
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Public Document 
on State of the Art 
in Secure DevOps 

SECURE AND AGILE CONNECTED THINGS 
SCRATCh 

Copyright © 2018-2022, SCRATCh 



 

 
 

Copyright © 2018-2022, SCRATCh 1 

 

Version history 
 

Date Version Author Comment 
27/07/2020 0.01 Morten Larsen Assembly of initial bullet points from partners 
07/08/2020 0.02 Morten Larsen 

Marcell Marosvolgyi 
Partner bullet points organised into chapters 

21/09/2020 
 

0.05 Franklin started with introduction and context 

24/09/2020 
 

 Till Witt added NXP input, added CIT graphics on device 
identity lifecycle 

24/09/2020 0.07 Morten Larsen 
Angel Lagares  

Added Nimbeo contribution, reorganised 
paragraphs in introduction 

24/09/2020  Karsten Sohr Added Section 5.1 (Design Phase) 
17/11/2020 0.09 Asier Larrucea Added/Updated Section 2.1 and 3.1. 
30/11/2020 0.10 Morten Larsen Added tables for SME and UC concerns 
14/12/2020 0.10a Morten Larsen Typo corrections 
14/12/2020 0.10b Franklin Changes to intro and design phase 
11/01/2021 0.10c Asier Larrucea Added Section 5.3 Build/Test (Integration) 
15/01/2021 0.10d Karsten Sohr Added entries to the tables for SME and UCE 

concerns 
02/01/2021 0.11 Peter Guenther Update Section 5 intro and 5.2 
05/02/2021 0.11a Karsten Sohr Revision of Sect. 5.1, Literature added 
09/02/2021 0.20 S. Duque Anton Revision of 5.5, added text, formatted and 

replaced tables 
22-02-2021 0.50 Franklin Selgert small changes first part,added several remarks  

e.g. on requirements and moved a section in 
chapter 5.1 

01-03-2021 0.60 Franklin Selgert Changed column name in table page 17 
01-03-2021 0.60a Karsten Sohr Changed citations in chapter 5.1 and 5.5 
08-03-2021 0.61 Morten Larsen Some cleaning. If too heavy-handed, let me 

know. 
11-03-2021 0.70 Morten Larsen 

Marcell Marosvolgyi 
Franklin Selgert 
Simon Duque Anton 

Editing for polish and clarification 

11-03-2021 0.71 Morten Larsen Implemented to some actions from editing 
meeting 

11-03-2021 0.72 Morten Larsen Removed first section which was only for internal 
use. Added captions to tables. 

12-03-2021 0.72 Franklin Selgert solved my remakrs and edit of tables chapter 4.1 
and 4.4 (assignments of the tables are missing) 

17-03-2021 0.73 Morten Larsen More cleaning up based on input and comments 
to v0.72 

19-03-2021 1.00 Franklin Selgert Finalized version for publication 

 

 

 



 

 
 

Copyright © 2018-2022, SCRATCh 2 

Table of Contents 
1 Introduction ..................................................................................................................................... 3 

1.1 Overall considerations about IoT ............................................................................................ 3 

2 High level goals ................................................................................................................................ 6 

3 Device Identity life-cycle ................................................................................................................. 9 

4 DevOps Phases .............................................................................................................................. 10 

4.1 Plan Phase (requirements and design) .................................................................................. 11 

4.2 Code Phase ............................................................................................................................ 14 

4.3 Build and Test Phase.............................................................................................................. 18 

4.4 Release and Deploy Phase ..................................................................................................... 22 

4.5 Operate, Monitor, End of Life Phase ..................................................................................... 25 

5 Conclusions .................................................................................................................................... 28 

6 References ..................................................................................................................................... 29 

 

 

 

 

 

 



 

 
 

Copyright © 2018-2022, SCRATCh 3 

1 Introduction 
The context of this paper is best described by a quote from the IRTF taskforce (RFC 8576) on SoTA IoT 
security:  

The Internet of Things (IoT) concept refers to the usage of standard Internet protocols to 
allow for human-to-thing and thing-to-thing communication. The security needs for IoT 
systems are well recognized, and many standardization steps to provide security have 
been taken -- for example, the specification of the Constrained Application Protocol (CoAP) 

Taking this as a starting point, a strong correlation between internet development and IoT 
development is set. In the same paper from the IRTF the obvious differences also are highlighted. And 
the answer to tackle the Security issues are mostly protocol-related: let’s increase security on the 
protocols. To answer the question if this is enough one should take a step back and look at the current 
Internet development playing field. To quickly summarize the tremendous amount of documentation 
and study in this field one can distinguish three major sides to the IoT security challenge. 

1. Process 
2. Communication protocols 
3. Distribution and control 

To develop a secure IoT system one need to consider the constraints of the system and applicable 
regulation, how to comply to those constraints (process) and finally how to keep in control of a system 
or IoT deceives in the field (distribution and Control) 

This paper takes a holistic view on the question of IoT security as it is a combination of Process and the 
appliance of technical know-how. No process can lead to a false implementation of SoTA security 
protocols and no means to detect this. Process and no technical know-how will lead to a well 
documented system including the security leaks. 

As described by the IRTF taskforce Internet things applied to IoT and steps are taken to improve on the 
technical know-how. This white paper takes the common process practice of many internet 
companies, namely DevOps, and reviews this against prevailing SoTA opinions, within the aspect of 
open systems. The emphasis is on the use of DevOps process in SME’s type of companies. 

1.1 Overall considerations about IoT 
IoT environments are heterogeneous, distributed and hard to operate from a security perspective. 

The general objective of IoT systems is that they can adjust to the behaviour and conduct of the client 
so that they can expand the overall usefulness of the system. This move towards information-driven 
assembling is set to change the way that IoT system designers will work in the near future.  

The overall aim of IoT systems is that expanding on the usual internet paradigm, where business, 
government and customer collaborate, IoT will help them manage their interaction with the physical 
world. IoT will have a colossal effect on the wide scope of the market area including yet not restricted 
to following [1]:  

1. Industry: Industry can utilize IoT to enable sophisticated sensor and actuator networks: 
detecting area, surveying gear execution, controlling and checking tasks, controlling and 
observing HVAC(heating, ventilation and cooling) and so on. 

2. Agribusiness: IoT can have a big effect on the farming area for example soil examination, 
enabling increased crop growth or with precision metering that enables a second harvest in 
one year. 



 

 
 

Copyright © 2018-2022, SCRATCh 4 

3. Automobile industry: IoT has its potential in-car field regarding city traffic stream, the board 
of leaving, perceptive key passage, vehicle area, checking vehicle wellbeing, hostile to burglary 
and so on. 

4. Retail: IoT innovation can be utilized for following of resources, looking after stock, displaying 
and to oversee gracefully retail chains.  

5. Ecological: IoT can be used for following endangered species, anticipating the climate and 
providing key data for policy makers.  

6. Medical services: IoT can be utilized for Telehealth, embedded and wearable gadgets. Some 
gadgets can help individuals to deal with their wellness by tracking and analysing their exercise 
patterns and routines. 

7. Military: IoT innovation can be utilized in the military to screen troops actions, to oversee 
assets and military logistics. 

8. Smart Homes: IoT can be used for perceptive home to control lighting, security devices, 
warming, cooling and smart metering. 

Nonetheless, this future is brimming with threats from the perspective on security. To address the 
dangers these associated IoT gadgets represent, it is essential to think of a system that will guarantee 
that each "thing" is periodically checked and its security status assessed.  

The IoT environments dictate the tools and methods used and should not be subject to change. IoT 
environments are very much domain-specific and designed with a purpose in mind.  Consequently, 
security methods need to be tailored to application and network protocols used. That means any IoT 
monitoring solution that is designed as “general purpose” has to be adaptable to different use cases 
and structures of IoT environments. 

The trend and pull of the market is to transform DevOps into Secure DevOps by using practices and 
activities already proven to improve security of software applications. The objective is to create a 
secure environment during the whole life-cycle defined in the DevOps cycle, from the inception of the 
project to the maintenance phase, including analysis, planning, design, development, build, test, 
deployment, and support. While the security focus is usually focused on the ‘operations’ side of the 
cycle, a complete secure environment has to cover the entire organization, therefore all the layers and 
phases have to include security barriers and controls, and the company has to have a risk-security plan 
which includes management and training. In order to achieve these goals securing DevOps requires 
not only the new techniques, tools and technologies available, but also a different organizational 
approach which includes new strategies, policies and business processes. 

The rest of this document will be organized as follows: 

 In Chapter 2 a more complete overview of the High-level goals is provided, building on the 
general outlook of this Introduction. 

 Chapter 3 deals with the Device Identity life-cycle aspects necessary in secure IoT ‘things’. 
 Chapter 4 details the different DevOps Phases and their challenges as analyzed in the 

literature and by the SCRATCh consortium. A number of sub-sections are devoted to the 
different phases and each of the DevOps phases subsections present two tables where SME 
and use case concerns are listed. The entries in the tables are categorized by aspect and 
contributor name. 

o Section 4.1 details the Plan phase. 
o Section 4.2 describes the Code phase. 
o Section 4.3 explains the important Build and Test phases 
o Section 4.4 provides insight in the Release and Deploy phases. 
o Finally, section 4.5 deals with the Operation, Monitor phases and presents an 

introduction to the End-of-Life aspects. 



 

 
 

Copyright © 2018-2022, SCRATCh 5 

 The document ends with some Conclusions in Chapter 5 and lists all used References in 
Chapter 6. 

The DevOps phases subsections each have two tables where SME and use case concerns are listed. The 
entries in the tables are categorized by aspect and contributor name. 

  



 

 
 

Copyright © 2018-2022, SCRATCh 6 

2 High level goals 
The exponentially increasing connectedness of software applications and their pervasive distribution 
in modern industry makes security a top-level critical factor for any software producer to deliver 
attractive products. Over time, different approaches have been taken, starting from a human-centered 
approximation in which the developer was responsible of both the functional and non-functional (such 
as security) factors. These initially included manual code inspection and QA analysis with increasing 
scale: the prototypical sole programmer in many 80s PC applications led to more collective approaches 
in the 90s (following the famous Linus’ law stating that “given enough eyeballs, all bugs are shallow”) 
and continuing with increased focus on effective software production processes such as extreme 
programming (XP), Lean and Agile approaches such as Scrum and, in the recent years, the DevOps 
consolidation as the leading methodology combining  software production, deployment and operation. 
The integration and cyclic approach of DevOps is seen as the main driver for improving on software 
quality. 

But while DevOps alone increases the efficiency of software production and system operations, it is 
often not enough to satisfy all of the security goals for said system. Thus, extensions such as DevSecOps 
appeared to fill in the gap. The adoption is slowly increasing, especially in fields with high security 
stakes such as critical infrastructures and IoT deployments. Companies are increasingly adopting these 
solutions: it is projected than in five years, penetration of SecDevOps will reach around 20 to 50% of 
the industry1. 

Security on software often takes on a lower priority than other functional areas for most application 
developers, but this is so much more prevalent for SMEs, where the availability of security-aware 
developers is low and the pressure to deliver solutions to market is very high, especially in such 
dynamic markets such as IoT. It is forecast that 44% of SME plan to invest in resources related to the 
IoT, yet only 20% plan to invest in cyber security2. 

It is then clearly needed to develop solutions to ensure secure software is produced, but taking into 
account the difficult curve of adoption for the industry players with less resources such as SMEs: simple 
process management and traceability from use-case to test-case and preferably simple linking to 
potential vulnerabilities can yield massive benefits to these users, and SCRATCh is well-positioned to 
deliver results in this direction. In the following lines we deliver the high-level goals that have been 
collected from the SMEs in this line of industrial research and collect the key drivers for innovation in 
the field. 

Goal 1: We must increase the prevalence of secure design and secure development by making all 
produced elements more understandable and accessible. As it stands, it takes extensive research and 
expertise to thoroughly secure a system, which is a core reason for the need for improvements for 
SMEs. With new, more user-friendly documentation and tools, understanding of the threats and the 
power to combat them can be put in the hands of the technical lead even if they are not a security 
expert. 

Goal 2: Automation of the software production process is essential for all industry players to adopt 
security enhancing solutions: Automated tools are required to increase the level of security for the 
variety of applications provided in IoT scenarios. A tool framework that quantifies the security 
according to known vulnerabilities or heuristics improve the inclusion security features to reduce the 

                                                           
1 Fortinet: key findings from the 2019 State of DevOps Security Report: https://www.fortinet.com/blog/industry-
trends/key-findings-state-of-devops-security-report 
2 “Hackers’ delight: Small businesses investing more in Internet of Things, less on cybersecurity”, published 4 March 2020 by 
CNBC.com https://www.cnbc.com/2020/03/04/small-businesses-want-to-invest-more-in-iot-despite-cyberthreats.html  



 

 
 

Copyright © 2018-2022, SCRATCh 7 

development time of secure systems. For example, a test prioritization tool to be provided within 
SCRATCh project helps speed up the development of security tools and systems in a semi-automatic 
manner as it allows to reduce the time for testing. Also, compilation of the Knowledge Base is used to 
search for the security issues detected in the whole community and can be integrated to flatten the 
learning curve for smaller SMEs. 

Goal 3: Focus improvement in aspects that are critical for IoT applications as this is a critical security 
field now that will only grow in the near future. Availability and Quality of Service (QoS) are crucial for 
IoT environments. IoT devices are used in distributed environments with application specific, 
heterogeneous entities. Services rely on input from IoT devices, other services require information 
from servers in order for the user to obtain information and interact with the system. Furthermore, 
security and safety relevant features, such as physical intrusion detection systems, e.g. door and 
window sensors or industrial safety switches require uninterrupted connectivity. By techniques such 
as redundancy and shadow nodes, dynamic routing, as well as heartbeat packets, the disruption of 
service can be detected and mitigated. Thus, the quality of service can be ensured despite loss of 
individual devices. 

Through our experience in SCRATCh and the continuous contact we have with the industry, we can 
also target particular secondary objectives for some of the domains of interest in the project such as: 

 Smart Retail: Real-time in-store marketing through proximity-activated promotions that push 
notifications in our smartphones or wearables, and personalized CTA’s on digital signage, 
among others. Additionally, store layout optimization as a result of consumers’ behavioural 
data analysis and identification of hotspots and hottest items. High availability, secure session 
management and the integrity of the generated data are of this highest importance. 

 Smart Home: One of the main goals of the smart home is to increase daily life by improving 
user comfort. This is carried out automating some routines as well as giving homeowners the 
power to manage their home systems remotely. A smart home provides the ability to control 
electronics and appliances from a smartphone, tablet or laptop. It adds an extra level of 
convenience and comfort while removing manually maintaining home systems. The critical 
aspects in Smart Home are privacy keeping and availability. 

 Wearables: Smart wearables collect and analyse data, and in some scenarios make a smart 
decision and provide a response to the user and are finding more and more applications in our 
daily life. Wearables are a promising solution for the objective, reliable, and remote 
monitoring, assessment, and support through ambient assisted living. Privacy is also extremely 
relevant in this field, as very sensitive data is collected. 

 Smart City: the goal of smart cities is to enhance the use of public resources, improving the 
quality of the services offered to the citizens whereas reducing the costs of the public 
administrations. This goal can be carried out by the deployment of an urban communication 
infrastructure that supplies unified, simple, and cheap access to all public services, providing 
potential synergies and improving transparency to the citizens. In this domain, scalability and 
interoperability of the solution is a critical concern, since IoT deployments can be huge and 
multivendor in sprawling cities. Secure maintenance and updates of the large network are 
also critical. 

 Smart Grids: It must enable active participation by consumers in demand response. Moreover, 
it must operate strongly against physical and cyber-attacks. It also must host different storage 
options. It allows the creation and development of new products, services and markets. Finally, 
it optimizes asset utilization and operating efficiency. Given the opportunity in this domain for 
fraud, the critical aspect in this domain are authentication and attestation of the devices and 
detection of intruder devices. 



 

 
 

Copyright © 2018-2022, SCRATCh 8 

 Industrial Internet: it is used in many industrial areas, such as manufacturing (Industry 4.0), 
logistics, oil and gas, transportation, energy/utilities, mining and metals, aviation and other 
industrial sectors. Here the most critical objective is reliability to ensure smooth operation of 
the factories. 

 Connected Cars: in this area of IoT, the industry is working to improve to introduce incentives 
for innovation and investment, leading with light-touch regulation that will allow the market 
to scale while building trust and confidence of consumers, promoting research and 
development programmes for connected and autonomous vehicles and supporting services, 
applications and network industry-led standards and interoperability. High availability and 
Safety is paramount, as well as aspects related to the certification of the software. 

 Connected Health: the aim is decreased operational cost, better patient experience, reduce 
errors, improved outcomes of treatment, improved disease management. This is a very wide 
subject with many sub domains, but privacy and reliability are almost always the most 
important aspects. 

 Finally, Smart Transportation: In this area, the industry is Enhancing traveller experience with 
improved customer services, increasing safety with sensor data tracks, reducing energy use 
and congestion organizing the use in real-time data to better scale resources and meet 
demands, better operational performance monitoring critical infrastructure and developing 
efficient processes to minimize operating costs and improve system capacity. High availability 
of the secure solution and efficient scaling up are thus the critical assets to consider. 

With these high-level goals of the entire SecDevOps for IoT in mind, in the following sections we jump 
deeper into some of the key topics that are relevant in this area. We will start by providing an overview 
of one transversal aspect for IoT (Device Identity) that pervades every subsequent consideration and 
then we will jump into the whole DevOps cycle and its phases, providing examples of typical challenges, 
available tools and solutions proposed by SCRATCh and the found connections with its Use Cases and 
the approaches followed by the different SMEs in the project. 

  



 

 
 

Copyright © 2018-2022, SCRATCh 9 

3 Device Identity life-cycle  
To ensure a Secure DevOps process and thus a secure product, the device identity life-cycle must be 
considered during the entire DevOps process, up to and including the decommissioning of a IoT system 

Depending on the executing (where and how) of each step, different actions within the DevOps cycle 
needed to be considered as well. E.g., the trust provisioning can happen in a form that a root certificate 
is provided with the device, allowing individual credential creation by the IoT developer. The device 
could also be provisioned with pre-generated keys.  

The exchange of this information between manufacturer and IoT-device producer must happen with 
the following DevOps process in mind thus impacting the plan phase. 

During the plan & code phase - the integration of a physical security token such as a Secure Element 
must be considered as it may require a different architecture handling the certificates vs. a simple 
password-based approach. The physical security token will greatly increase the products resilience 
against attacks if integrated correctly but will increase the complexity of the DevOps pipeline.  

The device operation will impact on the entire DevOps Cycle as well.  

 

  



 

 
 

Copyright © 2018-2022, SCRATCh 10 

4 DevOps Phases 
In this document we follow the commonly used Phasing of the standard DevOps cycle as found in 
different publication on the internet, eight phases: plan, code, build, release, deploy, operate, and 
monitor. In this section, we give an overview of the state of the art with emphasis on security and IoT. 
The current SotA concentrates on the parts with high potential for automation like build, release, 
deploy, and monitor. To establish security by design principles, we put more emphasis on the plan 
phase because in the plan phase we set the course for a secure system. Therefore, we subdivided the 
plan phase into a Requirements phase and a Design phase. 

 

FIGURE 1: SECDEVOPS CYCLE3. 

First, we recall the definition of the SecDevOps Phases from Figure 1. Then, in the following 
subsections, we provide the SOTA for each phase. 

1. Plan Phase, consists of 

1. Requirements Phase – During this phase the user requirements are documented and analyzed. 
Once the requirements are agreed, they are prioritized, and change management is enforced. This 
phase also enables requirements tracking through the rest of the SecDevOps phases.  

  
2. Design Phase – During this phase the requirements are transformed into complete and detailed 

system and test design specifications. The design is typically broken down to facilitate multiple 
releases (implementation plan, release plan, product road-map). 

 
2. Code Phase – The design is realised during this phase through a process of software code 

development, and typically includes supporting mechanisms such as code reviews and developer-
level unit test development.  
 

3. Build Phase – Once the agreed coding tasks for a given release have been completed, the code is 
committed to a code repository where it is eventually merged with a new shared codebase. All 
submitted code merges are reviewed and then an automated process is initiated to build a new 
software release and perform end-to-end, integration, and unit testing.  
 

                                                           
3 Quoted from https://searchitoperations.techtarget.com/definition/DevSecOps 



 

 
 

Copyright © 2018-2022, SCRATCh 11 

4. Test Phase – Once a build is completed successfully it is automatically deployed to a staging 
environment for more comprehensive testing. This involves a series of manual and/or automated 
tests to validate the design and ultimately the requirements. The process may loop over the code-
build-test phases until the agreed quality measures have been met. If more fundamental changes 
are required, the process may loop back to the design and even the requirements phase. 
 

5. Release Phase – Once the pre-defined quality criteria have been met, the build is considered ready 
for release. This phase may include various automated scans of the release artefacts to detect 
common vulnerabilities and exploits, and to ensure compliance with code re-use practices. The 
release is tagged for traceability, deployment packages are prepared, and the release is marked 
ready for deployment. 
 

6. Deploy Phase – A completed release is deployed into the target production environment, ready 
for use. Deployment typically includes mechanisms to minimize system downtime and may also 
ensures that it is possible to roll back to a previous release in the event that the new release has 
critical defects.  
 

7. Operate Phase - The new release is in use and performs the intended functions. The operations 
team ensures the availability and performance of the system through mechanisms such as 
redundancy, load balancing, and scaling. For critical systems, disaster recovery and business 
continuity plans are put in place and regularly tested. 
 

8. Monitor Phase – While the system is in operation, it also has to be monitored. As such, the last 
two phases of the cycle happen in parallel. During this phase data is collected about the 
performance and functionality of the system, which ultimately may be fed back to the start of the 
SecDevOps cycle. 

 

4.1 Plan Phase (requirements and design) 
The plan phase is about “what are we going to develop“. This is the phase where one should set system 
constraints, posed by regulation, environment, type of application, etc. It is also the phase where 
changes can be made with a minimum of impact on the work. If one does not design a secure method 
to upgrade a running system from the start, it will be costly to do it later on. The question is what are 
the methods currently used to make a secure design. 

In the puppet-state of DevOps Report 20204 (page 32) a distinction is made in four categories of 
companies: Operational mature, Engineering driven, Governance focused and Ad-hoc. The majority of 
smaller companies is divided over the Engineering driven and Ad-hoc type of companies. On security 
issues those type of companies are depending on the ability to quickly re-mediate vulnerabilities.  

Currently design is not a formal phase of the DevOps practice, it resides under the “Plan” phase as 
described in (https://medium.com/taptuit/the-eight-phases-of-a-devops-pipeline-fda53ec9bba): The 
Plan stage covers everything that happens before the developers start writing code, and it is where a 
product manager or project manager earns their keep. Requirements and feedback are gathered from 
stakeholders and customers and are used to build a product road map to guide future development. 

                                                           
4 https://puppet.com/resources/report/2020-state-of-devops-report/ 



 

 
 

Copyright © 2018-2022, SCRATCh 12 

Most articles on DevOps are not specific to security in this phase. For most SMEs practicing DevOps, 
being an Ad hoc or Engineering driven company, security is applied or forgotten in a later stage.  

What should be done and why: 

The design phase encompasses different subtasks including 

o Security requirements engineering,  

o Abuse case elicitation,  

o Attack surface analysis, 

o Threat modelling and architectural risk analysis, 

o Definition of a security architecture.  

First, high-level security requirements or security objectives, such as “Medical data must be 
confidential and authenticated”, must be elicited first and documented. As introduced by Sindre and 
Opdahl [4], security requirements can additionally be deduced from negative use cases, called abuse 
cases, e.g., “an attacker tries to access services without credentials” or “an attacker uses corner cases 
(e.g., MAXINT) to produce overflows”. 

As an example of security requirements: 

All the IoT communication must use secure protocols. TCP connections between modern devices and 
the servers should use TLS 1.3 which brings a number of advantages such as shorter handshake times, 
session resumption, more efficiency and secure cipher suites. On the other side, there are IoT protocols 
transported over UDP, such as CoAP which must be transported over DTLS 1.2. The DevOps process 
should be able to verify that all the communications are transported over the last available version of 
those protocols at build time.  

Other requirements can be found in several relevant standards and best practices like from ENISA, ETSI 
OWASP, IoTSF.  Getting a subsection of relevant security constrains depends heavily on type of IoT 
system and the industry sector it will be implemented in. 

Another subtask is determining the attack surface of the system/application. The attack surface often 
includes the entry and exit points of the system under analysis. At these locations, trust boundaries 
are crossed, which gives adversaries opportunities to attack the system/application. 

The main subtask of the design phase is performing a threat analysis combined with a subsequent risk 
rating step. Architectural risks are usually discussed with the help of architectural diagrams, e.g. UML 
diagrams or dataflow diagrams (DFDs), and systematically documented. One widely used 
methodology is Mircosoft’s Threat Modelling, also called STRIDE [5]. The acronym STRIDE stands for 
Spoofing, Tampering, Repudiation, Information Disclosure, and Privilege Elevation. These attack 
categories are then systematically applied to elements of DFDs, e.g., connections, processes, and data 
stores. As a result, threats specific to the system represented by the DFD are identified. An example 
DFD representing a simplified IoT architecture can be found in Figure 2. 

 



 

 
 

Copyright © 2018-2022, SCRATCh 13 

 
FIGURE 2: AN EXAMPLE DFD DESCRIBING AN IOT ARCHITECTURE (SIMPLIFIED) - DFDS CAN BE USED TO 
SYSTEMATICALLY IDENTIFY THREATS/RISKS IN SOFTWARE AND SYSTEM ARCHITECTURES, RESPECTIVELY. 

Having identified threats, they are rated according to a specific risk rating methodology. Typical risk 
rating methods are DREAD [5], FAIR [5], and OWASP Risk Rating Methodology [6].  

A security architecture is then built, which mitigates the most serious risks that have been identified 
in the risk rating step. In this step, the architectural descriptions of the systems or software such as 
DFDs can be augmented with specific measures [7]. Typical security measures include the encryption 
of specific connections and integrity protection for data stores/data. 

Although the aforementioned steps are essential for a security-by-design approach, it is not easy to 
apply them in an SME-based environment. The following tables summarize the design phase-related 
SecDevOps concerns and gaps relevant to SMEs , and the specific concerns related to the SCRATCH 
use-cases. 

TABLE 1: SECDEVOPS CONCERNS SME’S PLAN PHASE AS INDICATED BY PARTICIPANTS SCRATCH 

Aspect of concern SotA of topic of concern for SMEs Why should this be of particular 
concern to SMEs? 

Requirements Lack of tool support for requirements 
management. 

Commercial solutions are costly and 
developed primarily for large 
engineering companies.  

Requirements Requirements management is ineffective In a small, specialised team, when 
working on a product that grows and 
changes over time, requirements 
management as we understand it now 
may completely fail to contribute, and 
its rigidity may negatively impact 
DevOps and increase technical debt 

Requirements Requirements management and other 
design tools do not offer a perspective for 
business product owners. 

Products are led by business decisions 
yet the design tools are mostly for 
developers. Some way of connecting 
the business perspective is needed. 

Requirements Requirement management tools does not 
offer security specific options to take 
security aspects into considerations 
depending on the type of requirement and 
its transport layer. 

Security requirements are typically 
defined as non-functional 
requirements, but there is no a 
systematic way to derive them from 
the functional requirements. 

Threat modelling 
 

Lack of known or established security 
modelling tools. 

Security by design mandates that 
security architectures are documented. 
The effort for documentation must be 
kept as low as possible due to a lack of 
resources in SMEs. Automation of this 



 

 
 

Copyright © 2018-2022, SCRATCh 14 

Aspect of concern SotA of topic of concern for SMEs Why should this be of particular 
concern to SMEs? 
step is desirable, but the necessary 
tool support is still missing. 

Skill set 
 
 

Security mindset is not always present. 
Engineers might need security training. 

IoT solutions bring connectivity and 
new attack vectors to companies who 
might not have experience with 
network security. 

Development 
priorities 
 

Wrong assumptions of underlying 
technologies. Some secure communication 
protocols, are insecure by default; 
protocols like ZigBee (security broken) or 
Bluetooth LE (encryption often not 
implemented, access control not correctly 
implemented).  

Implementing application security is 
often seen as unnecessary, resulting in 
an insecure implementation. 

Methods Lack of guide of best practices to 
systematically include security 
considerations at the requirement 
definition phase. 

It would be useful to have a systematic 
approach to include all the security 
considerations which must be taken 
into account when a new requirement 
is defined. Depending on the type of 
requirement it would be helpful to 
have a list of considerations. 

Methods Security has a huge impact on code. This is 
easily missed by non-expert developers. 
Level of competence depicts the outcome 

Although an adhoc approach by skilled 
engineers can deliver a secure system, 
compliance to a certain regulatory 
environment results in double work by 
retro explaining the fulfilment of 
essential constrains. 

 

TABLE 2: SECDEVOPS CONCERNS PLAN PHASE AS DISCOVERED IN THE USE CASES OF  SCRATCH 

Use-Case SotA of topic of concern for the given UC in 
the plan phase. 

Why is this of particular concern to the 
UC? 

Retail Threat modelling and risk assessment is 
done on a regular basis. Domain knowledge 
is used to identify threats. Documentation 
of threats is done as paperwork.  

More automation for management and 
documentation of threat models is 
required to reduce the effort for 
regular re-assessments during the 
execution of projects.  

Retail Carrying out architectural risk analysis 
(Threat Modelling/STRIDE) of UCs 

Retail processes are security-critical. 
Security by design approaches, such as 
STRIDE, are prerequisite to securing 
security-critical processes and their 
architectures. 

Smartgrids Security aspects are intricate and not 
always perfectly known by designers 

The security  is a critical concern for 
Smart Grid software, therefore the 
methodological and guided approach 
to achieve successful security systems 
is needed. 

 

4.2 Code Phase 
In the code phase, the components from the plan phase are implemented. SecDevOps in the code 
phase tries to ensure that the code fulfils the security requirements from the plan phase. At the coding 
stage, we try to identify known vulnerabilities in the code, but also to prevent the introduction of new 
vulnerabilities. 



 

 
 

Copyright © 2018-2022, SCRATCh 15 

The SOTA includes the following techniques to improve security. Most of them are not specific to 
security, but can also be used to address security as a non-functional requirement. Furthermore, some 
techniques are not specific to the coding phase but have to be considered also at the coding phase to 
achieve the overall goal.  

 Continuous Integration: The process of continuously merging increments of the code back into 
to mainline code base. 

 Issue Tracking: Track issues like defects and requirements and connect them with continuous 
integration. This provides a management view on the code base and development activities. 

 Unit Testing: Functional units are part of the mainline code based. The tests are compiled and 
tested on a regular basis, e.g., when they are merged into the mainline code during continuous 
integration.  

 Code Reviews: The code is regularly reviewed by team members and peers to reduce defects 
and identify new vulnerabilities.  

 Continuous Compliance: The code is audited on a regular basis to maintain continuous 
compliance of a product to relevant regulations and standards.   

 Pair Programming: A technique to continuously enforce code reviews. One team member 
implements the code while another member continuously reviews the new code. 

 Configuration as code: Organize project configurations as part of the continuous integration 
process as part of the mainline code base. This improves traceability of the configuration and 
enables regular review or security scanning of the configuration. 

 Infrastructure as code: Organize infrastructure definitions like e.g. build configurations as part 
of the code. This improves reproducibility and regular review of the infrastructure. 

 Static application security testing (SAST): Automated scanning of source code and 
configuration to identify vulnerabilities. SAST is the automated counterpart to code reviews 
and can be hooked into continuous integration.  

 Dependency Analysis: Continuously scan the project dependencies, e.g., based on the project 
configuration, to identify the project dependencies. Based on the project dependencies 
common vulnerabilities and exposures (CVEs) can be identified. 

 Continuous Learning: Continuously update the secruity knowledge of the development team. 
Build awareness for security and security background. Also learn from security feedback from 
the field like new or known vulnerabilities. 

The most techniques rely on continuous integration for a consistent view on the shared code base and 
the traceability of code snapshots through the incremental development process.  

The use of tools that help to prevent the introduction of security vulnerabilities is essential. During the 
code phase the system must be checked for vulnerabilities continuously, even when the project is 
deployed, the software and firmware have to be checked and updated for security reasons. These tasks 
have to be performed in a methodical and systematic manner, they also have to be performed 
considering time constraints, therefore the need of automated tools that ensure that the software is 
secure. These tools have to identify security flaws and it is recommended that they can interact with 
the issue tracking software of the company so the developers can be notified if a vulnerability is found. 
Thus, the organization should integrate the right security automated tools that continuously check the 
networks, processes, devices, etc. during the whole lifecycle to guarantee that the whole system is 
secure. 

During the development phase, Static Application Security Testing (SAST) tools should be employed. 
These tools automatically scan the source code for security bugs, e.g., buffer overflows, race 
conditions, misused cryptography, hard coded passwords and keys, and SQL injections. They use 



 

 
 

Copyright © 2018-2022, SCRATCh 16 

technologies from compiler construction to analyse the program code and often support different 
programming languages, such as C/C++, C#, and Java as well as different software libraries - in IoT 
environments this seems beneficial as of different technologies and languages are used within an IoT 
application. SAST tools can be run at certain points in time, e.g., during nightly builds. Quality gates 
should be introduced to only allow one to ship code without bugs that are rated as high or serious5.  

To provide the developer feedback from testing, it is often desired that the static analysis tools tightly 
integrate with the IDE. Then it is possible to show code bugs identified in SAST in the IDE. 

On the other side, it is necessary to check the version and configuration of all the libraries related to 
protocols and data parsing, which can enable attack vectors in both the IoT devices and the servers. 
Detecting vulnerabilities at this stage means to reduce costs since the software will not reach any 
production environment and the fixes will be cheap and quick. When the IoT device has been already 
deployed any update may be expensive and, in some cases, very hard to carry out. 

Specifics of SMEs 
In this section, we summarize concerns of SMEs that arise in the development phase.  

TABLE 3: SECDEVOPS CONCERNS SME’S CODE PHASE AS INDICATED BY PARTICIPANTS OF SCRATCH 

Aspect of concern  SotA of topic of concern for SMEs Why is this of particular concern to SMEs? 
Lack of specific 
security training 

Specific tools for secure software 
development are available but not part of 
general practice of coding for SMEs. 

Most developers lack security training 
making it harder to guarantee the code is 
secure. This is worst for SMEs that might not 
have a security team or resources to provide 
this training. In an SME, architecture cannot 
be totally controlled top-down, and 
vulnerabilities and technical debt are built 
by unskilled workers, making security a very 
expensive aspect in terms of hiring. 

Vulnerabilities from 
dependences  
 

SMEs use software that has known 
vulnerabilities. Lists of these exist but it is 
up to the SME to establish a process to 
deal with them. 

Third party dependencies help developers 
to speed up the product release but also 
add more security risks. Keeping them up to 
date is even harder for SMEs with smaller 
development teams and less resources. 

Manual code review  Manual code review is expensive. To 
automate code reviews, SAST-tools can 
be employed. 

SAST help an SME performing code reviews 
more cost-efficiently. However, SAST tools 
are expensive and interpreting analysis 
results (findings) is tedious and requires 
expert knowledge. 

Static code analytics 
interpretation 

In static code analysis, we analyze the 
code for vulnerabilities without executing 
it. There are a number of tools in the 
SotA for this. 

The analysis of the code is executed by a 
tool but the analysis of the results is 
complex (e.g., figuring out false positives). 
This is why, an expert should analyze the 
results. 

Usage of secrets in 
code is 
cumbersome with 
some tools 

Handling secrets in application code 
requires in depth review of the generated 
code because optimizers may remove 
security related code. 
 

Overwriting secret Key material is a good 
practice for security. Garbage collected 
languages may not even support direct 
overwriting of key material. 
Optimizing compilers for languages like C 
and C++ will remove, memory 
writing/clearing operations if they figure out 

                                                           
5 Modern languages like Rust or Nim (compiles to c) will guarantee the absence of buffer overflows, and even general 
memory safety on compilation. Even for multithreaded applications. See: https://www.rust-lang.org and https://nim-
lang.org  



 

 
 

Copyright © 2018-2022, SCRATCh 17 

Aspect of concern  SotA of topic of concern for SMEs Why is this of particular concern to SMEs? 
that the wiped area is not read, or the result 
of a reading is not used. 
Maybe the presence of secret erasing code 
could be validated using a tool. 
 

 

From the table, we see that SecDevOps like code reviews, dependency tracking, and security training 
address the major concerns of SMEs. But we also see that especially for SMEs, it is difficult to adopt 
these approaches. The major obstacles are the high costs for tools, the additional workload for 
managing the processes, and a lack of expertise at the developers.  

Specifics of SCRATCh application domains 
In this section, we motivate SecDevOps in the development phase by looking at use cases from Smart 
Grids, Police, and Smart Retail.   

TABLE 4: SECDEVOPS CONCERNS CODE PHASE AS DISCOVERED IN THE USE CASES OF SCRATCH 

Use Case  SotA of topic of concern for the given UC in 
development phase. 

Why is this of particular concern to the 
UC? 

Police  Secure development reports to be 
interpreted by Police staff: details need to 
be present for audits, etc. but some 
summary is required for non-technical user 
(police agent, police chief, policy maker) 

The security of the development 
process is very important for the 
different Police staff sides but details 
are often misunderstood if too 
technical for their consumption. 

Connected Retail Up to now, the external focus was on the 
security at the plan and deploy phase. 
There were company internal measures to 
guarantee security at the code phase, such 
as trainings for secure coding.  

New security standards like Payment 
Card Industry Software Security 
Standards on development and 
lifecycle management of software put 
more focus on the code phase. 
Furthermore customers have explicit 
requirements on the development 
process itself. This requires support by 
tools to measure and document the 
security of the development process.  

Smart Grids Security from design phase is not always 
properly reflected on the  developed 
system 

The Smart Grid projects for the 
development and implementation of a 
software system are usually big. The 
planned security measures during the 
design phase may not be perfectly 
followed by the developers during the 
development phase. Methods and 
techniques to ensure that the security 
is developed as designed are needed. 

 

We see that all three domains have to consider security in the coding phase. We identified that 
SecDevOps has the potential to leverage security in these domains. But the application domains also 
show that there is a gap between SecDevOps SOTA in theory and SOTA in practice. One of the obstacles 
that we identified is gap between the technical expertise of the customer and the IoT provider. We 
also recognized that the adoption of new paradigms like SecDevOps in historically grown domains 
requires a dedicated strategy. 

Smart Grids: The Smart Grid is a critical infrastructure that requires solutions to avoid any potential 
security breach. Specific solutions for DevOps activities such as code building, deployment and release 



 

 
 

Copyright © 2018-2022, SCRATCh 18 

management targeting communications are needed in this domain. A major challenge in this domain 
is to transfer security from the plan phase to the code phase and ensure that the implementation 
follows the specification from the plan phase. 

Police: In building applications for the Police, security has to be even more present because data 
managed by the application can lead not only to admittedly important concerns such as privacy or 
financial losses, but can be even critical to the health and safety of agents on the field or citizens under 
their monitoring. 

Thus, the development of secure applications must be enforced and the extent of such enforcements 
(e.g., tools used, tests conducted) should be carefully documented. This should be kept as a register 
yet not publicly — this can lead to hackers having strings to pull in their actions. 

We also have to keep in mind the particular expertise level of the target demographic. Police officers 
are not engineers or require by the nature of their job to be well-versed in computer security topics. 
Thus, there is a particular need for any information to be communicated to them to be done in a 
manner which is easily understandable and concise, as many of these applications are used in stressful 
environments such as demonstrations or large crowds. Other details need to be reported as well to 
other agents in the police environment such as chiefs and policy makers. These can be more technical 
but need to be maintained confidential within the organization as well. 

Smart Retail: Several retail products are security critical, like pin entry devices or point of sales 
terminals with cash management. Some of the functionality has to adhere to security regulations, e.g., 
from the payment card industry. To reduce delivery time and at the same time, improve the security 
quality of the code, a high level of automation has to be applied at the code phase. The retail industry 
and retail IoT development has a long history. Hence, one of the challenges is the integration of 
SecDevOps into established processes. Furthermore, the awareness of customers has to be increased 
to accept the adoption of existing processes. 

 

4.3 Build and Test Phase 
Heterogeneous suppliers have different processes and need to be integrated into one environment, 
components of suppliers.  

Making sure that no security vulnerabilities (with new code and libraries) are being introduced after 
any development cycle is very important and so this must be included in the CI pipeline.  

Security Assessment Trigger 
During development – when a certain milestone is met – there should be a trigger to perform a security 
assessment as a means to validate that the application/product/... is developed according the security 
requirements elicited 

1. The actual test should not interfere with the vision of DevOps. As such, it should not be seen 
as an assessment of which the result dictates whether or not a product can be released (no 
gate). 

2. The focus of the test is to validate on an E2E environment that closely resembles the end-
result.  

To measure the quality of the code we introduce code and dependency analysis. Based on this metrics 
we define gates for the continuous delivery pipeline to allow or prevent the delivery of a release. 
Methods that we consider are: scanning for known vulnerabilities, static code analysis, and dynamic 



 

 
 

Copyright © 2018-2022, SCRATCh 19 

code analysis. During scanning for known vulnerabilities, we check if our code includes dependencies 
to third party libraries that have reported vulnerabilities. In static code analysis, we analyse the code 
for vulnerabilities without executing it. In dynamic code analysis, we execute the code, e.g., as part of 
existing unit test or dedicated security tests to detect additional vulnerabilities that are not captured 
by a static analysis.  

Build 
This phase includes cross compile, CVE Scanning on top of standard build processes. A particular 
concern in this phase is that libraries used by the applications should be regularly checked for the latest 
updates. This reduces the risk of introducing security holes through libraries. This process can be 
automatically performed by the build system.  

Test  
In the test phase of the DevOps cycle, the functional tests are performed. For security, additional types 
of tests exist that are intended to find vulnerabilities in the deliverable. Different from searching for 
CVEs, these test search for new vulnerabilities introduced in the coding phase. Different from SAST, 
these tests dynamically execute parts of the code. Most DASTs are black box tests, i.e., they do not 
inspect the internal state of the subject. Some tests, like fuzzing tests, also inspect the internal state.  

 

 

FIGURE 3: CI AND CD PIPELINE 
(SOURCE  HTTPS://SEARCHSOFTWAREQUALITY.TECHTARGET.COM/DEFINITION/CONTINUOUS-INTEGRATION) 

The integration mostly concerns the testing of the product. Before releasing new software, it should 
be clear that it does not interfere or incapacitates the Identity-Life-Cycle management. So, everything 
from provisioning, authentication, authorization, credential refreshing and deprovisioning should be 
tested.  

Components which the IoT device relies on for operation need to be tested with special care as they 
may leave the device bricked and incapable of recovering.  

Components which are server-side based may be tested at a different stage, as long as they do not 
pose a security threat to the device. 

Penetration testing 
During a penetration test (or pentest for short), an applications or product’s overall security posture is 
measured against a set of verification requirements through simulating cyber-attacks. The result of a 



 

 
 

Copyright © 2018-2022, SCRATCh 20 

pentest are verified security vulnerabilities that could impact the application’s or product’s overall 
security posture in terms of confidentiality, integrity or availability.  

Historically, pentests are performed prior to milestone releases. The pentest is then seen as a final 
validation step on and end-to-end setup and has as main goal to catch potentially overlooked 
vulnerabilities. If critical risk vulnerabilities are identified, the release would be postponed. The tests 
performed during a pentest, are often performed manually by a pentester and with the support of 
tools. These tools can take many forms, ranging from tools that scan for security vulnerabilities fully 
automatic, to tools that allow manual interaction with an application component, in a way that it was 
not intended by the developers. Sometimes, and depending on the tooling available, a pentester might 
even write its own tools to allow testing of very specific cases.  

Within the context of SecDevOps, performing a pentest before deployment would not fit the 
continuous deployment practice as a pentest is not fully automatic and would therefore not allow fully 
automatic deployments. Within the context of testing connected products, tools that automatically 
test security are scarce. This can be attributed to a couple of key properties that differentiate products 
from more traditional applications such as web or mobile applications: 

 Diverse and embedded nature – connected products are often designed to have a single use 
(smart light bulbs, smoke detectors) and are often developed on hardware and software 
platforms tailored specifically for that use. As a result, there is not one but a highly diverse set 
of hardware and software platforms to take into account. 

 Use of different physical layer communication technologies: products are connected to 
networks via a wide range of wireless links, such as Bluetooth Low Energy (BLE), 802.11, 
GSM/UMTS, LoRaWAN. 

 Use of different application layer communication technologies: products tend to make use of 
machine-to-machine communication technologies such as MQTT and AMQP. 

 Large attack surface: connected products are part of a large and complex ecosystem. For 
example, a home alarm will be receiving input from motion detection, cloud and even mobile 
applications. 

Due to the above-mentioned characteristics, fully relying on automated tools for product testing is not 
yet feasible today. As such, validating security requirements through manual pentesting still remains 
a crucial part to guarantee a product’s resilience against cyber-attacks.  

In order to discuss the state-of-the-art of product pentesting in a SecDevOps development process, it 
makes sense to discuss the challenges and the trends that we observe within this area: 

 First of all, there is a lack of security verification requirements and testing guides for connected 
products. For example, for pentesting traditional application such as web and mobile 
applications, OWASP provides security verification standards and testing guides that provide 
details on generic security verification requirements and how these can be validated through 
testing. For connected products, consolidated guides such as these are only recently being 
introduced. To help push the status quo, SCRATCh is therefore co-leading the development of 
the OWASP Internet of Things Security Verification Standard. A standard which provides 
security verification requirements for connected products within a complex ecosystem of 
interconnected things. In next steps, this security verification standard could be used as a basis 
for a security testing guide, which would describe how actual testing can be performed. A 
testing guide would thus further increase the overall maturity level of pentesting in the field 
of connected products. 



 

 
 

Copyright © 2018-2022, SCRATCh 21 

 Second, there is a lack of tooling to support pentesting activities of connected products. For 
example, for testing the security of web applications, tools such as Burp Suite and OWASP Zap 
exist. These tools provide features such as inspection and manipulation of HTTP request sent 
between client and server and automatic vulnerability scanning through fuzzing HTTP 
requests. While these tools can also be used if the IoT device makes use of HTTP, unfortunately, 
for many specific IoT technologies as mentioned above, there is a lack of tooling. Interesting 
to note is that for many of the traditional pentest tools today more and more being automated 
as well. For example, Burp Suite Enterprise Edition and OWASP ZAP’s Docker containers allow 
for an easy integration of these tool’s automatic vulnerability scanning features in a 
deployment pipeline.  

SecDevOps Build and Test phase SME and Use Case-related concerns 
The following table shows the Build and Test phase-related SecDevOps concerns of particular 
relevance to SMEs. 

TABLE 5: SECDEVOPS CONCERNS SME’S BUILD AND TEST PHASE AS INDICATED BY PARTICIPANTS OF SCRATCH 

Aspect of concern  SOTA of topic of concern for SMEs Why is this of particular concern to 
SMEs? 

Build/test tools are 
not integrated with 
security tools and 
this requires 
manual integration 
 
 

In the build/test-cycle the unit and 
integration tests are executed. Here we 
would focus on tests that verify security 
aspects. These tests should be fully 
automatic in order not to miss any of the 
problems detected in the main phase (early 
detection). The tools for this phase are 
various and depend on the environment 
where the development takes place 

Even some of the aspects in the 
build/test-cycle can be accomplished 
by a non-expert, carrying out the entire 
mechanism is complex if no specialized 
person with the correct knowledge and 
skill is present in this step. 

Dynamic testing is 
not supported 

Dynamic tests should be performed, e.g., 
monitoring Internet connections. This must 
be automatically done by the tools, and this 
is not in the SotA now. 

Monitored data should be filtered 
automatically (e.g, by writing filters for 
Wireshark) and presented in a user-
friendly way. This helps SMEs save cost 
and time. 

Feedback loops to 
the earlier phase 

Results of dynamic analyses should be fed 
back into the implementation and build 
phase of the software development 
process. 

SMEs need support for feedback tools 
that automatically communicate the 
findings of dynamic testing back to the 
developers. This step reduces time and 
cost effort. 

Cost of testing   A thorough testing of a secure solution is 
very expensive for SMEs, both in terms of 
staff and tools required. 

SMEs can alleviate costs by leveraging 
free software so some of the proposed 
solutions should be free. The 
integration inside a complete toolchain 
such as SCRATCh also adds value and 
thus compensates for any additional 
cost. 

 

The following table shows the Build and Test phase-related SecDevOps concerns of particular 
relevance to use cases: 

TABLE 6: SECDEVOPS CONCERNS BUILD AND TEST PHASE AS DISCOVERED IN THE USE CASES OF SCRATCH 

Use Case  SOTA of topic of concern for the given UC in 
build/test phases. 

Why is this of particular concern to the 
UC? 

All  In dynamic code analysis, we execute the 
code, e.g., as part of existing unit test or 

A unit test execution can detect errors 
that are shown by the used tool. This 



 

 
 

Copyright © 2018-2022, SCRATCh 22 

Use Case  SOTA of topic of concern for the given UC in 
build/test phases. 

Why is this of particular concern to the 
UC? 

dedicated security tests to detect additional 
vulnerabilities that are not captured by a 
static analysis. 

detection is automatic and no expert is 
needed. 

Retail Security testing is done before major 
releases and requires manual work. Some 
tests depend on the target infrastructure.   

For continuous testing, more test 
automation is required. This is 
especially difficult for IoT devices with 
many hardware dependencies. 

Police Penetration testing is extremely critical in 
Police environments. 

Police systems can be connected to 
very sensitive data of the citizens (e.g., 
traffic and personal IDs). Thus the 
access to these resources should be 
kept secure and all traces of 
penetration testing should be kept as 
evidence. 

 

4.4 Release and Deploy Phase 
Deployment is a SecDevOps phase that is perhaps one of the most obviously vulnerable and ripe for 
improvements. When software is deployed to external devices, such communications may be 
obstructed, read or even tampered with. If an attacker controls deployment, they may be able to 
update an IoT end device to exhibit any desired behaviour, rendering it fully compromised. Attacks 
within the Deployment phase are real and happening in the world, and worth defending against. 
Furthermore, deployment is often limited in capability. Over-The-Air updates are a luxury depending 
on the context, never mind the ability to update multiple end devices at once. 

Types of attack that concern the deployment phase form a wide spectrum. Typical categories of threats 
here include the reading of status messages or even update payloads, in order to identify 
vulnerabilities or steal sensitive data; the obstruction of updates in order to eventually render a device 
vulnerable or broken; denial of service through invalid and/or excessive offering of updates; the abuse 
of the update mechanism to take control of a device. 

Over time, many surprising and specific forms of attack within the deployment phase have been 
identified. A prominent example is rollback attacks, in which an attacker re-deploys an old update that 
has become outdated and started to exhibit known vulnerabilities. This is typically prevented by 
including monotonic sequence numbers with updates, to be able to tell which is more recent. The SUIT 
documentation gives a good overview of specific attacks as a part of its threat analysis. 

Due to the breadth and depth of security threats present within the deployment phase, as well as the 
inherent clumsiness of having to update hardware-limited end devices across often-limited 
connections, this is a particularly challenging phase for SMEs. On the one hand, without specially 
developed in-house deployment systems, deployment taxes manpower and management. On the 
other, without managing security experts, it is very difficult to maintain a comprehensive 
understanding of the threats and mitigations. 

More specifically, it may be that some or all provisioning happens during the deployment phase, as it 
may play a part in updates or involve required actions to enable update deployment each time. This, 



 

 
 

Copyright © 2018-2022, SCRATCh 23 

in turn, may necessitate automated provisioning tests that run during or after deployment. This topic 
is addressed in e.g. TUF6, UPTANE7, SUIT DRAFT8. 

Continuous Delivery, the ideal of automatically deploying committed changes to the production 
environment, may be impossible in many cases of SME IoT projects. The limitations surrounding the 
end devices and connections therewith make it very difficult to fully automate testing and deployment. 

Notably, many modern deployment schemes involve one or multiple “edge nodes”, devices which exist 
as intermediaries between servers and end devices. Such edge devices may be tasked with 
downloading updates from a server, verifying them, and securely deploying them to local end nodes. 
Typically, edge devices are network gateways that act as a bridge between internet communications 
and local communications. 

As it has been for a long time, cryptography is important in this and many situations. Deployment 
inevitably includes communication between devices, often even through the internet, and this 
communication must be protected from spying, denial and tampering attacks. Communication 
cybersecurity is a large topic on its own, and ways of securing communication can become outdated if 
abandoned. 

Key management is also a critical topic concerning deployment. For selecting releases, preparing them 
and deploying them, keys may be used to ensure authenticity. This means attackers must be kept from 
obtaining certain keys, or certain combinations of keys, at all costs. 

One recent development in deployment security is the increasing prominence and standardisation of 
firmware manifests. These bundle metadata about updates in set layouts, and are signed and delivered 
securely, to enable the end device to verify the authenticity and integrity of the update as well as know 
how to correctly parse and implement it. 

Another important mitigation of update tampering is secure boot, and therefore, the presence of a 
hardware root of trust. Such an immutable base element may be able to detect and block use of 
unwanted foreign code or data. 

As seen in one of SCRATCh’s use cases, the retail use case, SecDevOps problems concerning IoT and 
deployment are made more complex by the integration of different IoT end devices from different 
vendors, with different connections and protocols, and so on. This makes it difficult to manage 
deployment for all end devices centrally. Typically, the integrator of the retail store integrates IoT 
components of different suppliers. For example, a pin entry device of a supplier is integrated into a 
point of sales terminal of the integrator. With respect to deployment, various supplier release software 
for their IoT components . This software has to be deployed into the integrated system. At the same 
time, compatibility between software version has to be maintained by the integrator. Therefore, the 
integrator has to execute integration tests in an integration environment. If the quality release gate is 
passed, the composition of different software components is released by the integrator. Before it is 
deployed into the productive environment of the retail store, the retail IT operator also performs 
system tests in the retail store staging environment. A deployment system that is secured, e.g., based 
on signatures, has to support the different roles and software life cycles like component supplier, 
system integrator, system operator, released for testing, and released for production. 

                                                           
6 https://theupdateframework.io 
7 https://uptane.github.io/papers/ieee-isto-6100.1.0.0.uptane-standard.html 
8 https://tools.ietf.org/html/draft-ietf-suit-architecture-16 



 

 
 

Copyright © 2018-2022, SCRATCh 24 

A further complication arises from the fact that some components are subject to certification. Before 
such a component is released, a certifier evaluates the component and approves or rejects it. The 
deployment system should also prevent roll out of components that did not pass certification. 

Finally, consider deployment for environments with specific constraints on the connectivity. For 
example, the integrator often cannot connect directly to the IoT components in the retail store or the 
connectivity is shut down during maintenance.  

Next is included a table of specific intersections between the concerns of SMEs and SCRATCh Use Cases 
and the Deployment phase of DevOps for IoT. The table includes a summary of each point of concern, 
and an elaboration on its specific relation to the concerned parties.  

TABLE 7: SECDEVOPS CONCERNS SME RELEASE AND DEPLOY PHASE 
AS INDICATED BY PARTICIPANTS OF SCRATCH 

Aspect SotA of topic of concern for SMEs Why is this of particular concern to 
SMEs? 

Active Security Secure firmware updates can be realized 
using existing 'building blocks' (tools and 
open standards). Tools already exist and 
have been leveraged and assessed e.g.: 
[IEEE IoT 2019]. However, to pick the 
suitable ones for a specific use case and 
implementing it for consistent use can be a 
daunting task. 
 

Keeping a system safe means that a 
secure mechanism to update a device 
in the field should exist. Implementing 
a update mechanism and maintaining 
it is necessary for deploy new IoT 
devices in the market.  

Ease of Use Manpower/specialisation/peers. Tools can 
prevent misconfiguration or give sensible 
errors otherwise. But surveying the entire 
update mechanism is difficult if no 
specialized knowledge and skill is available. 
Is everything covered, no gaps? (How to 
check yourself?) Blind spots etc.).  

Insight in the update method of choice 
is essential, SME’s that have no access 
to personal trained in specialized 
security knowledge. Benefit by a tool 
that simplifies this task and aids the 
application of an update mechanism  

Active Security Secure configuration updates need to be 
implemented in addition to firmware ones. 

In some SME applications, even if the 
firmware of the system remains 
unchanged, configuration updates may 
need to be performed frequently. This 
should be done OTA and not require a 
maintenance staff present at the 
deployment. 

 

TABLE 8: SECDEVOPS CONCERNS RELEASE AND DEPLOY PHASE 
AS DISCOVERED IN THE USE CASES OF SCRATCH 

Use Case SotA of topic of concern for the given UC in 
the release/deploy phase. 

Why is this of particular concern to the 
UC? 

Police Reports of deployment need to be easily 
understandable. 

In Police UC the recipient of the 
deployment reports is usually either 
police agents or funding bodies for the 
Police (e.g., City Halls) that often don’t 
have the training to understand 
technical detail. Anyway, critical KPIs of 
the deployment should be delivered to 



 

 
 

Copyright © 2018-2022, SCRATCh 25 

Use Case SotA of topic of concern for the given UC in 
the release/deploy phase. 

Why is this of particular concern to the 
UC? 
them (e.g., degree of updated versions 
in the deployed devices). 

Retail Continuous deployment into customer 
infrastructure. 

The infrastructure of the customer like 
the retail store is loosely or not 
coupled with the network of the 
component provider. Hence, it is 
difficult to implement continuous 
deployment. 

 

 

4.5 Operate, Monitor, End of Life Phase 
Operation and monitoring are closely related in terms of security when considering IoT networks. 
Operation includes setting up, running and adjusting the system, while monitoring describes the 
collection of feedback to alter parameters. Both require underlying security features that enable 
secure control and prevent unauthorised access and tampering. A summary of particular SecDevOps 
concerns with relevance to SMEs is found in Table 9, SecDevOps-related concerns with relevance for 
the use cases addressed in project SCRATCh are summarised in Table 10. The topics listed there are 
discussed in detail in this section. 

Dynamic application security testing (DAST) enables identification of security vulnerabilities at runtime 
(in contrast to static application security testing (SAST), which analyses the source code, e.g., at 
compile and build-time). DAST include different types of analysis tools, e.g., Web-application checkers 
(e.g., OWASP® Zed Attack Proxy (ZAP) ), fuzzers for specific IoT protocols (e.g., MQTT, Bosch Gateway 
Protocol, REST interfaces of IoT devices, BLE, Z-Wave, and ZigBee), and network testing tools.  

Network testing tools help one monitor the communications in IoT-based networks. For example, one 
can use the Wireshark tool9 capture traffic and then automatically analyse the file. Within in the 
frameworks of the SCRATCh project, the OTAlyzer tool has been developed, which can be used to 
analyse IoT communications traffic. Other networking test tools check TLS communications, e.g. by 
trying to carry out man-in-the-middle (MitM) attacks with tools like Burp or mitmproxy. This approach, 
in particular, is effective in IoT environments as many TLS-stacks of IoT devices show weaknesses due 
to the fact that dynamic IP addresses are used - dynamic IP addresses do not fit well to X.509 
certificates, which are used in TLS implementations [8]. 

IoT security in the DevOps context, in the operate and, more prominent, monitor phases, is similar to 
classic IT security practices: Access control and traffic as well as behaviour monitoring. Firewalls with 
access control, authentication-based access for users and operators, as well as usage of tools, such as 
Wireshark and SIEMs like Splunk provide a level of security. However, IoT networks are prone to 
heterogeneity. Behavioural analysis with anomaly detection can provide insights that classic tools 
cannot. 

Apart from the above-mentioned tools that are developed in the context of project SCRATCh, there is 
a variety of established tooling used to secure networks. IoT-networks are a special type of network, 
consisting not only of general-purpose computers, servers and databases, and mobile devices, but also 
of embedded, low-energy and application-specific devices. These devices provide significantly less 
interfacing for users. Elrawy et al. provide an extensive overview of scientific approaches to IDSs 

                                                           
9 https://www.wireshark.org/ 



 

 
 

Copyright © 2018-2022, SCRATCh 26 

created for IoT networks [9]. In the context of SCRATCh, an anomaly detection-based approach is 
chosen that employs features unique to IoT networks. Traffic patterns of M2M communication contain 
patterns that can be employed for the detection of anomalous behaviour. Furthermore, the topology 
of communication is expected to not change over time, except for devices being added to or removed 
from the network. Additionally, a semantic understanding of behaviour on IoT devices is trained, so 
that the algorithm can detect anomalous behaviour caused by the device. The combination of data 
sources and integration with a rule-based approach to commonly known attacks promise an excellent 
coverage of attacks and detection of any unwanted behaviour. 

An alternative approach to security monitoring is the introduction of deception technologies into the 
IoT network. Thinkst Canary provides such a service called canaries, where a device is placed in the 
network, mimics a productive system and then monitors any access to it [10]. As no productive system 
is connecting to the canary, any access is a true positive example of an attacker. This concept will be 
extended in the course of SCRATCh to extend this principle to other implementations of deception, 
e.g. TCP header fields or resources in a deceptive web resource. If resources that are solely deceptive 
are offered by a proxy in addition to the actual resources of a web server, any access to the deceptive 
resources indicates someone trying to access information not intended for her or him. This, again, 
provides a method with zero (or very few) false negative results and can increase the security of a 
system with minor cost. Even if an attacker is aware of deception being used, the attacker cannot 
know, which resources are productive and which are deceptive, so one misjudgement alerts the IDS 
about the presence of an attacker.  

A further important step in SecDevOps contexts is how to implement a feedback loop to the 
development step. Ideally, here the results of the different tools must be communicated back to the 
development step automatically (e.g., to a bug tracker). Furthermore, the various DAST tools must be 
integrated into a common analysis infrastructure to enhance automation, which is crucial to 
SecDevOps environments, specifically for SMEs. 

From the Use Cases’ perspective, we can find some considerations on this stage for several of the 
project Use Cases. For Police, there are specific concerns on two topics, one due to the security of the 
operations during their execution and the other more related to human factors. The security relation 
is clear: Police data is very tempting for malicious users, as police agents’ devices might be transmitting 
critical data for the safety of these same malicious users themselves. One clear scenario would be a 
deployment of video surveillance in search of a target who in turn is able to eavesdrop on the 
communications of the surveillance system itself. This could put the whole operation in jeopardy and 
so it is a very directly valuable asset for the interceptor, even more so than in other scenarios. Thus, 
for this Use Case SCRATCh needs to deliver clear indications that eavesdropping is a key concern. This 
can be the driver for very focused marketing of the tools for these collectives and also the very defence 
against eavesdropping (e.g., cryptography) should be very tangible in the operation phase tools. 

The other concern is related to the human factor, as the users of these systems in this Use Case are 
never extremely technically oriented. Even in modern police forces, the personnel in charge of the 
operations is only moderately aware of the technical details, and all possible help in translating the 
results of tools into clear, actionable data is very important, Thus, SCRATCh operation phase tools need 
to focus on delivering these clear and actionable messages to its end-users. 

From the retail use case, we see that the feedback from the network infrastructure to the device 
manufacturer is often restricted by network isolation. By default, the network of the operator does 
not permit information to be transferred back to the device vendor. To access security feedback 
information from the field, a secure feedback channel has to be integrated into the operator’s network. 
Furthermore, monitoring and deception tools are executed in the environment of the operator. Hence, 



 

 
 

Copyright © 2018-2022, SCRATCh 27 

the integration is customer specific and requires cooperation with the operator. Therefore, deploying 
SCRATCh monitoring and deception tools is especially challenging because it is not under complete 
control of the device manufacturer. 

 

TABLE 9: SECDEVOPS CONCERNS SME OPERATE, MONITOR, END OF LIFE PHASE 
AS INDICATED BY PARTICIPANTS OF SCRATCH 

Aspect SotA of topic of concern for SMEs Why is this of particular concern to 
SMEs? 

Monitoring 
 

Operations Monitoring  Niche product operated by AnyWi, 
involves other SME, cross product 
monitoring. 

Dependency Tracking 
(Dependency monitoring) 

The ability to check and list all 
dependencies in an IoT product is 
necessary to develop a pro active role 
to security updates. 

Attack sensors for SME networks Several vendors offer plug in solutions 
that are supposed to detect intrusions 
in the network. Development and 
refinement of such solutions can 
enhance the security level of SMEs in 
an automated fashion. 

 

TABLE 10: SECDEVOPS CONCERNS FOR THE OPERATE, MONITOR, END OF LIFE PHASE 
AS DISCOVERED IN THE USE CASES OF SCRATCH 

Use Case  SotA of topic of concern for the given 
UC in the operate, monitor and end of 
life phase. 

Why is this of particular concern to the UC? 

Police 
 

Operations monitoring requires a link 
to non-tech oriented users. 

In Police UC the intended user of the system 
(a Police department) often doesn’t have 
very tech-savvy users that can understand 
the details, yet some aspects (breaches in 
security) are critical to them. Tools should 
be provided with both perspectives in mind. 

Eavesdropping of transmissions to the 
Police HQ is critical. 

Police operations are often the target of 
malicious eavesdroppers. All data that is 
transmitted can threaten the privacy of 
personal data and even the integrity of 
agents if .intercepted 

Retail Feedback of security related 
information. 

Today, IoT devices in the retail domain 
already generate status information that is 
stored locally at the device, e.g., for failure 
analysis. This data is usually not accessible 
from an external network by the device 
vendor.  
To continuously improve the security of 
products with SCRATCh monitoring tools, 
the component vendor requires feedback 
from the operator’s network. The secure 
integration of the feedback mechanisms 
into the customer IT infrastructure, 
especially into the network is required.  

 



 

 
 

Copyright © 2018-2022, SCRATCh 28 

5 Conclusions 
This Document aimed to cover the current available knowledge on IoT and SecDevOps. During the 
creation of this document, it became clear that whole field of DevOps and specific SecDevOps is 
immense and divers, not all publications are about IoT and a lot of presentations are about Change 
management in relation to DevOps. We think despite the abundance of info available on the internet 
this document gives a good summary of the State of the Art in the context of the SCRATCh project. 

  



 

 
 

Copyright © 2018-2022, SCRATCh 29 

6 References 
[1]  Javed, B., Iqbal, M. W., & Abbas, H. (2017, May). Internet of things (IoT) design considerations 

for developers and manufacturers. In 2017 IEEE International Conference on Communications 
Workshops (ICC Workshops) (pp. 834-839). IEEE 

[2] IETF, RFC 8886 Secure Device Install 

[3] Secure IoT Bootstrapping: A Survey draft-sarikaya-t2trg-sbootstrapping-06 

[4]  G. Sindre, A. L. Opdahl. 2005. Eliciting security requirements with misuse cases. Requirements 
 Engineering 10, 1 (January 2005), 34-44 

[5]  A. Shostack. 2014. Threat Modeling: Designing for Security (1st. ed.). Wiley Publishing 

[6]  J. Williams. 2020. OWASP Risk Rating Methodology. Accessible under: 
 https://owasp.org/www-community/OWASP_Risk_Rating_Methodology 

[7]  D. Dhillon, "Developer-Driven Threat Modeling: Lessons Learned in the Trenches," in IEEE 
 Security & Privacy, vol. 9, no. 4, pp. 41-47, July-Aug. 2011, doi: 10.1109/MSP.2011.47 

[8] T. Osmers. 2018. security analysis of TLS client implementations of Android applications 
regarding the communications with IoT devices in local networks, Bachelor Thesis. University 
of  Bremen, Germany 

[9] Mohamed Faisal Elrawy, Ali Ismail Awa, Hesham F. A. Hamed. Intrusion detection systems for 
IoT-based smart environments: a survey. In: Journal of Cloud Computing vol. 7, no. 21, Springer 
(2018) 

[10] https://canary.tools/, last checked 2021-02-09 

 


