to a common
coordinate system.

Object Children  Location
o X : Double
o Y : Double
o Z : Double
o LocationUnit : PropertyType

 Status : String
 Target_ID : String

Children Description

Location : aggregates X, Y and Z coordinate of the device

LocationUnit: reflects the metric unit used for X, Y and Z

Status: Contains the current status of the device or component:
Available, Reserved, Maintenance, Error

Target_ID: contains the name of the device or component

OPC UA Object Type MobileTargetType

Namespace http://optimum-itea3.eu/MaterialHandling/

Description The MobileTargetType inherits the object structure from the
TargetType object and extends it with information about the
device’s velocity.

Object Children  <TargetType Object Children>
 Velocity

o X : Double
o Y : Double
o Z : Double
o VelocityUnit : PropertyType

Children Description

Velocity : aggragates X_Speed, Y_Speed and Z_Speed velocity
parameters of the device

VelocityUnit: reflects the metric unit used for X, Y and Z

, D2.4, VERSION 1.01, 2021-04-30

 - 13 -

Table 5: OPC UA Object Type MaterialHandlingTarget

Table 6: OPC UA Object Type Smart_MH_SystemType

OPC UA Object Type MaterialHandlingTargetType

Namespace http://optimum-itea3.eu/MaterialHandling/

Description The MaterialHandlingTargetType inherits the object structure
from the MobileTargetType object and extends it with information
about the device’s current load weight (e.g. for cranes).

Object Children  <MobileTargetType Object Children>
 LoadWeight : Double

o WeightUnit : PropertyType

Children Description

Load_Weight : contains the weight of the current load transported
by the device

WeightUnit: reflects the metric unit used for LoadWeight value

OPC UA Object Type Smart_MH_SystemType

Namespace http://optimum-itea3.eu/MaterialHandling/

Description The Smart_MH_SystemType aggregates multiple targets, contains
additional information objects and methods that allow for a smart
control functionality.

Object Children  System_ID : String
 HMI_ID : String
 Status : String
 Load_Type : String
 Load_ID : String
 Targets : Folder

o <Target_Placeholder> : TargetType
 <Method_Placeholder> : OPC UA method

Children Description

System_ID: contains the name of the device, can be set via
command line argument (-s) during start of IIoT-Platform

HMI_ID: contains the ID of the current user/HMI that reserved the
device to use smart functions

Status: Contains the current status of the device: Available,
Reserved, Maintenance, Error

Load_Type: contains the type of current load attached to the
device

Load_ID: contains the unique identifier of the transported load

<Target_Placeholder>: placeholder for one or multiple objects of
the type TargetType or derived types (e.g. MobileTargetType)

<Method_Placeholder>: placeholder for one or multiple OPC UA
methods that enable smart control of the device (see 3.3.2.4),
methods are currently added via IIoT-Platform source code.

, D2.4, VERSION 1.01, 2021-04-30

 - 14 -

Access Variables in Data Model
If the same variable of one or several devices needs to be read repeatedly by an OPC UA client,
the easiest way of retrieving this data via OPC UA is to address a specific node with its NodeID
and NamespaceID. Alternatively, the name of the node can be used together with the
NamespaceID. However, the name could not be unique, as in case of X, Y and Z coordinates.
For example, the following constant NodeIDs hold true for the demonstrators of DEMAG and
NXP using the OPTIMUM data model:

Table 7: Common NodeIDs for OPTIMUM demonstrators

Node NodeID Namespace ID

trolley_1/ Fork Lift/AGV/Operator X 1042 3

trolley_1/ Fork Lift/AGV/Operator Y 1043 3

trolley_1/ Fork Lift/AGV/Operator Z 1056 3

Trolley_1 Target_ID 1040 3

trolley_2 X 1052 3

trolley_2 Y 1053 3

trolley_2 Z 1061 3

Trolley_2 Target_ID 1050 3

DemagCrane/Fork Lift/AGV System_ID 6001 3

DemagCrane/AGV HMI_ID 6005 3

3.3.1 OPC UA for Machinery

The Companion Specification OPC UA for Machinery is a rather new specification and targets
several application. However, only part 1 of this specification is published during the period of
the OPTIMUM project which targets a common identification and nameplate of a device.
Furthermore, the specification provides a common entry point to find all machines on an OPC
UA server. Future goals of the Companion Specification workgroup are identification and
nameplate of device components and an overall machine state. These elements could replace
variables in the OPTIMUM data model with the same purpose in the future. The following
sections give examples on the usage of this data model for machine discovery and
identification.

Find All Machines of a Server

The specification defines a folder Machines as part of Root-->Objects that contains a link to

all machines represented on an OPC UA server as shown in Figure 5.

Figure 5: Machine Folder of OPC UA for Machinery CS

, D2.4, VERSION 1.01, 2021-04-30

 - 15 -

Identification

The digital nameplate used to identify a machine is
provided by the specification as a data structure that is

instanciated as a child of the machine object (see Figure
7). Figure 6 shows the elements of the Identification
structure. If one or multiple elements of the identification
structure exist already in the data model of the machine,
they will be linked to the identification object. Further
information on the details of the identification structure is
provided in [1].

3.3.2 Semi-Autonomous Functions

The IIoT Platform provides OPC UA methods to activate semi-autonomous functions on
OPTIMUM devices. An overview about the method calls is provided in the following. The
methods are added as children of the OPTIMUM device object as shown in Figure 3. If not
explicitly stated, all input arguments are mandatory. The Method output arguments always
have the same structure.

3.3.2.1 Method Output Arguments

All methods rely on the same communication principle. If the syntax of the input arguments
of a method call is valid, the IIoT of the target device responds with “request status: ack” and
information about a Response Node. This information is called method output arguments. The
device that called the method is required to create an OPC UA subscription (monitored Item)
to the newly created Response Node of the targeted device to receive further status
information about the request. See section 3.3.2.2 for more information.

In case of OPC UA method invocation over MQTT API, the IIoT platform takes care about this
mechanism automatically and forwards all request status updates the requesting component.

Figure 7: Identification object
of OPC UA for Machinery CS

Figure 6: Identification data structure
of OPC UA for Machinery CS

, D2.4, VERSION 1.01, 2021-04-30

 - 16 -

Table 8: OPC UA Method Output Arguments

3.3.2.2 Response Node

The value of the response node contains JSON encoded status information. The key-value pair
„final_msg“: „true/false“ can be used to identify the final status and cancel the subscription.

Table 9: Response Node Mechanism

Output Arguments  Request Status : String

o “ack” : method call input argument syntax valid

o “fail” : syntax of input arguments invalid

 Information : String, human-readable information text

 Response Node : String, NodeID of variable to be

subscribed

 Response Node Namespace : OPC UA Namespace of

Response Node variable

Value Syntax JSON encoded string with key-value pairs:

{

 "status":"PLACEHOLDER",

 "final_msg":"PLACEHOLDER",

 "data":"PLACEHOLDER"

}

Example:

{

 "status":"finish",

 "final_msg":"true",

 "data":"Target location reached"

}

Arguments  status : String,

o “pending” : Gathering all required data

o “ongoing” : device realizes requested function, in

general physical movement of the device

o “finish” : functionality successfully completed

o “success” : replaces “finish” in case of

Method_Stop and Method_Reservation

o “fail” : execution of requested functionality failed

 final_msg : String

o “false” : current message is only intermediate

information, further status updates are expected

o “true” : final status update, no more messages

expected, teardown of subscription on server side

 data : String, component depended human-readable that

contains specific information about the current status

, D2.4, VERSION 1.01, 2021-04-30

 - 17 -

3.3.2.3 FollowMachine Parameters

The FollowMachine functionality enables the user to control multiple devices simultaneously.
The function is combined with semi-autonomous functions like GoTo or ComeTo. Therefore,
it is not implemented as a separate method call but rather a set of additional input parameters
of methods that support following machines. These additional input parameters are listed in
the table below.

Table 10: FollowMachine Parameter Set

Function FollowMachine

Purpose Control multiple OPTIMUM cranes simultaneously

Description Additional input parameters are used to configure this
functionality when invoking a method. The function can currently
address multiple cranes with multiple trolleys. Only specific
configurations are possible. The FollowMachine arguments Master
Device and Master Trolley are required to be always set
(mandatory). Even if no simultaneous movement of devices is
intended.

FollowMachine is activated when devices are added to the
arguments Slave Devices and Slave Trolleys.

The location information of the master trolley is used to navigate
the group of machines.
Examples:

 crane_1 moves its trolley_1 and trolley_2 simultaneous

 crane_1 and crane_2 move together with only trolley_1 of
each crane activated

Additional Input
Arguments

 Master Device : String, System_ID of master device

 Slave Devices : String array, optional, System_IDs of
devices, e.g., “[“crane2”,”crane3”]”

 Master Trolley : String, Target_ID of master trolley

 Slave Trolleys : String array, optional, Target_IDs of

trolleys, e.g., “[“trolley1”,”trolley2”]

, D2.4, VERSION 1.01, 2021-04-30

 - 18 -

3.3.2.4 OPC UA Methods

Some of the following OPC UA Methods are simulated in the testbed
OPTIMUM_HMI_Development. This testbed is part of the IIoT-Platform project and is
intended to be used during HMI testing. Further information is provided in section 0.

3.3.2.4.1 Method Reservation

Table 11: OPC UA Method Reservation

3.3.2.4.2 Method Stop

Table 12: OPC UA Method Stop

Comm. Protocol OPC UA

Method Name Method_Reservation

Description Before any other control method (DCP) of an OPTIMUM device can
be invoked, the device needs to be reserved by the operator/HMI.
When the operator finishes the controlling of the crane, the
reservation needs to be cancelled.

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Reservation status : String

o “on” = reserve device

o “off” = cancel reservation

Output Arguments See 3.3.2.1

Simulated in Testbed yes

Comm. Protocol OPC UA

Method Name Method_Stop

Description OPTIMUM device shall stop its currently active function

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

If the method stops a previously started semi-autonomous
function like Method_ComeTo, the cancelation of this semi-
autonomous function is only indicated via the Response Node of
the Method_Stop function.

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Request ID : String, name of Response Node of formerly

invoked Method

Output Arguments See 3.3.2.1

Simulated in Testbed yes

, D2.4, VERSION 1.01, 2021-04-30

 - 19 -

3.3.2.4.3 Method GoTo

Table 13: OPC UA Method GoTo

3.3.2.4.4 Method ComeTo

Table 14: OPC UA Method ComeTo

Comm. Protocol OPC UA

Method Name Method_GoTo

Description Move crane to a target position

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Coordinates : Comma separated string (x,y,z)

 <FollowMachine_Parameters>

Output Arguments See 3.3.2.1

Simulated in Testbed yes

Comm. Protocol OPC UA

Method Name Method_ComeTo

Description Move crane to position of an IIoT enabled target

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Target Device : URL (e.g. opc.tcp://operatorHW:4840)

 <FollowMachine_Parameters>

Output Arguments See 3.3.2.1

Simulated in Testbed yes

1) Send coordinates X,Y,Z only once

Figure 8: Visualization of Method GoTo

2) Publish coordinates only
once to crane MQTT broker

, D2.4, VERSION 1.01, 2021-04-30

 - 20 -

1) Send URL of Human Operator Hardware to crane

3) Publish coordinates only once to
crane MQTT broker

2) Read Location variable of Human
Operator Hardware via OPC UA once

Figure 9: Visualization of Method_ComeTo

, D2.4, VERSION 1.01, 2021-04-30

 - 21 -

Figure 10: Exemplary message flow of Method_ComeTo, requested by component via MQTT, in case of OPC
UA HMI/client step 2 is entry point

, D2.4, VERSION 1.01, 2021-04-30

 - 22 -

3.3.2.4.5 Method Follow

Table 15: Method Follow

Comm. Protocol OPC UA

Method Name Method_Follow

Description Crane shall follow the a target

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

This function finishes only when Method_Stop is invoked

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Target Device : URL (e.g. opc.tcp://operatorHW:4840)

 <FollowMachine_Parameters>

Output Arguments See 3.3.2.1

Simulated in Testbed yes

1) Send URL of Human Operator Hardware to crane

3) Publish coordinates to crane MQTT
broker on location every change

2) Subscribe Location variable of Human
Operator Hardware via OPC UA

Figure 11: Visualization of Method_Follow

, D2.4, VERSION 1.01, 2021-04-30

 - 23 -

3.3.2.4.6 Method JSON

Table 16: OPC UA Method JSON

Comm. Protocol OPC UA

Method Name Method_JSON

Description Used for general IIoT-to-IIoT communication and requires a
specific JSON encoded syntax. This method implements a generic
mechanism for communication to components of remote devices
that are interfaced using an IIoT-Platform. It can replace all above
mentioned simplified methods.

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Argument JSON encoded string with key-value pairs, syntax:
{

 "component":"PLACEHOLDER",

 "data":{

 "CMD":"PLACEHOLDER",
 "Args":"PLACEHOLDER"

}}

Example:

{
 "component":"dcp",
 "data":{
 "dev_id":"hmi1",
 "cmd":"gotoposition,
 "arguments":{
 "master":"crane1",
 "slaves":[""],
 "trolley_master":"trolley1",
 "trolley_slaves":[""],
 "position":{
 "x":1,
 "y":2,
 "z":3
}}}}

Output Arguments See 3.3.2.1

Simulated in Testbed no

, D2.4, VERSION 1.01, 2021-04-30

 - 24 -

3.3.2.4.7 Method ManualTandem

Table 17: OPC UA Method ManualTandem

3.3.2.4.8 Method CraneMode

Table 18: OPC UA CraneMode

Comm. Protocol OPC UA

Method Name Method_ManualTandem

Description Enable manual tandem functionality of master remote control to
move two cranes simultaneously. Only one remote control of the
involved cranes can be used at a time. The Tandem is a function
provided by DEMAG cranes that allows the simultaneous
movement of up to two cranes. Further information can be found
in the DEMAG manuals.

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Master Device : String, System_ID of master device

 Enable: String

o “on” = enable

o “off” = disable

Output Arguments See 3.3.2.1

Simulated in Testbed no

Comm. Protocol OPC UA

Method Name Method_CraneMode

Description Swap between legacy control mode (no OPTIMUM functionality)
and OPTIMUM mode with smart functionality

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Mode: String

o “legacy” = conventional device control mode

o “optimum” = OPTIMUM control mode (default)

Output Arguments See 3.3.2.1

Simulated in Testbed no

, D2.4, VERSION 1.01, 2021-04-30

 - 25 -

3.3.2.4.9 Method AGV GoTo

Table 19: OPC UA Method AGV GoTo

Comm. Protocol OPC UA

Method Name Method_AGV_GoTo

Description Custom function to activate “go to position” functionality for
automated guided vehicle (AGV)

Information Flow Request is forwarded to DCP. See 3.3.2.1 and 3.3.2.2

Input Arguments  Client ID : String, User or HMI ID that reserved the device

 Start Node

 End Node

Output Arguments See 3.3.2.1

Simulated in Testbed no

, D2.4, VERSION 1.01, 2021-04-30

 - 26 -

3.4 Additional Features under Development

3.4.1 Security

The IIoT-Platform contains in-build security features provided by the applied OPC UA library
open62541 [2]. This includes encryption and integrity protection due to the use of an
abstracted security layer that can integrate openSSL [3] or mbed TLS [4] security libraries.

Additionally, a certificate handling is implemented by the OPC UA library that allows to use
basic authentication features.

A fine-grained certificate-based authentication and authorization concept has been
developed in the OPTIMUM project.

The project partner NXP provides with the secure element SE050 a Trusted Platform Module
(TPM) that stores certificates and keys. Furthermore, it provides hardware encryption
capabilities to speed up communication via a secured channel.

The integration of the TPM functionality into the IIoT-Platform is currently under development
and not yet part of the IIoT release version 0.2 that is described in this document.

3.4.2 OPC UA Discovery

The specification of OPC UA contains a discovery service to find devices in the network. A Local
Discovery Server (LDS) that provides a list of all servers in a local network that registered
themselves to the LDS. The Global Discovery Server (GDS) being a central database that holds
connection information of OPC UA servers in the local or other networks of the same
administration domain, e.g., company network that has additional capabilities for certificate
issue and handling. The LDS fulfills the requirements in the OPTIMUM project and prototypical
implementations are currently evaluated. This includes the modification of the LDS to provide
additional device status information about the registered OPC Servers (IIoT-Platform). This
modification has been developed for the unicast-based LDS as well as for the UDP multicast-
based LDS-Multicast Extension (LDS-ME). The integration of a discovery service into the IIoT-
Platform is targeted for the next release of the IIoT-Platform.

3.5 IIoT-Platform in Demonstrators

This section presents a short overview about the implementation status of the IIoT-Platform
in the different demonstrators in the OPTIMUM project.

3.5.1 DEMAG

The IIoT-Platform is implemented as described in this document. Either running as native
application on the embedded boards IMX6UL or IMX8 or as a Docker container.

3.5.2 NXP

The IIoT-Platform is implemented as described in this document. It is executed as a Docker
Container on the development board IMX8. The Location information source is modified.
Usually the data is modified via MQTT in the OPC UA data model. In case of NXP demonstrator,
the location information is fetched from an Inter-Process-Communication message queue on
every read or subscription interval.

3.5.3 IFAK

The demonstrator uses exclusively the DCP solution DOME from ifak [5] to control the cranes.

, D2.4, VERSION 1.01, 2021-04-30

 - 27 -

3.5.4 ETRI

Since the project ended earlier for this partner, a previous version of the IIoT-Platform and
Data Model is used.

3.5.5 ERMETAL

Figure 12 depicts a simplified view of the ERMETAL (Turkish) demonstrator. As shown in the
figure, it complies with the OPTIMUM architecture and therefore the IIoT component is an
integral part of it. IIoT provides the M2M communication interface between the internal
components of the industrial device and the other components of the system for non-time-
critical data exchange.

Figure 12: Final implementation of ERMETAL demonstrator

As of the publication date of this deliverable, a customised/specialised IIoT implementation
(rather than common OPTIMUM IIoT-platform) is used for the realization of ERMETAL
demonstrator. In the initial ERMETAL demonstrator (i.e., desktop demonstrator) it was not
possible to use the common OPTIMUM IIoT-platform, since it was not available at the time
(Fall 2019). In the final ERMETAL demonstrator (i.e., larger scale Turkish demonstrator), the
common OPTIMUM IIoT-platform could not be integrated yet, due to time and resource
limitations. It is expected to integrate the common OPTIMUM IIoT-platform into ERMETAL
demonstrator with minor adaptation activities for 2 main reasons: 1. ERMETAL demonstrator
is built using the OPTIMUM architecture, 2. The data model of the common OPTIMUM IIoT-

, D2.4, VERSION 1.01, 2021-04-30

 - 28 -

platform is developed as a generic data model taking all the demonstrator requirements into
account. By migrating to the common OPTIMUM IIoT-platform, ERMETAL demonstrator can
benefit from all the known advantages of using a common reusable software component.

3.5.6 MAGTEL

The Spanish demonstrator uses the DCP component and the IIoT-Platform to orchestrate the
movement of collaborative robots (cobots) in a production line. The cobots expose an HTTP
interface to exchange data and control commands with DCP and IIoT.

, D2.4, VERSION 1.01, 2021-04-30

 - 29 -

4 Implementation Details
The IIoT-Platform uses the open-source OPC UA implementation open62541 [2] that is written
in C/C++ for its core functionality. Some parts of the library are modified and extended to fulfill
the requirements of the IIoT-Platform. This includes modification of the JSON data encoding
and the integration of an MQTT subscriber for the Publish-Subscribe layer of open62541 that
is standardized in OPC UA specification part 14 of the OPC Foundation. In future, the
modifications are may aggregated into a patch that can be applied to all open62541 release
versions in theory.

Table 20 provides an overview of all external libraries on which the IIoT platform depends.
These dependencies are linked via Git submodule mechanism.

Table 20: Overview of IIoT-Platform External Library Dependencies

Library Description

open62541 [2] The library provides OPC UA client, server and partial Publish-Subscribe
functionality.

json-c [6] This project provides common JSON data encoding capabilities besides
the custom JSON encoding built into open62541.

uthash [7] This project provides a lightweight implementation of a hash table that is
used to maintain the data structures of request and their attached OPC
UA client threads.

ua-nodeset [8] This project reflects the official OPC UA standard Nodesets and is
required by open62541.

A so called multi-stage Dockerfile can be used to build the IIoT-Platform with all its
dependencies. This process creates a Docker image of the IIoT-Platform with minimal
footprint. The IIoT-Platform project contains also yaml-file that defines a Continuous
Integration flow to build the Docker Image for different platforms, e. g., amd64 and armV7.

Further information about the build process and start arguments can be found in the
README.md in the project root directory.

Testbeds

Virtual test environments were created to verify the functionality of the IIoT platform and its
interaction with the HMI smartphone application (OPC UA client) and the DCP. These testbeds
are created with the Docker Compose application to create several instances of the IIoT-
Platform, the MQTT broker and a mockup of the DCP in an isolated environment with a virtual
network between them. The DCP mockup uses mqtt-spy [9] and a JavaScript script to respond
to messages with requests from the IIoT-Platform.

, D2.4, VERSION 1.01, 2021-04-30

 - 30 -

5 References

[1] "OPC 40001-1 UA for Machinery Part 1 Basic Building Blocks," [Online]. Available:
https://reference.opcfoundation.org/v104/Machinery/v100/docs/. [Accessed 04 05
2021].

[2] "open62541," [Online]. Available: https://open62541.org/. [Accessed 04 05 2021].

[3] "openSSL," [Online]. Available: https://www.openssl.org/. [Accessed 04 05 2021].

[4] "mbed TLS," [Online]. Available: https://tls.mbed.org/. [Accessed 04 05 2021].

[5] "Ifak DOME," ifak, [Online]. Available: https://www.ifak.eu/de/produkte/dome.
[Accessed 04 05 2021].

[6] E. Haszlakiewicz, "GitHub json-c project," [Online]. Available: https://github.com/json-
c/json-c. [Accessed 05 05 2021].

[7] T. D. Hanson, "GitHub uthash project," [Online]. Available:
https://github.com/troydhanson/uthash. [Accessed 05 05 2021].

[8] OPC Foundation, "GItHub OPF Foudnation UA-Nodeset project," [Online]. Available:
https://github.com/OPCFoundation/UA-Nodeset. [Accessed 05 05 2021].

[9] Eclipse Foundation, "Eclipse Paho MQTT Spy," [Online]. Available:
https://www.eclipse.org/paho/index.php?page=components/mqtt-spy/index.php.
[Accessed 05 05 2021].

6 Abbreviations

AGV ... Automated Guided Vehicle

cobots ...collaborative robots

DCP ... Distributed Control Platform

GDS ... Global Discovery Server

HMI .. Human-Machine-Interface

IIoT ... Industrial Internet of Things

LDS .. Local Discovery Server

LDS-ME .. Local Discovery Server Multicast Extension

M2M .. Machine-To-Machine

TPM ... Trusted Platform Module

