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Summary
This deliverable is the second document of the PANORAMA Work Package 7 ”Demonstra-
tion”. It contains the results of baseline phase in task T7.2 ”Specification of requirements for
technological and methodological solutions, and definition of evaluation criteria”.

Figure 1: PANORAMA Work Package Structure including their relation to WP7

In order to put this document into context, the relation between WP7 (green box) and the
other work packages is illustrated in Figure 1. The project is organized into two groups of work
packages: The technical solutions to the project objectives are developed by WP1-4 (colored in
red / orange), whereas WP5-8 cover management, packaging, and dissemination related topics
(colored in blue).
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1 Introduction

1.1 Purpose and objectives
This deliverable provides initial specification of requirements and evaluation criteria for indi-
vidual planned demonstrators. Based on the specification of the demonstrators described in
deliverable 7.1, the document mainly focuses on illustrating how the demonstrators should
work in the contexts of technological and methodological work packages 1, 2, 3, 4, and 6 and
how (i.e. to which extent) individual technical achievements can be addressed by evaluation
criteria of planned demonstrators. To some extent, the document also provides an update of
planned demonstrator use cases with refined / extended features of respective proof-of-concept
platforms.

Upon completion of respective baseline implementation in task T7.3 ”Implementation of the
demonstrators, baseline phase”, an update of the requirements and evaluation criteria will be
done and made available to involved partners in work packages 1, 2, 3, 4, and 6.

1.2 Structure of the deliverable
Industrial and academic demonstrators List of requirements and evaluation criteria

Outlook Summary with brief analysis of described requirements and evaluation criteria and
description of the next steps and contributions.
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2 Industrial and academic demonstrators
In the following sections we provide a set of individual descriptions to give an initial under-
standing on how the demonstrators specified in deliverable D7.1 should work in the contexts
of technical achievements in technological and methodological work packages 1, 2, 3, 4, and
6. The descriptions mainly focus on initial requirements and evaluation criteria (if applicable,
including KPIs). Furthermore, the demonstrator specifications are refined and/or extended by
further relevant demonstration scenarios and challenges.

2.1 AVL ADAS Feature Simulator
2.1.1 Introduction
Advanced drive assistance systems (ADAS) are the initial move toward a completely automated
future. Features like Adaptive Cruise Controller (ACC), Lane Changing Assistant (LCA), Lane
Keeping System (LKS) help drivers and diminish the hazard factor. But, before releasing these
ADAS products, they need to go through diverse testing procedures to prove their safety and
reliability. However, with the growing complexity of the system, the testing and assessment
criteria becomes complex. The safety and reliability of ADAS feature needs to be approved
in complex traffic situations, including traffic participants. This kind of higher-level system
is tested by a distance-level approach which means holding test drives. Be that as it may,
real-world testing won’t cover numerous unforeseen scenarios that a vehicle can get into. As, a
result of that, assessing a car’s on-road performance isn’t the most excellent thought for ADAS
feature testing. Additionally, real-world tests are costly, and time expending. It is additionally
specified here, test drivers are perilous for everybody, particularly for drivers. All in all, road
testing alone won’t guarantee an ADAS feature’s safety. However, creating a virtual environ-
ment for ADAS testing means modeling a complete driving scenario which includes all the
traffic participants, using software is a promising alternative. In contrast with real-world test-
ing, the virtual environment is safe. Further, it permits testing in different scenarios.Moreover,
virtual environments for ADAS testing help to prototype and develop new system features.
The key element of virtual environment is the scenario file. Scenario generation is a significant
step to evaluate the safety and reliability before releasing a product. So, the scenarios have
to be derived and documented methodically. In addition, traceability along the development
process is also a crucial evaluation criterion. There are some methodologies in literature for
scenario generation, but A three level of abstraction which are functional scenarios, logical
scenarios and concrete scenarios is mostly preferred. Functional scenarios are described in a
linguistic way by the help of the experts scenarios in the beginning of the development process.
Then, logical scenarios which specify parameters for the scenarios and define parameter ranges
is derived by using functional scenarios. Finally, concrete scenarios are produced to specify a
concrete value for each parameter and, thus, a various of test cases are created. Basically, each
scenario includes a start scene and an end scene. So, the transformation from functional to
logical scenarios, the keyword-based representation requires to be detailed in a parameter space
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representation and after that changed over into the formats for the simulation environment.
This phase also involves the definition of the traffic participants interactions between the start
and the end scene within the scope of a sequence control for simulation. It is important to
consider relationships and dependencies between parameters and parameter values in order to
accurately model the road and the interactions of the traffic participants according to the data
formats. The scenario description and scenario conversion steps currently require enormous
manual effort. In addition, a structured interpretation of linguistic scenarios and a coherent
representation compatible with the data formats for the simulation setting are not guaranteed,
in particular for multiple authors. In this project, a tool for an automated transformation from
a keyword-based scenario description to a parameter space representation and a conversion into
the formats for a simulation environment will be provided by using the example of ADAS Adap-
tive Cruise Controller feature scenarios on highways. As a simulator, an unreal engine-based
simulation environment will be used. The relationships and dependencies of the elements and
the parameters of the scenario will be modelled within the space representation parameter. It
is important to ensure that the interactions between the traffic participants are resolved in
compliance with the specification of the respective functional scenario and to ensure consistent
implementation of the data formats compliant scenario. The data format OpenDRIVE is used
for the representation of the road network as well as the data format OpenSCENARIO is
used for the representation of the traffic participants and the environment. The main goal of
this demonstration is to create an automated way for scenario generation, increase the design
efficiency and reduce the time-consuming. By doing so, the heterogeneous structure between
developing software and data formats will be eliminated.

2.1.2 Related Work
[UMR+15] propose a basic definition of terms scene, situation, and scenario for the autonomous
vehicle domain. These definitions are used by [MBM18] to define various scenario represen-
tation notations during the development process. Therefore, for scenarios, they suggest three
levels of abstraction: functional scenarios, logical scenarios, and specific scenarios described
below. [SSL+13] propose a scenario-based test process and a 4- layer-model for structuring sce-
narios. Various approaches are proposed for the generation of scenarios along the automated
vehicle development process. As indicated by the ISO 26262 standard, [BRSM16] establish
a method for creating potentially hazardous scenarios within the process phase of a hazard
analysis and risk assessment. [BOS16] suggest, as a general scenario notation along the devel-
opment phase of the ISO 26262 standard, a model-based scenario representation with spatial
and temporal relations. It should be noted that complete specifications for ADAS systems
can only be achieved through a reliable, traceable and verifiable requirements engineering pro-
cess in compliance with the V-model [BJS+15]. Two methods that are data-driven approach
and knowledge-driven approach are being used in today’s scenario generation. The key idea
of a data-driven approach is to collect and identify the measurement data and classify oc-
curring scenarios as well. There are some difficulties for most data-driven strategies. First,
measurement data does not define every aspect of a scenario. Additionally, when summa-
rizing scenario-based representations as logical scenarios, consideration needs to be given to
further knowledge in order to specify parameter dependence. Data-driven approaches do not
provide information about what has been encountered from the operational design domain so
far. Data-driven approaches can be combined with a knowledge-driven approach to mitigate
the mentioned problems. The key concept is to create scenarios from existing knowledge, such
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as regulatory guidelines, and then enhance these synthetic scenarios with information gathered
from measuring results which is used as a concept for this project. The simulation environ-
ments utilize different data formats to specify scenarios. The tool presented in this project
transforms functional scenarios into the data formats for the unreal engine-based simulation
environment. For the description of the road network, the simulator requires the data format
OpenDRIVE. For the description of the traffic participants and the environment, the simulator
utilizes the event-based data format OpenSCENARIO which is the key element of the project.
Some publications define an event-based representation of the scenarios. [BOS16] define a
framework and a prototypical application for the abstract representation of concrete scenarios.
The definition is based on splitting a situation into separate actions and events. The definition
then realizes a similar framework for traffic participant interactions as the OpenSCENARIO
data format. [Xio13] presents a method of the scenarios in a knowledge-based simulation en-
vironment. The ontology describes in detail the elements of the road network and the traffic
participants interactions as well as the models to be used. The simulations are performed by a
sequence control system in a simulated environment, and if necessary tailored to the actions of
the driving function. They also provide event-based assessments for the respective test cases
in concrete scenarios. However, in both papers, they do not define an method for automatic
details of a keyword-based scenario description to an event-based scenario description as the
basis for the production of a test case either. The concepts and implementations presented in
this project use practical scenarios developed as the starting point for detailing the scenarios
and translating them into OpenSCENARIO data format.

2.1.3 Use Case Definition
In this project, it is basically realized that, the transformation from a keyword-based scenario
description into the formats for execution in a simulation environment. As a visualization
instance, an Adaptive Cruise Control System Scenarios for Highways will be generated by
using the proposed methods and developing tools. The main architecture of the concept is
given in Figure 2.1.

As starting point for the process, functional scenarios are created for ACC system. These
functional scenarios can be created by the help of expert and also the results of functional safety
analysis. Each functional scenario is a semantic, keyword-based description. An example of
functional scenario is given in Figure 2.2.

Then, the functional scenarios are imported and transformed into a representation of space
parameters. For this, every term of the respective functional scenario is defined by parameters
in detail. The parameters are deduced by testing which parameters to represent the corre-
sponding element in the data formats are to be specified for simulation. The modelling tool is
modelled the scenario by using the parameter space. The output of modelling tool creates the
input of connector tool. The role of this tool creates an OpenSCENARIO data format file for
virtual simulation as well as the input parameters for controller code run on Matlab/Simulink
environment. A basic flow diagram of the planned system is shown as Figure 2.3. A semantic
scenario representation, which is modeled with the model-based language data format, is used
as the basis for scenario description. Such functional scenarios use a pre-defined vocabulary
as well as semantic relationships between vocabulary words to describe the road level, traffic
infrastructure, moving objects, and environmental conditions. The terminology used for the
definition of the scenario are arranged according to the proposed model. Each term is then
augmented with parameters that detail the respective feature. The parameters needed for the
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Figure 2.1: High level architecture for demonstrator use case

definition of each feature depend on the simulation environment’s data formats. Therefore,
the parameters extract from the specifications of OpenSCENARIO data formats which are
used by real-time the simulation environment. The data format OpenSCENARIO describes
the interactions of traffic participants as well as the environmental conditions which will be
our main outcome of the tool chain. The data format OpenDRIVE describes the road network
and a predefined OpenDRIVE file will be used for the simulation environment. As an example
of OpenSCENARIO file can be defined as follows; the trajectories of traffic participants are
represented via actions and events. For example, actions can be maneuvers and other sim-
ulation control commands as well as event cause these actions. In functional scenarios, the
movement of each vehicle is defined in the start and end scene, as well as the maneuver to
be performed, by its relative location with other traffic participants. To depict the maneuvers
defined in the functional scenarios with the aid of OpenSCENARIO parameters, the traffic
participants’ interactions should be converted into an event-based representation. The rela-
tionships and constraints between the elements and parameters of the elements are modelled
in the second stage of modelling process. Three relationship types have been defined and
are used for definition of the scenario: arrangement relationships, entity dependencies, and
parameter dependencies. All three types of relationships are mutually exclusive and focus on
various aspects of the scenario generation [MBI+19]. These relationships will be detailed in the
following parts of the projects. In the final step, the representation of the traffic participants
and environmental conditions in OpenSCENARIO is generated. In addition, the set of rules
used to determine default values for each parameter is recorded in a separate file. By doing so,
the collection of rules can be used to produce appropriate combinations of parameter values in
the following process steps, for example as part of the generation of test cases.

5
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Figure 2.2: Functional scenario example

Figure 2.3: Flow diagram of the system

2.1.4 Evaluation Criteria
The OpenSCENARIO files can be analyzed in two levels. In the first step, the created Open-
SCENARIO files are checked against a schema file during a static test. In this sense the syntax
for each file of OpenSCENARIO is contrasted with the specification of the formal OpenSCE-
NARIO data format. This way, missing elements and attributes can be identified. In the
second stage, in a simulation environment, the OpenSCENARIO files are loaded and executed.
In this process, it is verified whether each created OpenSCENARIO file is executed in simula-
tion according to the respective functional scenario. Some key questions during this test can
be given as: Do all vehicles start at the given starting position? Does each vehicle’s conduct
conform to the maneuver described in the start scene? Do all maneuvers start and finish at
the right time, so that there are no crashes?
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2.1.5 Requirements
In this section, the demonstrator’s high-level requirements correspond to the above information
are described;

• The proposed toolchain framework will allow implementing ADAS features a virtual
simulation environment based on an OpenScenario data format.

• Each keyword-based scenario is transformed into a parameter space representation and
afterwards converted into the data formats and OpenSCENARIO.

• All the functional requirements will be traced along the all process by the help of Eclipse
Capra platform.

• The toolchain will be designed via Eclipse and will be connected to the APP4MC plat-
form.

2.2 Cloud-based performance simulation service
A new cloud-based approach for a joint development provides a common collaboration environ-
ment with standardized services and workflows. Instead of individual IDEs on local machines
the cloud environment can be used to deploy a commonly defined workflow and tool setup.
With that definition the collaborative parties can use the same dataset, infrastructure and
assessment results to optimize the system output. New ways of collaboration can be developed
in this way to overcome misunderstanding and data transfer in all directions.

Figure 2.4: Collaboration based on Panorama Cloud Services

The cloud infrastructure will be hosted under the Eclipse Cloud System. Users of this
Open Source service get an impression of how the overall framework enables new and easy
possibilities to analyze the given system. There is no individual installation necessary, but if
required adaptations and combinations with commercial tools are possible. In some cases this
is essential to achieve highly sophisticated simulation and optimization.

7
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2.2.1 Architecture
The main objective of the demonstrator is to provide an collaborative environment to demon-
strate our Open Source possibilities. They enable the developers to evaluate, simulate and
assess the provided data according to their performance analysis needs.

Our Open Source tool environment Eclipse APP4MC expands into a tool infrastructure
hosted in an cloud environment. This enables companies to join their efforts in a common
collaborative environment. We showcase the possibility using our data-model and parts of our
tool landscape enhanced by self-contained services like analysis, simulations or result visual-
izations.

Figure 2.5: basic architecture of the APP4MC-cloud environment

To realize the environment we will provide services like simulation, migration, analysis and
report visualization as an example for the possibilities we can achieve with this kind of envi-
ronment. The considered services are containerized and can be combined via API to an entire
workflow. If additional services are needed the user can enhance the system accordingly and
enhance its possibilities. This is important as there might be specialized solutions for company
specific needs.

The cloud solution therefore is capable to bring project specific parties together to work
in the same structure. The input data is always based on the AMALTHEA data format to
ensure a common data structure and definition as input. This is very important as the modeling
infrastructure at company side is highly diverse.

2.2.2 Outcome
This approach can reduce individual tool-chain development, installation and maintenance
cost. Also the collaboration between the parties is easily enabled and individual data transfer
between the parties can be minimized. Results will be comparable and assessment can be
made on common data. The data will be used only during processing and will be deleted
afterwards. As the system has a services oriented structure individual services and tools can
be connected according to needs. Also the collaboration during framework development is
granted as individual parties can contribute their development in a containerized structure.

8
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Boundaries on frameworks, programming languages are minimized due to the containerized
service oriented structure.

2.2.3 Evaluation Criteria
The main evaluation criteria envisaged for this demonstrator, targets several aspects related
to collaborative engineering of heterogeneous systems:

• A common framework for System Engineers to collaborate on complex and distributed
projects

• Product design decisions based on performance needs

• Sharing of common taxonomies between teams, minimizing ambiguity

• Flexibility to enhance framework according to analyzes needs

• Joint data for system evaluation and assessment

2.3 SAAB demonstrator ConCept
New methodology is needed for development of avionics systems to meet today’s software
explosion in complexity and related cost due to increased functionality in the aircraft. To meet
future demands it is essential to find new methodology to be used at early concept evaluation
stage for functional and component abstraction levels, based on rough estimation of overall
needed performance in terms of desired aircraft functions and a rough estimation of available
characteristics of the foreseen computation resources and network. This demonstrator intends
to demonstrate use of new top down Correct by Construction (CbC) flow with focus on function
mapping, addressing real-time performance, energy and safety requirements.

The main challenge is to find top level necessary and sufficient safety requirements that are
useable design constraint inputs for the Design Space Exploration (DSE) method. Another
challenge is to design methods that allows scalability of the problem over a larger network.

2.3.1 Characteristics
The demonstrator will provide a scenario for applying the methods and tools of PANORAMA,
in accordance with the big picture in document D1.1 chapter 2.4, describing connection to ARP-
4754 and ARP-4761 together with defined abstraction levels, see Figure 2.6 and abstraction
levels description below.

Modelling views and abstraction levels

In order to facilitate the early system development at least three levels of abstraction with
several modelling views are required. The levels of abstraction are the functional level, the
component level and the resource allocation level.

9
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Figure 2.6: Early Concept Flow

The functional abstraction level (top part in figure 1, Platform Independent Model
(PIM))

Within the functional abstraction level, a functional view is required in order to describe all
the Aircraft Functions, within this abstraction level a refinement from a textual description
of the function to a service-oriented breakdown of the function can be described. Given the
set of high-level and support functions to be realized in the system, they can be described in
a connected dependency graph by provided and utilized services. In this level a set of high-
level requirements, either functional, safety or security oriented, are associated with the set of
functions. Functional requirements may be on performance, energy usage, response time, delay
etc. Safety requirements may be on separation or absence of single-source failures. Security
requirements may be identified at this level based on the security targets.

The component abstraction level (middle part in figure 1, IMA Component Model (ICM),
Platform Performance Model (PPM))

The individual functions are further de-composed into components in a component view. The
component view provides the capability of describing behavior using various models of compu-
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tation. Within this view, the components can be refined, providing several potential different
breakdowns of intended functions. The refinement into the component abstraction level will in-
troduce additional requirements resulting from design decisions that are not directly traceable
to higher-level requirements. These refined requirements that traditionally where decisions
taken by an engineer is now expressed by rule based algorithm (describing acceptable deci-
sions), suitable as input to DSE to elaborate. E.g. are synchronization and energy rules. Also
on this level of abstraction is the IMA Platform view (PPM). This view describes a network
of modules without mapped functionality and identifies domains of the platform where certain
restrictions apply

The resource allocation abstraction level (bottom and red part in figure 1, ICM mapped
on Platform Performance Model (PPM))

This level has the capability to describe the applications (according to the [RTCA-DO-297]
terminology), which means that they are described considering a specific target (CPU Core,
programmable logic, DSP, GPU, or similar). The functional mapping on the Platform is fully
described on this level with the needed set of module resources including the core software.
In a resource allocation view, the IMA System is described with the instantiated functional
components allocated to platform resources (allocated processing units, memory, time, com-
munication slots and bandwidth, energy, etc.).

2.3.2 Early concept flow in relation to DSE
Now is focus on the challenge to find useable interfaces to DSE that maintain abstraction levels
above without limiting the design space and support scalability. The approach is to explore
the entire design space, guided by the algorithmic rules and bounded by top level requirements,
both functional and non-functional (such as safety and energy). Figure 2.7 below illustrates
this from the DSE perspective, mainly at the component abstraction level above. The main
objective for DSE is to find an instance of hierarchic system design that fulfills all requirements
and rules. In future, it is possible to optimize between several instances that fulfill requirements
by refinement of the rules.

Figure 2.7: KTH view of DSE for heteroegeneous systems

The mapping between the Figure 2.6 and Figure 2.7 are as follows in Figure 2.8 (combined
view of Early concept flow and KTH DSE).
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Figure 2.8: Relation between Early Concept Flow and DSE

2.3.3 Aircraft functions
The purpose of the aircraft functions in the demonstrator is to exemplify how safety require-
ments in term of separation and redundancy are handled by the methodology and development
tools together with the functional requirements and performance requirements.

Flight Information Function

The Flight Information Function is an important function that process flight data, e.g. speed,
heading, altitude etc., and relay it to a display function. This function may have its own
partition and be periodically scheduled on a core(s). The DSE tool will from the requirements
and given rules realize the function on the platform.

AESA Radar Function

This function represents an AESA radar sensor. It will have the capability of simultaneously
handle multiple beams and multiple targets. The data to be processed comes from simulated
AESA radar data to mimic a real AESA radar input signal. The radar function comprises of
some or all of the following components:

12
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Figure 2.9: Functional break-down at functional abstraction level

• Digital Beamforming (DBF)

• Pulse Compression (PC)

• Doppler Filter Bank (DFB)

• Constant False Alarm Rate (CFAR)

• Integration

DBF filter takes the incoming radar pulse and maximize the signal to noise ratio. For a
rectangular pulse, the DBF filter is just a simple pass band filter. The PC function is to
improve range resolution and increase signal to noise ratio. It picks out the part of the pulse
that contains a potential target, i.e., it refines the DBF result by using binary phase code
compression or linear frequency modulated compression. The DBF filter function is used when
targeting moving targets with a monopulse radar. Here it will be implemented as a fast fourier
transformation (FFT) filter. This will reduce the sidelobe effects and discriminate against
fixed and moving clutter. The CFAR function is a technique used when the background is not
constant, i.e. the background noise is varying, e.g. between a blue sky and rain cloud situation.
Thus, the CFAR is needed in a real environment. CFAR uses adaptive threshold strategy to
cope with these realistic situations. This further refines the target acquisition. It is a function of
both the probability of detection and the probability of false alarm. The Integration component
is used for increasing the noise to signal ratio by integrating two or more radar beam signals.
In Figure 2.10 the components are arranged in the order of execution. However, the CFAR
and DFB is performed in parallel.

Figure 2.10: The data flow chain
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2.3.4 Hardware Modules
The hardware modules are all the same regarding resources, i.e. they are copies of each other.
These hardware modules can be used as either processing modules or switching modules. Each
module consists of two PCB cards: a Motherboard and a Power board. The focus here is
on the Motherboard. The Motherboard holds all the resources: process cores, memories and
communication.

Figure 2.11: Block diagram of the Motherboard

Processor cores and their memories

The main component on the Mother board is a Xilinx Zynq Ultrascale+ MPSoC (XCZU5EV).
It holds three CPUs, some memories and a programmable logic area. The processor cores
available are a 64-bit quad-core ARM Cortex –A53, a dual-core ARM Cortex-R5 processor
and a GPU ARM Mali-400 processor. The GPU is not to be used in the demonstrator. Thus,
in total 6 cores, where each core has its own L1-cache for data and instructions of 32kbyte.
In addition, the caches comes with ECC as well. The dual-core ARM cores also has an extra
memory shared between them of 128kbyte, also with ECC.

ARM R5 Cortex performance

On these two cores, up to 16 ARINC653 partitions can be scheduled in which each partition
can host a number of processes that are rate monotonic scheduled. The ARM Cortex-R family
is optimized for hard real-time and safety critical applications.

ARM A53 Cortex performance

On these four cores, up to 16 partitions can be scheduled in which each partition can host a
number of processes that are rate monotonic scheduled. Alternatively, event triggered schedule
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where each hosted process is assigned a trigger. When multiple event triggered processes are
available, they are executed in a round robin queue. The ARM Cortex-A family is designed
for handling complex computational tasks, such as supporting multiple software components.

Available memories

The memories on the Mother board resides both on-chip of the MPSoC and outside the MPSoC.

On-Chip MPSoC memories

Besides the memories devoted for the cores four more memories exists within the MPSoC:

• 256KByte on-chip RAM (OCM) in PS with ECC

• 18Mbit on-chip RAM (UltraRAM) with ECC in PL

• 5.1Mbit on-chip RAM (block RAM) with ECC in PL

• 3.5Mbit on-chip RAM (distributed RAM) in PL

Memories available on Motherboard

Besides the memories on the MPSoC three extra memories exists:

• 2Gbyte (32-bit wide, data rate 2400MHz) Volatile DDR4 SRAM with ECC (for the
PS-side).

• 512Mbyte Flash memory (for booting, applications and configurations for the PL-side)

• 512kbyte non-volatile MRAM (connected to the MPSoC (for the PS-side) via SPI)

Programmable Logic area

A large part of the MPSoC is an FPGA. Its configuration area may be used for the switching
nodes primarily and very likely for the radar application as well. This resource can be used to
accelerate specific functionality, as it normally outperforms processor-based implementations.
It is therefore commonly used in radar applications to make real time data processing. This
area consists of:

• 256200 logic cells

• 117120 Look-Up tables

• 234240 flip flops

System clocks

It is a fixed frequency running at 200MHz.

15



D 7.2 – Revision 2 ITEA 3 – 17003

External communication interfaces

Two communication interface are built in for the user: Ethernet and RS-232. The Ethernet
accesses the PL side of the Zynq MPSoC and the RS-232 may be connected to either the
PL-side or the PS-side of the same. In order to provide deterministic traffic on the Ethernet
network one may use:

• Bandwidth limiting solutions, e.g. AFDX

• TDMA (Time Division Multiple Access) base solutions, e.g. Time Triggered approaches

Built-in Monitoring

The Zynq MPSoC has monitoring feature, called SYSMON, infused in its hardware to monitor
both temperature and supply voltage. This monitors both the PS-die and PL-die separately,
which in addition enables the possibility to exercise power management.

Programming and Debugging

Programming and debugging is done via the JTAG ports. One of the two JTAG ports is for
programming and debugging the MPSoC. The other JTAG port is for the reset function; reset
PLD.

2.3.5 Architecture
The platform will be instantiated with 3 up to 5 hardware modules in the two scenarios
exemplified in Figure 2.12. As mentioned above, a hardware module can be either a switch or
an application node. These two scenarios are just two examples of using these building blocks.
The DSE tool will place the applications onto the hardware and arrange the modules following
the requirements given.

Figure 2.12: The two scenarios are only examples of how the hardware modules may be used
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The external communication uses either RS-232 or Ethernet to get the information across
the hardware nodes. The trend for Ethernet real time network is to move from proprietary
standards to accepted industry standards, e.g. CAN, AFDX, 1553B, and ultimately into
cross-domain standards. Thus, in the same network time triggered hard real time traffic, rate
constrained traffic and best effort traffic may be intermingled.

2.3.6 Characteristics to be addressed by DSE
The desired applications as output from DSE have both functional and non-functional char-
acteristics, and focus varies from application to application. I.e. the final requirement for
an application bound the characteristic to a specific value or allowed interval. These charac-
teristics are often referred to as safety critical or mission critical functionality. All functions
mapped to the platform gives the final IMA system. These together constitute a mix of safety
and mission critical functions with concurrent execution. From these, there is both functional
requirements such as response time, latency and processing capability as well as non-functional
requirements safety requirements such as that no single failure shall lead to catastrophic failure
conditions. The non-functional safety assessment have been addressed by the ARP-4754 and
the outcome is expressed in the safety related refined requirements below.

Conceptual requirements

For each function:

• Algorithm size, Number of Operations

• In data size to algorithm, Bytes

• Out data size produced by algorithm, Bytes

• Energy budget for the function

• Safety requirements

• …

Real-time requirement

For each function:

• periodic need of algorithm computation with frequency

• Aperiodic Event-trigged algorithm computation with intensity

• Latency (time from in data arrival to needed out data delivery)

• Jitter (accepted time windows for data arrival and data delivery)

• …
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Refined requirements

For each Application model:

• Execution frequency, Hz (cyclic scheduling rule) given from abstraction level above

• Data flow or state machine oriented processing Data streaming (Radar) implemented in
SW or HW.

• Safety related requirement, separation (required separation of applications, degree of
allowed disturbance between applications).

• Safety related requirement, redundancy (required redundancy between applications, de-
gree of allowed sensitivity for single failures).

• Power peak restrictions (distribution of energy over time)

• Estimated Program memory need , Bytes

• Estimated Internal data storage need, Bytes

• …

Platform Characteristics/Performance

For the platform, i.e. collection of Modules:

• Performance per Core, operations per second

• Communication volume per Core, bytes per second

• Communication protocols characteristics

• Core Connectivity scheme (i.e. network architecture, possible data channels)

• Energy per operation

• …

2.3.7 Evaluation Criteria, KPI
KPI list:

• Dependability, functional requirements. The DSE tools ability to propose an explainable
solution together with resource utilization within modules and architecture for functional
correctness.

• Dependability, non-functional requirements. The DSE tools ability to maintain and show
non-functional correctness from conceptual level down to proposed platform mapping.

• Scalability. Possibility for DSE to find solutions when size and number of function
(conceptual requirements) are increasing by e.g. a factor 10.
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2.4 Enhanced Project Development Life-Cycle
As presented in Deliverable 7.1, Critical Software’s goal with the PANORAMA project is to
develop the capacity to employ Model Based System Engineering techniques in its diverse
project portfolio.

Using a model-based approach, Critical Software expects to tackle one of the nowadays
challenges of having multidisciplinary teams spread over different geolocations working on
different components of, highly complex, safety critical projects.

This demonstrator main objective is to provide a reliable way of benchmarking and compar-
ing the results of safety related activities with and without PANORAMA tools and method-
ologies. To achieve this, Safety Engineers will apply typical hazard analysis techniques to
the two-case study projects, UC-1-FPM-1 defined in work package 1, and the produced arte-
facts used to assess the safety relevance of the results obtained from the Tools and techniques
developed in the PANORAMA project.

This demonstrator has a secondary objective of providing a way of validating the fault prop-
agation path heuristics used to highlight how the relation between system sub-components
(tasks, runnable’s, etc.) can have an impact in the overall system safety and how the introduc-
tion of localized barriers at the model level, can improve the system safety.

2.4.1 Approach
To prevent a highly complex and difficult to assess case study, this demonstrator will follow an
iterative approach, where, using the toolset developed in work package 2, the AMALTHEA sys-
tem model complexity will be increased after each iteration, and the output artefacts compared
with the ones obtained during the Safety Engineer activities.

This type of approach will provide a dynamic that is, not only, visually appealing but
also easy to understand, as the complexity associated to simpler models, with less safety
ramifications, is easier to grasp, even by non-technical personnel. After each iteration, safety
analysis results, supported by the methods defined in work package 3, will be obtained, where
both static and the dynamic analysis will be mixed to provide a reliable characterization of
the system faults propagation and the overall system safety.

The output of each iteration can also be used to define and introduce barriers in the system
model, whose ramification impacts can be assessed using the visualization tools developed in
work package 4. Supported by these visualization tools, it will be possible to visually see the
ramification impact a barrier has in the existing safety related issues, which will be represented
by a decrease in the number of propagation paths, i.e. tree branches, associated to a specific
failure. Nevertheless, this approach will prevent the complete characterization of the impact
associated to the introduction of barriers in the system model, since a barrier in a less complex
system model could have an exponentially higher impact on more complex system models. The
introduction of barriers after each iteration, will be removed before the next iteration or order
to prevent an unfair comparison between the artefacts produced by the tools and techniques
developed during the PANORAMA project and the ones obtained by the safety engineers.

Figure 2.13 Illustrates how this demonstrator will use the tools and techniques developed in
the PANORAMA project, and how this iterative approach follows Critical Software envisioned
project development lifecycle based in MBSE, D7.1, Safety Critical MBSE Project life cycle.
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Figure 2.13: Demonstrator flow

2.4.2 Evaluation Criteria
The main evaluation criteria envisaged for this demonstrator, targets several aspects related
to the engineering of heterogeneous systems supported by MBSE, namely:

• Methodology ability to impact project design decisions on the system’s safety in all
phases of the project development life cycle, by providing relevant system safety related
information.

• Methodology allow for the re-use of previously designed models, and their safety analysis,
in a modular way.

• Provide a common framework for System Engineers and Safety Engineers to collaborate
on complex and distributed projects.

• Sharing of common taxonomies between teams, minimizing ambiguity.

2.5 Rover: Autonomous Driving System Development Platform
The main objective of the planned demonstrator as described in Deliverable D7.1 is to pro-
vide real-world application cases for the assessment, optimization and final validation of the
model-based methodology developed in PANORAMA project in the context of Siemens’ related
modeling and design software tools. Since the detailed requirements specified in Deliverable
D7.1 have not changed, in this document we will mainly focus only on evaluation criteria and
on relation of these with the defined use cases in the technological and methodological work
packages 1, 2, 3, 4, and 6.

The high-level requirements can be briefly summarized again for the sake of clarity and ease
of comprehension as follows:

• In order to be able to address the main engineering challenges related to the timing be-
havior in complex heterogeneous hardware/software systems, an exemplary development
of a self-driving toy vehicle (a rover) shall be shown.

• As the development of modern complex systems is usually undertaken in the context
of an embedded development process with multiple levels of modeling abstraction and
various development stages, the demonstrator shall also cover the integration chain of
various design artifacts such as requirements, safety models, various types of architecture
models, analysis results, and implementations.
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• The demonstrated platform, on the one hand, must be challenging enough to be able
to highlight main engineering problems associated with the complex timing behavior in
heterogeneous hardware and heterogeneous functions, and on the other hand, it must
comprehensively represent real-world application scenarios in a tangible way using the
limited available resources in the project.

2.5.1 Heterogeneous HW/SW Platform
The planned realization of the emulated collision avoidance ECU (CA-ECU) subsystem will
provide multiple sources of sensed information sampled with various periodicities, that shall be
merged by means of sensor fusion functionality to obtain a more confident representation model
of the environment. This will also result in a wide variety of possible complex timing scenarios
like overruns/underruns of real-time processes with multi rate sampling behavior that can
be thoroughly investigated using the PANORAMA model-based timing analysis methodology.
The hardware implementation of the CA-ECU implies integration and instrumentation of a
mixed-criticality HW platform with different levels of heterogeneity for embedded vision use
cases (i.e., Xilinx Zynq UltraScale+ ZCU 104 Evaluation Kit board):

• a complex multi-clustered CPU architecture based on a quad-core ARM Cortex-A53
applications processor and a dual-core Cortex-R5 real-time processor,

• a tightly coupled programmable logic accelerator (FPGA),

• different memory architectures and cache structures realizing different partitioning/lock-
ing strategies, and

• virtualization features for multi-OS hypervisor-based cross-domain architectures.

This high degree of HW configurability allows us to realize different scenarios of software func-
tion allocation (distribution) and memory mapping. Currently we consider two such allocation
and memory mapping scenarios that shall be evaluated using the demonstrator platform: The
object detection functionality of CA-ECU can be realized either by means of a software using
an ARM Cortex processor or as a dedicated hardware accelerator implemented in the FPGA.
These allocation scenarios shall be accompanied by corresponding PANORAMA/AMALTHEA
system design models in order to identify possible conceptual gaps in the underlying data model.
The following aspects are planned to be evaluated on the heterogeneous HW/SW platform:

• End-to-end timing analysis based on corresponding PANORAMA/AMALTHEA models
for different software allocation scenarios shall be compared to the generated trace data
of the real implementation. In this case the timing analysis first will be done manually for
a manageable functional subset of the CA-ECU subsystem and later on using behavioral
simulation models for a larger functional scope. This evaluation is directly related to the
use case UC ID 1-03: Clear interpretation of semantics in work package 1.

• On the hardware side, the scenario with involvement of FPGA for implementation
of object detection functionality will consider a mapping of high-level functional and
timing-related non-functional requirements onto a HW specification model using existing
PANORAMA/AMALTHEA hardware modeling concepts. The evaluation should indi-
cate, how well all of the required HW features, that are essential to perform end-to-end
timing analysis, can be captured using the PANORAMA data model. This evaluation
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directly addresses the generic use cases UC ID 1-2: Representation of HW/SW system
design and to some extent the use case UC ID 1-1: Data-model has to be capable to
represent legacy and new data in work package 1. Furthermore, the following use cases
of work package 4 are related to this experiment: UC-4-ATB: Application Temporal
Behavior, UC-4-ME: Mapping Evaluation, and UC-4-DA: Deployment Alternatives.

• Implementation of the software first will be done manually and later on using a model-
based approach, orchestrated by a software architecture model which will be import-
ed/derived from a predefined validated PANORAMA/AMALTHEA system model. Both
approaches can be compared in order to demonstrate correctness/completeness of both
implementations and improvements in efficiency of software development. This evalua-
tion is directly tangent to the use cases UC ID 2-4: Data Export in work package 2, to
the use case UC ID 1-04: Efficient collaboration in work package 1, and to some extent
to the use case UC ID 1-03: Clear interpretation of semantics in work package 1.

2.5.2 Collaborative Development with Traceability Workflow
Development of the demonstrator PANORover will be accompanied with requirements defini-
tion in the Polarion tool. The process would allow to present the possibilities of the Polarion
system to specify the system and to identify the evaluation criteria for the developed demon-
strator by creating a verification test document with corresponding traceability links. During
the development process it is expected to look at the requirements on future collaborative
processes (see ”Collaboration Requirements” section in Deliverable 6.1) with the purpose to
illustrate how Polarion tool together with the other Siemens tools would allow to achieve the
specified requirements. Due to the ability of the Polarion tool to provide a full traceability
among requirements, tests and external modelling tool elements, it is planned to dedicate a
special attention to specifying timing requirements with their later evaluation.

For the efficient collaboration use-case UC ID 1-04 it will be shown how AMALTHEA model
can be imported into Capital Software Designer Tool. Requirements specified in REQ format
or in Word Document can be imported into Polarion Tool. Since the Polarion tool allows
to define traceability among system model elements defined within Siemens toolchain and
requirement items, it is planned to specify evaluation criteria in Polarion and trace it to the
implementation (as depicted on Figure 2.14).

Figure 2.14: Evaluation aspect in collaborative development with traceability workflow

22



D 7.2 – Revision 2 ITEA 3 – 17003

2.5.3 Safety Engineering
In order to perform the safety assurance in the PANORover demonstrator scenario, an initial
setup of Hazards, safety goals, and safety requirements is defined in the tool Polarion. Based
on the system and safety requirements defined in Polarion, a Capella model of the system
architecture of the PANORover demonstrator is created. In order to analyze the system
architecture in terms of safety and to check, if safety requirements are fulfilled by the proposed
design, we enhance the Capella model with failure propagation in form of a Component Fault
Trees (CFTs). Hence, qualitative and quantitative fault tree analyses can be performed.

As a next steps, safety analysis will be conducted on the refined of the system design in a
detailed design, which is composed of detailed models for hardware and software sub-systems.
Thereby, we plan to evaluated how the safety assessment on different levels of abstracts supports
the evaluation of different designs alternatives and how a traceability of the various artifacts
related to the safety engineering life-cycle can be established using the tools Polarion, Capella,
etc. Moreover, we will compare the results form the PANORover demonstrator with the gap
analysis provided in Deliverable D6.1 to check for the use case which of the identified can be
solved with the results of PANORAMA. Moreover, this use case is related to UC-4-SA: Safety
Analysis described in work package 4.

2.6 RTFParallella
2.6.1 Requirements
In this section, we highlight the high level requirements of the demonstrator corresponding to
the description provided in the previous deliverable (D7.1).

The RTFParallella framework will allow for the implementation of amalthea models on the
Adapteva Parallella hardware platform. Additionally, this demonstrator will produce a BTF
trace of the execution of the implemented model.

The framework will demonstrate Inter-process communication according to the implicit com-
munication and Logical Execution Time (LET) semantics.

The framework will be designed based on the OSEK task model. Additionally, tasks will be
scheduled according to a fixed priority scheduling strategy. Subsequently, the framework will
be based on FreeRTOS.

Hardware related delays such as the effect of contention in shared and distributed-shared
memory on event chain latencies will be demonstrated.

To allow the implementation of inter-process behavior discussed above on the underlying
hardware, the shared labels used by tasks will be assigned to the shared or distributed-shared
memory as sections. Each section will contain shared labels of similar size.

The execution of the implemented model in RTFParallella will be traced in BTF format.
Task, runnable, and core events will be initially traced.

2.6.2 Evaluation
RTFParallella will be evaluated based on the ability to implement complicated models, its
tracing capability, and the tracing overhead incurred and its effect on the tracing results in
contrast to the real execution of the implemented model.

These criteria will be evaluated during the implementation time of the demonstrator.
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2.6.3 Relationship to other work packages
This demonstrator will be used to support efforts in Work packages 3 and 4, where static anal-
ysis results could be compared with the execution the corresponding model and the hardware,
which will allow for an estimate of the pessimism introduced by static analysis. Furthermore,
the demonstrator could be used in combination with Eclipse Trace Compass to verify results
obtained by visualization tools which are part of work package 4.

Furthermore, efforts in work package 2 aim at generating deployment-ready implementa-
tions of Amalthea models to run on the Adapteva Parallella hardware platform based on this
framework.

WP2 RTFParallella
Amalthea

Model
Code

Generation
Executable

Code
Execution on

HW
Execution

Trace (BTF)

WP3

Static Analysis Analysis results

WP4

Model simulation Simulation results

Figure 2.15: RTFParallella in connection to other work packages in Panorama

2.6.4 Main challenges
The main challenge associated with building and maintaining this demonstrator is the lack of
official support, since this hardware platform is not in production anymore. Tool support for
this platform is only available on community forums and other unofficial sources. The tooling
contains bugs that slow down the development process with respect to certain aspects such as
memory management, workarounds specific for this demonstrator have been created to allow
for the simple implementation of Amalthea models. The platform is not officially supported by
any real-time systems vendor. Although it is possible to use it for the purpose of demonstrating
certain timing behavior aspects of a system, it is not possible to use this platform for realistic
implementation of a commercial embedded system.

2.7 FiSimSo
In the real-time embedded systems, task scheduling perched on a high place in the hierarchy of
design and analysis. Various analysis tools has been developed for the purpose of assessing the
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competence of a system to fulfill the tasks timing constraints. The supreme goal of real-time
scheduling analyses tools is compute if the system is schedulable or not. One method of check-
ing the compliance of a systems to meet the scheduling constraints is simulating the run-time
execution of the various tasks. The advantage of simulation is providing detailed information
about the execution of tasks beside the original goal of examining the schedulability of a sys-
tem. The various simulation tools does not take into account the faulty software/hardware of a
system. These faults can not only be due a blemish in the design/realization of software/hard-
ware, we can also result of unexpected occurrence of a high priority event, or due to bit(s) flip
in memory and registers.

In D7.1, the description and specifications of PyFI fault injection tools was introduced. FiSimSo,
which stands for Robust SimSo is a planned extension of the open source tools SimSo [CHD14].
SimSo is a scheduling simulator for real-time multiprocessor architectures that takes into ac-
count some scheduling overheads (scheduling decisions, context switches) and the impact of
caches through statistical models. Based on a Discrete-Event Simulator (SimPy), it allows
quick simulations and a fast prototyping of scheduling policies using Python [CHD14]. (see
Figure 2.16)

FiSimSo is a robustness analysis tool that combines the aptitude of PyFI fault injection with
SimSo tasks-scheduling simulation tool. This can be achieved by introducing deliberated ran-
domness in tasks parameters, then a deeper insight can be gained bout the behavior of real-time
system under test. FiSimSo is a probabilistic analyses of real-time systems the provides levels
of confidence on the response time distributions, helping to evaluate the robustness of the real-
time system and as the result comprehensive understanding of the safety of using the system.

2.7.1 Evaluation
The evaluation of FiSimSo will depend on the ability of utilizing the tool for scheduling lengthy
and complex tasks. Beside examining the scalability of the simulation tools it is vital to test
the added overhead for the probabilistic analysis and the inference of robustness of the targeted
system.

Another aspect of assessment, is the impeccable robustness analysis for various types of
injected faults. The intended space of examination would include testing the behavior of the
system for different faults manifestations. These include:

• Faults persistence
– Permanent faults
– Transient faults

• Faults plurality
– Single faults
– Multiple faults

• Faults correlation
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Figure 2.16: SimSo Simulation GUI [Ché14]

– Independent faults
– Related faults

2.7.2 Challenges
The main challenges associated with FiSimSo development is the terminated support of SimSo
tools and as a result the outdated python libraries, such as SimPy and PyQt. This enforce
not only the extension of probabilistic analysis as and inference tools, but also the update of
outdated libraries and python-language syntax (i.e. updating from python 2.x to 3.x).
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3 Conclusion and outlook
Within this document we described the general purpose of the deliverable and provided a set
of initial requirements and evaluation criteria. We also provided an update of planned demon-
strator use cases with refined / extended features of respective proof-of-concept platforms.

Generally, the allocation of described evaluation criteria to individual work packages can be
summarized as follows:

• Work packages 1 and 2 (model data, abstraction levels, editors, importers,
viewers):
AVL ADAS Feature Simulator (connection to APP4MC), Bosch/Dortmund/Rostock
Cloud-based Performance Simulation Framework (common data structure for system
evaluation and assessment, migration service), CSW Enhanced Project Development
Life-Cycle (UC-1-FPM-1, failure propagation modeling), Siemens Rover: Autonomous
Driving System Development Platform (UC ID 1-1, UC ID 1-2, UC ID 1-03, UC ID 1-04,
UC ID 2-4), Dortmund RTFParallella (generating deployment-ready implementations of
Amalthea models),

• Work package 3 (model analysis):
AVL ADAS Feature Simulator (virtual simulation environment based on OpenScenario
data format), Bosch/Dortmund/Rostock Cloud-based Performance Simulation Frame-
work (simulation service supporting product design decisions based on performance
needs), SAAB demonstrator ConCept (ForSyDe DSE), CSW Enhanced Project De-
velopment Life-Cycle (static fault propagation analysis), Siemens Rover: Autonomous
Driving System Development Platform (static fault tree analysis), Dortmund RTFParal-
lella (static schedulability analysis), OTH-R FiSimSo (schedulability/robustness analysis
based on DES simulation, safety patterns and fault injection),

• Work package 4 (result visualization and assessment):
Bosch/Dortmund/Rostock Cloud-based Performance Simulation Framework (analysis
and report visualization, flexibility for extension), CSW Enhanced Project Development
Life-Cycle (visualization of fault propagation analysis), Siemens Rover: Autonomous
Driving System Development Platform (UC-4-SA, safety analysis), Dortmund RTFPar-
allella (Amalthea model simulation and visualization of simulation results, Eclipse Trace
Compass), and

• Work package 6 (design flow and traceability):
AVL ADAS Feature Simulator (requirements traceability aspects, Eclipse Capra), Bosch/-
Dortmund/Rostock Cloud-based Performance Simulation Framework (a common cloud-
based framework for collaborative systems engineering, sharing of common taxonomies
between teams), GU Traceability with Eclipse Capra (change impact and safety analyses),
SAAB demonstrator ConCept (correct by construction flow with focus on function map-
ping, real-time performance, energy and safety requirements as inputs for DSE), CSW
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Enhanced Project Development Life-Cycle (MBSE, safety analysis), Siemens Rover: Au-
tonomous Driving System Development Platform (collaborative development with trace-
ability workflow, safety engineering/assessments).

Future work will focus on further detailed analysis of the requirements and evaluation cri-
teria as well as implementation of demonstrators. The provided specifications will be further
analyzed and refined iteratively in subsequent deliverables to determine a set of important as-
pects that are potentially not covered by any demonstrator but would be essential to  elaborate
the complete set of evaluation criteria for technical achievements. These aspects should then
be addressed in the improvement phase of demonstrator specification and implementation.
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