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1 Executive summary 
This deliverable provides an overview of the current state-of-the-art for the four use 
cases in the DayTime project.  
 
Philips Consumer Lifestyle introduces the design challenge of smart rota shaver and will 
focus on the development of sensor solution and predictive models of skin-cutter 
distance.  
 
Philips healthcare summarizes its maintenance process and the status of predictive 
model development for MRI system. The MRI use case will apply advanced data 
analytics and AI to improve the system diagnostics using data from various sources incl. 
device log, sensors and maintenance service records.  
 
Yazzoom gives an overview of the industrial boiler system and focus on using AI on 
sensor data for anomaly detection and root-cause analysis.  
 
Triatech presents the use case of medication and medical supply management system 
and will develop predictive models for its maintenance process. In addition, a set of 
enabling technologies will be applied across use cases. 
 
A number of partners provide the state-of-the-art on these technologies including big 
data analytics (TU Eindhoven, Philips Research), machine learning (Tazi), natural 
language processing (Datenna), machine log data analysis (Target holding), predictive 
analytics and optimization (TU Eindhoven), sensor technology (University of Groningen), 
visualization and simulation (PS Tech). 
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2 State of the art on user cases 
2.1 Use case: smart shaver 

2.1.1 Introduction to Philips rota shaving 
In comparison with other rota competitors, the balance between closeness and irritation 
of Philips Shavers is at a high level. That means that at the same level of closeness a 
Philips Shaver is irritating less than Chinese competitors or for example, Remington. 
Perhaps the most important element in the shaver is the cutting element, or shaving 
system. The shaving system, consisting of a cap and a cutter, changes significantly with 
every shaver generation to meet consumer needs and market trends. 
 

 
Figure 1: Philips shaving head (S7000 series), showing the shaving systems and surrounding SkinGlide 
rings. 

 
It works on the principle that the user does not have to steer a blade into cutting hairs, 
but that the skin is pushed in between the lamellae of the cap, lifting hair into the path of 
the cutter. Hair is cut between the cutting edges of the cutter and the lamellae. The skin 
bulges or ‘domes’ in between the lamella, further reducing the distance of the skin to the 
cutter. Getting the skin-cutter distance as small as possible will ensure the closest 
possible shave. However, if the skin protrudes too far into the shaving system the skin 
will be damaged by the cutter. This causes a burning sensation, irritation and, redness, 
and in the extreme case deeper cuts and bleeding. Skin-cutter distance is abbreviated 
to SCD from here on. 
 
Skin doming 

 
 

Skin protrusion 

 
 

Skin-cutter distance 

 
 

 
 
 

2.1.2 Current status and use case challenges 
Rota shaving design challenges 
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As described in the introduction, the challenge is reducing the SCD to exactly zero, 
without overshooting. Too little skin doming means the hair isn’t cut close to the skin, 
resulting in poor closeness. Too much skin doming means the skin is pushed into the 
path of the cutter, resulting in skin damage (irritation, burning sensation and/or redness) 
 
This is complicated by the fact that the skin doming mechanism is an interaction between 
the skin physiology and the handling of the shaver, most dominantly the applied pressure 
and motion. The mechanical properties of skin vary between persons. Within a person 
the properties are also constantly changing with  ambient conditions, age, lifestyle, etc.. 
The pressure exerted on the cap contributes to skin doming. However, not all users 
press with the same force. Furthermore, keeping a constant pressure while 
simultaneously moving over the skin proves difficult for most users. 
 
Due to the viscoelastic properties of skin, the speed at which the cap moves over the 
skin also contributes to skin doming. Keeping the appliance stationary leads to the 
highest levels of skin doming as the skin relaxes into the slots. Lastly, there are many 
other factors that will likely influence the SCD, such as friction coefficients and skin 
roughness. The interactions are often difficult to investigate, and vary between individual 
users. 
 
Current shavers are designed for the average skin physiology and try to steer the 
average SCD to zero. Since there is currently no real-time measurement of the SCD 
during a shave, the SCD is estimated through lab measurements on skin doming in vivo, 
objective measurements of hair length and skin irritation after a shave, and through test 
panels reporting on various attributes of the shaving process and result. 
 
Because the current state of the art does not allow for adjustment of the SCD to changing 
conditions or different skin parameters, a lot of work goes into optimizing the geometry 
of the product to make the system less sensitive to these variations. 
A recent development is the Smart Shaver, which instructs the user on proper shaving 
motion, thus reducing user-handling variation (see State of the Art for a description of 
the Philips Smart Shaver). 
 
Use-case goal 
In this project, we will focus on development and we aim to end with a demonstrator that 
proves feasibility. Industrialization of the solutions found will not be in scope. 
 
 

2.2 Use case: smart maintenance for MRI 

2.2.1 Introduction to MRI 
MRI (Magnetic Resonance Imaging) devices are used to create images of the inside 
body for diagnostic purposes. Referring physicians will base their diagnostic conclusion 
on the diagnostic images of the patient made by the MRI device. 
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Figure 1. Philips MRI system 

A session where the patient is placed inside the MRI system is called an examination. 
A typical examination duration takes between 10 and 30 minutes. During the 
examination multiple scans are performed. Typically 5 to 10 scans per examination are 
performed. Each scan results in multiple images which can be experienced as slices 
through the body. Each scan has a different purpose. Scans differ to balance between 
time and resolution of the resulting images. As an example: the first scan of an 
examination is a Scout scan which is a fast low resolution scan to view a large part of 
the body enabling planning of the next high resolution scans on the right anatomy or 
clinical question. Scans also differ in technique to balance between robustness for 
patient motion during the scan and resolution or sharpness of the images. Techniques 
also differ in what needs to be shown depending on what the referring physician wants 
to see, e.g. the grey or white matter of the brain, flow of fluids, tissues like nerves and 
cancer cells. Scans are controlled by scan parameters which can be modified by the 
operator to optimize the scan for the diagnostic question. Hundreds of parameters are 
available to modify and optimize the scan. The operator typically modifies a few 
parameters to adapt the scan to the patient, obtaining the best image quality. 

 
Figure 2. Examples of resulting MRI images using different scan techniques. From left to right: imaging 
blood vessels, imaging brain, imaging brain trauma, fMRI (functional MRI). 

The MRI room setup is distributed over four rooms.  
Patient Preparation Room 
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The operator prepares the patient before the patient is allowed to enter the examination 
room. Main activity is to ensure the patient does not have metal in clothing, make-up, 
jewelry or implants. Metal will have impact on the image quality and is safety related as 
well. 
Examination Room 
The patient is positioned by the operator in the magnet located in the Examination Room. 
The Examination Room is RF-shielded to prevent RF interference from outside 
impacting the image quality, and to keep RF generated signals by MRI equipment inside 
the room. The examination room size is tuned to prevent magnetic interaction with non-
MRI equipment located outside the room. Inside the room only special equipment is 
allowed. Like special non-magnetic wheel chairs and infusion standards. MRI service 
engineers do have special titanium (non-magnetic) tools to service the equipment inside 
the examination room. 
Operator Room 
In the Operator Room the operator controls the MRI system. Scans are selected and 
adapted, and images viewed on quality. 
Technical Room.  
Control, power and cooling equipment for the MRI system is located in the technical 
room near the MRI examination room.   

 

2.2.2 Current status and use case challenges 
Maintenance process 
Uptime is a critical KPI for MRI systems. Systems which run 24hrs / 7 days in the week 
are no exception anymore. Planned and remote predictive service are key elements in 
achieving those needs.  
Planned maintenance 
The activities performed during the maintenance are defined per configuration. They 
vary from re-adjusting to proactive cleaning filters.  
Predictive maintenance 
Majority of systems are connected and machine data is uploaded to a Philips Cloud. The 
machine data is used to monitor the systems under service contract. Alerts are created 
towards the service organization in case of degradation and predictive failures based on 
analysis of the available data 
Corrective maintenance 
In case of failures, a customer calls the helpdesk. The helpdesk will try to remotely 
diagnose the problem using uploaded machine data in combination with remotely 
triggered tests, executed locally at the MRI system.  
 
Personas in the Maintenance process are:  
Operator/Customer 
Calls the helpdesk in case of issues.  
Helps the Remote Service Engineer (RSE) in diagnosing the problem, by answering 
questions and perform boot and power actions on request of the RSE. 
HelpDesk Engineer 
Answers the call and delegates the investigation by submitting a Service Work Order 
(SWO). A SWO is a data record in which actions are consolidated between the moment 
of reporting the issue and solving the issue. 
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Remote Service Engineer (RSE) 
Responsible to diagnose issues remotely triggered by an SWO. The RSE will capture 
his findings in the SWO and will close the SWO in case the issue could be solved 
remotely, or delegates the SWO to the local Field Service Engineer (FSE) for fixing the 
issue locally or perform further diagnostics locally in case remotely the root-cause could 
not be uniquely identified. 
Field Service Engineer (FSE) 
Responsible to locally maintain and fix the system. The FSE is the service person who 
replaces parts and perform local diagnosis 
Remote Monitoring Engineer (RME) 
Monitors connected systems globally. In case of alerts created by proactive models 
using machine data, the RME will create a SWO and dispatch the SWO with his findings 
to the local applicable market organization where the SWO will end at the RSE or FSE. 
 
Model development 
Models to support predictive service are built on top of collected machine data. Typical 
machine data consists of: 
Configuration Data 
Identifies the unique composition of the MRI system, with identifiers for all hardware 
elements and versions of the hardware 
Logfiles 
One central logfile across the complete MRI system contains in an unstructured way the 
workflow of the system including error events reported by hardware. 
Sensor Data 
Dedicated files per sensor property contain the sampled values of sensors 
Test Data 
Test results of tests executed at idle time and test results of tests triggered by FSE and 
RSE. 
 
The collected data is transferred in structured data and loaded in a data warehouse. 
Algorithms are using the continuous stream of data and generate alerts which are 
inspected by RSE’s. 
 
ETL scripts are used to translate unstructured logfiles into structured data. When logfiles 
change, or new hardware is introduced, or new software workflows are defined, the 
ETL’s will be adapted after which models will be inspected or updated to fulfill the need 
of proactive monitoring. 
 
 
Alerts generated by models on top of machine data are evaluated by RME’s. In case of 
false alerts the model development teams are informed, who will analyze the false alert 
and update the models where needed.  
 
The Use Case for MRI systems in the context of Daytime is built around 3 challenges: 

• In which extend can behavioral information be retrieved from logfiles without the 
need for ETL’s 

• Can enhanced AI techniques be used to monitor sensor data 
• In which extend can textual data be used to validate proactive service models 
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2.3 Use case: industrial boilers 

2.3.1 Introduction to industrial boilers 
 

 
 
Industrial Boilers are direct-fired boilers designed and used to provide steam to industrial 
processes. They may use various type of fuels, liquid or gaseous, according to the 
application. An Industrial Boiler is generally made up of two major systems. One system 
is the fuel-air-flue gas system (fireside) and the other is the water-steam system 
(waterside). Heat is provided to convert water into steam.  
 

• Fuel-air-flue gas system 
In order to obtain high enough steam temperatures at low load, the boiler must run with 
a minimum number of burners in operation. The longer flame length will help to increase 
the temperature of the steam. When the boiler load is increased additional burners will 
start automatically. 
 
The combustion air system consists of a combustion air damper and a combustion air 
fan which provide the requested amount of air according to specific sequences.  
 
There is a main fuel control valve to maintain a constant pressure to the downstream 
burner system. The load signal is translated to control the individual burner control 
valves. The individual burner control valves are used to control the load 
 
Flue gas recirculation (FGR) to burners allows for NOx control. The amount of FGR to 
burners is a ratio of the sum of the combustion air flow and the FGR to burners flow. The 
FGR to burners needs to be sucked into the combustion air duct. Therefore, a constant 
pressure needs to be upheld upstream the combustion air fan. 
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Flue gas recirculation (FGR) to boiler allows for a higher heat transfer. The amount of 
FGR to boiler is higher at low loads than at high loads. However, this FGR must remain 
in operation at every load to ensure the cooling of the expansion joint. 
 

• Water-steam system 
Water is introduced into a pressurized drum to be converted into steam. The pressure 
drum level must be properly controlled within certain limits. The produced steam is led 
into a steam drum header and send to a superheater to produce superheated steam 
when required.  
 

2.3.2 Current status and use case challenges 
Sensor data are currently used to operate the boiler through the use of PLCs and 
SCADA. They are usually stored in a specific historian, but they are often not exploited 
for improving operation of the boiler. Anomalies are often detected too late or not 
detected at all. Historical data is then used for analysing the root-causes of the problem 
at hand. 
Anomaly detection on the edge and/or on the cloud could deliver additional value to the 
industrials.   
 
The Use Case for Industrial Boilers in the context of Daytime is built around the following 
challenges: 

• To which extent can anomalies be detected using Artificial Intelligence based on 
sensor data? 

• To which extent are additional sensors and data necessary to detect anomalies 
using Artificial Intelligence?  

• To which extent can detected anomalies be related to specific root-causes and 
explained by the physics of the boilers? 

• To which extent can anomaly detection be automated in order to alert and guide 
industrials to improve the usage of their boilers? 

 

2.4 Use case: medication and medical supply management system 

2.4.1 Introduction to medication and medical supply management 
system 
The medication and medical supply management system (Stockart) Systems are used 
to manage in hospital’s medication and medical supply. In order to meet the medication 
and medical supply needs of patients, begin process starting from the 
pharmacy/warehouse to dispatching to the service points and ending with the using for 
the patient. There is a risk of health and high cost loss due to medication and medical 
supply losses. These losses occur as follows; theft, losing during transport between 
floors, counting errors, incomplete billing, order errors. For all these reasons, medication 
and medical supply management system is needed.  
 
The process of medications within hospital is as follows, 
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Figure 3. Medication Processes within Hospital 

 
The other process that medical material within hospital is as follows; 

 
Figure 2. Medical Supply Processes within Hospital 

 
Stocart System is installed every patient unit in hospital and then pharmacy/warehouse 
load items within Stockart cabinets. In this way, nurses can take directly and easy that 
their need items. Additionally, every nurse log in system with username and 
password/bio id/id card combination, in this way, system can follow all of transaction. If 
medication/medical supply quantity decrease low level, system is alarming 
pharmacy/warehouse for reloaded. All processes are followed by system and are 
reported in system database.  
System Component 
Matrix Drawer 
Generally, using for low risk medication management, known as open system. 
Sliding Drawer 
Generally, using for high risk medication management, known as close system. 
Medication Door 
Generally, using for high capacity medication management like serum. 
Medical Supply Door 
Generally, using for medical supply management. 
External Module 
Generally, using for cold chain medications management. 
All of these components compose Stocart System. 
 

2.4.2 Current status and use case challenges 
Maintenance process 
Stockart System must run 24 hours/ 7 days therefore, components should be always 
correctly maintained. System maintenance kind is as below;   
Planned maintenance 
Generally, a planned maintenance is prescribed 1 time per year. The activities 
performed during the maintenance are defined per configuration. They vary from re-
adjusting to proactive cleaning opposite dust. Planned maintenance contain condition 
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based maintenance activities. Maintenance period can change depending side(hospital) 
capacity.  
Remote Monitoring Engineer (RME) 
In nonurgent situations, monitor engineers investigate problem that occur any hardware 
or software corruption and then try to fix problem via remote control by look in logfile or 
customer connections. 
Field Service Engineer (FSE) 
Some hospital installation may be so big and complex, in this case field service engineer 
need to stay in hospital because FSE must fix every problem within short time due to we 
cannot predict problem previously. 
Remote Service Engineer (RSE) 
In new and small installation, FSE doesn’t need to stay in hospital. If there is a problem, 
RSE has to go there for investigation. 
 
Model development 
Model to support predictive service will built on top of collected machine data. Typical 
machine data consists of: 
Configuration Data 
Identifies the unique composition of the Stockart System, with identifiers for all hardware 
elements and versions of the hardware 
Logfiles 
One central logfile across the complete Stockart System contains in an unstructured 
way the workflow of the system including error events reported by hardware. 
Test Data 
Test results of tests executed at idle time and test results of tests triggered by FSE and 
RSE. 
 
The Use Case for Stockart Systems in the context of Daytime is built around the last 3 
mentioned challenges, we described our predictive maintenance topics, these are as 
below; 
Solenoid Lock Mechanism Fault 
Stockart System has lock mechanism in every component and every lock mechanism 
has a solenoid motor. Normally solenoid motors are shared lifecycle by manufacturer in 
this case, we will aim to predict broking time previously thanks to logfile. 
Membran Button Bar Fault 
Sometimes, membrane button bar which it is used for determining quantity of taken 
items can broke therefore it cannot run properly. We will aim to predict broking time 
previously thanks to logfile. 
Sliding Drawer Operation Fault 
Sliding drawer is used for preserving to high risk medication for this reason always 
should run under ideal conditions. It has 4 stepper motor, encode, hall effect sensor 
complex system. Sliding system run with high risk capacity therefore we will aim to 
predict broking time previously thanks to logfile. 
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3 State of the art on enabling technologies 
 

3.1 Big data analytics 
 
The term “Big data” is often used to describe data sets which are difficult to manage 
and analyse using standard software tools. This can be due to a considerably large size 
of the data set and/or its high degree of complexity leading to (unfeasibly) high 
computational costs. Furthermore, the size which defines a data set as “Big” is an 
attribute which is time/technology-dependent, e.g., a decade ago data sets of a few 
Gigabytes were considered challenging to analyse and, thus, classified as “Big data” 
sets.  
 
Parallel-computing, data-mining, data base optimization/management, and tensor-
based computation are some of the concepts which are encompassed by the big data 
philosophy. Besides that, a considerable number of innovative tools and methods have 
been recently developed to overcome computational issues associated to big data sets; 
a few relevant studies reviewed concepts such as: natural language processing, [1,2], 
machine learning, [3-6], data-mining and information-fusion techniques, [7,8], and others 
[9-11]. 
 
Prognostics and Health Management (PHM) is an emerging discipline focused on 
understanding and predicting failure mechanisms of safety-critical systems and 
components as well as managing and optimizing their lifecycle [9,10]. In the PHM 
context, Big data sets can play a decisive role in predicting the time at which a system 
will no longer perform as intended. This prediction is often referred to as Remaining 
Useful Life (RUL) and plays a key role in decision making for contingency mitigation. 
The term Prognostics refers to predictions of the future performance of 
systems/components. For instance, an extent of deviation, degradation, of a system 
from its expected normal operating conditions, [12-18]. The term Health Management 
refers to tools and methods which exploit this prediction to optimize and improve 
maintenance policies and safety-related decisions, [19-24]. 
 
Industrial application of PHM technologies helped solving challenging problems by using 
the available knowledge, information and data. Examples include, but are not limited to: 
faults diagnostics and prognostics, [12-14], preventive and corrective maintenance, [15-
16], prediction of remaining useful life, [17-18], assets management and part flow 
management [19-20], maintenance policy optimization and decision-making, [21-24], 
smart manufacturing, [25]. 
 
PHM methods can be divided in 3 main groups [9]:  
 

1) Data-driven PHM methods use the available data directly by, e.g., extracting 
degradation patterns and failure classes. A few examples include, Artificial 
Intelligence-based approaches (e.g., neural networks, Fuzzy rules, support 
vector machines, decision trees, and graphical models) and statistical 
approaches (e.g., principal component method, canonical variates analysis, 
hypothesis testing, multivariate analysis, signal analysis).  Those methods are 
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particularly useful when the information is abundant, i.e., big data sets, and 
physical understanding of the failure/degradation mechanisms limited. 

2) Model-based PHM methods use expert-knowledge and physical knowledge to 
build high-fidelity physics-based models of the degradation mechanisms, e.g., 
extended finite elements models, CFD, fatigue models, etc. 

3) Hybrid PHM methods combine data-driven and model-based approach. For 
instance, model updating methods estimate a set of parameters of a high-fidelity 
degradation model (e.g. a set of damages, failure locations and types) which are 
the most probable explanation for the observed data [12]. 
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3.2 Machine learning 
 
For the medicine cabinet use case, the solenoid lock failures, happen rarely. When a 
fault happens it is more likely to happen in the future. For these reasons, it is 
necessary to perform pre and post processing operations on the lock fault data for the 
medicine cabinet usecase. The preprocessing operations will include the number of 
faults that happened in a certain time period in the past on a particular cabinet, or on 
similar (being at the same hospital, being used by the same personnel, having the 
same repairperson, parts etc.) cabinets. We will also do post-processing on the actual 
and predicted lock faults to create alarms so that we can reduce the number of false 
positives. 
 
Features to be used for fault detection: The environmental conditions affect the 
probability of fault and the humidity data will be provided by the usecase provider. 
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Although the voltage and current are also important [Zhou2019], for the current 
usecase, these are controlled through a regulator and will not be included as inputs. 
The past history of how many times and when the cabinet was opened will also be 
used as inputs.   
 
In order to reduce complexity of algorithms and to reduce feature selection algorithms 
will be used. Filter type algorithms that measure feature-label correlation based on 
mutual information based metrics will be used for feature selection.  
 
Both tree based algorithms and neural networks will be investigated as possible 
methods.  Although the machine learning models will be continuously learning and 
they will be updated automatically as new data arrive, for the creation of the initial 
solution we will be using sample data obtained from the usecase provider. The 
deployment scenarios will be further refined during the project implementation. 
 
Both for the MRI usecase and the Shaver usecase, the pre and post processing, 
feature selection algorithms will be applied. Similarly, tree and neural network based 
algorithms and their ensembles [Patil2018] will be used.  
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3.3 Natural language processing 
Machines are still often operated and maintained by humans. Everything those humans 
express, either verbally or written, carries a tremendous amount of information. The 
topics they choose, their tone, selection of words, everything adds some type of 
information that can be interpreted and analysed. In theory, we can use such data to 
make predication about a machine and the humans operating and maintaining it. This 
also is true for MRI machines maintained by service engineers. 
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There is however a problem: one service mechanic may generate hundreds or 
thousands of words in a MRI machine service report, and each sentence comes with its 
corresponding complexity. If you want to scale and analyse several hundreds or 
thousands of reports that task becomes unmanageable. This is where a subset of 
machine learning, namely ‘natural language processing’ or NLP enters the arena. 
 
Text written by service mechanics is called ‘unstructured data’. Unstructured data 
doesn’t fit neatly into the traditional row and column structure of relational databases. 
With advances in NLP it is possible to convert such unstructured data into structured 
data, and not just trying to interpret a text based on its keywords, but actually about 
understanding the meaning behind those words. 
 
Previous research performed by the French aviation industry (Halshs-01322238) 
showed the potential of NLP to analyse large quantities of textual data in order to find 
and analyse emerging dangers and risks. A lack of meta data and training data 
encourages researching unsupervised machine learning techniques such as topic 
modelling. Standard NLP toolkits use techniques such as ‘bag of words’, tokenization, 
stop words removal, stemming and lemmatization. These techniques will be useful to 
begin with, but more advanced approaches such as open information extraction build 
algorithms on top of those techniques to extract relationships from text whereby the 
schema of those relationships does not need to be specified in advance. 
 
Reference  

[1] Halshs-01322238: https://halshs.archives-ouvertes.fr/halshs-01322238 
[2] https://nlp.stanford.edu/software/openie.html 

 

3.4 Machine log data analysis 
Dependent on its purpose, a machine log is a file that typically contains the lead-up to,  
and outcomes of events originating from machine processes or user inputs. The origin 
of these logs can be from various devices, applications, operating systems. The contents 
can vary between formatted text files, or raw data dumps.    
 
While the main use of creating machine logs might have originally been limited to provide 
insights into the machine’s operations or its user inputs, the developments into data 
analysis have broadened the scope of machine log use cases, such as machine 
maintenance, system auditability, risk assessment, and concretizing user behaviour 
[5][2][6].  
 
Moving away from the traditional approach of reactive maintenance, in which equipment 
is repaired or replaced after break down, the proactive strategy can utilize machine logs 
to highlight anomalies that are indicative of future issues or to construct a relevant state 
of the machine, which would allow for performing maintenance actions as soon as the 
equipment status falls below a pre-determined threshold [15][13]. 
 
Depending on the aim of the machine log analysis, there are many methods that can be 
utilized in performing an analysis. Methods that are commonly used in the overall 
pipeline are the aggregation, cleaning, structuring and normalization of machine logs. 
For the aim of machine maintenance, methods are used such as pattern detection and 
recognition, tagging and classifying key elements in log files, correlation analysis, and 
anomaly detection [4][17][3]. 

https://nlp.stanford.edu/software/openie.html
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For a statistical measurement it has been shown that regression is one method that can 
be used.  Ray and Craven [10] employed a comparison study where logistic regression 
was used in combination with multi-instance learning (MIL) which showed similar results 
to support vector machines (SVMs). King and Curran [7] used linear regression for 
predicting semi-conductor failures, while Baptista et al. [2] explored predictive 
maintenance on aircraft using an auto-regressive moving average algorithm.  
 
Another method is ranking, which was used by Rudin et al. [11] on a series of inspection 
reports of electrical boxes and manholes and to predict manhole events. 
  
Data analyses based on log files have also been performed through the use of machine 
learning. Examples of applied supervised learning are the support vector machine 
(SVM),  random forest and ensemble learning, and MIL. Predictive maintenance based 
on equipment event logs was shown in Sipos et al. [12], where MIL was used in a 
medical environment. Murray et al. [9] describes how hard drive failure prediction can 
be accomplished with the use of a SVM, MIL or clustering and found that while 
computationally expensive the SVM performed best. Research was also performed on 
the failure estimation for milling machines, where Gutschi et al. [4] used random forest 
and ensemble predictions.  The use of ensemble learning was also used in Zhou and 
Zhang [18], as an augmentation to existing MIL algorithms, yielding general 
improvements over the default MIL.  
 
In situations where the target labels are unclear or unknown, there are also unsupervised 
methods to perform log data analyses, of which examples are clustering and applying a 
principle component analysis (PCA).  Aharon et al. [1] utilized sequential text clustering 
on system event logs, while Makanju et al. [8] clustered event logs using iterative 
partitioning. In Devaney et al. [3] log files were clustered first using bootstrapping 
clustering followed by employing case-based reasoning to identify events leading to 
machine failures. In addition, Taeret et al. [14] also applied text clustering, while adding 
heuristics to improve upon handling large data-sets, reduce cluster outliers, and 
reducing duplicate output patterns. The use of PCAs with performing a log file data 
analysis was explored in Xu et al. [16], where in the first a PCA was used to extract 
features indicative of future events, followed by applying decision trees to improve upon 
explainability. Xu et al. [17] managed to further apply a PCA in an online setting in 
combination with log files of a Hadoop computational cluster. 
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3.5 Predictive analytics for optimizing maintenance activities 
Industry 4.0 is named as the fourth industrial revolution which involves concepts like big 
data, internet of things, the usage of sensors and predictive analytics.  
Capital goods are the equipment or machines that are in the primary use of their users 
on main operations [1]. The example of capital goods can be trains, MRI machines, large 
scale industry printers. Minimizing maintenance costs and reducing the system 
downtime for capital goods are important because it affects many parties at once. 
 
Time-based or usage-based maintenance describes the maintenance activity which is 
planned according to the total usage duration of a part or a system [1].  Maintenance 
activity is conducted when the usage duration exceeds a pre-determined level. This 
duration can be measured as usage time in the field (for example if a train is on service 
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without any maintenance for a certain time period) or the number of times used (for 
instance number of scans done by an MRI machine) [1]. 
 
Condition-based maintenance (CBM) is defined as a decision-making strategy about 
when to perform the next maintenance action based on a real-time predictive model for 
a system or components of a system [10].  The actual condition of a part or a system is 
monitored through either a sensor or periodically during inspections [1]. The aim of the 
CBM can be predicting the current state of a system, fault detection, identification of 
abnormalities, which is diagnostic. CBM can be also prognostic when the aim is fault 
and degradation prediction before faults occur [10]. In general, the diagnostic and 
prognostic CBM activities are also named as predictive maintenance. The predictive 
maintenance name is used because predictive analytics are crucial to detect failure 
when there are signals from the system or determine any failure before happens in the 
system. The aim of all maintenance activities is minimizing the total cost for the system. 
This cost may incur in many different forms. Minimizing the system downtime is a primer 
objective for capital goods. First-Time-Right maintenance is another important goal in 
order to minimize the costs of maintenance activities.  
 
There exist companies develop predictive analytics solutions to both decreases the total 
downtime of a system and minimizing the maintenance costs. IBM, SAP, Siemens, 
Microsoft, and GE are some of the top companies in the market that build solutions for 
their customer in the area of predictive analytics for maintenance activities [8].  
 
A CBM structure involves sensors and signal-processing techniques to predict the status 
of a system or component and decision-making models to perform maintenance 
operations [11]. CBM studies may model degradation level of a component, remaining 
useful lifetime (RUL), the state of component whether it is failed or not. 
 
There are studies where degradation is modeled by a posterior distribution. Do et al. [4] 
build a CBM model for parts with stochastic and economic dependencies and use an 
inspection to collect data and model the degradation model with Gamma distribution. Liu 
et al. [9] aim to minimize the long-run cost rate, collect data for CBM by inspection and 
uses Gaussian distribution to model the degradation process. Verbert et al. [17] use 
Gamma distribution to model the component degradation and builds a decision-making 
model for maintenance activities based on the degradation model. Elwany and Gabrael 
[6] build a sensor-driven updating linear and exponential model to determine the RUL of 
components. Walter and Gero [18] model the component lifetime with Weibull 
distribution and updates the parameters of distribution with Bayesian update. Zhu and 
van Houtum [19] use a random coefficient model for the stochastic degradation process 
in a high setup cost multi-component system. 
 
There are studies which use statistical data-driven approaches to model the degradation 
process in CBM literature. Rasmekomen and Parlikad [12] use regression to model the 
degradation of two dependent parts and conduct a sequential CBM optimization model 
afterward. Cipollini et al. [3] use supervised and unsupervised techniques to determine 
if a part is decayed or not. They use artificial neural networks (ANNs), Kernel methods, 
ensemble methods, Bayesian methods, lazy methods and k-nearest neighborhood 
(kNN) as supervised learning and support vector machines (SVM) as the unsupervised 
learning algorithm. They use a threshold policy for the probability of a part being decayed 
to conduct the maintenance activity or not. Susto et al. [13]  use SVM and kNN to build 
a multiple classifier for predictive maintenance model on a high dimensional, unbalanced 
and censored data. Hu et al. [7] use the ensemble data-driven prognostic approach 
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which combines multiple-member algorithms with a weighted sum formulation. Tian et 
al. [15] compute life percentage of a component by using ANN in order to determine the 
health condition. Tian [15] uses ANN for RUL estimation. 
 
In order to make novel models in CBM area, it is important to determine the gaps in the 
literature. Peng et al. [10] have an extensive literature review on condition-based 
maintenance. After their survey, they point out two possible extensions in the field: (1) 
There is a need for more models that combines prognostic models and decision making 
together. (2) There is a need for more generalized models, which will be not specific to 
a machine or component type. 
 
Bertsimas and Kallus [2] point out that there is an opportunity of using multi-dimensional 
predictive models (data mining and machine learning models) in optimal decision 
making. The maintenance area now has more real-time data than ever. There is an 
opportunity for building more sophisticated estimations using machine learning and data 
mining approaches and implementing the results of these models into the optimal 
decision-making models. Tulabandhula and Rudin [14] have studies on machine 
learning with operational costs. The main approach involves embedding the error 
function of the prediction model into the objective function with operational costs. As 
pointed out by these studies, there is a gap in maintenance literature for the studies 
combining adaptive decision-making models with learning for both single and multi-
dimensional data. There are techniques used in different fields rather than maintenance 
[2,14] which handles similar problems. It is crucial to develop similar models in the 
maintenance domain since there are enough data available with the developing sensor 
technologies and improving storage of data.  

 

 
Figure: Summary of structure of CBM models in state-of-art analysis 
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3.6 Sensor technology 
Introduction 
The growing demand for flexible, ultrasensitive wearable sensors for myoelectric 
prosthesis, soft robotics, and personalized health monitoring applications has been the 
main driving factor behind the rapid advancement in soft and flexible material processing 
technologies. In particular, human motion monitoring devices are emerging to be the 
most sought-after wearable devices as they can potentially provide a host of valuable 
information regarding the health and well-being of an individual 1.  

Traditionally, piezoelectric, piezoresistive and capacitive transduction mechanisms 
have mostly been exploited in the development of flexible sensors to convert strain 
stimuli into electrical signals. Inorganic piezoelectric materials such as lead zirconate 
titanate (PZT), zinc oxide (ZnO), barium titanate (BaTiO3) 2–7 and soft piezoelectric 
polymers like polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-
trifluoroethylene (PVDF-TrFE) 8–12 have been explored extensively for developing 
various flexible sensors in the past. On the other hand, though piezoresistive 
microelectromechanical systems (MEMS) sensors using metallic and semiconductor-
based strain gauges have been quite popular for strain sensing applications owing to 
the well-established fabrication processes and large measurement range, their 
application as wearable sensors is limited due to their high stiffness and low stretchability 
13,14. Flexible and squeezable sensors utilizing the piezoresistive property of 
nanomaterial-elastomer composites are relatively new, and researchers across the 
globe have been exploring various combinations of novel nanomaterial and suitable 
elastomer for developing a new generation of innovative, flexible piezoresistive sensors 
15–21. Polymer materials like polydimethylsiloxane (PDMS), ecoflex, polyimide (PI), 
rubber and polyurethane (PU) have been commonly used as the flexible polymer 
substrates due to their superior flexibility compressibility, and excellent responsiveness 
to torsion, tension, and compression 16,18,22–24. To make the sensors low–cost, renewable 
and biodegradable, a recent work reported having used printing paper substrate as a 
novel alternative to traditional elastomers 25. For the conductive nanomaterials, silver 
nanowires (AgNWs) and various types of carbon-based materials like carbon nanotubes 
(CNTs), carbon nanofibers (CNFs), carbon blacks (CBs), and graphene have been 
explored by researchers 18,19,26–32. Of all the conductive carbon-based nanomaterials, 
recently, graphene has been exploited the most for developing nanomaterial-polymer 
composite-based piezoresistive sensors mainly because of its excellent conductivity, 
stiffness, and elastic properties 16,22,33. The most common method of developing 
graphene based piezoresistive sensors has been the use of nanoporous graphene 
foams synthesized by chemical vapour deposition (CVD) process. Due to the fragility of 
freestanding 3-D graphene foams, they are infiltrated with elastomers like PDMS to 
enhance their mechanical properties like elasticity and durability. Pang et al. proposed 
a novel method involving infiltration of PDMS in graphene-coated nickel foam template 
and subsequent etching to preserve graphene nanoporous structure with PDMS scaffold 
for developing a highly sensitive piezoresistive sensor 16. Recently, researchers have 
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also reported graphene-based fiber sensors for various strain monitoring applications 
31,34. A recently published review article presents a detailed overview of the 
developments in the field of flexible polymer-based strain sensors and discusses the 
recent developments in the field of electrically conductive polymer composites 35. 

Most of the Graphene-elastomer foam/spongy materials reported so far either 
employed fragile free-standing foamy graphene structure or involved sophisticated 
multistep fabrication methods involving polymer infiltration in graphene coated template 
and subsequent etching. In addition, most of these works focused on the synthesis of 
the spongy nanomaterials; however, their applications as sensing materials to develop 
3D squeezable sensors was not investigated 36–38. In this work, we proposed a facile 
process of developing an ultralightweight and highly squeezable 3D microporous 
graphene-PDMS foam-based sensor. Sugar cubes were used as templates for 
developing microporous PDMS foams, followed by dip coating of the foams in 
conductive multilayered graphene (MLG) suspension to infiltrate them with graphene 
nanoflakes. The porous graphene-infiltrated foams were studied employing a scanning 
electron microscope (SEM) to understand its strain-induced resistance modulation 
mechanism and conductive domain disconnection mechanism was invoked to explain 
its piezoresistive property. The density of the graphene-PDMS foam sensors was 
calculated to be 0.305 g cm-3 owing to the porous structure. The response of the 
graphene-PDMS sensors developed with the proposed method was characterized for 
static and dynamic pressure stimuli. From the static and dynamic compressive strain 
tests, the response of the sensor was found to have two linear regions with average 
gauge factor lying in the range 2.87 ~ 8.77. Accelerated lifetime tests were conducted 
on the spongy sensor through cyclic compressive loading involving 36000 load cycles 
to demonstrate its overall reliability and durability. The responses of the sensors to 
dynamic loading were characterized to observe their sensing performance at high 
frequency strain loading. Finally, the application of these sensors in monitoring both 
simulated and real-time human gait and other body motion parameters was validated 
through experiments which demonstrate the broad applicability of such sensors in 
various applications including personalized health monitoring, soft robotics, myoelectric 
prosthesis and other wearable devices. Three identical sensors were assembled on a 
soft shoe-sole and used in synchronization to differentiate between the pressure profiles 
under a low arch/flat foot and a medium arch foot. The sensor assembly was also used 
for demonstrating the capability for real-time gait characteristics acquisition and 
differentiation between different kinds of human movements, including walking, running, 
periodic leaning, and standing. The simple method of sensor development demonstrated 
in this work will guide the development of a future generation of 3D squeezable and 
highly sensitive pressure/strain sensors suitable for various high-performance wearable, 
and flexible devices. 

3D Squeezable graphene-PDMS foam sensor 
Sensor fabrication and morphological study: The process steps involved in fabrication 
of the graphene-PDMS squeezable strain sensor are schematically illustrated in Figure 
1a. The experimental details of the fabrication process are described in the materials 
and methods section. The electrical connections for acquiring electrical outputs from the 
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sensor were made by smearing and subsequently curing a thin layer of conductive silver 
epoxy on the two sides of the graphene-PDMS foam as shown in Figure 1b. The optical 
images shown in Figure 1c and d, demonstrate the compressibility and ultra-light weight 
of the developed sensor respectively. Furthermore, the squeezability of the sensor was 
demonstrated by holding it between two fingers and applying a series of squeeze-
release cycles (shown in the attached supplementary video file). 

 

Figure 1. Fabrication of the squeezable graphene-PDMS foam sensor: (a) Schematic 
representation of infiltrating PDMS foam with multilayered graphene nanoflakes (MLG); (b) 
schematic representation of a single PDMS-MLG foam sensor with electrical contacts; (c) 
the squeezability and (d) ultra-light nature of the graphene-PDMS foam sensor.  

Multiple dip coating and drying cycles of the PDMS sponge in homogeneous 
graphene / N,N-dimethyl formamide (DMF) suspension led to the attachment of 
multilayered graphene nano-flakes (MLG) in the inner pore walls of the micro-porous 
PDMS substrate. Figure 2a and b show the SEM micrographs of the unloaded PDMS 
foam. An average pore diameter of 386 µm was observed for the developed PDMS 
foam (averaged over eight measurements on different sponges). Figure 2c and 
d show the SEM micrographs after loading the PDMS with MLG. As the SEM 
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micrographs clearly depict, the graphene nanoflakes penetrated into the porous 
structure of the PDMS foam and attached themselves onto the inner walls of the micro-
porous structure. 

 
Figure 2. SEM micrographs of the PDMS foam before and after MLG loading: (a, b) porous 
structure of the unloaded PDMS foam at different magnifications; (c, d) MLG loaded PDMS foam 
at two different magnifications with the pore walls covered with MLG nanoflakes forming a 
nanomaterial percolation network. 

The strain-responsive resistance change mechanism in the graphene-PDMS foam 
could arise from the conductive domain disconnection mechanism which was also 
reported in the past for other types of thin films made of nanomaterials 19,24,39–41. Within 
the MLG nanomaterial flake network, electrons pass through the overlapping network of 
conductive MLG flakes. Application of external force/stress causes a change in the 
overlapping area between the conductive MLG flakes thus leading to a change in 
resistance as schematically explained in Figure 3a. Also, electrons can tunnel across a 
thin polymer barrier separating two adjacent nanomaterial domains thus forming 
quantum tunneling junctions. The tunneling resistance between two adjacent graphene 
nanoflakes separated by a polymer layer can be predicted using Simmon’s tunneling 
resistance theory 42. In the past, researchers have reported a tunneling cutoff distance 
of 2-3 nm between two parallel graphene sheets separated by polymer insulation 43,44. 
Upon application of pressure, a pore wall may get compressed enough so that the 
effective distance between two graphene nanoflakes adhering to the opposite sides of 
the wall may reduce to 2nm or less in which case electrons will be able to tunnel across 
the PDMS wall barrier. Figure 3b schematically explains the stress-induced tunneling 
resistance modulation. Given the relatively large size of the pores, it can be safely 
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assumed that the strain-responsive piezoresistivity in the graphene-PDMS foams 
reported in this paper originates mostly due to the conductive domain disconnection 
mechanism (while the stress-induced tunneling resistance modulation mechanism plays 
a minimal to no role at all), wherein an external force/stress causes the graphene 
nanoflakes to slide against each other thus leading to a large change in overall 
resistance of the graphene-PDMS foam sensor. 

 
Figure 3. Schematic diagram explaining the possible strain induced resistance modulation 
mechanisms in graphene-PDMS foam sensor: (a) Schematic explaining the conductive domain 
disconnection mechanism explaining strain induced resistance modulation observed in the 
sensor; (b) Schematic representation of stress-induced tunneling resistance modulation. 

Strain sensor characterization: The Graphene-PDMS foam sensors were characterized 
under various strain loading conditions including static and dynamic loading in order to 
demonstrate its applications for flexible and wearable sensors. Figure 4a shows the 
schematic representation of the experimental setup used for the characterization of the 
sensors (details provided in materials and methods section). An initial pre-compression 
of 1% was applied to avoid problems related to initial sliding/settling of graphene 
nanoflakes, which are observed in similar types of squeezable sensors developed in the 
past 33. A compressive strain was applied in steps of 0.5% all the way up to 9.5%. After 
attaining a peak compressive strain of 9.5%, the strain was released in steps of 0.5% to 
return to the starting position. The experiment was repeated three times, and no 
noticeable delay was observed between the piston extension and the sensor response 
throughout the duration of the experiment. With increasing compressive strain, the 
resistance of the sensor was observed to decrease linearly for strains up to 9.5%. Figure 
4b shows the plot of the modulus of normalized resistance change calculated from the 
data acquired from the Wheatstone bridge circuit versus the compressive strain. The 
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output of the sensor was observed to increase linearly with increasing strain for 
compressive strains up to 9.5 %. The data was treated with a linear regression fit to 
estimate the compressive gauge factor (𝐺𝐺.𝐹𝐹. = 𝛥𝛥𝛥𝛥

𝛥𝛥
𝛥𝛥𝐿𝐿
𝐿𝐿

� ) of the graphene-PDMS foam. The 
compressive gauge factor of the sensor was determined to be 8.77 from the slope of the 
linear regression. To assess the strain sensing performance of the graphene-PDMS 
foam sensor for larger strains, the sensor was subjected to five different maximum 
compressive cyclic strains (10%, 20%, 30%, 40%, and 50%) at a constant frequency of 
5 Hz using a mini-shaker setup as depicted in the schematic in Figure 4c (details of the 
experimental setup are provided in the materials and methods section). The minishaker 
was driven with a square-wave stimulus at a constant frequency of 5 Hz, which resulted 
in cyclic compressive stains in the sponge. The sensor outputs were recorded for at 
least 50 cycles at each of the aforementioned maximum strain levels, and the normalized 
resistance changes were calculated and plotted for the individual compressive strain 
cycles as shown in Figure 4d. Figure 4e shows the superimposed plots of the 
normalized resistance change demonstrated by the sensor in response to the five 
maximum compressive strain cycles (appropriate band-pass filter was used to eliminate 
the 50 Hz power supply interference). The data from the cyclic compressive strain 
characterization experiment were analyzed, and the mean normalized resistance 
change values were determined individually for each of the five different maximum 
compressive strain levels. Furthermore, the gauge factor of the sponge was determined 
individually for each of the aforementioned compressive strain values and plotted in the 
form of a bar graph, as shown in Figure 4f. From the plots in Figure 4b and f, two distinct 
regions of operations (of the graphene-PDMS foam sensor) can be identified. The 
sensor demonstrated a reasonably linear response for strain levels up to 9.5%. A sharp 
decrease in the gauge factor was observed for strains exceeding 10%. The decrease in 
the gauge factor at higher strain rates can be attributed to the fact that at higher strain 
values, the inter-nanoparticle distances are continuously bridged and hence, the sensor 
reaches near network saturation 45. Thus, saturation in the percentage decrease in 
resistance for higher compressive strain levels is observed, which is clearly reflected by 
the reduced gauge factor values (at higher strain levels exceeding 10%). Similar 
response characteristics have been observed for similar nanoparticle-elastomer 
composite foam-based sensors in the past 16,45. Table 1 compares the gauge factor of 
our graphene-PDMS foam sensor with some other sensors reported by various 
researchers in the past. 

Table 1. Summarizing the gauge factors of various flexible strain sensors reported in the past. 

Material Gauge factor Linearity 

AgNWs-PDMS 19 2 ~ 14 Linear up to 40% 

CNTs-Ecoflex 18 1 ~ 2.5 Linear 

Aligned SWCNTs-PDMS 26 0.82 Two linear regions 

Carbon Black-PDMS 27 1.8 ~ 5.5 Two linear regions 

Carbon Black-Ecoflex 46 3.8 Nonlinear 
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Single CNF strain sensor 47 1.96 ~ 2.55 Linear 

GPN-PDMS 16 2.6 ~ 8.5 Two linear regions 

Graphene-Rubber 24 35 Linear and exponential regions 

Graphene ink-on-PDMS 48 37 Linear 

Graphene-PDMS foam (This work) 2.87 ~ 8.77 Two linear regions 

 
Figure 4. Graphene-PDMS foam sensor characterization: (a) Schematic representation 
of the setup used for conducting the piezoresistivity characterization experiments; (b) 
Plot of normalized resistance change in the graphene-PDMS foam sensor versus 
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applied compressive strain up to 9.5%; (c) Schematic representation of the setup used 
for conducting the piezoresistivity characterization experiments for larger compressive 
strains in the range ~ 10-50%; (d) Plot showing the sensor response in terms of 
normalized resistance change when subjected to five different compressive loading at 
different strains (between 10% to 50%); (e) Superimposition plot showing the normalized 
resistance change of the sensor for five different compressive strains between 10% and 
50%; (f) Bar chart showing the calculated gauge factor for the graphene-PDMS foam 
sensor for the five different compressive strains between 10% and 50%. 

Reliability test and dynamic response characterization: To demonstrate the long-time 
reliability of the graphene-PDMS foam sensor, an accelerated life testing was conducted 
on the sensor by subjecting it to a series of 36000 cyclic compressive loading and 
unloading at 5% compressive strain using the same experimental setup previously 
shown in Figure4c. The minishaker was driven at a constant frequency of 10 Hz and 
the power amplifier driving the setup was set such that the compressive strain generated 
was approximately 5%. The sensor response was acquired from the Wheatstone bridge 
circuit, and an appropriate band-pass filter was applied to eliminate the 50 Hz power 
supply interference. Figure 5a shows the normalized resistance change plots acquired 
from the reliability tests. A zoomed-in plot placed on the right-hand side of the main plot 
shows the consistency of the sensor response cycles for the applied cyclic compressive 
strains. 

To further evaluate the strain sensing performance of the sensor under dynamic 
loading conditions, the graphene-PDMS foam sensor was subjected to compressive 
strains at three different frequencies using the same mini-shaker setup described 
previously. The minishaker was driven with square-wave stimuli at three different 
frequencies (10 Hz, 35 Hz, and 70 Hz), which caused compression of the sponge at 
those frequencies. Figure 5b shows the as-acquired sensor response for the oscillatory 
test conducted at 10 Hz. For the 35 Hz and 70 Hz stimuli, the sensor responses were 
acquired and treated with appropriate low-pass filters in order to eliminate the 50 Hz 
power supply interference. Fast Fourier transform (FFT) was carried out on the individual 
responses to determine the average amplitude of the sensor response as shown in 
Figure 5c. The sensor amplitude responses were observed to have increased with 
applied stimulus frequency.  
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Figure 5. Cyclic compressive loading and dynamic strain sensing characterization of the 
graphene-PDMS foam sensor: (a) Response of the sensor to cyclic loading and 
unloading at 5% compressive strain. The figure on the right shows the zoomed-in version 
of the plot; (b) Plot showing the sensor response at 10 Hz in time domain; Zoomed in 
plot on the right showing the sensor response at 10 Hz in the interval 1.3-2.3 seconds; 
(c) FFT amplitude plot showing the sensor responses at 35 Hz and 70 Hz respectively. 

Sensor applications 
Application of the graphene-PDMS foam for human motion monitoring: Continuous 
monitoring of gait characteristics can enable early diagnosis of diseases like strokes, 
multiple sclerosis, and Parkinson’s disease thus enabling personalized treatment plans 



WP2.D2.1, version 2.0 Public 
Daytime 

ITEA-2018-17030 
Page 33 of 42  

 

 
© Daytime Consortium confidential 

for patients 1. To demonstrate the applicability of the graphene-PDMS foam sensors in 
gait monitoring, a gait simulation response experiment was conducted using the Instron 
5940 UTSTM (details of the experimental setup are provided in the materials and methods 
section). The pressure behavior under the heel of a walking person was appropriately 
mimicked employing simulated gait models applied to the movable piston of the test 
system. The pressure pattern under the heel of a walking individual comprises of a 
gradual ramping up to the maximum pressure (body weight divided by the area of the 
heel pad), followed by a partial pressure release and finally ramping down to a complete 
pressure release when the heel is lifted off the ground 49. Due to limitations of the test 
setup used, the force ramp up and ramp down rate was slow (20 mm/min movement of 
piston) due to which each gait cycle lasted 30 seconds unlike in real human being where 
each gait cycle lasts 1.08 ± 0.11 seconds 50. The experiment was carried out for 45 gait 
cycle repetitions to demonstrate the consistency in sensor response. Figure 6a shows 
the sensor response for the gait simulation experiment. The zoomed-in version of Figure 
6a (right) shows the sensor response for four complete gait cycles. The schematics 
diagrams in the figure inset explain the sensor response by comparing it to the heel 
movement. Overall, a good consistency was observed in the sensor response 
throughout the gait simulation experiment. 

 To demonstrate the capability of the sensor for real-time gait and foot pressure 
monitoring, three identical graphene-PDMS sensors were attached and secured on a 
soft flat shoe-sole with the intention of acquiring the sensor response from three distinct 
pressure points (toe ball, foot arch, and heel) of the right foot as shown in Figure 6b. 
The shoe sole-sensor assembly (SSA) was placed inside a shoe and worn by a person 
with a medium arch foot. Figure 6c shows the response of the sensor (acquired real-
time) while the person walked slowly. For this work, the sensor responses from the toe 
ball and the heel regions are shown as these are the two most intense pressure regions 
in the medium arch biomechanically efficient foot. The phase lag between sensors from 
the toe ball and heel region demonstrates the walking behavior of the person. While 
walking, when the heel is placed down, the pressure increases to a maximum value 
followed by subsequent relaxation while the whole foot is placed down on the floor. At 
the point where the foot is completely down on the floor, the two sensor response curves 
intersect each other indicating equal pressure distribution. As the heel is lifted slowly 
while placing the toe ball down on the floor, the pressure of the toe ball increases up to 
a maximum, and the pressure of the heel decreases to a minimum value. This behavior 
is repeated throughout the entire duration of walking, as shown by the sensor response 
plot in Figure 6c. The SSA was also applied for real-time running pressure variation 
monitoring. As shown by the plot in Figure 6d, the pressure response is very different 
from walking. In the case of running or jogging, most of the impact is absorbed by the 
toe ball followed by the middle arch, which is reflected clearly by the sensor response 
plot. Furthermore, the phase lag characteristics differ significantly from normal walking. 
To demonstrate the capability of the SSA in detecting pressure variation, the person 
wearing it leaned forward and backward in a periodic fashion leading to a periodic 
pressure distribution variation between the toe ball and the heel. As expected, the 
sensor response plot in Figure 6e clearly shows the phase lag between the toe ball and 
heel sensor pressure response. Interestingly, the pressure variation from the foot arch 
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(middle sensor) is relatively less compared to the other two regions which can be 
attributed to the fact that the maximum share of weight of a human body is borne by the 
toe ball and heel which leads to larger pressure concentration in those two regions in 
comparison to the foot arch region.  

 
Figure 6. Application of the graphene-PDMS foam sensor for human gait monitoring: 
(a) Response plot of the sensor to simulated gait; Plot on the right shows zoomed in 
version of the sensor response over four gait cycles with schematics explaining heel 
positioning; (b) Schematic representation of the soft shoe sole sensor assembly (SSA); 
(c) Plot showing the sensor responses from the toe ball and heel regions while walking; 
(d) Plot showing the sensor responses from the toe ball, foot arch and heel regions while 
running; (e) Plot showing sensor responses from the toe ball, foot arch and heel regions 
while leaning forward and backward in a periodic fashion. 

The fact that the maximum share of the weight of a human body is borne by the toe ball 
and heel (which leads to larger pressure concentration in those two regions in 
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comparison to the foot arch region) was utilized to differentiate between a low arch (flat) 
foot and a medium arch foot using the SSA. Figure 7a compares a low arch/flat foot 
with a medium arch foot. Due to the difference in the anatomies of the two feet types, 
their pressure profiles are distinct and different. As seen in the figure, low arch-type foot 
typically has a foot arch sitting low to the ground and hence it has significantly more 
pressure concentration in the middle foot arch region in comparison to the medium arch 
foot. To demonstrate the capability of the SSA in distinguishing between the two different 
foot types, the setup was worn by a person with a flat foot, and the pressure response 
was recorded while the foot was placed down. The experiment was repeated on a 
person with a medium arch foot. The plots in Figure 7b show the SSA responses 
acquired from the persons with the two different foot types. As expected, the SSA 
response from the person with low arch/flat foot indicates a more even pressure 
distribution between the three pressure regions. Whereas, the SSA response acquired 
from the person with medium arch foot shows a more skewed pressure distribution with 
the toe ball and heel sharing the maximum share of the load in comparison to the middle 
arch region. The experiments demonstrate the capability of the SSA to distinguish 
between the different feet anatomies. 

Furthermore, to demonstrate the applicability of the sensor in sensing finger and wrist 
joint movement, the senor was secured on a wearable nitrile glove which was then worn 
to demonstrate working on the sensor. Five cycles of finger and wrist flicking were 
carried out and the output from the balanced Wheatstone bridge circuit to which the 
sensor was connected was recorded as shown in Figure 7c and d. The experiments 
conducted demonstrate the feasibility of using such sensors for developing wearable 
biomedical devices for health monitoring applications.  
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Figure 7. Application of the graphene-PDMS foam sensor for distinguishing between foot 
anatomies and human motion monitoring: (a) Images comparing a low arch/flat foot with a 
medium arch biomechanically efficient foot; (b) Plot comparing the SSA pressure responses 
acquired from the two different foot types. The pressure distribution in case of the low arch foot 
is more even compared to the medium arch foot; (c) Response of the sensor to index finger flick; 
(d) Response of the sensor to wrist flick. 
 
Conclusions 
In conclusion, this work presented a facile method for developing graphene-PDMS 
foam-based ultralightweight (having a density of 0.31 g cm-3), squeezable, linear, and 
highly sensitive sensor. The sensor demonstrated in this work utilized a microporous 
PDMS substrate with graphene nanoflakes attached to its inner pore walls forming an 
MLG percolation network which responds to pressure/strain by virtue of the conductive 
domain disconnection mechanism. To support the theory of conductive domain 
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disconnection mechanism (which explains the strain-responsive resistance change 
property demonstrated by the sensor), SEM microscopic studies were conducted, which 
revealed the attachments of graphene nanoflakes on the inner pore walls of the PDMS 
foam substrate thus backing up our hypothesis. The sensor was subjected to a series 
of static and dynamic strain stimuli response tests to evaluate its sensing performance 
and repeatability. The sensor responses were found to be linear, and the average gauge 
factor was determined to be 8.77 for compressive strains up to 10%. For compressive 
strains exceeding 10%, the gauge factor was found to vary between 2.87 ~ 8.77 (in the 
strain range of 10 ~ 50%). To demonstrate the feasibility of applying the sensor for 
various wearable devices and personalized health monitoring applications, both 
simulated and real-time gait responses and other human monitoring experiments were 
conducted. A soft shoe-sole sensor assembly was fabricated and demonstrated to 
identify various gait characteristics, including walking, running, periodic leaning, and 
standing. The sensor assembly was also found to be capable of differentiating the foot 
types based on their middle arch architecture. The simple method for developing highly 
sensitive, lightweight and squeezable piezoresistive sensors demonstrated in this work 
will inspire a future generation of inexpensive and highly efficient pressure and strain 
sensors suitable for human motion detection and personalized health monitoring 
applications. 
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3.7 Visualization and simulation 
Data visualization can be performed in many ways and on many different platforms. 
Visualization types range from graphs and scatter plots, to hand-made drawings (e.g. 
architectural drawings) and finally fully interactive 3D rendered scenes. In the context of 
Daytime, we will manly focus on interactive 3D visualizations. 

Traditionally, visualizations are created on large workstations and take many hours to 
render a single static scene. This type of visualization is still common practice in the 
areas of movie and video production, where animated movies are rendered in huge 
render farms. This process results in photo-realistic images, at the cost of high rendering 
times. With these kinds of rendering times, creating interactive 3D visualizations is 
impossible. Therefore, different rendering techniques have to be used in order to enable 
interactive 3D visualization. 
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For photo-realistic rendering, ray-tracing is the most common rendering technique. With 
this technique, physical lighting is simulated by simulating rays of light being cast by light 
sources and reflecting off all objects in the scene. In order to get a high-quality rendered 
image, a large number of rays (often millions of them) are used to generate an image. 
Computing these rays is a very costly process and the cause of the long rendering times. 
Other techniques include path-tracing, photon mapping and radiosity. Each of them 
requires a large amount of computations to simulate the physical behavior of light and 
is therefore costly to use. 

Real-time rendering is mostly polygon-based and done by rasterization engines. In this 
case, each object in the scene is constructed from multiple primitives (polygons) that are 
one-by-one transformed to pixels on the screen by a rasterizer. Different processing 
steps are then performed on the polygons and the final image to make the final image 
look more realistic. This procedure is significantly faster compared to ray-tracing and 
offers rendering speeds enabling high frame-rates. 

Recent developments in the area of GPUs have opened up the possibility to perform 
ray-tracking in real time on certain types of state-of-the art Nvidia GPUs. This opens up 
new possibilities for photorealistic rendering in interactive 3D visualization settings, but 
currently requires specific hard- and software to be used. In the near future, real-time 
ray-tracing will become available more widely. 

Another aspect of visualization is the platform on which the images are viewed. 
Specifically, for real-time interactive 3D visualization, different platforms are available 
offering a completely different user experience. 

Traditional display of 3D visualizations is done on PC monitors and movie screens. 
These show a 2D representation of the rendered 3D scene. The introduction of 3D 
displays and stereo glasses made it possible to visualize 3D scenes in stereoscopic 3D, 
making the visualizations more immersive and natural. These techniques can be used 
for interactive as well as non-interactive visualizations. 

The current state-of-the-art in visualization is the use of virtual reality (VR) and 
augmented reality (AR) goggles, also called head mounted displays (HMDs). HMDs 
enable a user to be fully immersed in the visualized scene by offering a stereo image 
together with head tracking interaction. Because of this, they require a certain level of 
interaction in order to be used. Using these kinds of systems with completely non-
interactive visualizations results in a bad experience for the user. 

In VR, a user is fully closed-off from the real world and only sees the interactive 3D 
visualization as if this was the real world. Interactions with this world are mostly done 
using specific controllers that in many cases are tracked (and often visualized) in the 
virtualized world as well. Several types of VR systems are available nowadays, like the 
HTC Vive and the Oculus Rift. 

In AR, the 3D visualization is usually projected onto (semi-)transparent glasses that 
allow a user to see the virtual, visualized world superimposed on the real-world. To the 
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user it appears like the visualizations are located in the real world. Examples of such 
systems are the Microsoft Hololens and the Magic Leap system.  

The benefit of VR and AR visualizations over more traditional methods of visualization 
is that a user is fully immersed in the visualization and can experience the visualization 
as if it were the real world. This makes these systems very useful in simulation 
environments where a user is supposed to experience a simulated environment as if it 
were real. This is useful for training simulations like a welding simulator teaching 
someone how to make a good weld, or a surgical simulator that can be used by a 
physician to train an operation. 

AR systems can be used in simulations where a user needs to be assisted with 
something that needs to be done in the real world. For example, an AR system could 
indicate to an engineer what part of a machine in need of service needs to be replaced, 
or how a replacement should be done. On the other hand, a physician performing a 
complex operation could be assisted in AR with planning information or a live overlay of 
a CT or MRI scan made earlier. 
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