
(ITEA 3 – 15017)

open standard APplication Platform
for carS and TrAnsportation vehiCLEs

Deliverable: D 2.3
"Description and Development of Cloud Middleware within the

Network"

Work Package: 2
Service Enablers in Intelligent Networks

Task: 2.3
"Network and Cloud Middleware Development"

Document Type: Deliverable
Document Version: Final
Document Preparation Date: 16.02.2019

Classification: Internal
Contract Start Date: 01.01.2017
Duration: 31.12.2019

History

Rev. Content Resp. Partner Date
0.1 Initial document structure Laaroussi Zakaria 16.02.2019
0.2 Adding new chapter Laaroussi Zakaria 02.03.2019
0.3 Service provisioning section Laaroussi Zakaria 06.03.2019
0.4 Adding results and discussion Laaroussi Zakaria 08.03.2019
0.5 Authorization framework for co-

operative C-ITS
Ravidas Sowmya 30.03.2019

0.6 Adding discussion to service pro-
visioning chapter

Laaroussi Zakaria 01.04.2019

0.7 Adding conclusion chapter Laaroussi Zakaria 03.04.2019
0.8 Adding MEC chapter Jussi Haapola 05.04.2019
0.9 Adding Bibliography Laaroussi Zakaria 08.04.2019
1.0 Adding results interpretation to

Service provisioning chapter
Roberto Morabito 18.04.2019

ii

Contents

History ii

1 Introduction 1
1.1 Document Structure . 1

2 Network and Cloud Middleware Development 2
2.1 Service Provisioning . 2
2.2 Cloud based vs. Edge based . 3
2.3 Discussion . 4

3 Utilising Multi-Access Edge Computing Applications for Automotive Systems 8
3.1 Local Break Out . 11
3.2 Host infrastructure setup and prerequisites . 12

4 Authorization Frameworks for IoT: Analysis 14
4.1 Analysis . 14

4.1.1 Overview . 14
4.2 Discussion . 16

5 Conclusion 20

iii

List of Figures

2.1 Edge/Cloud service provisioning areas. 3
2.2 Driving area while performing the study . 4
2.3 Traceroute command result : Edge/Cloud to In-car OBU. 5
2.4 SoTA delivery: Small software images . 6
2.5 SoTA delivery: Big software images . 7

3.1 High-level view of Application Life Cycle Management. 9
3.2 Application Life Cycle Management operations at packaging and operational levels. 10
3.3 Local Break Out Interfaces. 11
3.4 Application Life Cycle Management virtual machine procedures for setup. . . . 13
3.5 Host machine precedures for setup. 13

4.1 Analysis of existing authorization frameworks for IoT with respect to the evalu-
ation criteria concerning the access control system 15

4.2 Analysis of existing authorization frameworks for IoT. Symbol † indicates that
only a toy example is provided for demonstration purposes, but the framework
is not designed specifically for that application domain. 16

iv

List of Tables

v

1 Introduction

The emerging vehicular applications require computing capacity and network connectivity avail-
ability. Mobile Edge Computing(MEC) as new 5G feature which focuses on moving comput-
ing resources to the edge of networks, complements cloud computing by solving the latency
constraints and reducing ingress traffic to the cloud. In this document, our main goal is to
investigate the added value by edge from the power of computing.

1.1 Document Structure

This deliverable is organized as follows: In chapter 2 we described the continuation of the
testbed selected for the SoTA use-case defined in D2.2, in chapter 3 we introduced the Multi-
access Edge Computing (MEC) applications and services environment, in chapter 4 we described
the components of a novel authorization framework dedicated for Intelligent transportation
system. Finally, in chapter 5 we give a summary about the research studies and experiments
presented in the document.

1

2 Network and Cloud Middleware
Development

2.1 Service Provisioning

An efficient service provisioning can be very important to achieve the 5th level of autonomous
vehicles. The multiple services defined by ETSI for Intelligent Transportation System(ITS)
will enable the vehicle to travel from an departure to arrival without a human interaction.
In the meantime service providers are aiming to offer services that follow vehicles and drivers
everywhere.
In this regard, Cloud providers aim to deliver a better quality of services no matter the through-
put offered by the network and the latency that carries caused by different factors.
The 5G mobile network offers new technologies to ensure performing service delivery using dif-
ferent features such as Network slicing, Mobile Edge computing. The contribution reported in
this deliverable include the results achieved through the testbed already presented in the deliv-
erable D2.2 . Our contribution to this deliverable is about exploring the possibility of placing
the service provisioning at the network edge, by exploiting the Multi Access Edge Computing
(MEC) concept in vehicular scenarios and investigate if it can be complementary to what the
Vehicular Cloud Computing is already capable of delivering.
In this section, we empirically show–through the setup of a vehicular system testbed—whether
a service provisioning issued at the network edge can generate performance benefits in compar-
ison to service provisioning from the centralized cloud. We focus on vehicle communications
enabled by enhanced mobile network, by also empirically investigate how the SoTA is affected
when it is provided by edge or cloud facilities, while varying the dimension of the software
image size..
The results are presented and well presented and discussed in the next sections.

2

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 2.1: Edge/Cloud service provisioning areas.

2.2 Cloud based vs. Edge based

In the past decade, vehicles have grown from just being mechanical to turn connected and
smart. Today’s vehicles embed enhanced communication abilities with different entities relying
on Vehicle-to-Everything(V2X) protocols. In this study we focused on one specific protocol
Vehicle-to-Cloud(V2C)/Vehicle-to-Edge(V2E), we evaluated one ETSI service defined for ITS
dubbed Software update over the air(SoTA).
In the analysis shown in D2.2, we evaluated and compared different application layer protocols
in vehicular scenarios while transmitting small sized workloads. The purpose of the empirical
analysis presented in D2.2 was assessing the performance in terms of throughput and latency
of different application layer protocols, in the context of vehicular scenarios.
In this new analysis, we focus on evaluating cloud vs. edge-based over the air software update
we took the download time as a metric while varying the software image size.
The used vehicular system architecture to evaluate cloud vs. edge-based over the air software
update is shown in Fig.2.1, while the main purpose of the first study of the testbed was evalu-
ating the application layer protocols in vehicular scenarios.
In this study, the primary objective was assessing the impact of software images size on the per-
formance in terms of download time in vehicular scenarios. From these results, it also becomes
possible to rank the performance variation between edge-based provisioning and cloud-based
provisioning.
Fig.2.1 shows two service provisioning areas: Cloud-based area"Ericsson research datacenter
located in Sweden" and Edge-based area "Edge entity located in Ericsson Finland". As a
remark, the used edge entity is not following the Mobile Edge Computing(MEC) Specification
defined by ETSI, the used server is a workstation running an HTTP server "NGINX," all the
technical details of the used implementations and the hardware specifications are listed in D2.2.

3

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Fig.2.2 shows the route of the vehicle while performing the study by receiving a variation of
new software images from the cloud and edge respectively.

Figure 2.2: Driving area while performing the study

2.3 Discussion

In this section, we present the results of our study; besides, we explain on the empirical out-
comes achieved during our performing the testbed.

File sizes ranges are from 100 kB to 1GB; we divided the results to two figures Fig.2.4 and
Fig.2.5 in purpose to show the variation we got between small size and big size software images.
However, it is worth mentioning that the vehicle’s speed variation it wasn’t taken into account,
the average speed was 80 km/h in Highway road.
The main insights that can be derived from this analysis that there is a dependency between the
performance of a cloud/edge and the file size as showing in Fig.2.4 and Fig.2.5. It appears how
the edge-based service provisioning is less performing comparing to cloud-based service provi-
sioning in small size software images case, and better performing in the big software images case.

This difference in percentage between edge and cloud depends on to the number of routers
that a packet passes through from the in-car OBU to the destination(Edge/Cloud), we used
the traceroute command in the aim to trace the route of the packet from a departure to
a destination as showing in Fig.2.3, The upper part of the picture shows the results of the
traceroute command applied when the provider of the new software image is the data center,
and the lower part of the picture shows the results of the traceroute command applied when the
provider of the new software image is the edge entity. The main insights that can be derived
from the picture are the number of hops to the edge entity is much higher than the one from
the cloud, even the vehicle is closer to the edge than the cloud.
Before examining the achieved results, it is worth clarifying what is the existing network setup
in the testbed as it could help on understanding the rationale behind the empirical outcome.
Both cloud and edge server are interfacing with the base station through the mobile network of
a Finnish operator. This also implies that there is no local breakout between the base station

4

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 2.3: Traceroute command result : Edge/Cloud to In-car OBU.

and the edge server–as shown from the traceroute analysis–fully relying on the network setup
provided by the mobile network operator

5

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 2.4: SoTA delivery: Small software images

As you can see from Fig.2.4, we are reporting the download time of three size files (100Kb,
500Kb, 1Mb), for both providers Cloud and Edge.
If we look at the graph, we notice that the edge is performing better than the cloud in the case
of small size software images.
In Fig.2.5, we are reporting the download time of three size files (200Mb, 500Mb, 1Go) for

both Cloud and Edge providers .
The figure shows the performance of both edge and cloud from a download time perspective.
As it appears the cloud is performing better than the edge in the case of big software images
size.
The achieved results provide very interesting insights. In fact, it is somehow surprising how the
network setup of the mobile operator can affect the performance of the service provisioning.
In other words, we would expect that the edge-based provisioning is always outperforming the
cloud-based provisioning because of the closer physical location between edge server and car.
However, this kind of outcome is verified only in the case of Software-over-the-air (SOTA) of
small size files. Differently, for the case of SOTA of large size files cloud-based provisioning and
outperforming the edge-based one. Although further research investigation is needed for giving
an empirical reasoning to these results, it is reasonable to assume that the higher number of
hops in the edge-based provisioning produce a longer download time as a result of the higher
processing time that each hop must to do of large size files, despite the lower latency between
the different hops. Differently, this kind of result does not appear visible in the case of small
size files transmission because the need of processing small size files is less resource-demanding
and the lower latency between hops in the edge case makes the download time lower–while in
the cloud case the longer latency between the different hops is predominant respect the time
needed to process the single file.

6

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 2.5: SoTA delivery: Big software images

In the following sections, we take a more detailed look on instantiating an automotive appli-
cation at the edge entity MEC server. The edge entity is ETSI MEC specification compliant
solution where the aim is to directly capture the user data plane traffic at the eNodeB. As
compared to the illustration in Fig.2.1 the edge entity has a wired connection to the mobile
base station. By capturing the LTE user plane traffic, all the additional hops from Fig.2.3 can
be eliminated, only the locally applied switching applies. The next sections describe in detail
the procedures required for MEC application installation and operation.

7

3 Utilising Multi-Access Edge Computing
Applications for Automotive Systems

Multi-access Edge Computing (MEC) applications and services are installed on virtualised x86
based Commercial Off The Shelf (COTS) Information Technology (IT) Hardware (HW) using
the MEC service named Application Life Cycle Management (ALCM). The ALCM is a software-
only solution, provided as MEC service, to manage the application life cycle on virtualised x86
based COTS IT hardware. It’s high-level view is depicted in Figure 3.1. The ALCM provides
Structured Command Line Interface (SCLI) to manage the life cycle operations of applications.
Multiple instances of application virtual machines (VMs) can be deployed and managed

by ALCM VM on the same COTS IT hardware host. ALCM and the applications which
are managed by ALCM is packaged in Topology and Orchestration Specification for Cloud
Applications (TOSCA) Cloud Service Archive (CSAR) format.
The Topology and Orchestration Specification for Cloud Applications is a standard devel-

oped under the OASIS foundation. It covers the definition of complex enterprise applications
which consists the different loosely coupled components. Components can be tied by using
requirements and capabilities which are part of TOSCA standard. One standard for defining
TOSCA-based application packages is Cloud Service Archive.
The ALCM validates an application package and creates incubation. This helps to install and

launch application VMs by creating necessary resources such as virtual central processing units
(vCPUs), networks, memory, etc. The ALCM is the only VM, which interacts directly with
the host through the host-only network, with limited privileges. The other applications can
be instantiated and managed using ALCM. The ALCM uses the Operation, Administration,
Maintenance (OAM) network to interact with the other applications during operations like
post-configuration and upgrade.
The functionalities of ALCM are listed as follows:

1. Transfer the TOSCA CSAR of the application to the ALCM VM.

2. The ALCM VM validates the application package against the TOSCA standards.

3. The ALCM VM provides the basic environment for all the application VMs in terms of
resource and infrastructure like volumes, memory, and network resources to instantiate.

4. The ALCM VM uses the Ansible framework to do post-configuration operations of the
application. The application defines the required tasks to be done as part of post config-
uration using Ansible playbook which is part of application package.

5. The ALCM VM provides upgrade support for all the applications.

Ansible is an open-source software provisioning, configuration management, and application
deployment tool. It runs on many Unix-like systems, and can configure both Unix-like systems
as well as Microsoft Windows. It includes its own declarative language to describe system

8

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 3.1: High-level view of Application Life Cycle Management.

configuration. Ansible works by connecting to your nodes and pushing out small programs,
called “Ansible modules” to them. These programs are written to be resource models of the
desired state of the system. Ansible then executes these modules (over SSH by default), and
removes them when finished.
The ALCM allows following life cycle operations to manage the application package and the

application.
As depicted in Figure 3.2 (left side) there are four life cycle operations at an application

package level:

• On-boarding: During this operation, the application package will be copied to a pre-
defined location inside ALCM VM. The package will be extracted by ALCM and verified.

• Enabling: The application package will be used for instance level operations.

• Disabling: The application package cannot be instantiated. However, an already instan-
tiated instance can be kept in service.

• De-boarding: Any resource created and stored package will be deleted from ALCM VM.
A package can be de-boarded only when no application instance of that package exists.

There are also four life cycle operations at an application operation level, as depicted in
Figure 3.2 (right side) :

• Instantiating: ALCM prepares the computing, network, and storage resources required
by the application. Once the resources are available, the application is booted up.

• Starting: ALCM starts a stopped application

• Stopping: ALCM stops an instantiated or started application

• Terminating: ALCM removes all resources allocated to the application.

9

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 3.2: Application Life Cycle Management operations at packaging and operational levels.

A terminating application is configured usually with a unique IP address across the entire
operator network. This allows using the IP address directly in the client. The IP address of
the OAM network for the application is a static OAM address provided by an operator. In
case an application requires licenses to work, the complete licensing should be managed by the
application itself.
Applications that are managed by ALCM are mandated to describe their application in

TOSCA format. The application image and all the necessary files along with TOSCA YAML
(YAML Ain’t Markup Language), needs to be verified for their authenticity to ensure they are
not tampered by any unknown entities. YAML is a human-readable data serialisation language.
It is commonly used for configuration files, but can be used in many applications where data
is being stored or transmitted. YAML targets many of the same communications applications
as XML but has a minimal syntax which intentionally breaks compatibility with standard gen-
eralised markup language. The ALCM provides a framework to authenticate and to authorise
the package before deployment. This is done via the Certificate Authority (CA) who signs the
application package. If some specific performance requirements are needed, application devel-
oper can configure non-uniform memory access (NUMA) nodes to allocate desired CPUs and
memory for the application.

Loading Run Time Environment Settings
Run Time Execution (RTE) for applications can be loaded by mounting the CDROM image

as part of application boot sequence. The RTE entities can be variables or scripts that is used
for application startup.

Accessing Run Time Execution using config_drive
An application developer can use the ‘config_drive’ inside the CSAR package to define what

configuration should be made available by the operator. This is an optional service that can be

10

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

utilised when the application is deployed using MEC. The ‘config_drive’ contains “user_data”
file, which has information of network interfaces, storage volumes, etc. With Network Interface
Info, an application can configure IP, route, and so forth. With storage volumes information,
an application can mount the file systems. The application developer should decide what to do
with the information in ‘config_drive’.
The application developer can make use of “cloud-init” package to read the “user-data”. To

make the “cloud-init” work, the application developer should configure it accordingly. The MEC
instantiation recommends using the “cloud-init” package.

Configuring RTE via files
An application developer may optionally choose a set of files that need to be present when the

application virtualised network functions (VNF) boots up. These files are passed transparently
from the MEC to the application at the deployment. These files must be present in the CSAR
package and should be appropriately linked in the TOSCA YAML. Along with the “user-data”
file, these files will be available in the CDROM image.

3.1 Local Break Out

The virtual Serving Gateway – Local Break Out (vSGW-LBO) VNF provides a break-out func-
tionality for LTE traffic based on operator configured traffic offload policies. In APPSTACLE
domain this functionality would include, for example, the emergency warnings scenario, where
notification of a detected road hazard would be managed by a nearby MEC entity, or some
other scenario needing to manage locally dense deployments (e.g. major intersections), or very
low latency solutions. The Local Break Out (LBO) functionality is deployed and distributed at
the edge of the network. The LBO is interoperable with the operator’s Mobility Management
Entity (MME) and Physical Gateway (PGW) through the 3GPP standard interfaces S11 and
S5/S8, respectively. These VNF are 3GPP compliant, where the SGW is a part of virtualised
MEC (vMEC) platform controlled and coordinated from the central core. It allows the traffic
breakout towards special application servers located in the vMEC platform. The vSGW-LBO
selection is based on the International Mobile Subscriber Identity (IMSI) number.

Figure 3.3: Local Break Out Interfaces.

11

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 3.3 depicts the interfaces of the LBO. Here, the X2 is the LTE control plane external
interface defined between two neighbour eNodeBs. The S1 interface in LTE is used between
eNodeBs and the EPC; specifically S11 between the MME and SGW. S1u is the S1 user plane
external interface, S1c is the S1 control plane interface, sGi is the interface defined between
the PGW and external networks, and S6a is the interface is between the MME and Home
Subscriber Server.

3.2 Host infrastructure setup and prerequisites

Any instantiation of the MEC VNF has a number of prerequisites. On any server that will host
MEC VNF, the following BIOS settings are mandatory or strongly recommended.

• Intel VT-x (Intel Virtualization Technology for IA-32 and Intel 64 Processor) is enabled.

• Intel VT-d (Intel Virtualization Technology for Directed I/O) is enabled.

• Intel IOMMU is enabled in the host to support SRIOV based NIC cards.

• Apparmor is enabled (Ubuntu).

• Hyper-threading is enabled.

• Ubuntu 18.04 is used as an operating system.

On a Linux environment the following required packages must be installed: “QEMU”, “KVM”,
“virt-manager”, “bridge utils”, and “libglu” (qemu-img, qemu-kvm, libvirt, bridge-utils, genisoim-
age). Basic requirements for hardware is to have x86 family processor with at least 2x12 cores.
2x 800GB of SSD disks and Intel SRIOV and/or DPDK compatible NICs with 1Gb OAM port
for host and 2x 10GB port for vMEC. Virtual Functions (VF) are created and attached to
network device (NIC). A MEC user with administrator privileges is created to host ALCM.
Lastly, Figures 3.4 and 3.5 procedures are carried out by the ALCM VM and host machine,
respectively.

12

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 3.4: Application Life Cycle Management virtual machine procedures for setup.

Figure 3.5: Host machine precedures for setup.

13

4 Authorization Frameworks for IoT:
Analysis

In deliverable D2.1, we discussed the generic IoT requirements and the access control require-
ments derived from it. We also elaborated on different architecture styles; namely, the central-
ized, connected and distributed, and discussed the state of the art research. In this section, we
discuss typical middlewares that is used in IoT eliciting their benefits. Furthermore, we provide
an analysis of existing authorization frameworks for IoT based on criteria such as architecture
style and where the authorization components are deployed (in physical node, edge or cloud).

Middleware The middleware is often required to ensure connectivity, interoperability, storage
and computation of data within an IoT ecosystem. Different types of middleware have been
proposed for IoT [31, 37, 38]. In our study of the literature on access control for IoT, we
observed that most of the existing solutions rely on cloud computing and edge computing
as middleware. According to the NIST [25], cloud computing is a computing paradigm that
enables on-demand network, storage, applications and other services without any management
effort. Cloud computing has become a core component of most of IoT platforms because it
provides elastic and scalable data storage and processing. The adoption of cloud computing
has opened new directions for technological enhancements in several IoT applications. The
cloud has different role within the IoT architecture, depending on the application needs and
requirements.
Fog computing [39] and edge computing [11] have been recently proposed as new computing

paradigms to reduce the communication latency and bandwidth required by the use of a remote
cloud platform for data storage and processing. The underlying idea behind fog computing is
that data generated by IoT devices are processed at the edge of the network, close to where
they are generated. A network of micro data centers process and store critical data locally and
then push all received data from IoT devices to a remote cloud platform for long-term stor-
age. The computational processes being done by the micro data centers is usually referred as
edge computing, while the network connections between the micro data centers and the cloud
platform is referred to as fog computing.

4.1 Analysis

4.1.1 Overview

Our analysis of the literature shows that a variety of approaches have been designed and
developed to enable access control in IoT. These approaches can be broadly classified in two
main categories based on the policy evaluation strategy and architecture. On one side, we have
authorization frameworks [1, 2, 3, 4, 7, 8, 9, 12, 13, 18, 19, 20, 22, 23, 26, 28, 29, 30, 33, 35,
40, 41, 42] that adopt a policy-based architecture and a runtime policy evaluation strategy.
Most of these frameworks are inspired to the XACML standard. On the other side, we have

14

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

frameworks [6, 14, 15, 16, 17, 23, 32, 36] that adopt a hybrid-based architecture and policy
evaluation strategy. A number of these frameworks build on top of OAuth by extending this
standard to enable the generation of tokens based on the evaluation of access control policies
like in [6, 9] whereas Rivera et al. [32] adopt UMA.
Regardless the type of access control architecture, different deployments and technologies are

used to implement architecture. For example, PDP, PEP, PAP, and PIP could all be deployed
in the cloud like in [1, 2, 26] or they could all be implemented on edge devices [19, 40] or a
combination of both [33]. Some works [7, 8, 28] have also proposed authorization mechanisms
based on blockchain technology.
Existing frameworks also vary significantly for maturity level. While a few [4, 6, 10, 12, 15,

16, 18, 19, 22, 24, 23, 26, 36] provide a prototype implementation, many [1, 2, 3, 7, 8, 9, 13, 14,
17, 20, 28, 29, 30, 32, 33, 35, 41] only remain at a conceptual level. In particular, Ray et al.
[30] and Zhang and Tian [42] only propose an access control model tailored to IoT ecosystems
and do not provide detail of the underlying IoT architecture and access control mechanism.

Figure 4.1: Analysis of existing authorization frameworks for IoT with respect to the evaluation
criteria concerning the access control system

15

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Figure 4.2: Analysis of existing authorization frameworks for IoT. Symbol † indicates that only
a toy example is provided for demonstration purposes, but the framework is not
designed specifically for that application domain.

4.2 Discussion

The ability to automate the evaluation of an access request is an important requirement in
all IoT applications where a multitude of devices and users share information. Assuming that
a user is always available to evaluate if access to certain resource should be granted is not
realistic. To automate the evaluation of an access request, existing frameworks adopt either
a policy-based [1, 2, 3, 4, 7, 8, 9, 12, 19, 20, 22, 23, 26, 28, 29, 30, 33, 35, 40, 41, 42] or a
hybrid architecture [6, 14, 15, 16, 17, 32, 36]. In a policy-based architecture access requests

16

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

are evaluated against a predefined set of access control policies; while in hybrid architectures
authorization tokens are issued based on the evaluation of access control policies. The only
frameworks that do not fully satisfy the requirement is the one by Fremantle et al. [10] and
Cirani and Picone [5]. The framework proposed in [10] is based on the OAuth protocol, which
requires the resource owner to grant access to the application the first time an authorization
token is issued. Similarly, Cirani and Picone [5] require the resource owner’s involvement in
the issuing of tokens. In particular, they account for three operational modes to obtain the
tokens: owner-to-owner, in which a user registers his/her own device and obtains a token with
all permissions on the device; reactive owner-to-any, in which the owner grants permission upon
a user’s request; and proactive owner-to-any, in which the owner proactively grants permission
to a user.
Another key requirement for authorization frameworks designed for IoT applications is that

they should not introduce communication and computation overhead on resource-constrained
devices.
This requirement is typically addressed by outsourcing the most computationally expensive

operation, namely policy evaluation, to an external service while performing only the enforce-
ment of the access decision on constrained devices. Our analysis shows that most of the
frameworks that adopt a policy-based architecture [1, 2, 3, 4, 7, 8, 9, 20, 22, 26, 28, 33, 40]
externalize the PDP and the PAP (i.e., these components are not deployed in the physical
node), thus fully satisfying the requirement. The only exceptions are the frameworks proposed
in [12, 41] in which the PDP and the PAP run on the constrained device. Similarly, frameworks
that rely upon a token-based or a hybrid architecture [6, 14, 15, 16, 17, 32, 36] fully satisfy
the requirement. These frameworks employ dedicated services for the generation and issue of
authorization tokens, and only the validation of the token is performed on the device. However,
an aspect that should be considered is the size and format of the authorization token that could
introduce a computation overhead on a constrained device. Lightweight standards to repre-
sent tokens like JSON should be preferred over XML-based formats like the one supported by
SAML.
On the other hand, the performance of an access control system not only depends on the

location of the components involved in the policy evaluation and communication protocol, but
also on the policy evaluation strategy.
Frameworks that use an off-line evaluation strategy (i.e., [10, 32]) or an hybrid strategy in

which only context constraints are verified at run-time (hybridc) and their verification does not
require retrieving information from other components (e.g., [12, 15, 36, 41]), do not introduce
latency in the access decision making process. Similarly, latency is limited if policy evaluation
is performed on the edge like in [4, 16, 19, 40]. On the other hand, policy-based frameworks
in which the access control mechanism is deployed in the cloud or provided as an external
service (e.g., [1, 2, 3, 9, 18, 26, 42]) might introduce delay due to additional communication.
This is also the case of frameworks that require validating tokens at run-time (hybridt) like in
[5, 6, 14], or that require retrieving contextual information from external sources or from the
cloud like in [18, 21, 33, 34, 42]. On top of this, the communication protocol has a significant
impact on the overall performance of the IoT ecosystem where frameworks based on lightweight
protocols like MQTT and CoAP provide better performance compared to the ones based on
HTTP. Frameworks based on blockchain technology (e.g., [7, 8, 28, 29]) also do not satisfy the
requirement due to time required to confirm a transaction. Every time an access control policy
has to be added to or retrieved from the blockchain, a new transaction has to be created and
added to the blockchain. Before a transaction can be added to the blockchain, special nodes

17

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

called miners run a consensus protocol that requires them to verify each transaction. The time
to complete the validation process is typically in the order of minutes [27], which is clearly
unsuitable for most IoT applications, especially for the ones that are latency sensitive.
Other key requirements for policy evaluation are interoperability and reliability/availability

of components involved in the evaluation of the policies. However, despite their importance
these two requirements are only marginally considered by existing authorization frameworks for
IoT. Some of the frameworks only scratch the surface of the interoperability problem because
they use a standard like XACML to specify the access control policies [36] or they encode the
capability token in JSON [10, 15, 16, 18, 36]. Interestingly, Seitz et al. [36] provide an encoding
of SAML assertions in JSON, while the others propose an ad-hoc format to encode tokens.
However, using a standard only facilitates the exchange of policies or tokens across multiple
domains but not their interpretation. If different authorities define their policies based on
different semantic models, the collaborative evaluation of these policies can result in granting
access to users for which access should be denied.
Reliability and availability is fully satisfied by those frameworks that can tolerate the failure

of an architectural component and of the communication among them. Most of the frameworks
partially satisfy the requirement because they only address the reliability/availability of the
components but not of the communication among them. To address the failure of an architec-
tural component, three main solutions have been adopted by existing authorization frameworks.
Some frameworks have deployed the components in the cloud [1, 2, 17, 26, 33, 36], which guar-
antees that the components are evenly distributed across different servers, which are connected
to work as one. Therefore, if one server fails, downtime is avoided. Salonikias et al. [33] instead
ensure reliability and availability by replicating the PDP and the PEP and by defining prop-
agation policies that specify how access control policies should be exchanged between PDPs.
Frameworks based on blockchain [7, 8, 28, 29] propose to deploy and maintain a copy of the
components of the authorization framework in all nodes forming the blockchain, thus ensur-
ing resilience against failures of architecture components. The only framework proposed that
fully satisfies is the one proposed by Neisse et al. [26], which adopts a reliable communication
protocol like MQTT besides addressing the reliability of the architectural components.
An important aspect is the applicability of an access control framework to real IoT appli-

cations. In this respect, most of the proposed frameworks [1, 2, 3, 7, 8, 9, 13, 14, 17, 20, 28,
32, 33, 35, 41] only present the architecture of the access control mechanism and demonstrate
the authorization flow among the components based on a realistic IoT use cases. For exam-
ple, Dorri et al. [32] have illustrated their access control framework based on a smart home
scenario. However, use cases do not provide insights on the effectiveness of the framework in
realistic IoT settings. Only implementing the framework on a real IoT system and evaluating
its performance and usability can provide such insights. Nonetheless, only few of the proposed
frameworks have been implemented and evaluated [6, 12, 22, 23, 26, 36], while other works only
report a prototype implementation [4, 10, 15, 16, 18, 19]. For instance, Neisse et al. [26] have
proposed an authorization framework for MQTT brokers. The enforcement of access control
policies is performed by a PEP that is integrated into the browser, while policy evaluation is
done by an external PDP and Context Manager. The MQTT broker has been implemented
using the Mosquitto library and its performance evaluated in terms of overhead introduced in
the communication by implementing the PEP in the MQTT broker. Cirani et al.
citecirani2015iot have instead focused on evaluating the performance of their access control
framework on constrained devices. In particular, they evaluated the energy and memory con-
sumption of policy evaluation on a Contiki-based devices. To run the evaluation, they used the

18

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

Cooja simulator and considered Zolertia Z1 nodes with 92KB ROM and 8kb RAM. Similarly,
Garcia et al. [12] have evaluated the performance of their framework on constrained devices but
using a real testbed rather than a simulation environment like Cooja. The testbed consisted of
Arduino Mega 2560 board3 with 16 MHz processor, 256 kB of Flash Memory, 8 kB of SRAM,
and 4 kB of EEPROM.

19

5 Conclusion

In this deliverable we elaborate the software components of different cloud middleware within
the network technologies used to continue the development of the use-cases selected within WP2
described in D2.1 and started in D2.2, we performed an extensive study using multiple testbeds
and simulations to understand the influence of cloud technologies on network environment, in
addition we evaluated cloud vs. edge behavior by enabling different V2C/V2E protocol relying
on multiple cloud services(Authorization framework, SoTa provider, etc.,).

20

Bibliography

[1] Alshehri, Asma ; Sandhu, Ravi: Access Control Models for Cloud-Enabled Internet of
Things: A Proposed Architecture and Research Agenda. In: Proceedings of International
Conference on Collaboration and Internet Computing, IEEE, 2016, P. 530–538

[2] Alshehri, Asma ; Sandhu, Ravi: Access Control Models for Virtual Object Communi-
cation in Cloud-Enabled IoT. In: Proceedings of International Conference on Information
Reuse and Integration, IEEE, 2017, P. 16–25

[3] Barka, Ezedine ; Mathew, Sujith S. ; Atif, Yacine: Securing the Web of Things with
Role-Based Access Control. In: Codes, Cryptology, and Information Security, Springer,
2015, P. 14–26

[4] Bouij-Pasquier, Imane ; El Kalam, Anas A. ; Ouahman, Abdellah A. ; De Mont-
fort, Mina: A Security Framework for Internet of Things. In: Cryptology and Network
Security, Springer, 2015, P. 19–31

[5] Cirani, S. ; Picone, M.: Effective authorization for the Web of Things. In: Proceedings
of World Forum on Internet of Things, IEEE, 2015, P. 316–320

[6] Cirani, Simone ; Picone, Marco ; Gonizzi, Pietro ; Veltri, Luca ; Ferrari, Gianluigi:
IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure Services in IoT
Scenarios. In: IEEE Sensors Journal 15 (2015), Nb. 2, P. 1224–1234

[7] Dorri, Ali ; Kanhere, Salil S. ; Jurdak, Raja: Blockchain in Internet of Things:
Challenges and Solutions / arXiv.org. 2016 (1608.05187). – arXiv:

[8] Dorri, Ali ; Steger, Marco ; Kanhere, Salil S. ; Jurdak, Raja: Blockchain: A dis-
tributed solution to automotive security and privacy. In: IEEE Communications Magazine
55 (2017), Nb. 12, P. 119–125

[9] Fernandez, Federico ; Alonso, Alvaro ; Marco, Lourdes ; Salvachua, Joaquin: A
model to enable application-scoped access control as a service for IoT using OAuth 2.0. In:
Proceedings of Conference on Innovations in Clouds, Internet and Networks, IEEE, 2017,
P. 322–324

[10] Fremantle, Paul ; Aziz, Benjamin ; Kopecky, Jacek ; Scott, Philip: Federated Iden-
tity and Access Management for the Internet of Things. In: Proceedings of International
Workshop on Secure Internet of Things, IEEE, 2014, P. 10–17

[11] Garcia Lopez, Pedro ; Montresor, Alberto ; Epema, Dick ; Datta, Anwitaman ;
Higashino, Teruo ; Iamnitchi, Adriana ; Barcellos, Marinho ; Felber, Pascal ;
Riviere, Etienne: Edge-centric Computing: Vision and Challenges. In: SIGCOMM
Comput. Commun. Rev. 45 (2015), Nb. 5, P. 37–42

21

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

[12] Garcia-Morchon, Oscar ; Wehrle, Klaus: Modular context-aware access control for
medical sensor networks. In: Proceedings of Symposium on Access Control Models and
Technologies, ACM, 2010, P. 129–138

[13] Guoping, Zhang ; Wentao, Gong: The Research of Access Control Based on UCON in
the Internet of Things. In: Journal of Software 6 (2011), Nb. 4, P. 724–731

[14] Gusmeroli, Sergio ; Piccione, Salvatore ; Rotondi, Domenico: A capability-based
security approach to manage access control in the Internet of Things. In: Mathematical
and Computer Modelling 58 (2013), Nb. 5, P. 1189–1205

[15] Hernandez-Ramos, Jose L. ; Jara, Antonio J. ; Marin, Leandro ; Skarmeta, Anto-
nio F.: Distributed capability-based access control for the Internet of Things. In: Journal
of Internet Services and Information Security 3 (2013), Nb. 3/4, P. 1–16

[16] Hussein, Dina ; Bertin, Emmanuel ; Frey, Vincent: A Community-Driven Access
Control Approach in Distributed IoT Environments. In: IEEE Communications Magazine
55 (2017), Nb. 3, P. 146–153

[17] Islam, S. M. R. ; Hossain, M. ; Hasan, R. ; Duong, T. Q.: A conceptual framework
for an IoT-based health assistant and its authorization model. In: Proceedings of Annual
Computing and Communication Workshop and Conference, IEEE, 2018, P. 616–621

[18] Jindou, J. ; Xiaofeng, Q. ; Cheng, C.: Access Control Method for Web of Things
Based on Role and SNS. In: Proceedings of International Conference on Computer and
Information Technology, IEEE, 2012, P. 316–321

[19] Kim, J. E. ; Boulos, G. ; Yackovich, J. ; Barth, T. ; Beckel, C. ; Mosse, D.:
Seamless Integration of Heterogeneous Devices and Access Control in Smart Homes. In:
Proceedings of International Conference on Intelligent Environments, IEEE, 2012, P. 206–
213

[20] Kim, T. H. J. ; Bauer, L. ; Newsome, J. ; Perrig, A. ; Walker, J.: Access right
assignment mechanisms for secure home networks. In: Journal of Communications and
Networks 13 (2011), Nb. 2, P. 175–186

[21] Kim, Tiffany Hyun-Jin ; Bauer, Lujo ; Newsome, James ; Perrig, Adrian ; Walker,
Jesse: Challenges in Access Right Assignment for Secure Home Networks. In: Proceedings
of USENIX Conference on Hot Topics in Security, USENIX Association, 2010, P. 1–6

[22] Lee, Sanghak ; Choi, Jiwon ; Kim, Jihun ; Cho, Beumjin ; Lee, Sangho ; Kim, Hanjun ;
Kim, Jong: FACT: Functionality-centric Access Control System for IoT Programming
Frameworks. In: Proceedings of Symposium on Access Control Models and Technologies,
ACM, 2017, P. 43–54

[23] Mahalle, P. N. ; Thakre, P. A. ; Prasad, N. R. ; Prasad, R.: A fuzzy approach to
trust based access control in internet of things. In: Proceedings of International Conference
on Wireless Communications, Vehicular Technology, Information Theory and Aerospace
& Electronic Systems, IEEE, 2013, P. 1–5

22

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

[24] Mahalle, Parikshit N. ; Anggorojati, Bayu ; Prasad, Neeli R. ; Prasad, Ramjee:
Identity Authentication and Capability Based Access Control (IACAC) for the Internet of
Things. In: Journal of Cyber Security and Mobility 1 (2013), Nb. 4, P. 309–348

[25] Mell, Peter ; Grance, Tim: The NIST Definition of Cloud Computing / NIST. 2011
(800-145). – SP

[26] Neisse, Ricardo ; Steri, Gary ; Baldini, Gianmarco: Enforcement of security policy
rules for the internet of things. In: Proceedings of International Conference on Wireless
and Mobile Computing, Networking and Communications, IEEE, 2014, P. 165–172

[27] Ouaddah, Aafaf ; Elkalam, Anas A. ; Ouahman, Abdellah A.: FairAccess: a new
Blockchain-based access control framework for the Internet of Things. In: Security and
Communication Networks 9 (2016), Nb. 18, P. 5943–5964

[28] Ouaddah, Aafaf ; Elkalam, Anas A. ; Ouahman, Abdellah A.: Towards a novel privacy-
preserving access control model based on blockchain technology in IoT. In: Europe and
MENA Cooperation Advances in Information and Communication Technologies. Springer,
2017 (Advances in Intelligent Systems and Computing 520), P. 523–533

[29] Pinno, O. J. A. ; Gregio, A. R. A. ; Bona, L. C. E. D.: ControlChain: Blockchain as a
Central Enabler for Access Control Authorizations in the IoT. In: Proceedings of Global
Communications Conference, IEEE, 2017, P. 1–6

[30] Ray, I. ; Alangot, B. ; Nair, S. ; Achuthan, K.: Using Attribute-Based Access
Control for Remote Healthcare Monitoring. In: Proceedings of International Conference
on Software Defined Systems, IEEE, 2017, P. 137–142

[31] Razzaque, Mohammad A. ; Milojevic-Jevric, Marija ; Palade, Andrei ; Clarke,
Siobhán: Middleware for Internet of Things: a survey. In: IEEE Internet of Things
Journal 3 (2016), Nb. 1, P. 70–95

[32] Rivera, Diego ; Cruz-Piris, Luis ; Lopez-Civera, German ; Hoz, Enrique de la ;
Marsa-Maestre, Ivan: Applying an Unified Access Control for IoT-based Intelligent
Agent Systems. In: Service-Oriented Computing and Applications (SOCA), 2015 IEEE
8th International Conference on, IEEE, 2015, P. 247–251

[33] Salonikias, Stavros ; Mavridis, Ioannis ; Gritzalis, Dimitris: Access control issues in
utilizing fog computing for transport infrastructure. In: CRITIS, Springer, 2015 (LNCS
9578), P. 15–26

[34] Schuster, Roei ; Shmatikov, Vitaly ; Tromer, Eran: Situational Access Control in
the Internet of Things. In: Proc. of CCS, ACM, 2018, P. 1056–1073

[35] Sciancalepore, S. ; Piro, G. ; Tedeschi, P. ; Boggia, G. ; Bianchi, G.: Multi-
Domain Access Rights Composition in Federated IoT Platforms. In: Proceedings of Work-
shop on Recent Advances in Secure Management of Data and Resources in the IoT, 2018

[36] Seitz, Ludwig ; Selander, Goran ; Gehrmann, Christian: Authorization Framework
for the Internet-of-Things. In: Proceedings of International Symposium on A World of
Wireless, Mobile and Multimedia Networks, IEEE, 2013, P. 1–6

23

D2.3 – Final Description and Development
of Cloud Middleware within the Network ITEA 3 – 15017

[37] Sethi, Pallavi ; Sarangi, Smruti R.: Internet of Things: Architectures, Protocols, and
Applications. In: Journal of Electrical and Computer Engineering 2017 (2017)

[38] Song, Zhexuan ; Cardenas, Alvaro A. ; Masuoka, Ryusuke: Semantic middleware
for the Internet of Things. In: Proceedings of International Conference on the Internet of
Things, IEEE, 2010, P. 1–8

[39] Stojmenovic, Ivan ; Wen, Sheng: The fog computing paradigm: Scenarios and security
issues. In: Proceedings of Federated Conference on Computer Science and Information
Systems, IEEE, 2014, P. 1–8

[40] Tian, Yuan ; Zhang, Nan ; Lin, Yueh-Hsun ; Wang, XiaoFeng ; Ur, Blase ; Guo,
Xianzheng ; Tague, Patrick: SmartAuth: User-Centered Authorization for the Internet
of Things. In: Proceedings of USENIX Security Symposium, 2017, P. 361–378

[41] Ye, Ning ; Zhu, Yan ; Wang, Ru-chuan ; Malekian, Reza ; Qiao-min, Lin: An Efficient
Authentication and Access Control Scheme for Perception Layer of Internet of Things. In:
Appl. Math 8 (2014), Nb. 4, P. 1617–1624

[42] Zhang, Guoping ; Tian, Jiazheng: An extended role based access control model for the
Internet of Things. In: Proceedings of International Conference on Information, Network-
ing and Automation Volume 1, IEEE, 2010, P. 319–323

24

	History
	Introduction
	Document Structure

	Network and Cloud Middleware Development
	Service Provisioning
	Cloud based vs. Edge based
	Discussion

	Utilising Multi-Access Edge Computing Applications for Automotive Systems
	Local Break Out
	Host infrastructure setup and prerequisites

	Authorization Frameworks for IoT: Analysis
	Analysis
	Overview

	Discussion

	Conclusion

