

D3.4: Documentation and user guidelines of the
MEASURE framework

MEASURE

•

Executive summary

The main purpose of WP3 is the implementation of tools to measure, analyse, and visualise the metrics and

methods defined in WP2 that extract and show information of the software engineering processes. The main

challenge of this WP lies on the ability of working with heterogeneous software engineering processes. The

tools implemented in this WP considers the work carried out in WP2 as well as the feedback coming from WPs

4 (data analytics) and 5 (evaluation), in order to refine the tools with the results obtained during the evaluation

and industrial testing of the developed solutions.

In particular, WP3 has the following objectives:

- Implement the tools to automatically measure software engineering processes during the whole
software lifecycle.

- survey the existing analysis tools and define and implement new ones to extract information from the
performed measurements in order to guide the decision making in the software engineering
processes.

- Implement visualization tools to expose the extracted results in an easy-readable fashion, so allowing
a quick understanding of the situation and the possible actions that can be taken to improve the
diverse stages of the software lifecycle.

- Integrate and harmonize the implemented/selected tools to be able to operate in a common
framework with the ultimate objective of enhancing the quality and efficiency of software products
while lowering their cost and time-to-market.

- consider the feedback obtained from WPs 4 and 5 to make the developed tools more efficient and
useful for real industrial deployments.

These objectives have been fulfilled during the MEASURE project, and the developed tools have been

integrated in the MEASURE solution called MEASURE platform that is to be launched to the software

engineering market, guaranteeing its efficiency and profitableness.

The tools development and integration performed in this WP is completed by a detailed documentation (i.e.

the current document D3.4) oriented to guide the users in the utilization of the tools and the best procedures

to obtain the highest benefit when using the MEASURE framework during software engineering processes.

This documentation is released at the same time of the final version of the MEASURE platform (D3.2).

Table of Contents

1. Introduction ... 4

1.1. Role of this deliverable ... 4

1.2. Structure of this document ... 4

1.3. Relationship with others MEASURE deliverables ... 4

1.4. Contributors ... 4

2. Measure Documentation Plan .. 5

2.1. Measure Packaging Approach ... 5

2.2. Documentation Publication ... 5

2.3. Documentation Plan ... 5

Annexe A. Measure Platform Installation Guide ... 7

Annexe B. Measure Platform User Guide .. 13

Annexe C. Measure Platform Developers Guide .. 27

Annexe D. Hawk Installation Guide (Measurement Tool) ... 41

Annexe E. Hawk User Guide (Monitoring Tool) .. 43

Annexe F. MMT Installation Guide (Measurement Tool) .. 47

Annexe G. MMT User Guide (Measurement Tool) ... 75

Annexe H. EMIT User Guide (Monitoring Tool) ... 85

Annexe I. MINT Installation Guide (Analysis Tool) ... 89

Annexe J. MINT User Guide (Analysis Tool) .. 94

Annexe K. Quality Guard Installation Guide (Analysis Tool) ... 99

Annexe L. Quality Guard User Guide (Analysis Tool) .. 101

Annexe M. Metric Suggester Installation Guide (Analysis Tool).. 105

Annexe N. M·ELKI User Guide (Analysis Tool) ... 109

Annexe O. Stracker Installation Guide (Analysis Tool) .. 112

Annexe P. Stracker User Guide (Analysis Tool) ... 113

Annexe Q. Weka Installation Guide (Analysis Tool) ... 112

Annexe R. Weka User Guide (Analysis Tool) .. 113

1. Introduction

1.1. Role of this deliverable

The deliverable D3.4 is the public deliverbale containing the documentation and user guidelines of the

MEASURE framework including the core platform and the measuring, analysis and visualization tools in the

MEASURE project. These tools are integrated into a unique platform called the MEASURE platform.

1.2. Structure of this document

The D3.4 document is organized in one section and set of annexes describing the installation and user guides

of the different pieces of software developed in the context of MEASURE. The section introduces the

MEASURE documentation plan and its packaging approach.

1.3. Relationship with others MEASURE deliverables

The D3.4 deliverable is related to the list of the following MEASURE deliverables:

• D3.2 Final release of the measuring, analysis and visualization tools that conform the MEASURE

platform is the main software outcome of the MEASURE project. The D3.3 documents this software.

• D2.2 Formal specification of MEASURE metrics: The metrics specified in D2.2 will be supported by

the MEASURE platform. More extensions to include more metrics are planned.

• D5.3 Intermediate evaluation results from the executed case studies: D3.1 will be the input the

deliverable D5.3. The feedback from this evaluation will allow to improve the MEASURE platform.

1.4. Contributors

All the tool providers contributed to this document. Namely:

• SOFT: The MEASURE platform + Hawk Measuring tool + Quality Guard analysis tool

• MTI: MMT measuring tool + Mint analysis tool

• ICAM: EMIT measuring tool + M Elki analysis tool

• IMT: The Metric Suggester analysis tool + Mint analysis tool

• Bitdefender and UniBuc: The Stracker analysis tool

2. Measure Documentation Plan

2.1. Measure Packaging Approach

The MEASURE platform is composed of Core element of the MEASURE platform and a set of extension tools

to monitor and gather more measurements or/and a set of analysis tools to perform advanced analysis of

collected measures. These components are available on the Github platform following this link:

https://github.com/ITEA3-Measure

The packaging approach for the whole MEASURE platform is composed of the following features:

• Central element: The Measure Platform

o Including set of Standards Measurements (Provided by MeasureProject)

o Including set of Standard Application (Provided by MeasureProject)

• First kind of Extensions: measuring tools

o The Monitoring Tool

o Set of Measurement associated with this monitoring tool

• Second kind of Extensions: The analysis tools

o The Analysis Tool

• Measure Catalogue: catalogue of measures from contributors

• Application Catalogue : catalogue of applications from contributors.

2.2. Documentation Publication

The documentation will be basically a public website that is planned to promote the MEASURE platform

solution. This website will contain:

• Each component documentation will be

o available in html on the website

o downloadable in pdf

2.3. Documentation Plan

The MEASURE platform

• Installation guide (Annexe A)

• User guide (Annexe B)

• Developers guide (Annexe C)

The measuring tools

• Hawk

o Installation guide (Annexe D)

o User guide (Annexe E)

• MMT

o Installation guide (Annexe F)

o User guide (Annexe G)

• EMIT

o Installation and user guide (Annexe H)

The analysis tools

• MINT

o Installation guide (Annexe I)

https://github.com/ITEA3-Measure

o User guide (Annexe J)

• Quality Guard

o Installation guide (Annexe K)

o User guide (Annexe L)

• Metric Suggester

o Installation and user guide (Annexe M)

• M Elki

o Installation and user guide (Annexe N)

• Stracker

o Installation guide (Annexe O)

o User guide (Annexe P)

Annexe A. Measure Platform Installation Guide

Measure Platform Installation Guide
Measurement and Data Analysis Platform

•

Measure Platform Overview

The measure platform is a tool dedicated to measure, analyse, and visualise the metrics and to extract and

show information of the software engineering processes.

• Implement the tools to automatically measure software engineering processes during the whole

software lifecycle by executing measures defined in SMM standard and extracted from a catalogue

of formal and platform-independent measurements.

• Provide methodologies and tools which allow measure tools provider to develop a catalogue of

formal and platform-independent measure.

• Implement storage solution dedicated to measurements resulting of measure execution in big data

context.

• Implement visualization tools to expose the extracted results in an easy-readable fashion, so

allowing a quick understanding of the situation and the possible actions that can be taken to

improve the diverse stages of the software lifecycle.

• Implement an extension mechanism dedicated to the integration of external analysis tools will

provide long terms analysis and predictive evaluations on collected measures.

• Implement an Extended API allowing to facilitate the integration on Measure Platform with external

tools and services.

The platform activity is organised around its ability to collect measurement by executing measures defined by

the SMM standard. SMM measures are auto-executable component, implemented externally, which can be

interrogated by the platform to collect measurements.

Figure 1. Architecture overview of Measure Platform

Measure Platform: Central component of this deliverable, the Measure platform provides services relate to

data collection, analysis and display. It’s composed of six sub-components:

Platform Agent: Measure tools on client side which collect data. The executable measure provides a way to

collect data in physical world. A measure can be executed on platform side and collect physically this data

through an existing measure tool. A Measure can also be directly executed on client side (a computer close to

measured element) by the intermediary of a Platform Agent.

Measurement Tools: A Measurement Tool is and external tool which collects or calculates measurement from

a specific source. In context of the project, 5 Measurements tools has been developed (see section 3) and a

lot of existing tools in the market (such as SonarQube for code quality metrics) can be also considered as

Measurement Tools.

Analysis Tools: An Analysis Tool a set of external services which work on the historical measures values in

order to provide advanced and valuable analysis function to the platform. In order to support a large set of

analyses services and do not limit to it a specific technology, the Analysis Tools are external processes. The

analysis tool is integrated to the platform using a specific API. This integration includes embedded visualisation

provided by the analysis service into the platform.

Measures: A Measure is a small and autonomous Java program based on the SMM specification which can

collect measurements. A Measure can be Direct (Collect of measurement in physical world), a Proxy (Ensure

communication between a Measurement Tool and the Platform) or Derived Measure (Measure calculated by

the aggregation of existing Measures).

Applications: An Application is a set of Measures aggregated together in order to address a functional

requirement. The application is associated with a visual dashboard which is directly integrated into the

Decision-Making platform when the Application is deployed on a project.

Hardware and Software Requirements

System
Linux, Windows

Installation

Scenario

Minimum

Requirement

Standard Configuration

(500 Metric Collection,

Basic Analysis, 50

Users)

Advanced Analysis

(+2000 Metrics, All

Analysis Services, 200

Users)

RAM
4 Go 8 Go 16 Go

Processor
32-bit, 4 cores 64-bit, 4 cores 64-bit, 8 cores

Hard Disk
80 GB for system

drive

80 GB for system drive 200 GB for system drive

Prerequisite

Install MySQL Database

• Download MySQL Community Server ver. 5.7 or above:

https://dev.mysql.com/downloads/mysql/

• Install MySQL using these instructions:

 https://dev.mysql.com/doc/refman/5.7/en/installing.html

• Create a new database named "measureplatform".

Using MySQL Command Line Client:

CREATE DATABASE measureplatform;

Install Elasticsearch

• Download Elasticsearch ver. 5.6 or above (as zip)

https://www.elastic.co/downloads/elasticsearch

• Unzip the application in your tool directory.

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://www.elastic.co/downloads/elasticsearch

Install Kibana

• Download Kibana ver. 5.4 or above (as zip)

https://www.elastic.co/downloads/kibana

• Unzip the application in your tool directory

Java 1.8 Installation

• Download and install the jdk8 in your environment:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Measure Platform Installation

Download

• Download the last released version of the MeasurePlatform

https://github.com/ITEA3-Measure/MeasurePlatform/releases

• Unzip the platform in your tool directory.

Installation and Configuration

Platform is configured using a property file named application.properties. This property file has to be put in
the same folder of the measure-platform-1.0.0.jar binary application.

Edit the application.properties file:

Table 1 : General Properties of Measure Platform

Property Description Default Value

spring.datasource.url JDBC URL of the database jdbc:mysql://localhost/measur
eplatform

spring.datasource.username Login of the MySQL database.

spring.datasource.password Password of the MySQL database.

spring.datasource.driver-
class-name

Driver JDBC for MySQL com.mysql.jdbc.Driver

measure.repository.path Path of an empty directory which will be
used to store uploaded measures.

./storage

measure.kibana.api Ip of the Elasticsearch installation. localhost:9200

measure.kibana.adress Ip of the Kibana installation. localhost:5601

measure.kibana.version Version of Elasticsearch / Kibana 5.6.0

server.port Port of the MeasurePlatform web
application

80

https://www.elastic.co/downloads/kibana
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/ITEA3-Measure/MeasurePlatform/releases

Table 2 : Mail Service Configuration of Measure Platform

Property Description Default Value

spring.mail.host Url of the mail service smtp.gmail.com

spring.mail.port Port of the mail service 587

spring.mail.username Login of the mail account

spring.mail.password Password of the mail account

spring.mail.protocol mail protocole smtp

spring.mail.tls true

spring.mail.properties.mail.smtp.auth true

spring.mail.properties.mail.smtp.starttls.enable true

spring.mail.properties.mail.smtp.ssl.trust smtp.gmail.com

Example of application.properties file:

measure.repository.path=C:/work/MEASURE/Platform/PackagedPlatform/Platform/storage/

spring.datasource.url=jdbc:mysql://localhost:3306/measureplatform

spring.datasource.username=root

spring.datasource.password=root

spring.datasource.driver-class-name=com.mysql.jdbc.Driver

server.port=8085

measure.kibana.adress=localhost:5601

measure.kibana.api=localhost:9200

measure.kibana.version=5.6.0

spring.mail.username=

spring.mail.password=

spring.mail.host=smtp.gmail.com

spring.mail.port=587

spring.mail.protocol=smtp

spring.mail.tls=true

spring.mail.properties.mail.smtp.auth=true

spring.mail.properties.mail.smtp.starttls.enable=true

spring.mail.properties.mail.smtp.ssl.trust=smtp.gmail.com

Running Measure Platform

1. Start MySQL

2. Start Elasticsearch

./elasticsearch-5.6.0/bin/elasticsearch

3. Start Kibana

./kibana-5.6.0/bin/kibana

4. Start the Measure platform

 java -jar measure-platform-{version}.war

To access to the Platform: http://localhost:80/#/

Connection using the default Platform Account

At deployment, the Measure Platform is created with 2 default accounts:

Administrator account User account

Login admin Login user

Password admin Password user

http://localhost/#/

Measure Agent Installation

The Platform Agent in an autonomous application connected to the Measure Platform via the Communication

API. It allows to deploy and execute measures on client side and the configuration of measure execution

remains administrated remotely by the platform.

In most of the cases, measures are executed on platform side and they manage a connection with external

data sources to collect required data. But it’s not always possible to execute measures on platform for various

reasons like network configuration, security policy, and scalability or because of the mechanisms used by the

measure to collect data. To address this issue, we have developed an autonomous agent which provides the

following services:

• Allow to execute direct measure on client side, closer of measured element instead of executing it on

platform side.

• Ensure the scalability of the Measure platform by providing a way to execute time-consuming

measures on remote computers while maintaining a centralized control of measure’s execution.

• Solve common issues related to Network Security rules in Industrial context by allowing to deploy the

Measure Platform different networks than where the monitored data sources is stored.

Download

• Download the last packaging of the Agent:

https://github.com/ITEA3-Measure/MeasureAgent/releases

• Unzip the platform in your tool directory.

Installation and Configuration

Platform is configured using a property file named application.properties. This property file has to be put in
the same folder of the measure-platform-1.0.0.jar binary application.

Edit the application.properties file:

Property Description Example

measure.repository.path
Path of local directory containing
measures

C:/work/MEASURE/Agent/storage

measure.server.adress IP of MeasurePlatform Server localhost:80

measure.agent.name Name of the Agent (Must be Unique) Agent1

Example of application.properties file:

https://github.com/ITEA3-Measure/MeasureAgent/releases

measure.repository.path=/home/measure/storage
measure.server.adress=xxx.xxx.xxx.xxx/measure
measure.agent.name= MyAgent

Deploy Measure on Agent

The Measure which can be executed by the agent must be manually deployed. During the configuration, you

have defined the path of the storage folder, a directory which will contain the measures deployed on your

agent.

• Unzip the packaged Measure

• Copy the unzipped Measure on storage folder.

Expected Directory Organisation Example:

/agent/storage

/agent/storage/MyMeasure

/agent/storage/MyMeasure/MyMeasure-1.0.0.jar

/agent/storage/MyMeasure/MeasureMetadata.xml

/agent/storage/MyMeasure/lib

Running Measure Platform Agent

java -jar measure-agent-1.0.0.jar

Visualise Agent on Server Side

When an agent is started, it is automatically registered on the Measure Platform. The list of agents actually

registered on the Measure Platform can be consulted on the "Platform > Remote Agent" page.

Visualise Available Measure

The measures deployed on agents can be visualised on the Measure Catalogue page like other measures

deployed on server. The Host indicates the name of the agent which provides this measure.

Instantiate Client-Side Measure

Like for server-side measures, you have to create an instance of a client-side measure in order to collect it.

The only differences to a server-side measure is that, at this time it is not possible to execute once a client-

side measure. The client-side measure instance has to be scheduled.

Annexe B. Measure Platform User Guide

Measure Platform User Guide
Measurement and Data Analysis Platform

•

Measure Platform Overview

Platform Presentation

The Measure platform is a tool dedicated to measure, analyse, and visualise the metrics to extract and show

information of the software engineering processes.

• Implement the tools for automatically measure software engineering processes during the whole

software lifecycle by executing measures defined in SMM standard and extracted from a catalogue

of formal and platform-independent measurements.

• Provide methodologies and tools which allow measure tools provider to develop a catalogue of

formal and platform-independent measure.

• Implement storage solution dedicated to measurements resulting of measure execution in big data

context.

• Implement visualization tools to expose the extracted results in an easy-readable fashion, so

allowing a quick understanding of the situation and the possible actions that can be taken to

improve the diverse stages of the software lifecycle.

• Implement an extension mechanism dedicated to the integration of external analysis tools will

provide long terms analysis and predictive evaluations on collected measures.

• Implement of an Extended API allowing to facilitate the integration on Measure Platform with

external tools and services.

The Measure platform provides services to host, configure and collect measures, to store measurements and

analyse them. These measures are first defined in SMM standard using the Modelio modelling tool and its

extension dedicated to SMM modelling. They are packaged under an executable format as Measure Definition

(For more details related to measure execution format, please refer to the section 2.4.1 of this document).

Measures are registered and stored on Measure platform in order to initiate the collect of measurements, the

next step consists on defining instance of measure based on measure definitions. A measure represents a

generic data collection algorithm that has to be instantiated and configured to be applied on a specific context.

For example, a measure which collects data related to an SVN repository must be configured by the URL of

this repository. Next the Measure Platform can start collecting measurement (data resulting of the execution

of an instantiated measure). Collected measurements are stored on a No SQL designed to be able to process

a very large amount of data. To collect measurements, the direct measures can delegate the collect work to

existing Measure tool.

Stored measurements are presented directly to the end user following a business structured way by the

Decision-making platform, a web application which allows organising measures based on projects / software

development phases and display its under various forms of charts. The measurements can also be processed

by analysis tools to present consolidated results.

Measure and Monitoring Applications

The collect of measurement goes through two kinds of connectors that can be deployed on the Measure

Platform: The Measure and the Monitoring Applications.

• A Measure is a small connector allow to collect measurements. A Measure can be Direct (Collect of

measurement in physical world), a Proxy (Ensure communication between a Measurement Tool and the

Platform) or Derived Measure (Measure calculated by the aggregation of existing Measures).

A large set of Measure able to collect measurement form Market Tool or form specific measurements tools

are provided with this Platform. This Measures can be found at this URL:

https://github.com/ITEA3-Measure/Measures/releases

• A Monitoring Application is composed of a set of measures which address the same data source (Ex: a

GitHub Repository). These measures are packaged together and, deployed a project, provide

automatically a complete Visual Dashboard related to this Data Source.

Analysis Tools and Measurement Tools

The Measure Platform support two kinds of extensions which complete the functionalities provided by the Core

Platform

• Measurement Tools: External tools that collect or calculate measurements from a specific data

source. Measurements Tools are delivered with set of associated Metrics and Monitoring

Applications which make the link between the Platform and the Measurement Tool.

• Analysis Tools: Set of external services which work on the historical measures values in order to

provide advanced and valuable analysis function to the platform. In order to support a large set of

analyses services and do not limit to it a specific technology, the Analysis Tools are external

processes. The analysis tool is integrated to the platform using a specific API. This integration includes

embedded visualisation provided by the analysis service into the platform

The Analysis and Measurements Tools are packaged separately from the platform and are provided with

specific installation guides and user guides.

https://github.com/ITEA3-Measure/Measures/releases

Project Catalogue

The Project Catalogue list all Monitoring projects

currently accessible by the connected user.

• The creation of a new project is performed in

this view.

• A metric overview can be associate to the

Project.

Create a Project

The New Project button allow to create a Project.

• Name: Name of the project

• Description: Description of the Project

• Creation Date: Creation Date of the Project

• Project Image: URL of an image which will

be associate to the project

Associate Overview to a Project

By clicking on the View Edition button of each project card, it possible to

associate an overview to the project.

This overview can be:

• A metric collected by the project.

• A customised content.

Project Configuration

Configure a Project

The Project Configuration page allows to configure

the list of metrics, measurement application and

Analysis Tools used in the project.

A – Edit project properties

B – Delete project

C – Configure measures and applications

D – Register analysis pools

E - Configure registered analysis tools

Measure Configuration View

To collect measurements, a measure of the

Catalogue must be added and configured in the

project. The Measure Configuration view list all

measure currently deployed on the project

• The Register Measure Button allow to

create a new Measure

• Existing Measures can be updated or

deleted from this view.

Configure a New Measure

To deploy a new measure, in project, it’s required to fulfil

measures parameters (Ex: A Git Hub measure required the

URL of the GitHub repository which will be Monitored)

A – Select the kind of measure to deploy

B – Name of the measure

C – Description of the measures

D – Fulfil parameters required by the measure to manage

connection with the data source

E – Configure measure scheduling: Measures will be

executed periodically by the platform to collect

measurement. This Feld allow you to collect periodically

the frequencies of this collect.

Execute a Measure

Once configured, a measure cans be executed in many ways:

A – Activate Scheduling: If scheduling period has been configured, this button allows you to activate the

scheduling. The measures will be collected periodically by the platform.

B – Test the measure: the measure will be executed once for testing purpose. The measure execution result

will be displayed but not stored in the measurement database.

C – Execute the measure once. The measure execution result will be display and stored in the measurement

database.

D – Edit the measure configuration.

E – Delete the measure.

Deploy an Application in a Project

As for Individual Measure, a Measurement Application can

be deployed and configured in the project. Once deployed,

the measures associated with this application will be

automatically configured and collected and a specific

dashboard will be integrated in main project view to visualise

the collected information.

Deploy an Analysis Tool in a Project

Analysis Tools are external analysis services integrated

into the Measure Platform. To use one of these services in

a project:

• Click on Register Analysis Tool button

• Select the analysis tool to add

Once added, the analysis tool can be configured using the

new dedicated view. Please refer to the documentation of

this tools for more details about configuration of a specific

analysis service.

Measure and Application Catalogue

Measure Catalogue

The Measure Catalogue contains the list of Measures

supported by the Platform. Organised in a category, each

measure is characterised by is name, a description, the

scope (configuration parameters) and the data model of

measurements return when the measure is executed.

The catalogue allows to:

• Upload a measure in the platform form the

packaged measure as zip file.

• Remove a measure of the platform. In this case, all

instances of this measures used in projects are

deleted to.

Application Catalogue

As for Measure Catalogue, the Application Catalogue contains the list of Measurement application supported

by the Platform.

The Application Catalogue allows to:

• Upload a measurement application in the platform form the packaged measure as zip file.

• Remove a measurement application of the platform. In this case, the Application will be removed

from all projects which used the Application.

Visualise Measures

Each project provides a main dashboard in which collected measurements can be visualised. This dashboard

is dynamic and can be configured by the project owner.

Configure Main Dashboard

The Main Project Dashboard allows to visual collects measurements. It can also display synthetics information

from analysis services or customized contents.

A – Existing visualisation of measurement

B – Activate / Disactivate the edition model of the dashboard

C – Add a new visualisation in the dashboard

D – Update / Delete existing visualisation

Create a new Measure Visualisation

To visualise measurements collected by a measure, switch the dashboard in edition model and click on the

Add Measure button.

To visualise the collected measurements as a chart:

• Measure: Select the Measure to visualise. The

measure configure on this project will be listed yea.

• Value to Display: If the data model of the measure

contained several numerical values, you can select

the value you went to visualise.

• Date Index: Select the index used as x axis of the

graph: If the data model of the measure contained

several data, select the date used as x axis.

• Chart Type: Select the type of char used in

visualisation (Bar Charts, Line Chart, Area Chart or

Single Value)

• Display Date From: period of time covered by the

visualisation (ex: 1 year)

• Aggregate Data By: Select how data points will be

aggregated (ex: 1 dot per week)

• Graphic Size: Initial size of the visualisation.

• Color: Main color of the graph.

This service allows to visualise simple measurements that are numerical measures periodically collocated and

visualise them as Bar Charts, Line Chart, Area Chart or Single Values. To create more complex visualisations,

please refer to the next section “Integrate a Kibana Visualisation”.

Integrate a Kibana Visualisation

The Measure Platform used the Kibana tool to manage visualisation of collected measurements. Kibana

provides a complete editor which allow to create complex visualisations from a set of measurements. If you

plan to visualise complex data, you will have to create a Kibana visualisation that will be integrated into the

dashboard.

To create a Kibana visualisation, switch the dashboard in edition model and click on the Add Kibana View

button.

The Create new Visualisation button will open the Kibana

editors. This editor will allow you to create complex

visualisation on your data. For more information related to

Kibana, please refer to the documentation of the tool:

https://www.elastic.co/guide/en/kibana/current/index.html

To integrate a Kibana Visualisation:

• Kibana Visualisation: Select the Kibana

visualisation to integrate: The list of existing saved

Kibana visualisation will be available.

• Graphic Size: Select the size of the visualisation

• Display Date From: period of time covered by the

visualisation (ex: 1 year)

Integrate a customised Content

The current configurable dashboard allows you to integrate

customised content like images, descriptions or others test

using the HTML 5 format.

To integrate a customised content, switch the dashboard in

edition model and click on the Add Personalised Content

button.

• View Data: integrate your HTML code which can

contains texts, images, media …

Integrate Analysis Card Visualisation

Platform Analysis tool has the possibility to provide some simplified visualisation of the result of their analysis.

This view is called Analysis Card. To integrate an Analysis Card, switch the dashboard in edition model and

click on the Add Analysis Card button.

To integrate an Analysis Card:

• Select the Analysis Card form the list of cards

provided by analysis tools deploy on the current

project

Additional Dashboards

The main Project Dashboard allows you to visualise the key metrics collected on your project, but it will be

often required to create new specialised dashboards to organise your metrics visualisation.

https://www.elastic.co/guide/en/kibana/current/index.html

Create Additional Dashboard

To create an additional Dashboard, go the Dashboard view and click on the New Dashboard button.

To create a Dashboard:

• Name: Name of the new Dashboard

• Description: Description associated to the

dashboard

Once created, the dashboard will be visible in Dashboard View.

As for Projects, an overview of the content of the dashboard can

be include. To open the Dashboard, click on it.

The Dashboard is composed of several tab. Each of this tab

work like the Main Project Dashboard

Integrate Kibana Dashboard

On additional dashboard, it is also possible to integrate directly a complete dashboard created with Kibana in

the same way as for the measurement visualizations.

To integrate a Kibana Dashboard, create a new Tab using

the + button. For more information related to dashboard

creation with Kibana, please refer to the documentation of

the tool:

https://www.elastic.co/guide/en/kibana/current/index.html

• Kibana Dashboard: Select the previously saved

Kibana dashboard to integrate

• Height: Indicate the height of the dashboard

• Display Date From: period of time covered by the

visualisation (ex : 1 year)

Notification Service

The Measure Platform includes a notification service which allows to notify the user of critical event related to

the project. Notification notifications are of various types and sent by the platform or the analysis tools.

https://www.elastic.co/guide/en/kibana/current/index.html

Data Analysis

The analysis of measurements collected by the Measure Platform are delegated to Analysis Tool deeply

integrated to the platform. The Analysis Tool are set of external services which work on the historical measures

values in order to provide advanced and valuable analysis function to the platform. In order to support a large

set of analyses services and do not limit to it a specific technology, the Analysis Tools are external processes.

The analysis tool is integrated to the platform using a specific API. This integration includes embedded

visualisation provided by the analysis service into the platform. The Table below contained a not exhaustive

list of Analysis tool currently integrated to the Measure Platform.

Quality Guard

Notification Service

Quality Guard allow to define quality constraints which allow to compare

in real-time measures collected by the platform to predefined measure

thresholds and send notification if these thresholds are exceeded.

STRACKER

Prediction and Forecasting
Metrics prediction, metrics correlation, and metrics forecasting services

integrated to the Measure Platform

MINT

Recommendation Service
The Metrics Intelligence Tool (MINT) is a software solution designed to

correlate metrics from different software development life cycle in order

to provide valuable recommendations to different stakeholders impacting

the software development process.

Metrics Suggester

Measurement Plan Automation
The Metrics Suggester provides a framework to automatize the

suggestion of software metrics based on an initial measurement plan. To

do so, the framework needs an initial configuration from the user to

determine the metrics range to be analysed and the classifier.

M·ELKI

Clustering service
M·ELKI is a set of web services that makes possible to select, configure,

process and visualize results of several clustering algorithms provided

from the ELKI Java library.

The Analysis and Measurements Tools are packaged separately from the platform and are provided with

specific installation guides and user guides.

In order to integrate deeply the analysis tools into the Measure Platform, the analysis tools provide web pages

which will be embedded to the platform. Each of these views are defined on the platform side by a specific

URL. For project specific views, this URL is different for each project. You will see below the list of view which

can be provided by the analysis tool and embedded into the Measure Platform.

• Global Configuration Page (optional): If the analysis tool requires a way to provide some

configuration interface which will be shared by all project, it can provide a global configuration

web page.

• Project Specific Analysis Configuration page: Configuration page which are specific for each

project. This page is embedded into project configuration page and allow to configure the analysis

service provided by the external analysis tool.

Figure 2 : Analysis tool configuration page of Quality Guard Analysis tool

• Analysis Tool Main View: Main view of the analysis tool which are specific for each project. In

this view, the analysis service.

Figure 3 : Main view of the Quality Guard Analysis Tool

• Dashboard Card: Optional small view which can be integrated to projects dashboards in order to

provide some key information to project managers related to the serv ice provided by the analysis

tool.

Users Management & Access Right

Create a new Account

To use the Measure Platform, you are invited to create a

User Account. In front page of the platform, clink on the

Register button.

The registration page will invite you to provide you Name,

Email, and password. An email send at the provided address

will allow you to complete the registration process

Manage Access Right to Projects

By default, a platform user has access to projects he has created and configured. It’s possible to provide

access on specific project to other users registered in Measure Platform.

More information will be available soon.

Platform Administration

The Platform administrator (registered user with administrator role) has access to serval administration

services to manage the server. These services are accessible via the Administration menu.

User Management: Service allowing to create new users,

delete existing users and manage user roles.

Health Check: Service allowing to check the availability of

resources consumed by the server (Disk Space, Memory,

etc.)

Configuration: Service allowing to configure all aspects of

the Measure Platform server.

Configuration: Service allowing to configure all aspects of

the Measure Platform server.

Security Log: Logs of connections to the Measure Platform

Platform API: Swagger description of the REST API

exposed by the Measure Platform

Extend the Platform

The Measure platform can be extended following three ways in order to support new data sources, new way

to visualise collected data or now data analysis services.

Development of New Measure

A Measure is a small and autonomous java program based on the SMM specification which allow to collect

measurements. The Measures make the link between a Measurement Tool, a Remote Service, a Captor or

any others kind of data sources and the Measure Platform.

If you plan to monitor measures that are not currently supported by the measure platform, you will probably

have to develop your own Measures.

There are two kind of Measures:

• The Direct Measure (Collect of measurement in physical world), a Proxy (Ensure communication

between a Measurement Tool and the Platform) or

• The Derived Measure (Measure calculated by the aggregation of existing Measures).

For more information related to Measure development, please refer to the Measure Platform Developers

Guide.

Development of New Measurement Applications

An Application is a set of Measures aggregated together in order to address a functional requirement. The

application is associate with a visual dashboard which directly integrated into the Decision-Making platform

when the Application is deployed on a project.

For more information related to Measurement Application development, please refer to the Measure Platform

Developers Guide.

Development of a New Analysis Service

In order to support a large set of analyses services and do not limit to it a specific technology, the Analysis

Tools are external processes. Although external, we wanted a deep integration between the platform and the

analysis tools. We solved this issue in the following way:

• The Measure platform provides a REST API which allows an analysis tool to register it on the platform,

to receive notifications from the platform and access to information related to project defined and

measure collected by the platform.

• On its side, the analysis tool provides some web pages which will be embedded into the platform web

application.

For more information related to Analysis Service development, please refer to the Measure Platform

Developers Guide.

Annexe C. Measure Platform Developers Guide

Measure Platform Developers Guide
Measurement and Data Analysis Platform

•

Extend the Measure Platform

The Measure platform can be extended in order to support new data sources, new ways to visualise collected

data or now data analysis services. The Measure Platform developers guide provides the required key to the

development of these extensions. The Platform can be extended as follows:

Development of New Measure

A Measure is a small and autonomous java program based on the SMM specification which allow to collect

measurements. The Measures make the link between a Measurement Tool, a Remote Service, a Captor or

any others kind of data sources and the Measure Platform.

If you plan to monitor measures that are not currently supported by the measure platform, you will probably

have to develop your own Measures.

There two kind of Measures:

• The Direct Measure (Collect of measurement in physical world), a Proxy (Ensure communication

between a Measurement Tool and the Platform) or

• The Derived Measure (Measure calculated by the aggregation of existing Measures).

Development of New Measurement Applications

An Application is a set of Measures aggregated together in order to address functional requirements. The

application is associated with a visual dashboard which directly integrated into the Decision-Making platform

when the Application is deployed on a project.

Development of New Analysis Service

In order to support a large set of analyses services and do not limit to it a specific technology, the Analysis

Tools are external processes. Although external, we wanted a deep integration between the platform and the

analysis tools. We solved this issue in the following way:

• The Measure platform provides a REST API which allows an analysis tool to register it on the platform,

to receive notification from the platform and access to information related to project defined and

measure collected by the platform.

• On its side, the analysis tool provides some web pages which will be embedded into the platform web

application.

Measure Development

Measure Architecture

A SMM Measure is a small and independent software component which allows retrieving or calculating a

measurement. The Measure make the link between a remote measurement or service and the

MeasurePlatform. The implementation of a measure is based on a library developed in parallel with the

Measure Platform: the “SMMMeasureApi”. We identify two main kinds of measures: The Direct Measures and

the Derived Measures.

• A Direct Measure is used to collect data in physical world. This kind of measure can be executed on

the platform on the Client Side. To define a Direct Measure, the IDirectMeasure has to be

implemented. This interface will be called by the Measure Platform to retrieve the measurements.

• A Derived Measure is used to define a combined measure which can calculate new measurements

using one or more measurements stored on the Measure platform. To define a Derived Measure, the

IDerivedMeasure has to be implemented.

In this section, we will describe how to specify, implement and package a new measure which will be deployed

on the Measure platform. The Modelio Modeling tool can be used for the specification, implementation and

packaging of measures, but it is also possible to implements the measure manually.

In SMM, a direct or derived measure definition is associated with an Operation which represents the

implementation of the measure. These operations can be expressed in natural language or may contain

executable code. In order to be able to collect direct measures and to execute calculated measure, we have

to choose a common executable language. For that, we currently support Java.

An SMM Measure is a zip file containing:

• A Jar file: The Java implementation of the measure

• A lib folder: Java libraries used by the measure implementation

• A MetaData.xml file: Metadata related to the measure

The Jar file contained the implementation the measure itself. In order to be executed by the platform, this

implementation is based on the SMMMeasureApi available at this URL:

https://github.com/ITEA3-Measure/SMMMeasureApi/

The metadata file is an xml file containing several information’s related to the measure and used by the

measure platform to load dynamically the Measure. It allows to define the scope (dynamic properties provided

wen the measure is deploy on a project of the Measure Platform) and the data model returned by the measure

when executed.

Develop a Measure Using Maven

In order to help you to start the development of a new Measure, a Maven Archetype is available on our Maven

repository: http://repository.modelio.org

https://github.com/ITEA3-Measure/SMMMeasureApi/
http://repository.modelio.org/

To create the implementation project:

• Create a new Maven project using an Archetype

• Register the Modelio maven repository ass new remote
maven catalogue
http://repository.modelio.org

• Select the DirectMeasure Archetype or the
DerivedMeasure Archetype depending of the kind of
measure you which to implement.

• Create your Java measure implementation project

Use an existing project template which will allow you to start the implementation of a new measure is also

available at this address:

https://github.com/ITEA3-Measure/Measures/tree/master/_Examples/TemplateMeasure

Once the implementation of the measure is completed, you can package your measure as ZIP in a format

compatible with the Measure Platform using the Maven Install compilation target.

Develop a Measure using the Modelio Modelling Tool

The Modelio Modeling tool supports the Structured Metrics Model (SMM) standard. This specification defines

a meta-model for representing measurement information related to any model-based information with an initial

focus on software, its operation, and its design. Referred to as the Structured Metrics Meta-model (SMM), this

specification is an extensible meta-model for exchanging both measures and measurement information

concerning artefacts contained or expressed by structured models, such as MOF.

The SMMLibrary Module is an extension for Modelio 3.4 tool, which allows to model, specify, implement, and

package new catalogue of measures in SMM format.

1. Download the Modelio Open Source 3.4.1: https://www.modelio.org/downloads/download-
modelio.html OR Direct link to 3.4.1 : https://sourceforge.net/projects/modeliouml/files/3.4.1/

2. Download the last SMMDesigner Module: https://github.com/ITEA3-Measure/SMM-
Designer/releases/tag/0.3.00 Download file : SMM_0.3.00.jmdac

3. Start Modelio and create a new Project.
4. Add the SMM_0.3.00.jmdac module into the project

This module will allow you to:

• Specify scope, data model and dependency of the measure using Models

• Generate a Maven implementation project based on this specification.

• Help you to implement the measure using Model Driven Development Approach

• Package the measure in a format supported by the Measure Platform

Please refer to the documentation of the SMM Module for more details about the development of measures

using Modelio.

Measure Metadata File

The MetaData.xml file contains meta-data related to the SMM Measure:

• Name, description, category and provider of the Measure

• Type of the Measure

http://repository.modelio.org/
https://github.com/ITEA3-Measure/Measures/tree/master/_Examples/TemplateMeasure
https://www.modelio.org/downloads/download-modelio.html
https://www.modelio.org/downloads/download-modelio.html
https://sourceforge.net/projects/modeliouml/files/3.4.1/
https://github.com/ITEA3-Measure/SMM-Designer/releases/tag/0.3.00
https://github.com/ITEA3-Measure/SMM-Designer/releases/tag/0.3.00

• Unite (data model) of the measure

• List of properties of the measure

• List of references for Derived Measure (inputs form other measures)

Element
Owner

Attribute Description

Measure

The Measure

name Name / Id of the Measure

type SMM Type of the measure:

[DIRECT,COLLECTIVE,RACKING,GRADE,BINARY,C

OUNTING,ESCALED,RATIO]

category Classification of the measure by category

provider People / Entity which developed the measure

description Measure (1)

Description of the Measure

unite Measure (1)

Data Model of measurements returned by the

measure

fields Unite (*)

A Field of the measure unite

fieldName Name of the field

fieldType Type of the field:

[u_text,u_integer,u_long,u_date,u_boolean,u_float,u_g

eo_point,...]

scopeProperties Measure (*)

A property user to configure the execution of the

measure

name Name of the property

defaultValue Default value of the property

type Type of the property:

:[STRING,INTEGER,FLOAT,DATE,ENUM,PASSWOR

D,DESABLE]

description scopeProperties

(1)

Description of the scope property

enumType scopeProperties

(1)

Emum definition for scopeProperties of type ENUM

enumvalue enumType (*)

Emum values

label label of the enum entry

value value of the enum entry

references Measure (*)

References to inputs required by Derived Measures

measureRef Name of the required measure

number Default Number of instances of this input required

expirationDel

ay

Filter old measurement

references-role References (1)

Role of impute in current Measurement. This role

allows to identify several instance of the same

Measure in a DerivedMeasure.

Example of a MeasureMetaData.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Measure name="RandomMeasure" type="DIRECT" category=”Test” provider=”MeasurePlatform”>
 <description>Return a random measure and his variation</description>
 <scopeProperties defaultValue="100" name="MaxRange" type="INTEGER">
 <description>MaxRange</description>
 </scopeProperties>
 <scopeProperties defaultValue="0" name="MinRange" type="FLOAT">
 <description>MinRange</description>
 </scopeProperties>
 <scopeProperties defaultValue="0" name="PreviousValue" type="DESABLE">
 <description>PreviousValue</description>
 </scopeProperties>
 <scopeProperties defaultValue="Borned" name="Kind" type="ENUM">
 <description>Kind</description>
 <enumType>
 <enumvalue label="Is Borrned" value="Borned"/>
 <enumvalue label="Not Borrned" value="UnBorned"/>
 </enumType>
 </scopeProperties>
 <scopeProperties name="TestDate" type="DATE">
 <description>TestDate</description>
 </scopeProperties>
 <scopeProperties name="TestPassword" type="PASSWORD">
 <description>TestPassword</description>
 </scopeProperties>
 <scopeProperties name="TestString" type="STRING">
 <description>TestString</description>
 </scopeProperties>
 <unit name="RandomMeasurement">
 <fields fieldName="FinalValue4" fieldType="u_double"/>
 <fields fieldName="Variation4" fieldType="u_integer"/>
 <fields fieldName="myDate" fieldType="u_date"/>
 </unit>
</Measure>

Direct Measure Implementation

A direct measure is used to collect data in physical world. This kind of measure can be executed on the platform

on Client Side. To define a Direct Measure, implement the IDirectMeasure interface. This interface will be

called by the MeasurePlatform to retrieve the measurements.

public interface IDirectMeasure {

 public List<IMeasurement> getMeasurement() throws Exception;
 public Map<String,String> getProperties();
}

To implement a direct measure, please extend the DirectMeasure class:

• getMeasurement(): calculates and returns a list of measurements.

• getProperties(): provides a way for the Measure platform to communicate properties to
DirectMeasure implementation.

Example: RandomGenerator, a toy measure which returns a random number between MinRange and
MaxRange value at each call.

public class RandomGenerator extends DirectMeasure {

 @Override
 public List<IMeasurement> getMeasurement() throws Exception {
 List<IMeasurement> result = new ArrayList<>();

 // Retrive Platform Properties by her name
 int maxRange = Integer.valueOf(getProperty("MaxRange"));
 int minRange = Integer.valueOf(getProperty("MinRange"));

 // Collect Measure
 Random gen = new Random();
 int value = gen.nextInt(maxRange - minRange) + minRange;

 // Create Measurement : In this case, a simple IntegerMeasurement
 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(value);
 result.add(measurement);
 return result;
 }
}

Derived Measure implementation

A derived measure is used to define a combined measure which calculates new measurements using one or

more measurements stored on the Measure platform. To define a derived measure, implement the

IDerivedMeasure interface. This interface will be called by the Measure Platform to calculate the measurement.

public interface IDerivedMeasure {
 public List<IMeasurement> calculateMeasurement() throws Exception;
 public void addMeasureInput(String reference,String role, IMeasurement value);
 public Map<String,String> getProperties();
}

To implement a derived measure, please extend the DerivedMeasure class:

• calculateMeasurement(): Calculate and return a list of measurements based on provided
measurement imputs.

• addMeasureInput(): Provide a way for the Measure Platform to communicate input measurements
to the DerivedMeasure implementation.

• getProperties(): Provide a way for the Measure Platform to communicate properties to the Derived
Measure implementation.

A Derived Measure allows to combine measurement provided by other measures (Direct or Derived). Required

inputs measure are defined on the MetaData.xml. These references are identified by a measureRef and a

role.

• The measureRef is the id of the measure which can provide a measurement as input.

• The role is the role of the imput in current measurement. This role allows to identify several
instances of the same measure of a Derived Measure.

• The expirationDelay property allows to filter as input the measures which has been calculated
recently

• The number property allows to select the number of inputs of this type which will be communicated
to the derived measure implementation by the platform.

 <references expirationDelay="60000" measureRef="RandomGenerator" number="1">
 <role>RandomNumber A</role>
 </references>
 <references expirationDelay="60000" measureRef="RandomGenerator" number="1">
 <role>RandomNumber B</role>
 </references>

Inputs are defined when an instance on the measure is deployed on the Measure Platform.

Example: RandomBinaryMeasure, a toy measure which returns the result of a binary operation between
two RandomGenerator result

public class RandomBinaryMeasure extends DerivedMeasure {

 @Override
 public List<IMeasurement> calculateMeasurement() {
 Integer result = 0;

 // Retrive input Measurements by her Role
 List<IMeasurement> op1 = getMeasureInputByRole("RandomNumber A");
 List<IMeasurement> op2 = getMeasureInputByRole("RandomNumber B");

 // Calculate result
 if(op1.size() == 1 && op2.size() == 1){
 String oper = "+";

 // Retrive the operator as Property
 oper = getProperty("Operation");

 Integer val1 = (Integer) op1.get(0).getValues().get("value");
 Integer val2 = (Integer) op2.get(0).getValues().get("value");

 if(oper.equals("+")){
 result = val1 + val2;
 }else if(oper.equals("-")){
 result = val1 - val2;
 }else if(oper.equals("*")){
 result = val1 * val2;
 }else if(oper.equals("/")){
 result = val1 / val2;
 }
 }

 // Return result as new IntegerMeasurement
 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(result);

 List<IMeasurement> measurements = new ArrayList<>();
 measurements.add(measurement);

 return measurements;
 }
}

Example: RandomSumMeasure, a toy measure which returns the sum of measurements provided by the
RandomGenerator measure.

public class RandomSumImpl extends DerivedMeasure {
 @Override
 public List<IMeasurement> calculateMeasurement() throws Exception {
 Integer result = 0;
 for (IMeasurement operande : getMeasureInputByRole("RandomNumber")) {
 try {

 result = result + (Integer) operande.getValues().get("value");
 } catch (NumberFormatException e) {
 System.out.println("Non Numeric Operande");
 }
 }

 IntegerMeasurement measurement = new IntegerMeasurement();
 measurement.setValue(result);

 List<IMeasurement> measurements = new ArrayList<>();
 measurements.add(measurement);
 return measurements;
 }
}

Measurement

A Measurement is a data model used as input and output of SMM measure. A measurement has to extend

the IMeasurement interface. A measurement is presented as set of Java elements which can be accessed via

a Map. All values are accessed using a String identifier defined in MetaData.xml file.

public interface IMeasurement {
 public Map<String, Object> getValues();
 public String getLabel();
}

Predefined Measurements: The API provides some predefined measurements which can be used in the

measure implementation

• IntegerMeasurement: allows to manipulate numbers in the measure implementation

int value = 10;
IntegerMeasurement measurement = new IntegerMeasurement();
measurement.setValue(value);

Custom Measurements Example: A Measure developer can define custom measurements to manage her

own set of data.

The SVNMeasurement is used by a measure which collects COMMIT information provided by an SVN

repository. It manages data related to the author of the commit, the message on the commit and the date of

the commit.

public SVNMeasurement(String author,String message,Date postDate){
 super();
 this.valueMap.put("Author", author);
 this.valueMap.put("Message", message);
 this.valueMap.put("postDate",new Date(postDate.getTime()));
}

Measures Example

More than 200 measures are available on open source on the GitHub of the Measure project:

https://github.com/ITEA3-Measure/Measures

Measurement Application Development

NB: The implementation of Measurement Application support is not finalised, this documentation will be

update.

https://github.com/ITEA3-Measure/Measures

Analysis Tool Development

The main objective of the analysis platform is to implement analytics algorithms, to correlate the different

phases of software development and perform the tracking of metrics and their value. The platform also

connects and assure interoperability among the tools and define actions for improvement and possible

countermeasures.

Integration Mechanism of Analysis Tool into

In order to ensure the integration of various kind of analysis tool into the measure platform, the Analysis

component provide an integration mechanism of external tool to register it into the measure platform, to access

to measurement data, to received notification form the platform and finally to provide analysis results. This

integration is based on a set of REST services used to manage communication between analysis Tools and

the Platform.

Figure 4 : Registration process of an external analysis tool into the platform

• Registration: At start-up of the Analysis Tool, it must register itself to the platform using the Registration

service. This would allow the project to activate the analysis tools.

Registration Rest Service:

PUT /api/analysis/register

Input Data (json) {

 "configurationURL": "string",

 "description": "string",

 "name": "string"

}

• Wait for Notifications: The Analysis Tool must listen to notifications from the platform in order to know

when a project requests the usage of the analysis tool. The notification (Alert) system is based on pooling

system. The Analysis tool pool the platform periodically using the alert service to received notifications.

The Platform send several kinds of notifications listed below:

Alert Type Description Properties

ANALYSIS_ENABLE A Project sends an activation request

for the Analysis Tool. It's not required

• ANALYSISID: Id of the

instance of analysis

for analysis tool to subscribe to this

alert, the subscription is automatic.

associated with this request

on platform side

ANALYSIS_DESABLE A Project indicate that the analysis

service is not required anymore. It's not

required for analysis tool to subscribe to

this alert, the subscription is automatic.

• ANALYSISID: Id of the

instance of analysis

associated with this request

on platform side.

MEASURE_ADDED A new Measure is added the the project • MEASUREID: Id of the

Measure

MEASURE_REMOVED A Measure is removed from the project • MEASUREID: Id of the

Measure

MEASURE_SCHEDULED A Measure is not collected periodically

for the project

• MEASUREID: Id of the

Measure

MEASURE_UNSCHEDULED A Measure is not collected anymore by

the project

• MEASUREID: Id of the

Measure

By default, all register project subscribe automatically to ANALYSIS_ENABLE and ANALYSIS_DESABLE

Notifications.

Retrieve Platform Alerts REST Service: This service retrieves the alerts form the platform for a specific

analysis tool

GET /api/analysis/alert/list/{AnalysisToolName}

Parameter AnalysisToolName : Name of the Analysis Tool (provided in

registration service)

Output Data (json) {

 "alerts": [

 {

 "alertType": "string",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

 }

],

 "from": "2018-03-13T12:16:33.164Z"

}

• Configure Analysis: When a project activates an analysis tool, the analysis tool must configure it for the

project and provide URLs for the project-specific configuration page, the project main view and optionally

the dashboard cards.

Configuration REST Service

Warning: The analysis configuration input data required a projectAnalysisId. This id is provided by the platform

as properties of the ANALYSIS_ENABLE and ANALYSIS_DESABLE notification message.

PUT /api/analysis/configure

Input Data (json) {

 "cards": [

 {

 "cardUrl": "string",

 "label": "string",

 "preferedHeight": 0,

 "preferedWidth": 0

 }

],

 "configurationUrl": "string",

 "projectAnalysisId": 0,

 "viewUrl": "string"

}

• Analyse the Project: When configured, the analysis tool can start its analysis work for the specific

project. In order to perform this work, the analysis tool can explore the project configuration using the

various services provided by the Measure platform. It can also configure new Alerts to receive

notifications when the project configuration has changed.

Alert Subscription REST Service: This service allows an analysis tool to subscribe to a new alert related to

a specific project

PUT PUT /api/analysis/alert/subscribe

Input Data (json) {

 "analysisTool": "string",

 "eventType": "ANALYSIS_ENABLE",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

}

Alert Unsubscribe REST Service : This service allows the analysis tool to unsubscribe to an alert.

PUT PUT /api/analysis/alert/unsubscribe

Input Data (json) {

 "analysisTool": "string",

 "eventType": "ANALYSIS_ENABLE",

 "projectId": 0,

 "properties": [

 {

 "property": "string",

 "value": "string"

 }

]

}

User Interface integration using Embedded View

In order to integrate deeply the analysis tool to the Measure Platform, the analysis tools have to provide some

web pages which will be embedded to the platform web application. Each of these views are defined on the

platform side by a specific URL. For project specific views, this URL is different for each project. You will see

below the list of view which can be provided by the analysis tool and embedded into the Measure Platform.

• Global Configuration Page (optional): If the analysis tool requires a way to provide some

configuration interface which will be shared by all project, it can provide a global configuration

web page.

• Project Specific Analysis Configuration page: Configuration page which are specific for each

project. This page is embedded into project configuration page and allow to configure the analysis

service provided by the external analysis tool.

Figure 5 : Analysis tool configuration page of Quality Guard Analysis tool

• Analysis Tool Main View: Main view of the analysis tool which are specific for each project. In

this view, the analysis service.

Figure 6 : Main view of the Quality Guard Analysis Tool

• Dashboard Card: Optional small view which can be integrated to projects dashboards in order to

provide some key information to project managers related to the service provided by the analysis

tool.

Platform Querying Services

The platform provides several other services which can be used by the analysis tools to retrieve platform and

project configurations data, information related to measures and measurements and more.

The list of available services can be consulted via Swagger directly on deployed Measure platform. To access

this specification, one must be connected as Administrator to the platform. The complete API specification is

available on Administration > API menu

Some example of available HTTP services:

• GET /api/measure/findall : List all measures

• GET /api/measure/{id} : information related to a specific measure

• GET /api/measure-properties/{id} : List of scope properties associated with one measure

• GET /api/projects : List all projects

• GET /api/projects/{id} : Information related to a specific project

• GET /api/phases/byproject/{id} : Get phases of a specific project

• GET /api/phases/{id} : Information of a specific phase

• GET /api/measure-instances : List of all measure instances

• GET /api/measure-instances/{id} : Information of a specific measure instance

• GET /api/project-measure-instances/{id} : List of measure instances of a specified project

• GET /api/measure-instance/scheduling/execute/{id} : Execute a specific measure

• GET /api/measure-instance/scheduling/start/{id} : Activate scheduling of a specific measure

• GET /api/measure-instance/scheduling/stop/{id} : Deactivate scheduling of a specific measure

Run Measure Platform From Source

The measure platform is an open source product. The current section of the documentation present how to

run the platform in developer mode from source.

Prerequisites

The Measure Platform can be executed both on Linux or Windows systems. For that, the platform requires the

installation of: MySQL, Elasticsearch, Kibana and Java 1.8.

MySQL Installation

• Download MySQL Community Server 5.7 or above : https://dev.mysql.com/downloads/mysql/

• Install MySQL using the folloing instruction :
https://dev.mysql.com/doc/refman/5.7/en/installing.html

• Create a new database named "measureplatform".

Elasticsearch Installation

• Downloade Elasticsearch 5.6 (as zip): https://www.elastic.co/downloads/elasticsearch

• Unzip the application in your tool directory.

Kibana Installation

• Downloade Kibana v 5.6 (as zip): https://www.elastic.co/downloads/kibana

• Unzip the application in your tool directory.

Java 1.8 Installation

• Download and install the jdk8 in youe environment:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Eclipse IDE

• Download and install the last version of Eclipse IDE for Java EE Developers:
https://www.eclipse.org/downloads/eclipse-packages/

Retrieve the MeasurePlatform Source Code

The Measure Platform source code is hosted on GitHub. To retrieve it, you can:

• Download it as zip file : https://github.com/ITEA3-Measure/MeasurePlatform

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/eclipse-packages/
https://github.com/ITEA3-Measure/MeasurePlatform

• Clone the Git repository
o Install git: https://git-scm.com/downloads
o Clone the repository: git clone https://github.com/ITEA3-

Measure/MeasurePlatform.git

You can now import the Measure Platform as a new Maven project in Eclipse.

Start the Application in developers Mode

1. Start MySQL
2. Start Elasticsearch : ./elasticsearch-5.4.0/bin/elasticsearch
3. Start Kibana:./kibana-5.4.0/bin/kibana
4. Start the Measure platform:

• From Eclipse IDE: Select the "MeasurePlatformApp.java" file and Right Click > Run as > Java
Application

https://git-scm.com/downloads

Annexe D. Hawk Installation Guide (Measurement Tool)

Hawk Installation Guide
Monitoring Tool of MEASURE Platform

•

Hardware Requirements

• Recommended memory capacity: 8 Go

• OS: Hawk should work on Linux, Windows and Mac

Prerequisite

• Java must be installed. We recommend the 1.8 version.

Hawk Installation

• Download hawk-server-nogpl_xxxxxxxx-linux.gtk.x86_64.zip the latest version of “Hawk Server at the

link:

https://github.com/mondo-project/mondo-hawk/releases

• Extract the archive in your computer

• Provide configuration files for the instances to be executed on Hawk Server. These instances are

described in XML files and must be added in the configuration directory at the root of hawk server

before running hawk-server.

Configuration

• You must provide a configuration file for each instance you want to execute on Hawk server.

• The configuration files must be located in the configuration folder at the root of the hawk server project.

The configuration files can have any name and must be in XML format.

• You can run many instances in Hawk Server at the same time and must add configuration files for

each of these instances.

• In the configuration file we specify

o The name of the Hawk instance

o The backend (database engine) in whitch the instance will be running

▪ "org.hawk.orientdb.OrientDatabase" for normal queries.

▪ "org.hawk.greycat.LevelDBGreycatDatabase" for temporal queries

o Delay for automatic updating (synchronization) of the model in the database. You can specify

Min and Max values for Delay in milliseconds. If Max=0, it means the updating of the indexed

model will be manual.

o Plugins needed to execute the instance. We must specify the necessary plugins depending

on the used backend (see the examples below).

o The path of Modelio metamodel descriptor. The modelio metamodel can be found in Modelio

model repository in “admin” folder.

o The monitored repositories: they can be local (type="org.hawk.localfolder.LocalFolder") or

SVN links (type="org.hawk.svn.SvnManager"). See the example below for more information.

https://github.com/mondo-project/mondo-hawk/releases

• More details on configuration file can be found in this link: https://github.com/mondo-project/mondo-

hawk/wiki/File-based-instance-configuration

• Here is an example of configuration file for an instance running on time awre backend in order to

perform temporal queries.

Databio_instance.xml

<?xml version="1.0" encoding="UTF-8"?>

<hawk backend="org.hawk.greycat.LevelDBGreycatDatabase" name="DataBio"

factory="org.hawk.timeaware.factory.TimeAwareHawkFactory">

 <delay max="0" min="0"/>

 <plugins>

 <plugin name="org.hawk.modelio.exml.listeners.ModelioGraphChangeListener"/>

 <plugin name="org.hawk.modelio.exml.metamodel.ModelioMetaModelResourceFactory"/>

 <plugin name="org.hawk.modelio.exml.model.ModelioModelResourceFactory"/>

 <plugin name="org.hawk.timeaware.graph.TimeAwareModelUpdater"/>

 </plugins>

 <metamodels>

 <metamodel location="/home/.../metamodel_descriptor.xml" uri=""/>

 </metamodels>

 <repositories>

 <repository frozen="false"

location="https://rd.constellation.modeliosoft.com/svn/.../trunk/model" pass="***"

type="org.hawk.svn.SvnManager" user="***"/>

 </repositories>

</hawk>

• Here is an example of configuration file for an instance with non-temporal queries

Project2_instance.xml

<?xml version="1.0" encoding="UTF-8"?>

<hawk backend="org.hawk.orientdb.OrientDatabase" name="Measure">

 <delay max="0" min="0"/>

 <plugins>

 <plugin name="org.hawk.modelio.exml.listeners.ModelioGraphChangeListener"/>

 <plugin name="org.hawk.modelio.exml.metamodel.ModelioMetaModelResourceFactory"/>

 <plugin name="org.hawk.modelio.exml.model.ModelioModelResourceFactory"/>

 <plugin name="org.hawk.graph.updater.GraphModelUpdater"/>

 </plugins>

 <metamodels>

 <metamodel location="/home/.../metamodel_descriptor.xml" uri=""/>

 </metamodels>

 <repositories>

 <repository frozen="false" location="file:///home/.../design/model/"

type="org.hawk.localfolder.LocalFolder" user="" pass=""/>

 <repository frozen="false" location="file:///home/.../model2/model/"

type="org.hawk.localfolder.LocalFolder" user="" pass=""/>

 </repositories>

</hawk>

Running Hawk Server

• To run Hawk Server in Linux, execute in the terminal the command:

./run-server.sh

• Before executing any queries wait for the indexation process to be finished. A message indicating the

completion of this task will be displayed:

Updated Hawk instance (success)

• If you haven’t specified an automatic update in the configuration file, you can run the command:

./sync-server.sh

• You can stop Hawk server by typing “exit” in the console or by pressing: CTRL + C

https://github.com/mondo-project/mondo-hawk/wiki/File-based-instance-configuration
https://github.com/mondo-project/mondo-hawk/wiki/File-based-instance-configuration

Annexe E. Hawk User Guide (Monitoring Tool)

Hawk User Guide
Monitoring Tool of MEASURE Platform

•

Hawk Server Overview

Hawk is a model indexing solution that can take models written with various technologies and turn them into

graph-based databases for easier and faster querying. The indexing solution integrates Modelio modeling tool

which contains different types of models such as UML, Archimate, BPMN, Analyst, etc.

• Hawk allows to perform fast queries on models (on modelio models in particular) using EOL language.

EOL (Epsilon Object Language) is a programming language for creating, querying and modifying

EMF models (Eclipse Modeling Framework).

• Hawk provide querying engines for executing EOL queries on models such as Modelio models.

• Here is an example of EOL query that return the total number of classes: “return Class.all.size;”. For

more information see the following lik: https://github.com/mondo-project/mondo-

hawk/wiki/Example-queries-on-Modelio-based-UML-models.

• Hawk is integrated in the monitoring and analysis tool “Measure Platform”. It allows developers to

collect measures associated to the design phase in the development process.

Running Hawk Server

• Hawk Server is executed in command line interface by executing the script haw-server.sh in the root

folder.

• After running the server, you must wait until the indexation of the models of the repositories is

completed.

• After the indexation is finished, you will see the following message if the indexation is successful:

Updated Hawk instance DataBio (success). 13831 s 341 ms

• If the indexation is failed, you will see the following message

Updated Hawk instance DataBio (failed). 13831 s 341 ms

• The output of the server execution is displayed in console and stored in “hawk.log” file. It can be useful

to see the errors that caused the updating failure.

• If you haven’t specified an automatic update in the configuration file, you can run the command ./sync-

server.sh to synchronize the indexed model in graph database with the model of the updated local or

SVN repository.

Hawk Server Commands

Console Client Commands

You can run commands in the console client or via web services:

• hawkListBackends: Lists the available Hawk backends

• hawkListInstances: Lists the available Hawk instances

• hawkStartInstance <name>: Starts the instance with the provided name

http://www.eclipse.org/epsilon/doc/eol/
https://github.com/mondo-project/mondo-hawk/wiki/Example-queries-on-Modelio-based-UML-models
https://github.com/mondo-project/mondo-hawk/wiki/Example-queries-on-Modelio-based-UML-models

• hawkStopInstance <name>: Stops the instance with the provided name

• hawkSyncInstance <name> [waitForSync:true|false] : Requests an immediate sync on

the instance with the provided name

See the following link for more details: https://github.com/mondo-project/mondo-hawk/wiki/Console-client

Web Services

Hawk allows to execute POST http queries with common URL “http://localhost:8080/thrift/hawk/json” and

specific body messages to each command.

Here is a list of commands with the specific body message:

• List of instances

[1,"listInstances",1,1,{}]

• Start an instance

[1,"startInstance",1,1,{"1":{"str":"<name>"}}]

• Stop an instance

[1,"stopInstance",1,1,{"1":{"str":"<name>"}}]

• Synchronize an instance and wait for response

[1,"syncInstance",1,1,{"1":{"str":"<name>"},"2":{"tf":1}}]

• Synchronize an instance and don’t wait for response

[1,"syncInstance",1,1,{"1":{"str":"<name>"},"2":{"tf":0}}]

• Queries

o Non-temporal query on “Measure” instance

[1,"query",1,1,{"1":{"str":"Measure"},"2":{"str":"return

Class.all.size;"},"3":{"str":"org.hawk.epsilon.emc.EOLQueryEngine"},"4":{"rec":{

}}}]

o Temporal query on “DataBio” instance

[1,"query",1,1,{"1":{"str":"DataBio"},"2":{"str":"return

Model.allInstancesNow.size;"},"3":{"str":"org.hawk.timeaware.queries.TimeAwareEO

LQueryEngine"},"4":{"rec":{}}}]

For more information about temporal queries see the following link : https://github.com/mondo-

project/mondo-hawk/wiki/Temporal-queries-in-Hawk .

You can run these commands via a navigator extension like “Postman” or with Linux “curl” command.

Here is an example of a curl commands

• Synchronize “DataBio” instance

curl -s -H 'Content-Type: application/json' -d

'[1,"syncInstance",1,1,{"1":{"str":"DataBio"},"2":{"tf":1}}]'

http://localhost:8080/thrift/hawk/json

• List of instances

curl -s -H 'Content-Type: application/json' -d '[1,"listInstances",1,1,{}]'

http://localhost:8080/thrift/hawk/json

https://github.com/mondo-project/mondo-hawk/wiki/Console-client
https://github.com/mondo-project/mondo-hawk/wiki/Temporal-queries-in-Hawk
https://github.com/mondo-project/mondo-hawk/wiki/Temporal-queries-in-Hawk

Querying Language

All the queries are written in the Epsilon Object Language which is an imperative programming language for

creating, querying and modifying EMF models (Eclipse Modeling Framework).

Examples of EOL queries supported by Hawk :

• Returns the number of instances of "Class" in the index:

return Class.all.size;

• Temporal query : Returns the number of instances of "Class" of the last revision:

return Class.latest.all.size;

• Advanced example: loops, variables and custom operations

var counts = Sequence {};

var i = 0;var n = count(0);

while (n > 0) { counts.add(Sequence {">" + i, n}); i = i + 1; n = count(i);}

return counts;

operation count(n) { return Class.all.select(c|c.ownedOperationCount > n).size;}

Associated Measures

A set of metrics dedicated to the Measure Platform has been developed specifically to make the link between

the platform and the Hawk measurement tools.

Hawk allow us to perform queries over all Modelio models including UML, Archimate, Analyst, etc. Some of

the measures are basic like the number of UML classes, methods, interfaces, etc. In addition to this, Hawk

allows to do complex queries in short time such as “Class Complexity Index”, “Package Dependencies Ratio”,

etc.

Measure Type Description

HawkMeasure Generic Measure Generic Measure which allow to execute a Hawk query

provided as parameter of the measure.

NumberOfRequirement Modelio

Requirements

Total number of Requirement defined in the selected

scope.

NumberOfTests Modelio

Requirements

Total number of Tests defined in the selected scope.

NumberOfBusinessRule Modelio

Requirements

Total number of Business Rule defined in the selected

scope.

NumberOfGoals Modelio

Requirements

Total number of Goals defined in the selected scope.

NumberOfRisks Modelio

Requirements

Total number of Risks defined in the selected scope.

RequirementTracability

ToImplementationIndice

Modelio

Requirements

The % of requirement of tracing an implementation

model.

http://www.eclipse.org/epsilon/doc/eol/

RequirementTracability

ToTestIndice

Modelio

Requirements

The % of requirement of tracing a test model.

RequirementCoverageI

ndice

Modelio

Requirements

The average number of requirements tracing an

architecture model.

RequirementComplexity

Indice

Modelio

Requirements

The average number of sub requirements defined to

refine an existing requirement.

RequirementsSatisfacti

onQualityIndice

Modelio

Requirements

Percentage of requirements that have been satisfied.

SoftwareComponentDe

composition

Modelio UML The number of software components identified in an

application architecture.

ClassDependeciesRatio Modelio UML The average number of dependencies from a class.

PackageDependeciesRa

tio

Modelio UML The average number of dependencies from a package.

ModelAbstractnessInde

x

Modelio UML The % of abstract classes (and interfaces) divided by the

total number of types in a package.

ClassComplexityIndex Modelio UML Moy of direct subclasses of a class. A class implementing

an interface counts as a direct child of that interface.

InterfaceByComponent

Ratio

Modelio UML The average number of dependencies from a class.

NumberOfClasses Modelio UML Total number of classes in the selected scope

NumberOfFields Modelio UML Total number of fields defined in the selected scope.

NumberOfInterfaces Modelio UML Total number of interfaces in the selected scope.

NumberOfMethods Modelio UML Total number of methods defined in the selected scope.

NumberOfComponent Modelio UML Total number of Components defined in the selected

scope.

NumberOfPackage Modelio UML Total number of Packages defined in the selected scope.

NumberOfUseCase Modelio UML Total number of UseCases defined in the selected scope.

NumberOfActors Modelio UML Total number of Actores defined in the selected scope.

Annexe F. MMT Installation Guide (Measurement Tool)

MMT Installation Guide
Monitoring Tool of MEASURE Platform

•

Hardware Requirements

o Hardware

MMT can run easily on a (personal) computer to process low network traffic, i. e., less than 10 Mbps

(mega bit per second). The minimal requirement is that the computer has at least 2 cores of CPU, 2

GB of RAM and 4GB of free hard drive disk. The computer must possess also one NIC (Network

Interface Cards) on which MMT captures network traffic. Higher network bandwidth requires stronger

computer.

To be able to exploit fully capacity of MMT to process very high network bandwidth, one need suitable

hardware configurations. MMT can be deployed on a single server or split on separate servers. This

section specifies the hardware requirements for the former. For those of the latter, please contact us.

o Network Interface Cards:

MMT needs at least 2 NICs: one for capturing network traffic and another for administrating. If the

probe is to be an active network element (i.e., receives, processes and re-transmits the communication

packets) then at least 3 NICs are necessary.

To achieve the best performance, the capturing NIC should be either Intel X710 or Intel X520 card.

These are recommended because they support DPDK that will considerably improve the packet

processing. For other hardware architectures, adaptations and tests would need to be performed.

o CPU

For the best performance, the use of Intel Xeon class server system is recommended, such as Ivy

Bridge, Haswell or newer. The larger the CPU cache, the better the performance are obtained.

o RAM

We recommend using the fastest memory one can buy; and, having one DIMM per channel. One

should avoid having 2 or more DIMMs per channel to make sure all memory channels are used to the

fullest. It is more expensive to buy 2x16GB than 4x8GB, but with the later, memory access latency

increases and the frequency and throughput decreases.

o Hard Disk Drive

If MMT is to write meta data on a hard disk drive, it will do it using a database system (e.g., MongoDB)

or files.

We recommend using a Solid-State Drive with at least 20 GB of free space.

o BIOS Settings

The following are some recommendations on BIOS settings. Different platforms will have different

BIOS naming, so the following is mainly for reference:

1. Before starting, consider resetting all BIOS settings to their default.

2. Disable all power saving options such as: Power performance tuning, CPU P-State, CPU C3

Report and CPU C6 Report.

3. Select Performance as the CPU Power and Performance policy.

4. Disable Turbo Boost to ensure the performance scaling increases with the number of cores.

5. Set memory frequency to the highest available number, NOT auto.

6. Disable all virtualization options when you test the physical function of the NIC and turn on

VT-d if VFIO is required.

Prerequisite

• Ubuntu TLS16.04: This Ubuntu version is recommended to run MMT as MMT has been carefully tested

on it. Another Ubuntu version can also run MMT. To run MMT on the other Linux distros and Windows,

please contact us. The example terminal commands used in this manual to prepare MMT running

environment is suitable for a machine running Ubuntu LTS 16.04.

• MongoDB: MMT stores meta data using MongoDB database. For the use of other database systems

please contact us. To install MongoDB follow steps described in the following tutorial

https://docs.mongodb.com/manual/tutorial/install-mongodb- on-ubuntu/. To resume, for Ubuntu 16.04

LTS, one needs to do the following:

1. Import the public key used by the package management system:

▪ sudo apt-key adv --key server hkp://keyserver.ubuntu.com:80 -- recv

0C49F3730359A14518585931BC711F9BA15703C6

2. Create a list file for MongoDB and reload the local package database:

▪ echo "deb [arch = amd64 , arm64] http://repo.mongodb .org/apt/ ubuntuxenial/

mongodb-org/3.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

▪ sudo apt - get update

3. Install the MongoDB package:

▪ sudo apt - get install -y mongodb - org

4. Start MongoDB:

▪ sudo service mongod start

5. Verify that the mongod process has started successfully by checking that the log file

/var/log/mongodb/mongod.log contains the line:

▪ [initandlisten] waiting for connections on port 27017

NodeJS: The MMT-Operator runs using NodeJS. To install NodeJS, please follow the steps described in

https://nodejs.org/en/download/package-manager/. To resume, for Ubuntu 16.04 LTS, one needs to do the

following:

1. Create a list file for NodeJS and reload the local package database:

▪ curl - sL https://deb.nodesource.com/setup_ 6.x | sudo -E bash -

2. Install NodeJS:

▪ sudo apt - get install -y nodejs

3. Verify that NodeJS was successfully installed:

▪ node -v

• Option: One might need to install the REDIS or KAFKA message bus server if the MMT-Operator is to

receive meta data from the MMT-Probe via this type of publish and subscribe systems. MMT supports

the use of the Data Plane Development Kit (DPDK) for high performance capturing of network traffic.

To be able to use MMT with other capturing libraries, e. g., netmap, native socket, etc., please contact

us. Before running MMT with DPDK, we need to set the “huge pages” option. The commands below

will reserve 16 GB for MMT-Probe. Note that this configuration needs to be done after each reboot.

For doing it permanently one needs to modify the arguments of the kernel command line.

#Each huge page has 2MB so we need 8192 pages.

 #Forasingle-nodesystem:

echo8192 > /sys/kernel/mm/hugepages/hugepages -2048kB/nr_hugepages

#ForaNUMAsystem:

echo4096 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

echo4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages

MMT Installation

• Installing MMT:

To install MMT do the following steps:

1. Install MMT:

#Install MMT by order:

#sudo dpkg -i mmt-dpi-<version>.deb

#sudo dpkg -i mmt-security-<version>.deb

#sudo dpkg -i mmt-probe-<version>.deb

#sudo dpkg -i mmt-operator-<version>.deb

#For example:

sudo dpkg -i mmt-dpi_1.6.7.3_Linux_x86_64.deb

sudo dpkg -i mmt-security_1.1.2_7d30208_Linux_x86_64.deb

sudo dpkg -i mmt-probe_1.2.0_7a73b6b_Linux_x86_64.deb

sudo dpkg -i mmt-operator_1.6.2_aa3d383.deb

#Update library path

sudo ldconfig

2. Verify that MMT was correctly installed:

ls -R /opt/mmt

#There must be 6 folders: dpi, examples, operator, plugins, probe, security

3. Refer to the next section to configure MMT as needed. The configuration files of MMT-

Operator and MMT-Probe are located at /opt/mmt/ operator/config.json and

/opt/mmt/probe/conf/online.conf respectively.

For example, to use 2 threads of MMT-Probe to capture traffic at the first NIC binded to DPDK,

one should update in /opt/mmt/ probe/conf/online.conf the following parameters:

Enable output results to files
file - output {
enable = 1
...

}#
Using 2 threads of MMT - Probe
thread -nb = 2
Enable MMT - Security
security2 {
enable = 1
...
}
session - report report_session {
enable = 1
...
}
condition_report report_web {
enable = 1
...
}
condition_report report_ssl {
enable = 1
...
}

enable -proto - without - session - stat = 1

• Start MMT:

Execute the following commands to launch the MMT-Operator and the MMT-Probe.

Start MMT - Operator
sudo mmt - operator

Start MMT - Probe to monitor traffic on NIC eth0

run this command on a new terminal

sudo mmt - probe -c / opt / mmt / probe / conf / online . conf -i eth0
Run MMT with DPDK for high bandwidth :
sudo mmt - probe -c <CORE_MASK > -- -c < configuration file >
For instance , to use 3 cores (2 threads + main) and the configuration file online . conf to
capture traffic on the first port :
sudo mmt - probe -c 0xB -- -c / opt / mmt / probe / conf / online . conf -i 0

For further information about the use of DPDK and CORE_MASK, please refer to

http://dpdk.org/doc/guides/linux_gsg/build_sample_apps.html#logical-core-use-by-applications

• View MMT graphical:

Open a Web browser, then go to to address http://IP_of_server, in which, IP_of_server is IP of

administrator NIC of the server.

Log in to MMT-Operator Web interface on the browser using admin/mmt2nm as

username/password. We recommend changing this default password once logged in.

• Uninstalling MMT:

Execute the following commands to completely remove MMT:

sudo dpkg -r mmt - operator mmt - probe mmt - security mmt -sdk
Do the following for completely removing all of MMT ’s
execution logs :

sudo rm -rf / opt/ mmt

http://dpdk.org/doc/guides/linux_gsg/build_sample_apps.html#logical-core-use-by-applications

Configuration

MMT-Probe

MMT-Probe requires a configuration file for setting different options. MMT-Probe can operate in two modes

PCAP and DPDK. The PCAP mode uses libpcap library, whereas, the DPDK mode uses dpdk library, for

packet capturing. There are two input-mode available for PCAP, i.e. "offline" and "online", while in DPDK,

only "online" input-mode is available. The "offline" input-mode uses PCAP trace file while, the "online"

input-mode uses network interface to capture the packets.

The different available configuration options are listed in the following:

• Probe identifier: The probe-id-number indicates the identifier of the MMT-Probe. All output report

formats contain this identifier.

o probe-id-number = 1

• License file: The license_file_path indicates the path where the license information is present.

o license_file_path = "/opt/mmt/probe/bin/license.key "

• Thread number: The thread-nb indicates the number of threads the MMT-Probe will use for processing

packets. It must be a positive number.

o thread-nb = 1

• Thread queue length: The thread-queue indicates the maximum number of packets that can be

queued for processing by a single thread. For an unlimited queue size, set the value to 0. This value

is used only if PCAP mode is used. Other modes are DPDK and offline analysis of PCAP files.

o thread-queue = 0

• Thread queue data volume: The thread-data indicates the maximum amount of data that can be

queued for processing by a single thread. For an unlimited queue volume, set the value to 0. This

value is used only if PCAP mode is used.

o thread-data = 0

• Packet snaplen: The option snap-len allows indicating the maximum packet size to cap- ture. A value

of 0 will set the default value (65535). This value is used only if PCAP mode is used.

o snap-len = 0

• Log file: The logfile indicates the location where the log messages will be writ- ten.

o logfile = "/opt/mmt/probe/log/online/log.data

• Session timeout: The session-timeout configuration bloc specifies the session timeout in seconds for

different types of applications. The default-session-timeout, long-session-timeout, short-session-

timeout, and live-session-timeout indicate, respectively, the session timeout period for default session,

long lived session, short lived session and live session.

session - timeout

{

0 means default value = 60 seconds. For default session:

default - session - tim eout = 40

#0 means default value = 600 seconds. This is reasonable for Web and SSL connections especially when

long polling is used. Usually applications have a long polling period of about 3~5 minutes.

long-session-timeout = 0

0 means default value = 15 seconds. For short live sessions:

short-session- timeout = 0

#0 means default value = 1500 seconds. For persistent connections like messaging applications and so

on:

live-session-timeout = 0

}

MMT-Probe can capture the packets from a NIC or a trace file (PCAP file). Hence, input-mode and

input-source needs to be specified ac- cording to the requirements:

• Online: This allows near real-time analysis of network traffic. In PCAP mode, the NIC’s network

interface name needs to be identified, whereas in DPDK mode, the interface port number needs to be

identified using the input-source option.

input - mode = " online "
For PCAP it is interface name
input - source = " eth0 "
For DPDK it is interface port number
input - source = "0"

• Offline: This allows analysis of a PCAP trace file. For offline mode, the input-source identifies the name

of the trace file. The offline analysis is only available for the PCAP mode.

input - mode = " offline "
input - source = " wow . PCAP "

• Output file: The file-output configuration bloc indicates the file where the MMT- Probe will write the

reports. The data-file indicates the name of the file, location specifies the folder, retain-files indicates

how many files to retain at one time, and sample_report indicates the output file sampling rate (i.e.,

every x seconds). If sampled_report is enabled, then a separate output file is created every x seconds

(sampling time), otherwise only a single output file will be created. The sampling time is determined

by file-output-period.

Indicates where the traffic reports will be dumped (CSV file)
file - output
{
Set to zero to disable file output (CSV), 1 to enable
enable = 0:
File name where the reports will be dumped:
data - file = " dataoutput . csv "
Location where files are written:
location = "/ opt / mmt / probe / result / report / online /"
Retains the last x sampled files , set to 0 to retain all files (note that the value of retain - files must
be greater than the value of thread_nb + 1):
retain - files = 10
Set to 1 if one needs a sampled file every x seconds or 0 if one needs a single file:
sampled_report = 1
 }

• Output to REDIS: The redis-output configuration bloc indicates that MMT-Probe should

use REDIS to publish the output. The hostname and the port indicate the address (IP-address) and the

port of the redis-server respectively. The redis-server needs to be started beforehand.

Indicates REDIS output:
redis - output
{
Set to zero to disable publishing to REDIS, 1 to enable publishing to REDIS:
enabled = 0
Hostname of REDIS server:
hostname = " localhost "
Port number of REDIS server:
port = 6379

}

• Output to KAFKA: The kafka-output configuration bloc indicates that MMT-Probe should use KAFKA to

publish the output. The hostname and the port indicate the address (IP-address) and the port of the kafka-

server respectively. The kafka-server needs to be started beforehand.

Indicates KAFKA output :
kafka - output
{
Set to zero to disable publishing to KAFKA, 1 to enable publishing to KAFKA:
enabled = 0
Hostname of KAFKA server:
hostname = " localhost "
Port number of KAFKA server:
port = 9092
}

• Output to socket: The socket configuration bloc indicates that the MMT-Probe should send the output

reports using sockets. The socket domain can be UNIX, Internet or both when set to 0, 1 or 2

respectively. The socket descriptor is required for the UNIX domain to specify the location of a socket

file descriptor. The server address and port are required for the Internet domain to specify the address

and the port of a socket. The one socket server is set to 1 to indicates that only one port is available

for communication, i.e., all the threads will send reports to the same port. If it is set to 0, then multiple

socket will be created, i.e., every thread will have a unique port number to send the reports and the

port option should contain a number of ports equal to the number of threads).

Socket configurations
socket
{
Set to 1 to enable , 0 to disable :
enable = 0
0 for Unix domain , 1 for Internet domain , and 2 for both :
domain = 0
Required for UNIX domain . Folder location where socket file descriptor is created :
socket - descriptor = "/ opt / mmt / probe / bin/"
Required for Internet domain . If one - socket - server is set to 0 then the number of port addresses
should be equal to the number of threads (thread_nb). If one - socket - server is set to 1, the
number of port address should be only one :
port = {5000}
Required for Internet domain . IP address of ip_host 1, ip_host 2...
server - address = {" localhost "} # If set to 0 the server contains multiple sockets to
receive the reports . If set to 1 only one socket will receive the reports :
one - socket - server = 1
}

• Statistics reporting period: The stats-period indicates that MMT-Probe should report statistics

every x seconds. A report will be sent every stats-period number of seconds.

Indicates the periodicity for reports :
stats - period = 5 # period in seconds

• File output period: The file-output-period indicates the CSV (Common Separated Values) file

output period in seconds. A new file will be generated every file-output-period number of seconds.

Indicates the periodicity for reporting output file :
file - output - period = 5 # sampled reporting

• Reports per message(socket): The num-of-report-per-msg indicates the number of reports included

in one socket transaction (message). A socket message will contain num-of-report-per-msg messages

in one transaction.

Indicates the number of report per message (sockets).
Default is 1. This option is only available for MMT - Security using sockets :

num -of - report -per -msg = 5

• Cache-size for reporting: The cache-size-for-reporting indicates the maximum number of reports

 can be cached before flushing to a file.

A value of 0 means that MMT will decide how many packets to cache (default = 300000) :
cache -size -for - reporting = 300000

• Protocols without sessions: The enable-proto-without-session-stat enables or disables the

reporting of protocols that do not belong to any session (e.g., ARP).

A value of 1 will enable and 0 will disable the protocol statics :
enable -proto - without - session - stat = 0

• Protocols with sessions: The session-report configuration bloc enables or disables the reporting

of protocols that belong to a session. The output reports can be reported to a file, redis, kafka or a

combination of these channels. This is specified in the output-channel field. If nothing is specified, the

default channel used will be a file.

indicates session based reporting
session - report report_session
{
Set to 1 for reporting session reports , 0 to disable :
enable = 0
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}
}

• IP fragmentation: The enable-IP-fragmentation-report configures the reporting of IP fragmentation

information.

Set to 1 to enable , 0 to disable
enable -IP - fragmentation - report = 0

• Micro flows: The micro-flows configuration bloc specifies the criteria to use to determine if a flow

is a micro flow. A single micro flow statistic will not be reported separately, statistics from several micro

flows will be aggregated and reported together. Aggregating micro flows statistics reduces the number

of reports; however, one will lose fine grained information about each flow. The include-packet-count

indicates the packet count threshold to be used to determine that a flow is a micro flow. The include-

byte-count indicates the data volume threshold in KB to be used to determine if a flow is a micro flow.

The report-packet-count indicates the packet count threshold to be used for creating micro flows

aggregated statistics reports. The report-byte-count indicates the data volume threshold in KB to be

used for creating micro flows aggregated statistics reports. The report-flow-count indicates the flows

count threshold to be used for creating micro flows aggregated statistics re- ports. The output reports

can be reported to a file, redis, kafka or a combination of these channels. This is specified in the output-

channel field. If nothing is specified, the default channel used will be a file.

micro - flows
{
Set to 1 to enable , 0 to disable :
enable = 0
Packets count threshold to consider a flow as a micro flow :
include - packet - count = 0
Data volume threshold in KB to consider a flow as a micro flow :
include -byte - count = 0
Packets count threshold to report micro flows aggregated statistics :
report - packet - count = 10000
Data volume threshold in KB to report micro flows aggregated statistics :

report -byte - count = 5000
Flows count threshold to report micro flows aggregated statistics :
report -flow - count = 10
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ;
for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output .
enable = 1, redis - output . enable = 1, kafka - output .
enable = 1).
output - channel = {redis , kafka , file }

}

• Data output: The data-output is intended for defining the criteria to be used regarding the reporting of

specific meta-data. For the time being, it only includes criteria to indicate when to include user agent

parsing. The include-user-agent indicates the threshold in terms of data volume for parsing the user

agent in Web traffic. This configuration bloc will be extended in the future when new reporting needs

arise.

data - output
Indicates the threshold in terms of data volume for parsing the user agent in Web traffic .
The value is in kiloBytes (kB). If the value is zero , this indicates that the parsing of the user agent
should be done.
To disable the user agent parsing , set the threshold to a negative value (-1).
include -user - agent = 32
}

• Custom event-based reports: The event_report configuration bloc allows to indicate what protocol

attributes should be reported when a certain event is triggered. The event indicates the condition that

should be satisfied in order to report the attributes; and, the attributes indicate the application (protocol)

attributes that need to be reported when an event occurs. Events and attributes should be in

"protocol.attribute" format. There can be multiple event_report configuration blocs. Each event_report

bloc is uniquely identified by its name; for instance, event_report report1. The output reports can be

reported to a file, redis, kafka or a combination of these channels, as specified in the output-channel

field. However, if nothing is specified, the default value is a file.

event_report report1
{
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the event :
event = " rtp . burst_loss "
Indicates the list of attributes that are reported when a event is triggered :
attributes = {" rtp . timestamp ", "rtp . jitter "}
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ;
for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output .
enable = 1, redis - output . enable = 1, kafka - output .
enable = 1). output - channel = {}

}

• Custom condition-based reports: The condition_report bloc configures the reports on different

application (WEB, FTP, RTP, SSL, etc) that are a part of the session report. These reports are

generated and sent to the output channels only when session-report configuration bloc is enabled.

The condition_report.report_web, condition_report.report_ftp, condition_report.report_rtp, and

condition_report.report_ssl configuration blocs specify the reports to be generated for HTTP (web),

FTP, RTP and SSL applications, respectively. The condition indicates the condition that a flow should

satisfy (for example, if a flow corresponds to WEB traffic). The attributes and handlers indicate the

application (protocol) attributes and their corresponding handlers that need to be registered in order

to generate the reports. The attributes field should be in the "protocol.attribute" format.

WEB report

condition_report report_web

{
Reports are sent to output channels only when session -report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 1
Indicates the condition to be satisfied .
condition = "WEB "
Indicates the list of attributes for reporting .
attributes = {" http . uri"," http . method "," http . response ","
http . content_type "," http . host ", " http . user_agent ","
http . referer "," http . xcdn_seen "," http . content_len "}
Indicates the list of handlers corresponding to the above attributes .
handlers = {" uri_handle "," http_method_handle ","
http_response_handle "," mime_handle "," host_handle ","
useragent_handle "," referer_handle "," xcdn_seen_handle ",
" content_len_handle "}
}

File Transfer Protocol (FTP)

condition_report report_ftp

{
Reports are sent to output the output channels only when session - report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 1
Indicates the condition to be satisfied :
condition = "FTP "
Indicates the list of attributes for reporting :
attributes = {" ftp . data_direction "," ftp. p_payload "," ftp.
packet_type "," ftp . packet_payload_len ", "ftp . data_type "
, " ftp . file_name "," ftp . packet_request ", " ftp.
packet_request_parameter ","ftp . packet_response_code ","
ftp . packet_reponse_value "," ftp . transfer_type "," ftp .
ftp_session_mode ","ftp . data_direction "," ftp .
file_last_modified "," ftp. session_connection_type "," ftp
. user_name "," ftp . password "," ftp . last_command "," ftp.
last_response_code "," ftp. file_size "}
Indicates the list of handlers corresponding to the above attributes :
handlers = {" ftp_data_direction_handle "," NULL "," NULL ","
NULL "," NULL "," ftp_file_name_handle ","
ftp_packet_request_handle "," NULL "," NULL ","
ftp_response_value_handle "," NULL "," NULL "," NULL "," NULL "
," ftp_session_connection_type_handle ","
ftp_user_name_handle "," ftp_password_handle "," NULL ", "
ftp_response_code_handle "," ftp_file_size_handle "}
}

Real-time Transport Protocol

condition_report report_rtp

{
Reports are sent to the output channels only when session - report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the condition to be satisfied :
condition = "RTP "

Indicates the list of attributes for reporting :
attributes = {" rtp . version ","rtp . jitter "," rtp . loss ","rtp .
order_err "," rtp . burst_loss "}
Indicates the list of handlers corresponding to the above attributes :
handlers = {" rtp_version_handle "," rtp_jitter_handle ","
rtp_loss_handle "," rtp_order_error_handle ","
rtp_burst_loss_handle "}
}

Secure Sockets Layer (SSL)

condition_report report_ssl

{
Reports are sent to output channels only when session -report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the condition to be satisfied :
condition = "SSL "
Indicates the list of attributes for reporting :
attributes = {" ssl . server_name "}
Indicates the list of handlers corresponding to the above attributes :
handlers = {" ssl_server_name_handle "}
}

• HTTP reconstruction: The condition_report.reconstruct_http configuration bloc indicates that the

MMT-Probe should reconstruct the HTTP data. To enable the reconstruction, the session-report

configuration bloc should also be enabled.

The location indicates the location where the files are reconstructed; condition indicates the condition

that a flow should satisfy for reconstruction; and, attributes and handlers indicate the application

(protocol) attributes and their corresponding handlers that need to be registered in order to reconstruct

the data. The attributes field should be in the "protocol.attribute" format. Note that currently, if enabled,

only HTTP files are reconstructed, and no HTTP reports are generated.

Set reconstruct_http . enable = 1 and session - report . enable = 1 for http_reconstruction .
condition_report reconstruct_http
{
Set to 1 for HTTP reconstruction , 0 to disable .
enable = 0
Indicates the condition .
condition = "HTTP - RECONSTRUCT "
Location where the files are reconstructed .
location = ""
Indicates the list of attributes .
attributes = {" tcp . payload_len ", " tcp . p_payload ", " http .
msg_start ", " http . header ", " http . headers_end ", " http .
data ", " http . msg_end ", " http . method ", " http . response ",
" http . content_type "," http . uri "}
Indicates the list of handlers corresponding to the above attributes .
handlers = {" NULL ", " NULL ", " http_message_start_handle ",
" http_generic_header_handle ", " http_headers_end_handle
"," http_data_handle ", " http_message_end_handle ", " NULL
", " NULL ", " NULL ", " NULL ", " NULL "}

}

• Radius: The radius-output bloc configures the reports for the RADIUS proto- col. The include-msg

indicates the message one needs to report, and include-condition indicates the condition to be met in

order to report. The output reports can be reported to a file, redis, kafka or a combination of these

channels, as specified in the output-channel field. However, if nothing is specified, the default value is

a file.

Indicates the strategy for RADIUS reporting

radius - output
{
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the message one needs to report .
Set to 0 to report all messages .
Set to a number greater than 0 to indicate the message to report (1 for message , 2 for
conditions):
include - msg = 0
Indicates the condition to be met in order to report a message .
Condition set to 1 indicates that the report should be generated iff the IP to MSISDN
mapping is present .
This is the only supported condition for this version .
Condition set to 0 to eliminate the condition .
include - condition = 0
Reports are sent to the output channel . The default value is a file .
More than one output - channel is possible . In this case , the value should be a set of
comma - separated values ;
for example : {redis , kafka , file }.
Reports are sent to the output channels only when the global parameters are enabled (file
- output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}

}

• Security: The security output configuration blocs allow specifying the security re- porting. There are

three different modules for security which are listed below:

Module 1: The security1 is for low bandwidth single threaded operation. The results-dir indicates

where the security reports will be written; and, the properties-file specifies the location of an XML file

where the security rules have been specified. This module is only available for the PCAP mode.

Security1
{
Set to 1 to perform security analysis , 0 to disable it:
enable = 0
Folder where the detected breaches will be reported :
results - dir = "/ opt/ mmt/ probe / result / security / online /"
File containing security properties and rules :
properties - file = " test_files / properties_acdc . xml "
}

• Module 2: The security2 module is for high bandwidth multi-threaded operation. The thread-nb

indicates the number of security threads for each probe thread; the exclude-rules indicates the range

of rules to be excluded from the verification; and, the rules-mask indicates the range of rules to be

verified by each security thread. The generated reports can be written to a file, redis, kafka or a

combination of these channels, as specified in the output-channel field. However, if nothing is

specified, the default value is a file.

security2
{
Set to 1 enable , 0 to disable it:
enable = 0
The number of security threads per one probe thread , e.g., if we have 16 probe threads
and thread -nb = x, then x *16 security threads will be used .
If set to zero this means that the security analysis will be done in the same threads used
by the probe .
thread -nb = 1
Range of rules to be excluded from the verification :
exclude - rules = ""
Mapping of rules to the security threads :
Format : rules - mask = (thread - index :rule - range);
Thread - index = a number greater than 0;
rule - range = number greater than 0, or a range of numbers greater than 0.

Example : If we have thread -nb = 3 and "(1:1 ,2 ,4 -6) (2:3) ",
thread 1 verifies rules 1 ,2 ,4 ,5 ,6;
thread 2 verifies only rule 3; and
thread 3 verifies the rest
rules - mask = ""
Reports are sent to the output channels . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of
comma - separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enable (file -
output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1)
output - channel = {}
}

• Module 3: The security-report is for high bandwidth multi-threaded operation. The MMT-Probe and

the MMT-Security exist separately for this mode (i.e., two separate executables). The communication

between the MMT-Probe and the MMT-Security modules is done through sockets. The socket should

be configured beforehand. The attributes indicate the list of protocol attributes that need to be reported.

security - report localhost {
Set to 1 to enable and 0 to disable:
enable = 0
Indicates the list of attributes that are reported when an event is triggered :
attributes = { "ip. dst ","ip.src "," tcp . dest_port "," tcp .
flags "," arp . ar_op "," arp . ar_sha ","arp . ar_sip "," ethernet
. dst "," ethernet .src "," tcp . seq_nb "," tcp. ack_nb ","ip.
mf_flag ","ip. frag_offset ","ip. tot_len "," meta .
packet_len ","tcp . payload_len "," tcp . src_port ","ip.
identification "," tcp . urg "," tcp. fin"," tcp . psh " }
}

• The behavior : The behavior configuration bloc indicates that the MMT-Probe should produce behavior

reports. The location indicates the folder where the reports will be written.

{
Set to 1 to enable , 0 to disable :
enable = 0
Folder to write the output :
location = "/ opt / mmt / probe / result / behaviour / online /"
}

• FTP reconstruction: The reconstruct-ftp output configuration bloc indicates that the MMT-Probe should

reconstruct FTP files and generate FTP reports. To enable the reconstruction, the session-report

configuration bloc and session-report.ftp_report.enable should also be enabled. The location indicates

where the FTP file will be stored. The reports can be written to a file, redis, kafka or a combination of

these channels, as specified in the output-channel field. However, if nothing is specified, the default

value is a file. The FTP reconstruction is only available for the single threaded operation.

Indicates that FTP data reconstruction should be done .
To enable the reconstruction , also enable the options session - report . enable and
session - report . ftp_report . enable

.

reconstruct - ftp
{
Set to 1 to enable , 0 to disable it: enable = 0
Indicates the folder where the output file is created :
location = "/ opt / mmt /"
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of
comma - separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g.,
file - output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}

}

• CPU and memory usage: The cpu-mem-usage configuration bloc defines the CPU and memory

usage reports to be generated. The frequency indicates the time-interval for reporting. The output

reports can be reported to a file, redis, kafka or a combination of these channels, as specified in the

output-channel field. However, if nothing is specified, the default value is a file.

CPU and memory usage monitor

cpu -mem - usage
{
Set to 1 to perform cpu - mem reporting , 0 to disable it:
enable = 0
Time - interval for reporting
frequency = 5
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of
comma - separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g.,
file - output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1):
output - channel = {}
}

• Security multi-session: The security-report-multisession bloc configures the report for security multi-

session. The attributes indicate the list of protocol attributes to be reported. The output reports can be

reported to a file, redis, kafka or a combination of these channels, as specified in the output-channel

field. However, if nothing is specified, the default value is a file.

This report is for security multi - session security :
security - report - multisession remote {
Set to 1 to perform multi - session reporting , 0 to disable it:
enable = 0
Indicates the list of attributes that are reported :
attributes = { "nfs . file_name "}
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of
comma - separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g.,
file - output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}
}

MMT-Operator

The configuration for the MMT-Operator is defined in the /opt/mmt/ operator/config.json file. Its structure

is as follows:

{
" database_server ": {
" host ": " localhost ",
" port ": 27017
},
" redis_server ": {
" host ": " localhost ",
" port ": 6379
},
" kafka_server ": {
" host ": " localhost ",
" port ": 2181
},
" data_folder ": "/ opt / mmt / probe / result / report / online /",
" delete_data ": true ,
" input_mode ": " kafka ",
" probe_analysis_mode ": " online ",
" probe_stats_period ": 5,

" local_network ": [
{
"ip": "192.168.0.0" ,
" mask ": "255.255.0.0"
},
{
"ip": "172.16.0.0" ,
" mask ": "255.240.0.0"
},{
"ip": "10.0.0.0" ,
" mask ": "255.0.0.0"
},{
"ip": " fe80 ::" ,
" mask ": "8"
},{
"ip": "0.0.0.0" ,
" mask ": "255.255.255.255"
},{
"ip": "255.255.255.255" ,
" mask ": "255.255.255.255"
},{
"ip": "127.0.0.1" ,
" mask ": "255.255.255.255"
}
],
" buffer ": {
" max_length_size ": 50000 ,
" max_interval ": 30
},
" micro_flow ":{
" packet ": 1,
" byte " : 64
},
" retain_detail_report_period ": 604800 ,
" port_number ": 80,
" log_folder ": "/ tmp /",
" is_in_debug_mode ": true

}

The content of config.json can be divided into the following groups:

• Input: This group specifies how MMT-Operator can receive meta-data generated by the MMT-Probe.

The value of input_mode can be one of the following:

o "file": MMT-Operator will read meta-data from a file in the folder data_folder. After
reading a file, MMT-Operator can delete the file and its semaphore depending on the
value defined by delete_data.

o "redis": MMT-Operator will receive meta-data from a REDIS sever defined by redis_server

o "kafka": MMT-Operator will receive meta-data from a KAFKA sever defined by kafka_server

• Behaviour: This group configures the behaviour of the MMT-Operator:

o port_number is a port number used to connect to the MMT- Operator web application.

o local_network is an array indicating IP ranges of local networks. Each network is given by an

IP and network mask.

o buffer limits the size of buffers of MMT-Operator either by (i) the number of elements,

max_length_size, or by the timestamp, max_interval. With a small buffer, MMT-Operator must

flush data more frequently to the database and to the Web browser clients.

o micro_flow indicates retaining detailed information on small flows. This parameter set defines

how the MMT-Operator defines micro- flows: maximum number of packets in a flow and

maximum number of bytes of data in a flow.

o probe_stats_period is a number, in seconds, indicating the rate of statistic reports from the

MMT-Probe. This number must be the same as the value given by stats_period in the

configuration file of MMT-Probe.

o probe_analysis_mode represents the executing mode of MMT- Probe. Its value must be the

same as the value given by input-mode in the configuration file of MMT-Probe, e. g., either

"online" or "offline".

• Maintain Database: This group contains some thresholds used for the maintenance of the historical

database.

o retain_detail_report_period is an interval in seconds indicating how long must the MMT-

Operator retain information in the collection called detail in the database. This collection

contains detailed information on each report generated by the MMT-Probe. For example, in

the file config.json above, MMT-Operator will delete this detailed information if it is older than

7 days. Please note that the MMT-Operator does not delete any information related to other

statistics, such as, protocols/applications, bandwidth, etc.

• Execution log: This group configures the execution logs of the MMT-Operator.

o log_folder is the folder that will contain the execution logs of the MMT-Operator.

o is_in_debug_mode determines whether the MMT-Operator is running in debug mode, i. e.,

producing detailed log information. How- ever, this will slow down the MMT-Operator. Its value

can be true or false.

MMT-Security

We can modify the default thresholds of the MMT-Security module in the file /opt/mmt/security/mmt-

security.conf. The file must be created if it does not already exist.

Input:

Maximum size , in bytes , of a report received from the MMT - Probe :
input . max_message_size 3000

Security Engine:

Maximum number of reports that will be stored in a ring buffer:
security .smp . ring_size 1000
Maximum number of instances of a rule:
security . max_instances 100000

Alert:

Number of consecutive alerts for one rule without the full description. The first alert of a
rule always contains a description of its rule. However, to avoid huge outputs, a certain
number of consecutive alerts of that rule can be sent without the full description. For
instance, if value is 20 then the first alert will contain the full description and the next 20
alerts generated by the same rule will not.
Set value to 0 to include the description in all alerts.
output . ignore_description 20

A. MMT-Probe

MMT-Probe requires a configuration file for setting different options.

MMT-Probe can operate in two modes PCAP and DPDK. The PCAP mode uses libpcap library, whereas, the

DPDK mode uses dpdk library, for packet capturing. There are two input-mode available for PCAP, i.e. "offline"

and "online", while in DPDK, only "online" input-mode is available. The "offline" input-mode uses PCAP trace

file while, the "online" input-mode uses network interface to capture the packets.

The different available configuration options are listed in the following:

• Probe identifier: The probe-id-number indicates the identifier of the MMT-Probe. All output report

formats contain this identifier.

probe -id - number = 1

• License file: The license_file_path indicates the path where the license information is present.

license_file_path = "/ opt / mmt / probe /bin / license .key "

• Thread number: The thread-nb indicates the number of threads the MMT-Probe will use for

processing packets. It must be a positive number.

thread -nb = 1

• Thread queue length: The thread-queue indicates the maximum number of packets that can be

queued for processing by a single thread. For an unlimited queue size, set the value to 0. This value

is used only if PCAP mode is used. Other modes are DPDK and offline analysis of PCAP files.

thread - queue = 0

• Thread queue data volume: The thread-data indicates the maximum amount of data that can be

queued for processing by a single thread. For an unlimited queue volume, set the value to 0. This

value is used only if PCAP mode is used.

thread - data = 0

• Packet snaplen: The option snap-len allows indicating the maximum packet size to capture. A value

of 0 will set the default value (65535). This value is used only if PCAP mode is used.

snap - len = 0

• Log file: The logfile indicates the location where the log messages will be written.

logfile = "/ opt / mmt / probe /log / online / log . data

• Session timeout: The session-timeout configuration bloc specifies the session timeout in seconds for

different types of applications. The default-session-timeout, long-session-timeout, short-session-

timeout, and live-session-timeout indicate, respectively, the session timeout period for default session,

long lived session, short lived session and live session.

session - timeout
{
0 means default value = 60 seconds . For default session:

default - session - timeout = 40

0 means default value = 600 seconds . This is reasonable for Web and SSL connections especially
when long polling is used . Usually applications have a long polling period of about 3~5 minutes .
long - session - timeout = 0
0 means default value = 15 seconds . For short live sessions :
short - session - timeout = 0
0 means default value = 1500 seconds . For persistent connections like messaging applications and
so on:
live - session - timeout = 0

}

MMT-Probe can capture the packets from a NIC or a trace file (PCAP file). Hence, input-mode and input-

source needs to be specified according to the requirements:

• Online: This allows near real-time analysis of network traffic. In PCAP mode, the NIC’s network

interface name needs to be identified, whereas in DPDK mode, the interface port number needs to be

identified using the input-source option.

input - mode = " online "
For PCAP it is interface name
input - source = " eth0 "
For DPDK it is interface port number
input - source = "0"

• Offline: This allows analysis of a PCAP trace file. For offline mode, the input-source identifies the

name of the trace file. The offline analysis is only available for the PCAP mode.

input - mode = " offline "
input - source = " wow . PCAP "

• Output to file: The file-output configuration bloc indicates the file where the MMTProbe will write the

reports. The data-file indicates the name of the file, location specifies the folder, retain-files indicates

how many files to retain at one time, and sample_report indicates the output file sampling rate (i.e.,

every x seconds). If sampled_report is enabled, then a separate output file is created every x seconds

(sampling time), otherwise only a single output file will be created. The sampling time is determined

by file-output-period.

Indicates where the traffic reports will be dumped (CSV file)
file - output
{
Set to zero to disable file output (CSV), 1 to enable
enable = 0:
File name where the reports will be dumped :
data - file = " dataoutput . csv "
Location where files are written :
location = "/ opt / mmt / probe / result / report / online /"
Retains the last x sampled files , set to 0 to retain all files (note that the value of retain - files must
be greater than the value of thread_nb + 1):
retain - files = 10
Set to 1 if one needs a sampled file every x seconds or 0 if one needs a single file :
sampled_report = 1
}

• Output to REDIS: The redis-output configuration bloc indicates that MMT-Probe should use REDIS

to publish teh output. The hostname and the port indicate the address (IP-address) and the port of the

redis-server respectively.

The redis-server needs to be started beforehand.

Indicates REDIS output :
redis - output
{
Set to zero to disable publishing to REDIS , 1 to enable publishing to REDIS :
enabled = 0
Hostname of REDIS server :
hostname = " localhost "
Port number of REDIS server :
port = 6379

}

• Output to KAFKA: The kafka-output configuration bloc indicates that MMT-Probe should use KAFKA

to publish the output. The hostname and the port indicate the address (IP-address) and the port of the

kafka-server respectively.

The kafka-server needs to be started beforehand.

Indicates KAFKA output :

kafka - output
{
Set to zero to disable publishing to KAFKA , 1 to enable publishing to KAFKA :
enabled = 0
Hostname of KAFKA server :
hostname = " localhost "
Port number of KAFKA server :
port = 9092

}

• Output to socket: The socket configuration bloc indicates that the MMT-Probe should send the output

reports using sockets. The socket domain can be UNIX, Internet or both when set to 0, 1 or 2

respectively. The socket-descriptor is required for the UNIX domain to specify the location of a socket

file descriptor. The server-address and port are required for the Internet domain to specify the address

and the port of a socket. The one-socket-server is set to 1 to indicates that only one port is available

for communication, i.e., all the threads will send reports to the same port. If it is set to 0, then multiple

socket will be created, i.e., every thread will have a unique port number to send the reports and the

port option should contain a number of ports equal to the number of threads).

Socket configurations
socket
{
Set to 1 to enable , 0 to disable :
enable = 0
0 for Unix domain , 1 for Internet domain , and 2 for both :
domain = 0
Required for UNIX domain . Folder location where socket file descriptor is created :
socket - descriptor = "/ opt / mmt / probe / bin/"
Required for Internet domain . If one - socket - server is set to 0 then the number of port addresses
should be equal to the number of threads (thread_nb). If one - socket - server is set to 1, the
number of port address should be only one :
port = {5000}
Required for Internet domain . IP address of ip_host 1, ip_host 2...
server - address = {" localhost "}
If set to 0 the server contains multiple sockets to receive the reports . If set to 1 only one socket
will receive the reports :
one - socket - server = 1
}

• Statistics reporting period: The stats-period indicates that MMT-Probe should report statistics every

x seconds. A report will be sent every stats-period number of seconds.

Indicates the periodicity for reports :
stats - period = 5 # period in seconds

• File output period: The file-output-period indicates the CSV (Common Separated Values) file output

period in seconds. A new file will be generated every file-output-period number of seconds.

Indicates the periodicity for reporting output file :
file - output - period = 5 # sampled reporting

• Reports per message (socket): The num-of-report-per-msg indicates the number of reports included

in one socket transaction (message). A socket message will contain num-of-report-per-msg messages

in one transaction.

Indicates the number of report per message (sockets).
Default is 1. This option is only available for MMT -Security using sockets :

num -of - report -per -msg = 5

• Cache-size for reporting: The cache-size-for-reporting indicates the maximum number of reports

that can be cached before flushing to a file.

A value of 0 means that MMT will decide how many packets to cache (default = 300000) :
cache -size -for - reporting = 300000

• Protocols without sessions: The enable-proto-without-session-stat enables or disables the reporting

of protocols that do not belong to any session (e.g., ARP).

A value of 1 will enable and 0 will disable the protocol statics :
enable -proto - without - session - stat = 0

• Protocols with sessions: The session-report configuration bloc enables or disables the reporting of

protocols that belong to a session. The output reports can be reported to a file, redis, kafka or a

combination of these channels. This is specified in the output-channel field. If nothing is specified, the

default channel used will be a file.

indicates session based reporting
session - report report_session
{
Set to 1 for reporting session reports , 0 to disable :
enable = 0
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output . enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}

}

• IP fragmentation: The enable-IP-fragmentation-report configures the reporting of IP fragmentation

information.

Set to 1 to enable , 0 to disable
enable -IP - fragmentation - report = 0

• Micro flows: The micro-flows configuration bloc specifies the criteria to use to determine if a flow is a

micro flow. A single micro flow statistic will not be reported separately, statistics from several micro

flows will be aggregated and reported together. Aggregating micro flows statistics reduces the number

of reports; however, one will lose fine grained information about each flow. The include-packet-count

indicates the packet count threshold to be used to determine that a flow is a micro flow. The include-

byte-count indicates the data volume threshold in KB to be used to determine if a flow is a micro flow.

The report-packet-count indicates the packet count threshold to be used for creating micro flows

aggregated statistics reports. The report-byte-count indicates the data volume threshold in KB to be

used for creating micro flows aggregated statistics reports. The report-flow-count indicates the flows

count threshold to be used for creating micro flows aggregated statistics reports. The output reports

can be reported to a file, redis, kafka or a combination of these channels. This is specified in the output-

channel field. If nothing is specified, the default channel used will be a file.

micro - flows
{
Set to 1 to enable , 0 to disable :
enable = 0
Packets count threshold to consider a flow as a micro flow:
include - packet - count = 0
Data volume threshold in KB to consider a flow as a micro flow:
include -byte - count = 0
Packets count threshold to report micro flows aggregated statistics:
report - packet - count = 10000
Data volume threshold in KB to report micro flows aggregated statistics:
report -byte - count = 5000
Flows count threshold to report micro flows aggregated statistics:
report -flow - count = 10
Reports are sent to the output channel. The default value is a file.

More than one output channel is possible. In this case, the value should be a set of comma -
separated values; for example: {redis, kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output. enable = 1, redis - output. enable = 1, kafka - output. enable = 1).
output - channel = {redis , kafka , file }

}

• Data output: The data-output is intended for defining the criteria to be used regarding the reporting of

specific meta-data. For the time being, it only includes criteria to indicate when to include user agent

parsing. The include-user-agent indicates the threshold in terms of data volume for parsing the user

agent in Web traffic. This configuration bloc will be extended in the future when new reporting needs

arise.

data - output
{
Indicates the threshold in terms of data volume for parsing the user agent in Web traffic .
The value is in kiloBytes (kB). If the value is zero , this indicates that the parsing of the user agent
should be done .
To disable the user agent parsing , set the threshold to a negative value (-1).
include -user - agent = 32

}

• Custom event based reports: The event_report configuration bloc allows to indicate what protocol

attributes should be reported when a certain event is triggered. The event indicates the condition that

should be satisfied in order to report the attributes; and, the attributes indicate the application (protocol)

attributes that need to be reported when an event occurs. Events and attributes should be in

"protocol.attribute" format. There can be multiple event_report configuration blocs. Each event_report

bloc is uniquely identified by its name; for instance, event_report report1. The output reports can be

reported to a file, redis, kafka or a combination of these channels, as specified in the output-channel

field. However, if nothing is specified, the default value is a file.

event_report report1
{
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the event :
event = " rtp . burst_loss "
Indicates the list of attributes that are reported when
a event is triggered :
attributes = {" rtp . timestamp ", "rtp . jitter "}
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output .
enable = 1, redis - output . enable = 1, kafka - output .
enable = 1). output - channel = {}

}

• Custom condition based reports: The condition_report bloc configures the reports on different

application (WEB, FTP, RTP, SSL, etc) that are a part of the session-report. These reports are

generated and sent to the output channels only when session-report configuration bloc is enabled.

The condition_report.report_web, condition_report.report_ftp, condition_report.report_rtp, and

condition_report.report_ssl configuration blocs specify the reports to be generated for HTTP (web), FTP, RTP

and SSL applications, respectively. The condition indicates the condition that a flow should satisfy (for

example, if a flow corresponds to WEB traffic). The attributes and handlers indicate the application (protocol)

attributes and their corresponding handlers that need to be registered in order to generate the reports. The

attributes field should be in the "protocol.attribute" format.

WEB report
condition_report report_web
{
Reports are sent to output channels only when session -report . enable = 1.
Set to 1 to enable , 0 to disable :
 enable = 1
Indicates the condition to be satisfied .
condition = "WEB "
Indicates the list of attributes for reporting .
attributes = {" http . uri"," http . method "," http . response ","
http . content_type "," http . host ", " http . user_agent ","
http . referer "," http . xcdn_seen "," http . content_len "}
Indicates the list of handlers corresponding to the above attributes .
handlers = {" uri_handle "," http_method_handle ","
http_response_handle "," mime_handle "," host_handle ","
useragent_handle "," referer_handle "," xcdn_seen_handle ",
" content_len_handle "}

}

File Transfer Protocol (FTP)
condition_report report_ftp
{
Reports are sent to output the output channels only when session - report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 1
Indicates the condition to be satisfied :
condition = "FTP "
Indicates the list of attributes for reporting :
attributes = {" ftp . data_direction "," ftp. p_payload "," ftp.
packet_type "," ftp . packet_payload_len ", "ftp . data_type "
, " ftp . file_name "," ftp . packet_request ", " ftp.
packet_request_parameter ","ftp . packet_response_code ","
ftp . packet_reponse_value "," ftp . transfer_type "," ftp .
ftp_session_mode ","ftp . data_direction "," ftp .
file_last_modified "," ftp. session_connection_type "," ftp
. user_name "," ftp . password "," ftp . last_command "," ftp.
last_response_code "," ftp. file_size "}
Indicates the list of handlers corresponding to the above attributes :
handlers = {" ftp_data_direction_handle "," NULL "," NULL ","
NULL "," NULL "," ftp_file_name_handle ","
ftp_packet_request_handle "," NULL "," NULL ","
ftp_response_value_handle "," NULL "," NULL "," NULL "," NULL "
," ftp_session_connection_type_handle ","
ftp_user_name_handle "," ftp_password_handle "," NULL ", "
ftp_response_code_handle "," ftp_file_size_handle "}
}

Real-time Transport Protocol
condition_report report_rtp
{
Reports are sent to the output channels only when session - report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the condition to be satisfied :
condition = "RTP "
Indicates the list of attributes for reporting :
attributes = {" rtp . version ","rtp . jitter "," rtp . loss ","rtp .
order_err "," rtp . burst_loss "}
Indicates the list of handlers corresponding to the
above attributes :
handlers = {" rtp_version_handle "," rtp_jitter_handle ","
rtp_loss_handle "," rtp_order_error_handle ","
rtp_burst_loss_handle "}

}

Secure Sockets Layer (SSL)
condition_report report_ssl
{ # Reports are sent to output channels only when session - report . enable = 1.
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the condition to be satisfied :
condition = "SSL "
Indicates the list of attributes for reporting :
attributes = {" ssl . server_name "}
Indicates the list of handlers corresponding to the above attributes :
handlers = {" ssl_server_name_handle "}

}

• HTTP reconstruction: The condition_report.reconstruct_http configuration bloc indicates that the

MMT-Probe should reconstruct the HTTP data. To enable the reconstruction, the session-report

configuration bloc should also be enabled. The location indicates the location where the files are

reconstructed; condition indicates the condition that a flow should satisfy for reconstruction; and,

attributes and handlers indicate the application (protocol) attributes and their corresponding handlers

that need to be registered in order to reconstruct the data. The attributes field should be in the

"protocol.attribute" format. Note that currently, if enabled, only HTTP files are reconstructed and no

HTTP reports are generated.

Set reconstruct_http . enable = 1 and session - report . enable = 1 for http_reconstruction .
condition_report reconstruct_http
{
Set to 1 for HTTP reconstruction , 0 to disable .
enable = 0
Indicates the condition .
condition = "HTTP - RECONSTRUCT "
Location where the files are reconstructed .
location = ""
Indicates the list of attributes .
attributes = {" tcp . payload_len ", " tcp . p_payload ", " http .
msg_start ", " http . header ", " http . headers_end ", " http .
data ", " http . msg_end ", " http . method ", " http . response ",
" http . content_type "," http . uri "}
Indicates the list of handlers corresponding to the above attributes .
handlers = {" NULL ", " NULL ", " http_message_start_handle ",
" http_generic_header_handle ", " http_headers_end_handle
"," http_data_handle ", " http_message_end_handle ", " NULL
", " NULL ", " NULL ", " NULL ", " NULL "}

}

• Radius: The radius-output bloc configures the reports for the RADIUS protocol. The include-msg

indicates the message one needs to report, and include-condition indicates the condition to be met in

order to report. The output reports can be reported to a file, redis, kafka or a combination of these

channels, as specified in the output-channel field. However, if nothing is specified, the default value is

a file.

Indicates the strategy for RADIUS reporting
radius - output
{
Set to 1 to enable , 0 to disable :
enable = 0
Indicates the message one needs to report .
Set to 0 to report all messages .
Set to a number greater than 0 to indicate the message to report (1 for message , 2 for conditions
):
include - msg = 0

 # Indicates the condition to be met in order to report a message .
Condition set to 1 indicates that the report should be generated iff the IP to MSISDN mapping is
present . This is the only supported condition for this version . Condition set to 0 to eliminate the
condition .
include - condition = 0
Reports are sent to the output channel . The default value is a file .
More than one output - channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to the output channels only when the global parameters are enabled (file - output
. enable = 1, redis - output . enable = 1, kafka - output . enable = 1).
output - channel = {}

}

• Security: The security output configuration blocs allow specifying the security reporting. There are

three different modules for security which are listed below:

Module 1: The security1 is for low bandwidth single threaded operation. The results-dir indicates

where the security reports will be written; and, the properties-file specifies the location of an XML file

where the security rules have been specified. This module is only available for the PCAP mode.

security1
{
Set to 1 to perform security analysis , 0 to disable it:
enable = 0
Folder where the detected breaches will be reported :
results - dir = "/ opt/ mmt/ probe / result / security / online /"
File containing security properties and rules :
properties - file = " test_files / properties_acdc . xml "

}

Module 2: The security2 module is for high bandwidth multi-threaded operation. The thread-nb

indicates the number of security threads for each probe thread; the exclude-rules indicates the range

of rules to be excluded from the verification; and, the rules-mask indicates the range of rules to be

verified by each security thread. The generated reports can be written to a file, redis, kafka or a

combination of these channels, as specified in the output-channel field. However, if nothing is

specified, the default value is a file.

{
Set to 1 enable , 0 to disable it:
enable = 0
The number of security threads per one probe thread , e.g., if we have 16 probe threads and
thread -nb = x, then x *16 security threads will be used .
If set to zero this means that the security analysis will be done in the same threads used by the
probe .
thread -nb = 1
Range of rules to be excluded from the verification :
exclude - rules = ""
Mapping of rules to the security threads :
Format : rules - mask = (thread - index :rule - range);
Thread - index = a number greater than 0;
rule - range = number greater than 0, or a range of numbers greater than 0.
Example : If we have thread -nb = 3 and "(1:1 ,2 ,4 -6) (2:3) ",
this means that :
thread 1 verifies rules 1 ,2 ,4 ,5 ,6;
thread 2 verifies only rule 3; and
thread 3 verifies the rest
rules - mask = ""
Reports are sent to the output channels . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enable (file - output .
enable = 1,

redis - output . enable = 1, kafka - output . enable = 1)
output - channel = {}

}

Module 3: The security-report is for high bandwidth multi-threaded operation. The MMT-Probe and

the MMT-Security exist separately for this mode (i.e., two separate executables). The communication

between the MMT-Probe and the MMT-Security modules is done through sockets. The socket should

be configured beforehand. The attributes indicate the list of protocol attributes that need to be reported.

security - report localhost {
Set to 1 to enable and 0 to disable :
enable = 0
Indicates the list of attributes that are reported when an event is triggered :
attributes = { "ip. dst ","ip.src "," tcp . dest_port "," tcp .
flags "," arp . ar_op "," arp . ar_sha ","arp . ar_sip "," ethernet
. dst "," ethernet .src "," tcp . seq_nb "," tcp. ack_nb ","ip.
mf_flag ","ip. frag_offset ","ip. tot_len "," meta .
packet_len ","tcp . payload_len "," tcp . src_port ","ip.
identification "," tcp . urg "," tcp. fin"," tcp . psh " }

}

• Behavior: The behavior configuration bloc indicates that the MMT-Probe should produce behavior

reports. The location indicates the folder where the reports will be written.

behaviour
{
Set to 1 to enable , 0 to disable :
enable = 0
Folder to write the output :
location = "/ opt / mmt / probe / result / behaviour / online /"

}

• FTP reconstruction: The reconstruct-ftp output configuration bloc indicates that the MMT-Probe

should reconstruct FTP files and generate FTP reports. To enable the reconstruction, the session-

report configuration bloc and session-report.ftp_report.enable should also be enabled. The location

indicates where the FTP file will be stored. The reports can be written to a file, redis, kafka or a

combination of these channels, as specified in the output-channel field. However, if nothing is

specified, the default value is a file. The FTP reconstruction is only available for the single threaded

operation.

Indicates that FTP data reconstruction should be done .
To enable the reconstruction , also enable the options session - report . enable and session - report
. ftp_report . enable.
reconstruct - ftp
{
Set to 1 to enable , 0 to disable it:
 enable = 0
Indicates the folder where the output file is created :
location = "/ opt / mmt /"
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output .
enable = 1, redis - output . enable = 1, kafka - output .
enable = 1).
output - channel = {}

}

• CPU and memory usage: The cpu-mem-usage configuration bloc defines the CPU and memory

usage reports to be generated. The frequency indicates the time-interval for reporting. The output

reports can be reported to a file, redis, kafka or a combination of these channels, as specified in the

output-channel field. However, if nothing is specified, the default value is a file.

CPU and memory usage monitor
cpu -mem - usage
{
Set to 1 to perform cpu - mem reporting , 0 to disable it:
enable = 0
Time - interval for reporting
frequency = 5
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ;
for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output .
enable = 1, redis - output . enable = 1, kafka - output .
enable = 1):
output - channel = {}

}

• Security multi-session: The security-report-multisession bloc configures the report for security multi-

session. The attributes indicate the list of protocol attributes to be reported. The output reports can be

reported to a file, redis, kafka or a combination of these channels, as specified in the output-channel

field. However, if nothing is specified, the default value is a file.

This report is for security multi - session security :
security - report - multisession remote {
Set to 1 to perform multi - session reporting , 0 to disable it:
enable = 0
Indicates the list of attributes that are reported :
attributes = { "nfs . file_name "}
Reports are sent to the output channel . The default value is a file .
More than one output channel is possible . In this case , the value should be a set of comma -
separated values ; for example : {redis , kafka , file }.
Reports are sent to output channels only when the global parameters are enabled (e.g., file -
output . enable = 1, redis - output . enable = 1, kafka - output .
enable = 1).
output - channel = {}

}

B. MMT-Operator

The configuration for the MMT-Operator is defined in the /opt/mmt/ operator/config.json file. Its structure is as

follows:

{
" database_server ": {
" host ": " localhost ",
" port ": 27017
},
" redis_server ": {
" host ": " localhost ",
" port ": 6379
},
" kafka_server ": {
" host ": " localhost ",
" port ": 2181
},
" data_folder ": "/ opt / mmt / probe / result / report / online /",

" delete_data ": true ,
" input_mode ": " kafka ",
" probe_analysis_mode ": " online ",
" probe_stats_period ": 5,
" local_network ": [
{
"ip": "192.168.0.0" ,
" mask ": "255.255.0.0"
},{
"ip": "172.16.0.0" ,
" mask ": "255.240.0.0"
},{
"ip": "10.0.0.0" ,
" mask ": "255.0.0.0"
},{
"ip": " fe80 ::" ,
" mask ": "8"
},{
"ip": "0.0.0.0" ,
" mask ": "255.255.255.255"
},{
"ip": "255.255.255.255" ,
" mask ": "255.255.255.255"
},{
"ip": "127.0.0.1" ,
" mask ": "255.255.255.255"
}
],
" buffer ": {
" max_length_size ": 50000 ,
" max_interval ": 30
},
" micro_flow ":{
" packet ": 1,
" byte " : 64
},
" retain_detail_report_period ": 604800 ,
" port_number ": 80,
" log_folder ": "/ tmp /",
" is_in_debug_mode ": true

}

The content of config.json can be divided into the following groups:

• Input: This group specifies how MMT-Operator can receive meta-data generated by the MMT-Probe.

The value of input_mode can be one of the following:

o "file": MMT-Operator will read meta-data from a file in the folder data_folder. After reading a

file, MMT-Operator can delete the file and its semaphore depending on the value defined by

delete_data.

o "redis": MMT-Operator will receive meta-data from a REDIS sever defined by redis_server

o "kafka": MMT-Operator will receive meta-data from a KAFKA sever defined by kafka_server

• Behaviour: This group configures the behaviour of the MMT-Operator:

o port_number is a port number used to connect to the MMTOperator web application.

o local_network is an array indicating IP ranges of local networks. Each network is given by an

IP and network mask.

o buffer limits the size of buffers of MMT-Operator either by (i) the number of elements,

max_length_size, or by the timestamp, max_interval. With a small buffer, MMT-Operator must

flush data more frequently to the database and to the Web browser clients.

o micro_flow indicates retaining detailed information on small flows. This parameter set defines

how the MMT-Operator defines microflows: maximum number of packets in a flow and

maximum number of bytes of data in a flow.

o probe_stats_period is a number, in seconds, indicating the rate of statistic reports from the

MMT-Probe. This number must be the same as the value given by stats_period in the

configuration file of MMT-Probe.

o probe_analysis_mode represents the executing mode of MMTProbe. Its value must be the

same as the value given by input-mode in the configuration file of MMT-Probe, e. g., either

"online" or "offline".

• Maintain Database: This group contains some thresholds used for the maintainance of the historical

database.

o retain_detail_report_period is an interval in seconds indicating how long must the MMT-

Operator retain information in the collection called detail in the database. This collection

contains detailed information on each report generated by the MMT-Probe. For example, in

the file config.json above, MMT-Operator will delete this detailed information if it is older than

7 days. Please note that the MMT-Operator does not delete any information related to other

statistics, such as, protocols/applications, bandwidth, etc.

• Execution log: This group configures the execution logs of the MMT-Operator.

o log_folder is the folder that will contain the execution logs of the MT-Operator.

o is_in_debug_mode determines whether the MMT-Operator is running in debug mode, i. e.,

producing detailed log information. However, this will slow down the MMT-Operator. Its value

can be true or false.

C. MMT-Security

We can modify the default thresholds of the MMT-Security module in the file /opt/mmt/security/mmt-

security.conf. The file must be created if it does not already exist.

Input:

Maximum size , in bytes , of a report received from the MMT -
Probe :
input . max_message_size 3000

Security Engine:

Maximum number of reports that will be stored in a ring
buffer :
security .smp . ring_size 1000
Maximum number of instances of a rule :
security . max_instances 100000

Alert:

Number of consecutive alerts for one rule without the full description . The first alert of a rule
always contains a description of its rule . However , to avoid huge outputs , a certain number of
consecutive alerts of that rule can be sent without the full description . For instance if value
is 20 then the first alert will contain the full description and the next 20 alerts generated by the same
rule will not .
Set value to 0 to include the description in all alerts .
output . ignore_description 20

Annexe G. MMT User Guide (Measurement Tool)

MMT User Guide
Monitoring Tool of MEASURE Platform

•

Montimage Monitoring Tool (MMT) is a monitoring solution that combines data capture, filtering and storage,

events extraction and statistics collection, and traffic analysis and reporting, providing network, application,

session, and user-level visibility. Furthermore, it is able to correlate information from different sources to detect

complex events, and thanks to an advanced rule-based engine, propose counter-measures to react to detected

situations (e.g., performance, security, operational incidents). MMT performs online and offline monitoring of

the traces of a running system, and it allows the extraction of complex measurements from individual pieces

of data. It is able to operate in a non-obstructive fashion, since the execution traces are observed without

interfering with the behaviour of the system.

MMT can be easily integrated with third parties in various ways: structured data produced by other applications

or systems can feed the Extract module; extracted data and detected events can be used by other tools;

behaviour models, pattern matching rules, etc. can be converted to properties to correlate information; and

verdicts and events can be used by external tools. All these functionalities are summarized in the MMT global

view presented in Figure below.

 MMT-Operator

This document presents Graphical User Interface of MMT-Operator.

MMT-Operator is a Web application. It has typically 2 parts: Client (front end) and Server (back end).

• The Server is written in NodeJS running at the server side.

• The Client is written in JavaScript and HTML running on Web browsers at the client sides. There may

be many users using their Web browsers to connect to the Server to statistics of MMT. These statistics

will be graphically represented in Web browsers of users in forms of chart elements, such as, bar, line,

pie, or table. This document presents in detail of the elements.

General Structure

The followings are some basic notations being used in MMT:

• Protocol is a network protocol such as, IP, HTTP, NDN, etc.

• Application such as BitTorrent, Skype, etc. Contact us to get the full list of protocols and applications

that have been supported by MMT.

• Profile is a group of protocols and/or applications. MMT-Operator has currently 13 profiles: Content

Delivery Network, Cloud Storage, Conversational, DataBase, Direct Download Link, File Transfer,

Gaming, Mail, Network, Peer to Peer, SocialNetwork, Streaming, Web.

• Packet is a term used in MMT to represent a data unit of a protocol. It is not restricted only for protocols

at layer 3 of OSI. A packet consists of a header part and payload part. Header part contains control

information that provides data for delivering the payload, for example: source and destination network

addresses, error detection codes, and sequencing information. Payload part contains user data that

may be a packet of a higher protocol, e.g., payload of IP packet can be a TCP packet.

• Micro Session is a set of very small sessions. A session is considered as a micro one if its number

of packets and data are less than some thresholds. MMT allows user to change easily these thresholds

via a configuration file. Micro session will not be reported separately, rather, aggregated statistics from

micro sessions will be reported together. Using micro sessions statistics reduces the report size.

However, one will loose microscopic information about these micro sessions.

• Network traffic are represented through 4 metrics:

o Data Volume is size of data, in Bytes or Bits, of packets.

o Payload Volume is size of payload part, in Bytes or Bits, of packets.

o Packet Count is number of packets.

o Session Count is number of TCP/IP sessions. Each session is differed by a 4-tuple (IP

source, IP destination, Port source and Port destination).

The following things are applied on GUI:

• When a button is available, the cursor will be change to a pointer when moving over the button.

• The changing of display, such as, delete/resize a Report, reorder Report, etc., is only locally. It only

effects the current Web browser.

Tab

Statistics will be grouped into tabs, e.g., Link, Network, Application, DPI, Security, Evasion and Setting.

Each tab has a Toolbar and a set of Reports. The Figure below represents the Application tab having 3 reports:

Top Users, Top Applications and Top Remotes.

Toolbar

The toolbar often shows the following buttons, from left to right:

1. Export Charts to Images : When click on this button, all displayed Reports will be exported to

.png files. You might allow Google Chrome to download multiple files to download several report

pictures.

2. Delete a Report : Drag and drop a Report over this button to delete that Report.

3. Reset View : Click on this button to reset the view of reports to the initial state.

4. Auto Reload : When it is enabling, the current Tab is automatically reloaded

periodically.

5. Period decides a period of statistic to shown, such as, the statistic of

the last 5 minutes. The available periods are: Last 5 minutes, Last hour, Last 6 hours, Last 12 hours,

Last 24 hours, Last 7 days, and, Last 30 days.

One might also select a period between two dates by clicking on a small calendar button at the right of

combobox.

6. Probe lists all running MMT-Probe in the current Period. If there is

only one MMT-Probe, this combobox has only one value "All". When more than one MMT-Probe is

running, one might select the combobox to see the statistics of one or all MMT-Probes.

Please note that, one of the buttons above can be hidden on some specific Tabs.

Report

A Report graphically represents a statistic of MMT. A Report consist of :

1. A title located on the top-left corner

2. One or many Filters to filter out unnecessary data. When user changes value of a Filter, the other

Filters and Charts will be reloaded.

3. One or many Charts is the main part of a Report. A Chart might depend on another, e.g., when an

element in a Chart is selected another Chart will be reloaded to show the statistic concerning to the

selected element.

One can do the following actions on Report:

1. Delete a Report: This action is available when there are more than one Report on a Tab. In such a

case, there exists a RecycleBin icon on the left of Toolbar.

To delete a Report, click and hold on the title of the report, then drag and drop it on the RecycleBin icon.

2. Resize a Report: To resize a Report, move cursor to an edge of Report, then drag cursor to resize it.

Some Reports cannot be resized.

3. Reorder Reports in a Tab: To reorder Reports, drag and drop a Report to a position by click and hold

on its title.

4. Save a Report as a Picture: Click on the left button on the Toolbar.

Chart

Tab Link

This tab gives an overview of the network being monitored by MMT-Probes, such as, Input/output traffic, the

top 7 protocols having highest traffic, list of active nodes since the last 5 minutes. On each report, one can

click on detail button to view bandwidth of an individual such as a protocol or a node.

Tab link consists of 3 reports:

1. Traffic represents the total bandwidth of the network representing via 3 lines: in-bound and out-bound

of IP traffic, along with the total bandwidth of other traffic that are non-IP based protocols such as ARP.

One can click on a legend item to hide/unhide the line corresponding.

2. Top Protocols contains the top 7 protocols. This report consists of 2 charts: the left one represents

historical bandwidth, in bit per second, of the top protocols; the right one is the list of these protocols

along with their total data and percentage.

One can click on one item of the list to hide/unhide the line corresponding on the left side.

3. Active Nodes contains the information about the nodes in the network that are being active since the

last 5 minutes. A node in a network is identified by its unique media access control address (MAC

address).

This report is not influenced by the Period filter on the toolbar. It always shows the active nodes since the last

5 minutes or the moment started MMT if MMT has been started less than 5 minutes.

Each row in the table represents a unique. Only the active nodes since the last minutes have statistical data.

The statistic of the nodes, that were active since the last 5 minutes and inactive since the last minutes, are set

to zero.

The start time and the last updated time are respectively the first and latest moment MMT saw a packet

coming/outgoing to this node

Tab Network

This tab gives at the glance the top factors in the networks, such as, top users, top profiles, top locations, top

links. These factors consume the most traffic. One can also inspect deeply one session.

Tab Network consists of first 4 reports. Each report contains the top 7 factors being represented in 2 charts:

• The pie chart represents the percentages of each factor.

• The table gives the detailed list of factors.

For each row of the table,

o Click on one color item, on the left, to hide/unhide the pie corresponding

o Click on link name to inspect the detail of its factor

o Click on to show bandwidth used by its factor

1. Top Users is the top 7 users in the network. Each user is identified by a unique IP address.

2. Top Profiles is the top 7 Profiles in the network. When click on one profile name, one will get the top

7 applications or protocols of the profile.

3. Top Geo Locations is the top 7 destination countries. _local represents the traffic of 2 users in the

network.

4. Top Links is the top 7 links. One link represents the traffic between 2 users in the network or one user

with another from outside the network.

To inspect in detail of one session, one can click on name of each factor. For example, on can:

1. click on Vietnam in the Top Geo Location,

2. then Web on the Profiles,

3. then HTTP:80

4. then 192.168.0.198 <-> 111.65.248.144,

then one obtains the following list:

Tab DPI

Tab DPI gives information about hierarchy of protocols/applications. It consists of 1 Report: Protocol Hierarchy.

The Protocol Hierarchy report has 2 charts: a tree chart on the left and a line chart on the right.

• The tree chart represents the hierarchy of protocols, e.g., there are 36 distinct

protocols/application in the figure above.

o Click on to collapse/expand the tree.

o Click on a hyper-link to select/deselect its protocol. When a protocol is selected, its traffic will

be shown on the right chart

• The line chart represents the traffic of the selected protocols of the tree chart. These lines do not

represent the bandwidth of the protocols but their total traffic during a sample period that is 5

seconds by default.

Through this chart, one can easily see a consistency between protocols. For example, in the figure above, we

found that the HTTP traffic vs the total traffic that is represented by ethernet.

Tab Application

Tab Application shows the information about the network's round-trip time, data transfer time, application

response time and data rate for the selected application type from the App tab. Moreover, the detailed

information is provided in the tables for each application every 5 seconds, that are application response time,

data transfer time, server data transfer time, client transfer time, network round-trip time, Number of HTTP

transaction, number of active flows, packet rate, data rate, packet size and percentage of payload.

This Tab currently supports only protocols/applications on the top of HTTP and FTP.

• FTP Response Time is the time elapsed between a client sending a request to a FTP server and

receiving the response packet. The response time includes the 3 ways TCP handshake.

• HTTP response Time is the time elapsed between a client application sending a request (GET) to a

HTTP server and receiving the response packet.

Initial TCP RTT (Handshake): Initial RTT of an application is determined by looking at the TCP Three Way

Handshake. It is the time elapsed between TCP-SYN and TCP-ACK in the TCP Three Way Handshake.

• NRT, Network Response Time, is measured by a TCP handshake.

• ART, Application Response Time,

• DTT, Data Transfer Time,

• #HTTP Trans is the number of HTTP transitions. An HTTP transition is counted from starting a request

to receiving completely its response. Different HTTP transitions can perform through only one TCP/IP

session.

• #Flows indicates the number of TCP/IP sessions.

• Pkt rate (pps) indicates the average number of packets received per second

• %Retrans. is the percentage of number of packets being retransmitted

• Data rate (bps) indicates the average number of bits received per second

• Packet size (B) indicates an average packet size, in Bytes

• %Payload indicates the percentage of payload on the total data. When this percentage closes to

100%,

Tab Security and Evasion

Tab Security and Tab Evasion list all security alerts. The alerts are grouped by property and probe ID. These

tabs list only the latest 5000 alerts.

Each tab has only one report consisting of one table. Each row of the table represents the alerts of one

property. One can click on one row to see the alerts as in the figure below.

Tab Setting

Tab setting gives some statistic of server hosting MMT-Operator such as CPU usage, memory and hard driver

free space. It also allows user to update setting of MMT-Operator, backup database.

Tab Setting consists of 4 reports.

1. System Usage gives a statistic of usage of the server on that MMT-Operator is running.

2. Configuration allows to:

o update file config.json of MMT-Operator

o update file /etc/network/interfaces of the server

o view execution logs of MMT-Operator

3. MMT-Probes allows to manager MMT-Probe. One can install MMT-Probe on a remote server by

giving permission to MMT-Operator to log on that server via SSH.

When clicking on Add new Probe button, one is led to another window to enter SSH information of the remote

server. After entering successfully, MMT-Operator will install a new MMT-Probe on the server and add it to the

list of management.

For the existing MMT-Probe, one can:

o stop/start a probe

o update config file of a probe

o uninstall a probe

4. DataBase

o Save button saves information in the form: Auto backup, FTP Server

o Empty DB button empties database that contains MMT statistic. This does not change user

information such as password, license, and information in this tab.

After clicking on the button, one need to confirm in another windows before MMT-Operator can empty its

database.

o Backup now button backups immediately database using the current setting. After clicking

on the button, one need to confirm the action.

o Restore button leads user to another window to select a backup image from a list of available

ones to restore.

Others

1. Login: Default login information are admin/ mmt2nm for username/password respectively.

2. Change Password: One can change the current password by clicking on button, then "Change

password".

Update Licence: One can update the licence by clicking on button, then "Profile".

Annexe H. EMIT User Guide (Monitoring Tool)

EMIT User Guide

Monitoring Tool of MEASURE Platform

•

EMIT Overview

EMIT is a set of web services that make possible to manage MQTT clients. In fact, EMIT allows users to define

some MQTT broker connections, to create some MQTT clients and to specify some MQTT callbacks i.e. the

MQTT message processes attached to MQTT clients and launched on MQTT message reception. Moreover,

EMIT makes possible to update MQTT client states i.e. to connect/disconnect from MQTT brokers, to

subscribe/unsubscribe to given topics and to publish messages on given topics. Finally, EMIT makes possible

to view the different MQTT client state updates and MQTT messages received and stored by some MQTT

client callbacks.

EMIT is provided as a web application i.e. with a HTML frontend to these web services that embeds a

JavaScript library that correspond to the HTTP clients of these web services. EMIT is also provided such HTTP

clients as a Java library. The usage of such HTTP client is illustrated thanks to the web interface use cases

below.

EMIT Installation

EMIT code base is available on GitHub at https://github.com/jeromerocheteau/emit. It consists of a set of Java

projects managed by the means of Maven. It can be compiled, packaged and deployed thanks to the following

commands:

• git clone https://github.com/jeromerocheteau/emit.git

• cd emit/emit-monitoring/

• mvn clean compile package install tomcat7:redeploy

EMIT runs on a Java application container such as Apache Jetty, Apache Tomcat, Apache TomEE, IBM

Webspehere, RedHat Jboss, Oracle Glassfish, etc.

The deployment settings can be modified into the Maven project description (pom.xml file) in order to specify

the application server onto the EMIT instance will be depoyed to and its credentials

Dependencies

EMIT requires that the following dependencies are already installed as shared libraries within the Java

application container:

• com.google.code.gson:gson:2.4

• org.mongodb:mongodb-driver:3.4.2

• org.mongodb:mongodb-driver-core:3.4.2

• org.mongodb:bson:3.4.2

• org.eclipse.paho:org.eclipse.paho.client.mqttv3:1.2.0

• com.github.jeromerocheteau:jdbc-servlet-api:1.0

An instance of EMIT is running at the URL http://app.icam.fr/emit and is accessible according to the following

credentials username: measure@emit.icam.fr and password: m3@suR

https://github.com/jeromerocheteau/emit
https://github.com/jeromerocheteau/emit
http://app.icam.fr/emit
http://app.icam.fr/emit
mailto:measure@emit.icam.fr
mailto:measure@emit.icam.fr

Editing MQTT Clients

EMIT provides 2 main use cases in order to configure MQTT client networks: the first one consists in defining

the connection settings to a given MQTT broker by specifying its URI and eventually its username/password

credentials (see Illustration). EMIT also provides a use case to define MQTT clients merely by specifying its

already registered MQTT broker (see Illustration).

Updating MQTT Client Callbacks

EMIT makes possible to define processes of MQTT message that are received by some MQTT clients. Such

processes are called MQTT callbacks and EMIT provides several built-in MQTT callback edition use cases.

Every MQTT callbacks returns a Boolean value according to the fact that the message process ends

successfully or not. The 5 main MQTT callbacks are described below.

The 1st MQTT callback consists in specifying the data type of the MQTT message payload: users specify the

data type from a built-in type selection list (see Illustration).

The 2nd MQTT callback consists in a MQTT topic filter or pattern matcher: user defines such pattern (see

Illustration).

Illustration 1: Editing MQTT Broker

Illustration 2: Editing MQTT Client

Illustration 3: Editing MQTT Type Callback

Illustration 4: Editing MQTT Topic Callback

The 3rd MQTT callack consists in persisting messages within a database: users speficy the collection that

messages will be stored into by selecting this collection between the messages collection and the failures one

(see Illustration).

The 4th MQTT callback consists in verifying a condition over MQTT message payloads: users define the value,

its type and the comparison operator among this operator set { =, ≠, < , >, ≤, ≥ } (see Illustration). The MQTT

feature callback returns true if and only if the condition is satisfied by the MQTT message payload.

The 5th and last MQTT callback consists in a composite callback as it makes possible to test a first MQTT

callback and to dispatch the process flow to a second callback if the first callback ended successfully and,

eventually, to a third callback otherwise. Users have then to select the test, success and failure callbacks from

the selection list of the already defined MQTT callbacks (see Illustration).

Updating MQTT Client States

The main EMIT use case consists in updating the different MQTT client states. In fact, EMIT makes possible

to connect or disconnect a MQTT client from its MQTT broker. EMIT makes possible to subscribe or

unsubscribe to a given topics from its related MQTT broker. EMIT makes also possible to publish a message

to a given topic to its related broker. In addition, EMIT makes possible to attach or detach a MQTT callback to

or from a MQTT client (see Illustration).

Illustration 5: Editing MQTT Storage Callback

Illustration 6: Editing MQTT Feature Callback

Illustration 7: Editing MQTT Guard Callback

Viewing MQTT Client State Updates & Messages

EMIT provides 2 other use cases: EMIT makes possible to retrieve the different MQTT client state updates

(see Illustration) and EMIT makes possible to retrieve the MQTT messages persisted into the embedded

database engine by the means of MQTT storage callbacks that have been attached to MQTT clients (see

Illustration).

Illustration 8: Updating MQTT Client States

Illustration 9: Viewing MQTT Client State Updates

Illustration 10: Viewing MQTT Client Messages

Annexe I. MINT Installation Guide (Analysis Tool)

MINT Installation Guide
Analysis Tool of MEASURE Platform

•

Environment Installation

Prerequisite

Node.js is cross-platform meaning that Mint can work on Windows, OSX and Linux. For that, the tool requires

the installation of: Node.js, MySQL and Yarn. Mint requires Node.js 8.9.0 or above, the installation of a MySQL

database, Redis and Yarn.

NodeJs Installation

• Download Node.js 8.9.0 or above (includes npm) : https://nodejs.org/en/download/

• Install Node.js

MySQL Installation

• Download MySQL Community Server 5.7 or above : https://dev.mysql.com/downloads/mysql/

• Install MySQL using the following instruction :
https://dev.mysql.com/doc/refman/5.7/en/installing.html

• Create a new database named "mint_db".

Yarn Installation

• Download Yarn 1.7.0 or above : https://yarnpkg.com/lang/en/docs/install/

• Install following the instructions according to the OS chosen.

Redis Installation

• Download the last Redis stable version (4.0) : https://redis.io/download

• Install following the instructions according to the OS chosen.

Retrieve Mint Source Code

Mint source code is hosted on GitHub. To retrive it, you can:

• Download it as zip file : https://github.com/ersilva/Mint/archive/master.zip

• Clone the Git repository
o Install git: https://git-scm.com/downloads
o Clone the repository: git clone https://github.com/ersilva/Mint.git

Configure the tool

Edit the config.js file which is in the config folder of the project.

Property Description Default Value

db.host MySQL database host localhost

db.port MySQL database port 3306

https://github.com/ersilva/Mint/wiki/Development-Environment-Installation
https://nodejs.org/en/download/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://yarnpkg.com/lang/en/docs/install/
https://redis.io/download
https://github.com/ersilva/Mint/archive/master.zip
https://git-scm.com/downloads
https://github.com/ersilva/Mint.git

Property Description Default Value

db.port MySQL database name mint_db

db.port MySQL database login root

db.port
MySQL database

password
root

measure.host
MEASURE Platform

host
localhost

measure.host MEASURE Platform port 8085

Start the Application

1. Start MySQL

2. install the packages required using yarn:

$ yarn install

3. Populate database. Just for the first time is indispensable to populate the database with the

machines description, for this run the command:

yarn run seeds:up

4. Set enviroment variable (development, production or test):

In Windows :

SET NODE_ENV=production

In Linux :

export NODE_ENV=production

5. Start the tool:

yarn run start

6. Registration.

Once the tool is running it can be registered into the Measure platform.

Recommendation Rules Description (EFSMs)

Software Modularity

The assessment of the software modularity relies on two metrics provided by the SonarQube tool that are

the class complexity and the maintainability rating. The class complexity measure (also called cognitive

complexity) computes the cognitive weight of a Java Architecture. The cognitive weight represents the

complexity of a code architecture in terms of maintainability and code understanding. The maintainability

rating is the ratio of time (according to the total time to develop the software) needed to update or modify

the software. Based on these definitions, and considering that a modular code can be more understandable

and maintainable, we can correlate the two metrics and compute the ratio {\textit{R = class}}

complexity/maintainability rating. If this ratio is more than a specific threshold set by an expert, the

recommendation "Reinforce the modular design of your development" will be provided to the software

architect and developers.

Metrics

o ClassComplexityBySonarQube

Average complexity by class.

https://github.com/ersilva/Mint/wiki/EFSMs-description

2 data types :

• value : u_double

• postDate : u_date

o MaintainabilityRatingBySonarQube

Rating given to your project related to the value of your Technical Debt Ratio. The default Maintainability

Rating grid is: A=0-0.05, B=0.06-0.1, C=0.11-0.20, D=0.21-0.5, E=0.51-1 The Maintainability Rating scale

can be alternately stated by saying that if the outstanding remediation cost is: <=5% of the time that has

already gone into the application, the rating is A between 6 to 10% the rating is a B between 11 to 20% the

rating is a C between 21 to 50% the rating is a D anything over 50% is an E

2 data types :

• value : u_double

• postDate : u_date

Formula

ClassComplexityBySonarQube/MaintainabilityRatingBySonarQube > threshold

Requirements quality

The assessment of the requirements quality can rely on two metrics provided by the SonarQube tool that

are the total number of issues and the total number of reopened issues. These numbers are collected

during the implementation phase and we can consider that the fact that we reopen an issue many times

during the development process can be related to an ambiguous definition of the requirement that needs

to be implemented. If we have a ratio R = number of reopened issues/number of issues that is more than

a specific threshold, we can consider that the requirements are not well defined and that the development

needs more refinement about them. The recommendation "Refine requirement definitions or provide more

details" will be provided to the requirements analyst.

Metrics

o IssuesBySonarQube

Number of issues.

2 data types :

• value : u_double

• postDate : u_date

o ReopenedIssuesBySonarQube

Number of issues whose status is Reopened.

2 data types :

• value : u_double

• postDate : u_date

Software Performance

The assessment of the software performance relies on two metrics provided by the MMT tool that are the

response time and the bandwidth usage. The response time denotes the delay that can be caused by the

software, hardware or networking part that is computed during operation. This delay is in general the same

for a constant bandwidth (an equivalent number of users and concurrent sessions). Based on this finding,

we can correlate the two metrics and compute that the response time is not increasing for during time for

the same bandwidth usage. If this response time is increasing, the recommendation "Optimize the code to

improve performance and minimize delays" will be provided.% to the software developers and deployers.

Metrics

o MMT-AppRespTime

o MMT-Bandwidth

Software security

The assessment of the software security relies on two metrics, one provided by the SonarQube tool that is

the security rating and the other is provided by MMT that is the number of security incidents. The security

rating in SonarQube provides an insight of the detected vulnerabilities in the code and are presented with

severity being blocker, critical, major, minor or no vulnerability. The number of the security incidents

provided by MMT reports on successful attacks during operation. The evaluation of security demonstrates

that if an attack is successful this means that the vulnerability in the code was at least major because an

attacker was able to exploit it to perform its malicious activity. Based on these definitions and considering

that a reliable code should be at last free of major vulnerabilities, we can check if there is a major

vulnerability and that the number of attacks at runtime are more than a threshold. If this condition is satisfied,

the recommendation "Check code to eliminate exploitable vulnerabilities" will be provided to the software

developers and security experts.

Metrics

o SecurityRatingBySonarCube

A = 0 Vulnerability

B = at least 1 Minor Vulnerability

C = at least 1 Major Vulnerability

D = at least 1 Critical Vulnerability

E = at least 1 Blocker Vulnerability

2 data types :

• value : u_double

• postDate : u_date

o MMT-SecurityIncidents

Code reliability

The assessment of the code reliability relies on two metrics provided by the SonarQube tool that are the

number of issues categorized by severity and the reliability rating. The issues in SonarQube are presented

with severity being blocker, critical, major, minor or info and the reliability rating are from A to E: A is to say

that the software is 100% reliable and E is to say that there is at least a blocker bug that needs to be fixed.

Based on these definitions and considering that a reliable code should be at last free of major or critical

issues, we can check that there is no major, critical nor blocker issues and the reliability rating is $<$ C

corresponding to 1 major bug. If this condition is not satisfied, the recommendation "There is unsolved

major issues in the code, make a code review and check untested scenarios" will be provided to the

software developers and testers.

Metrics

o IssuesBySeverityBySonarCube

Number of issues with severity being blocker, critical, major, minor or info.

2 data types :

• value : u_double

• postDate : u_date

o ReliabilityRatingBySonarCube

A = 0 Bug

B = at least 1 Minor Bug

C = at least 1 Major Bug

D = at least 1 Critical Bug

E = at least 1 Blocker Bug

Annexe J. MINT User Guide (Analysis Tool)

MINT User Guide
Analysis Tool of MEASURE Platform

•

Registration

The first step to start using Mint is add it into the MEASURE web application, allowing the tool to run
embedded into MEASURE and retrieve the measurements data for the analysis.

Once the tool is running it can be registered into the Measure platform.

• Access to the project where you want to use Mint.

• Access to the configuration tab of the project page configuration and click on Add Analysis tool

• Mint should be visible in the list of analysis tools to activate.
Click on Add Mint Tool.

• If Mint was added successfully you should see it in the list of available analysis tools with the status
Service Available in green. A tab should also appear in the configuration menu and an option in the
Project Menu with the name Mint.

Now the tools are ready to be configured and used.

Configuration

Access to the Mint tab of the project page configuration.

There is a table with the available EFSMs (Extended Finite State Machines) displaying name, description,
category, role to which the recommendation is guided, status of the machine (Active or Inactive) and options.

The state of each of the machines can be changed, this determines if the analysis is performed and the
corresponding recommendations are received.

The name, description and text of the recommendation can also be modified, as well as the threshold value (if
applicable) as required.

These changes are only applied to the project where the modifications are being made and does not affect the
rest.

Visualization

The list of recommendations can be accessed from the Mint page within the project.

The recommendations are found in a table sorted by date, with the columns last updated, machine name,
status of the recommendation (and number of recommendations made), category, role to which the
recommendation is directed and recommendation text.

By clicking on any of the recommendations, a model is displayed with the details of each of the
recommendations made: date and time, status and details.

The recommendations table can be ordered by any of its columns and the results can also be filtered by
searching for some text.

Annexe K. Quality Guard Installation Guide (Analysis Tool)

Quality Guard Installation Guide
Analysis Tool of MEASURE Platform

•

Hardware requirements

Below a list of the minimum Hardware requirements to get started with the Quality Guard analysis tool:

- Processor (CPU) with 2 gigahertz (GHz) frequency or above.

- A minimum of 8 GB of RAM.
- A minimum of 20 GB of available space on the hard disk.

Prerequisites

The Quality Guard Analysis tool can be executed on Windows, Linux or Mac OSX systems. To be executed,

the tool requires the installation of the following tools:

• MySQL Installation

- Download MySQL Community Server ver. 5.7 or above:
https://dev.mysql.com/downloads/mysql/

- Install MySQL using these instructions:
https://dev.mysql.com/doc/refman/5.7/en/installing.html

- Create a new database named "qualityguardanalysis".

• Java 1.8 Installation

- Download and install the jdk8 in your environment:
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

N.B: The Measure platform is required to start executing the Quality Guard tool.

Quality Guard Tool Installation

To install the Quality Guard tool, you have to:

• Download the last released version of the Quality Guard Analysis tool: https://github.com/ITEA3-
Measure/QualityGuardAnalysis/releases

• Unzip the project in your tool directory.

Configuration

The tool is parametrized using a property file. This property file has to be put in the same folder of the quality-

guard-analysis-{version}.war binary application.

• General Properties:

Property Description Default value

measure-platform.url URL of the measure platform localhost/

analysis-tool.url URL of the quality guard analysis tool localhost:8585/#/

analysis-tool.elasticsearch.url Url of Elasticsearch search engine 127.0.0.1

analysis-tool.elasticsearch.port
Port of Elasticsearch nodes

communication
9300

analysis-

tool.elasticsearch.cluster-key

CLuster key of Elasticsearch search

engine
cluster.name

analysis-

tool.elasticsearch.cluster-name

CLuster name of Elasticsearch search

engine
elasticsearch

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/ITEA3-Measure/QualityGuardAnalysis/releases
https://github.com/ITEA3-Measure/QualityGuardAnalysis/releases

spring.datasource.url

JDBC URL of the database ex:

"jdbc:mysql://"+ ip of computer in which is

installed MySQL database name.

jdbc:mysql://localhost:330

6/qualityguardanalysis

spring.datasource.username Loign MySQL. root

spring.datasource.password Password MySQL. root

spring.datasource.driver-class-

name
Driver JDBC for MySQL com.mysql.jdbc.Driver

server.port
Port of the Quality Guard Analysis tool

web application
8585

Start the Quality Guard tool

• Start MySQL

• The Measure platform must be running

• Start the Quality Guard Analysis tool

➢ java -jar quality-guard-analysis-{version}.war

• Check the availability of the Analysis Tool in the Measure Platform

Annexe L. Quality Guard User Guide (Analysis Tool)

Quality Guard User Guide
Analysis Tool of MEASURE Platform

•

The Quality Guard Analysis overview

The Quality Guard analysis tool is an external extension which is integrated as a component to the Measure

Platform through Rest APIs. It provides mechanisms for the advance data analysis functionalities apply to data

produced by the continuous measurement applied by the platform.

The Quality Guard Analysis tool provides services for analysing the big data produced by the continuous

measurement to enable continuous improvements of software engineering activities and artefacts. In this

context, both the QA engineers and the project managers are involved in the quality assurance process of the

entire software development activities and artefacts.

The QA engineers would like to define set of constraints and conditions based on measure thresholds to

evaluate the data produced by the continuous measurement to ensure an overall product quality. On the other

hand, the project manager hopes to be notified when a specific event is occurring on platform side, either by

getting the incidents history of all constraints defined by the Quality Guard tool or by monitoring the state of

each constraint periodically.

The Quality Guard Analysis features

In this section, we will discuss the main features provided by the Quality Guard tool.

Configuring a quality guard rule

First of all, the Quality Gate tool should be registered into the Measure platform in order to manage and

configure the quality guard rules (more details).

The Project Quality Guard Configuration provides services to manage and configure the quality guard rules

set on measures project by allowing the following sub-features:

• Adding new quality guard

A quality guard is an expression with a regular syntax define on measures project to check that a numeric

measure stays on delimited range.

Each quality guard can be composed of either one or more guard conditions. By the way, this last constitute

of different elements including:

- Measure instance type: which includes a measure instance and its corresponding measure field.

- Guard operators: which include comparison operators like “SUPERIOR” and “INFERIOR” allowing

the evaluation of each constraints according to the certain thresholds.

- Thresholds value: which include a warning value field and an error value field.

- Interval aggregation: defined a period used to detect a violation. The value used in guard condition

is the average value of all measure value collected during the period.

- Combination mode: which includes logic operators like “AND”, “OR” to support conditions and

constraints based on cross measures expressions.

https://github.com/ITEA3-Measure/QualityGuardAnalysis/wiki/Quality-Guard-Configuration
https://github.com/ITEA3-Measure/QualityGuardAnalysis/wiki/Project-Configuration-View#Prerequired

Once the numeric measure evaluated on the guard condition is not on delimited range, which means that the

quality guard is not respected. Consequently, a new violation is opened related to this constraint. A Condition

violation is the value on one of guard conditions during an incident.

• Scheduling a registered quality guard

The scheduling mechanism is a way used by activate and deactivate the evaluation of a quality guard rule in

order to detect a violation.

Visualizing Quality Guards

The main view provided by the Quality Guard Analysis tool allow to visualise the state of each constraints

defined by the tool. For each constraint, a history of the last incidents can be visualizing.

https://github.com/ITEA3-Measure/QualityGuardAnalysis/wiki/Quality-Guard-Main-View

Visualizing Dashboard Cards

The dashboard cards provided by the Quality Guard Analysis tool allow getting an overview of the state of

either the quality guards or the constraints violations occurred in each project. It composes of the following

parts:

• Quality Guard dashboard

The dashboard card presents an overview of the Quality Guards defined in the project.

• Incident history dashboard

The dashboard card exposes the last constraints violations which occurred in the project.

https://github.com/ITEA3-Measure/QualityGuardAnalysis/wiki/Dashboard-Cards

Annexe M. Metric Suggester Installation Guide (Analysis Tool)

Metric Suggester Installation Guide
Analysis Tool of MEASURE Platform

•

Hardware and System Requirements

The Metric Suggester Analysis Tool for Measure platform must be deployed on an Ubuntu Server 16 or greater.

Prerequisites

Installation of redis-server

> sudo apt-get install redis-server

Installation of PostgreSQL Database

• Installation of PostgreSQL : sudo apt-get install libpq-dev postgresql postgresql-contrib

• Configuration of PostgreSQL :

Creation of a progress User

> sudo -i -u postgres

> psql

> CREATE USER suggesterprojectuser;

> ALTER ROLE suggesterprojectuser WITH CREATEDB;

> ALTER USER suggesterprojectuser WITH ENCRYPTED PASSWORD '#aMY@aj870';

Configuration of the Database

CREATE DATABASE suggesterproject OWNER suggesterprojectuser;

Installation of Python

> sudo apt-get install python-dev python-pip nginx

> sudo pip install virtualenv :

> sudo apt-get install python-requests

Installation of Git

> sudo apt-get install git

Installation of Metric Suggester

1. Clone the repository of the tool

> git clone https://github.com/sasdahab/Suggester_tool.git

2. Set Up Python Virtualenv

> cd Suggester_tool/

> virtualenv suggesterenv

3. Activate the Virtual Environnement

> source suggesterenv/bin/activate

4. Installer Gunicorn, Django, Celery, Redis and other dependencies

> pip install requests

> pip install -r requirements.txt

> add the public IP address in the variable ALLOWED_HOSTS in the file

suggester_tool/suggesterproject/setting.py

5. Configure the Database

> ./manage.py makemigrations

> ./manage.py migrate

> ./manage.py

> ./manage.py createcachetable

6. Configure Gunicorne

> gunicorn --bind 127.0.0.1:8000 suggesterproject.wsgi:application

Start the Metric Suggester Tool

• Start Redis :

> sudo service redis start

• Start postgresql :

> sudo service postgresql start

• Start Metric Suggester

> cd suggester_tool

> source suggesterenv/bin/activate

> ./manage.py runserver localhost:8000 (pour une utilisation local)

> ./manage.py runserver 0:8000 (pour une utilisation non local)

The Metrics Suggester tool overview

The Metrics Suggester tool is an external analysis tool which is integrated as a component to the Measure

Platform through Rest APIs. It provides mechanisms for the advance data analysis functionalities apply to data

produced by the continuous measurement applied by the platform.

This tool train a classifier according to a defined measurement plan which described the executed metrics, the

software properties observed by this metrics and the link between both latter. Then, it analyses the

measurement data through a trained classifier to suggest a new measurement plan.

 The Metrics Suggester tool features

In this section, we will present the different steps to generate a suggestion.

Measurement Plan configuration

First of all, we should initialize the measurement plan which defines the

classes (software properties evaluated), the metrics and the link between the

classes and the metrics. The mandatory metrics if there is by a Boolean value

and the place of each metric in the training file through the “index” field. This

configuration should be done through json file as the model below cons and

uploaded into the tool according to the detailed steps below

• Click on Settings tab >> plan form

• copy past the contained of the mp in json format >> create

• Click on Measurement Plans tab to display the MP details

Classifier training from the initial MP

Figure 9 Measurement plan detailed

Figure 8 Measurement plan

Figure 7 Section to add the measurement plan configuration

• Click on Settings tab >> classifier form

• insert the training file >> upload

• Click on Classifier tab to display the classifiers list

• Click on one classifier to display the training details

Suggestions

• Click on Settings tab >> Suggestion form

• select the last MP in the list

• Select the first classifier in the list

• insert the file with the measurement to be analyzed >> ok

• Click on Suggestions tab to display the suggestion result

Figure 10 Classifiers list

Figure 11 Classifier details

Annexe N. M·ELKI User Guide (Analysis Tool)

M·ELKI User Guide

Analysis Tool of MEASURE Platform

•
M·ELKI is a set of web services that make possible to run clustering algorithms from projects hosted on the

MEASURE Platform.

Installation

M·ELKI installation is very easy. It merely consists in uploading a web application archive (WAR file) on a Java

Servlet Container such as Apache Tomcat, Apache TomEE, Apache Jetty, Oracle GlassFish, RedHat Jboss,

IBM Websphere.

The following figures show such a deployment of the M·ELKI web app archive:

There exists a second installation procedure of M·ELKI that consists in retrieving its source from its GitHub

repository and in deploying it programmatically thanks to Maven by the means of the following commands:

• git clone https://github.com/ITEA3-Measure/M-ELKI.git

• mvn clean compile package install tomcat7:redeploy

That’s it! You merely have to update the correct settings into the different Maven project configuration

descriptions (pom.xml files) in order to host M·ELKI onto a custom and dedictaed server. However, a default

M·ELKI instance already runs on Icam servers.

Registration

Once deployed, the M·ELKI analysis tool automatically registered itself on the MEASURE Platform. However,

it remains to the users to apply M·ELKI to their targeted projects. The following pictures show how to do such

a registration: it is straightforward as users only have to select the M·ELKI tool.

Configuration

The M·ELKI project instance is also asily configurable. There is two kinds of settings:

1. the selection and parametrization of a clustering algorithm among 4 algorithms (DB SCAN, K MEANS,

EM and SLINK, see picture above);

2. the selection of the project-related measures whose measurements will be processed by the select

clustring algorithm (see picture below).

Visualization

The last picture show how to visualize M·ELKI clustering analysis results. The latter are also backed into the

MEASURE Platform ElasticSearch database.

Annexe O. Stracker Installation Guide (Analysis Tool)

Stracker Installation Guide
Analysis Tool of MEASURE Platform

Prerequisites

In order to install Stracker locally on a machine (i.e. independent of the MEASURE Platform), the following

must be installed:

- Python3 (lhttps://www.python.org/downloads)

- Python libraries: flask, pygal, numpy, pandas, matplotlib, sklearn, statsmodels

- Elasticsearch (https://www.elastic.co/downloads/elasticsearch)

- Sonarqube (https://www.sonarqube.org)

Then, download Stracker from git: https://github.com/CostiCTI/Stracker

Start the program:

- Start Elasticsearch

- Start Sonarqube

- Start Stracker: in the folder Stracker, start app.py (python app.py)

- The application will run on http://localhost:5000

Finally, if the user wants to use the integrated version into MEASURE platform, the process is straightforward,

as depicted in the following screenshots:

https://www.sonarqube.org/
https://www.sonarqube.org/
https://github.com/CostiCTI/Stracker
https://github.com/CostiCTI/Stracker
http://localhost:5000/
http://localhost:5000/

Annexe P. Stracker User Guide (Analysis Tool)

Stracker User Guide

Analysis Tool of MEASURE Platform

It is important to note upfront that this is the description of the first version of the tool. There will be a new major

version released in May 2019, that will contain many improvements both from front- and back-end point of

view.

Stracker can be used on a stand-alone basis, but also integrated into the MEASURE platform, which can

analyze stored metrics by communicating through APIs with the other components of the platform.

Stracker is a web application whose goal is to increase the quality of software development by tracking and

suggesting values for numerous software metrics during the development process. Specifically, it helps to

verify metric values using various graphical representations and provides scores for each new record. It also

includes a module predicting future metrics based on the historical values recorded so far.

Create a new project

 To create a new project or to enter an existing

project in the menu, click on the Projects tag.

On the new page, go down to the Add new project box

and write the name of the project that we want to start

with. The name must be the same as the name of the

project that we import from SonarQube.

For prediction, we give two examples:

- The red line shows the total number of project code lines

- The blue line shows the total number of comment lines of the project

- The green line shows the prediction of the number of draft comments lines

For this metric, the goal is to make the difference between the blue line and the green line as small as possible,

i.e., the number of comment lines of the project being as close as possible to the number of predicted comment

lines using regression algorithms.

In the first case (1), the metric value is smaller than in (2) where the metric value and the predicted value are

almost similar.

Another type of output graphics:

Here you can see the difference between the number of comment lines of the project and the number of

predicted comment lines.

If we hover over a point, we can see the exact metric at that point. After each new record we can see if the

new metric values are better than the values of the previous record, checking the score. To see the score,

click the Track tag and go to the Score section.

Current score is the current record score, calculated based on the difference between our metric value and

the predicted value. Last Score is the penultimate recording added (the one before the current record)

We say that progress is positive, if the current score is better than last score and

negative otherwise.

Ideally, each measurement should be better than the previous one. If we get a small

score for a certain metric, we can track the metrics that led to that score in the two

graphs and try to bring those values as close as possible to the predictions made by

the app.

For each metric suggestion, the score is calculated differently. For example, if for

no. of lines metric, the score is better as the value approaches the predicted value,

for the (violations - minor violations) metric, the number of minor violations must

exceed the predicted limit as much as possible because a large number of them

reduce the number of major, critical, or blocking violations.

In the Metrics section, you can see the numeric values of the metrics as well as

the difference from the last record.

For example, the picture shows that the project now contains 4532 lines, with 2522

more than the previous measured record. In the case of the code metrics the code

smells metric, the number decreased by 50, reaching 44.

Forecasting metrics

If we press the Forecasting tag, we can see a graph of the predicted values for our metrics. The classic

algorithm ARIMA was used for forecasting.

For an efficient prediction, the number of historical data on which to calculate future data values should be as

large as possible.

Last but not least, Stracker awakened the interest of the other partners such as Softeam and Bitdefender. For

example, Softeam wanted to get certain metric forecasting. The figures below show the data forecasted by

Stracker based on production data for Softeam.

Forecasting for an architectural metric Forecasting for a bug remediation effort metric

Forecasting for a security metric

Annexe Q. Weka tool User Guide (Analysis Tool)

WEKA Analysis Tool Installation Guide
Analysis Tool of MEASURE Platform

•

Hardware requirements

Below a list of the minimum Hardware requirements to get started with the WEKA analysis tool:

- Processor (CPU) with 2 gigahertz (GHz) frequency or above.

- A minimum of 8 GB of RAM.
- A minimum of 20 GB of available space on the hard disk.

Prerequisites

The WEKA Analysis tool can be executed on Windows, Linux or Mac OSX systems. To be executed, the tool

requires the installation of the following tools:

• MySQL Installation
o Download MySQL Community Server ver. 5.7 or above:

https://dev.mysql.com/downloads/mysql/
o Install MySQL using these instructions:

https://dev.mysql.com/doc/refman/5.7/en/installing.html
o Create a new database named "wekaanalysis".

• Java 1.8 Installation

o Download and install the jdk8 in your environment:

http://www.oracle.com/technetwork/java/javase/downloads/jd

k8-downloads-2133151.html

Weka Tool Installation

To install the WEKA Analysis Tool, you have to:

• Download the last released version of the WEKA Analysis Tool and Measurements:
➢ https://github.com/Uapaydin/WekaImp/tree/release
➢ https://github.com/Uapaydin/MeasureData/tree/release
➢ https://github.com/Uapaydin/AnalysisToolSyncMeasure/tree/release
➢ https://github.com/Uapaydin/WekaMeasure/tree/release

• This integration should be checkout and configured in an IDE. After configuration project can be
packaged and run with the code below. Don’t forget to add application.properties file at the same
level of the jar file.

➢ Java -jar <your_jar_name>.jar

• MySQL environment set up codes are located under WekaImp repository in DataBaseCodes folder

Configuration

The tool is parametrized using a property file. This property file location can be configured in spring.xml and

Properties.java files. And project has to be run over eclipse at the beginning. The reason for this requirement

is explained in the User Guide.

• General Properties:

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/5.7/en/installing.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/Uapaydin/WekaImp/tree/release
https://github.com/Uapaydin/MeasureData/tree/release
https://github.com/Uapaydin/AnalysisToolSyncMeasure/tree/release
https://github.com/Uapaydin/WekaMeasure/tree/release

Property Description Default value

database.url
URL of the WEKA analysis tool

database

dbc:mysql://127.0.0.1:3306/wekaa

nalysis

database.username
User name for WEKA analysis tool

database
root

database.password
Password for WEKA analysis tool

database
root

measure.url URL of the measure platform http://localhost:8085

measure.countlimit

Maximum datapoint allowed to read

from measure platform while creating a

prediction. Measure platform currently

allows 10k datapoints to be read from

its API

9999

analysistool.watchedMeas

ure

Measures to be watched over

MEASURE platform. Only given

measures are check, if new data found

WEKA Analysis tool runs

preconfigured predictions.

CfpEdu,CfpEduDemo

analysistool.postFix

After prediction completed, this

measure with tis postfix triggered so

MEASURE platform can reads the

results from WEKA Analysis Tool

Sync

Start the WEKA Analysis tool

• Start MySQL

• The Measure platform must be running

• Start the WEKA Analysis Tool

➢ If you are using Eclipse to run the project. You can start the project as it shown below

➢ If you created a jar file after the required model mapping of your data set and result model.

You can start the project with the code below

▪ Java -jar <your_jar_file_name>.jar

• Import GIT project named WekaMeasure to your eclipse Environment

➢ This project contains the required Measurement models and XML configurations.

• Import GIT project named AnalysisToolSyncMeasure to your eclipse Environment

➢ This project essentially same with the WekaMeasure project except the XML

configuration. The reasons are explained in the user guide.

• Import GIT project named MeasureData to your eclipse Environment

➢ This project is an example for bulk data migration from WEKA Analysis Tool to

MEASURE platform.

Annexe R. Weka Analysis User Guide (Analysis Tool)

WEKA Analysis Tool User Guide
Analysis Tool of MEASURE Platform

•

WEKA Analysis Tool overview

The WEKA Analysis Tool is an external extension which is integrated as a component to the Measure Platform

through Rest APIs and Measurements. IT provides the following functionalities to the MEAUSRE platform.

WEKA Analysis tool can;

1. Transfer bulk datasets to MEASURE platform.

2. Read datasets from its database and deploy WEKA results to MEASURE platform.

3. Read datasets from MEASURE platform and deploy WEKA results to MEAUSRE platform.

It can complete this use cases with provided dataset models and WEKA run properties.

The Quality Guard Analysis features

In this section, we will discuss the features provided by the WEKA Analysis tool in detail. General structure

and work flows are described in diagram 1.

Diagram 1 – WEKA Analysis Tool HLS

Flow 1: Bulk Data Transfer and individual Weka Result Transfer to MEASURE platform

Flow 2: Subscription of Analysis Tool to MEASURE platform

Flow 3: Alerts from MEASURE are check if the Analysis Tool is attached to a project or not

Flow 4: Checks if the attached project has new data since the last schedule (schedules set to run every 10 seconds)

WEKA Analysis Tool Data Structure

The WEKA Analysis Tool requires its own database and logical flows to manage, control and automate given

use cases above.

There are three tables for the WEKA format known as ARFF; DATA_SET, ATTRIBUTE, DATA_SOURCE.

These tables support ARFF format in ER Data Model. WEKA Analysis Tool can create ARFF data set from

thee tables to run the given run parameters from MEASURE platform.

Diagram 2 – WEKA Analysis Tool ER Diagram

Last two tables are required to maintain the automation and tracking the changes over MEASURE platform

and Database.

Transfer bulk datasets to MEASURE platform.

The Bulk Data transfer (Flow 1 / Diagram 1) is handled via Measurement mechanic on MEASURE platform.

The MeasureData Measurement project can be used as a reference for creating required measurement. The

Measurement for bulk data transfer should be placed the MEASURE platform storage location for more detail

check Measure Platform Documentation for measurement implementation

The WEKA Analysis Tool has a service named as getBulkData. This service required a dataSetName which

is saved in DATA_SET table in WEKAANALYSIS data base. This service can be modified to support the

measurement for bulk data transfer.

After these steps, use the Data Source → Measures Data Source → Regiseter Measure to add the bulk data

measurement to a project in MEASURE platform.

https://github.com/ITEA3-Measure/MeasurePlatform/wiki/Manual-Measure-Implementation

Added Measurement can be run manually as shown below

Migrated data can be viewed by adding a data table of the measurement to dashboard of the project

Read datasets from its database and deploy WEKA results to MEASURE platform

WEKA Analysis can read a dataset from its data base and run J48, Naïve Bayes or Multilayer Perceptron

(MLP) with given WEKA configurations. To do this MLMeasurement (measurement from WekaMeasure

project) measurement should be placed the MEASURE platform storage location for more detail check

Measure Platform Documentation for measurement implementation.

This measurement returns following results from ML algorithm; method_type, training_type,

time_taken_to_train, time_taken_to_build, corret_classified_instances, incorret_classified_instances,

kappa_statistic, mean_absolute_error, root_mean_squared_error, relative_absolute_error,

root_relative_squared_error, total_number_of_instances. These return types can be changed but the related

service should be updated to match the required return model.

Use the Data Source → Measures Data Source → Regiseter Measure to add the bulk data measurement to a

project in MEASURE platform.

This Measurement required 5 inputs;

https://github.com/ITEA3-Measure/MeasurePlatform/wiki/Manual-Measure-Implementation

serverUrl: URL for the WEKA Analysis Tool Service, URL can be changed to a different service. This way

Analysis tool can be extended and support multiple service with different input but same output.

DataSetName: the dataset name from the WEKA Analysis Tool Database, which is going to be used to run

ML algorithm given attributes

AlgorithmName: ML algorithm name, that is going to be used. Currently J48, Naïve Bayes and MLP is

supported.

Percentage: percentage that is going to define the training set. Can be set -1 to user 10 cross validation

instead of percentage split.

Options: WEKA options to run ML algorithms

When the ML Measurement run the following result are generated.

Possible combination of the ML Measurement results are displayed above.

Read datasets from MEASURE platform and deploy WEKA results to MEASURE platform.

For this functionality bulk data service and MEASURE subscription system. The WEKA Analysis service

requires data to be present in the MEASURE platform so we have to user bulk data migration shown in the “1.

 Transfer bulk datasets to MEASURE platform.”

After Bulk data Measure run, results can be displayed by adding data table to the project.

We have to add the Sync measurement (shown as below) of the source data to the project so it can be updated

later on.

When the Analysis Tool started, is subscribes itself to the MEASURE platform automatically. It can be viewed

in service catalogue page of the MEASURE platform

WEKA Analysis Tool should be activated in the Configuration tab from the project page.

After this activation MEASURE Platform creates an alert. WEKA Analysis tool checks for every alert generated

for it over MEASURE APIs. When an alert found it checks if the raised alert are listed in watchedMeasure (in

application.properties file). If the alert is matched a record created in MEASURE_LIST table. This table is used

to track the watched project. WEKA Analysis Tool checks the MEASURE platform for the waiting project and

its watched Measurements. If the record count is different from the current data point count the pre-determined

ML algorithm run and the result saved in WEKA_SYNC_RESULT table.

WEKA Analysis tool checks the WEKA_SYNC_RESULT table, if there is a new record which has

SYNCHRONIZED value is 0, it triggers the Measurement in the project (if the source Measurement name is

cfpEdu the triggered Measurement name is cfpEduSync) with the prefix Sync the prefix is defined in the

application.properties file.

After these steps are completed the automation is becomes activated. When any data added to the MEASURE

platform WEKA Analysis tool runs ML algorithm and saves the results to WEKA_SYNC_RESULT table. Next

sync cycle triggers the MEASURE platform to gets the data from WEKA Analysis Tool.

