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Executive Summary (Thorsis) 
This document presents the current state of the art of IoT technologies by providing a general 
overview on available exiting solutions as well as common problems related to IoT systems. A 
summary of enabling technologies and standards for the implementation of IoT-systems is 
presented in Section 3, where several protocols for the IoT-stack are thoroughly investigated. 
In particular, these are evaluated w.r.t. their application to industrial automation and smart 
manufacturing handling. Furthermore, solutions for data storage – data management systems 
– that can be used in an IoT-environment are analyzed in Section 4. Since security is one the 
most crucial aspects of modern complex interconnected systems, a detailed analysis on 
possible risks which might arise in (industrial) IoT-environments is presented in Section 5. 
The results of the project requirement analysis show that at high abstraction level (enterprise 
or application level) standard solutions enabling M2M communication are required. To this 
intend, the standards oneM2M and OPC-UA are selected as possible solutions for the project. 
At a lower level, the MQTT protocol was pointed out as good candidate for the communication 
between industrial devices, although this is not able to provide the required deterministic 
communication which is at times necessary for industrial applications. The use of MQTT as a 
middle-layer protocol allows not only the use of the oneM2M standard, but also of OPC-UA, 
although this latest does not require MQTT for its implementation. In fact, TCP/IP 
infrastructure suffices in this case. 
Therefore, it was concluded that the basic necessary technology for the implementation of an 
IIoT-platform is the availability of a network system providing TCP/IP (or addressing) 
functionalities. The analysis of the actual underlying physical communication layer was not in 
the primary scope of the project. Nevertheless, considering the real-time, or deterministic 
requirements, that often arise in industrial applications, upcoming technologies such LTE-5G, 
for wireless communication, and TSN, for Ethernet, were pointed out as optimal solutions for 
IIoT. Unfortunately, both technologies are still in an early stage of specification and testing, 
which means not only that their specification will be subject to changes, but also that they will 
not be available in the near future. 
Finally, specifications for the Data Management System w.r.t. the project requirements are 
presented in Section 8, where possible data storage solutions for the OPTIMUM-project are 
introduced. 
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1 Introduction [Thorsis] 
The OPTIMUM-project focusses on the analysis and development of new concepts and 
technological ideas for the Industry 4.0, in particular for the engineering, optimization and 
control of processes related to “Digital Manufacturing and Material Handling”. 
Solutions for material handling play an extremely important role in logistic and in the all 
manufacturing processes. At the current state of the art, though, machines – typical machines 
that find use in material handling applications are cranes and forklifts – are mostly operated 
manually, and only support limited semi-autonomous functions, e.g. tandem functions when 
cranes are used in parallel for the transportation of heavy loads. Human operators must 
constantly supervise the machines and manually control them in order to guarantee safety 
and security. Moreover, it is up-to-date difficult to analyze in advance the capacity of a plant, 
for instance at sale or during design phase. Thus, solutions which can support the customers 
at this early planning stage are more than welcome. 
The main goals of OPTIMUM are to elaborate new solutions on the basis of exiting and soon-
to-be-available technologies from the Internet-of-Things (IoT) and Machine-to-Machine 
(M2M) communication fields in order to make the current manufacturing handling and digital 
manufacturing significantly smarter. The aims of the project are, in particular, to: 

 analyze and realize new decentralized control solutions for complex processes; 
 develop new ideas and concepts to adapt exiting IoT-solutions and technologies to real 

industrial applications; 
 investigate innovative solutions to include context information such as “machine 

position”, such that all machines, human operators and devices involved in the 
industrial processes reach a certain level of context awareness; 

 analyze and develop software solutions for the 3D-visualization and virtualization of 
complex plants as support to the engineering and sale processes. 

In this context, a suitable IoT-platform, which allows information exchange at different 
enterprise levels as well as an efficient real-time M2M-communication on the same layer is 
fundamental. The main subject of Work Package 2 (WP2) is the investigation of the state of 
the art of current technological solutions that can be used for the realization of a suitable IoT-
platform for industrial applications. 
In this document, particular attention is given to OPC-UA1, an M2M communication protocol 
specifically developed for industrial automation, which is currently supported and strongly 
striven by the VDMA (Verband Deutscher Maschinen- und Anlagenbau, the German 
mechanical engineering industry association) as main key technology for the realization of the 
Industry 4.0. VDMA sees in OPC-UA not only a perfect standard for M2M-communication but 
also the perfect efficient solution for all industrial engineering processes. 
In the following subsections first problem setup and content of WP2 is presented, then, in 
order to familiarize the reader with basic concepts concerning IoT-systems, an overall 
description of the general IoT-protocol-stack is provided. 

                                                      
1 Open Platform Communication – Unified Architecture 
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1.1 Problem Setup and Content of WP2 

 
Figure 1: Overall system architecture and main system components 

In Figure 1 the overall system architecture and problem setup for the OPTIMUM-project are 
presented. The main focus of WP2 is in particular the analysis of possible technologies and 
IoT-platforms for the realization of an Industrial IoT-platform (IIoT-platform, represented in 
light green in the above figure), which is a key component for enabling the communication 
between different subsystems, devices and machines, as well as for the inter-communication 
at different levels. Additionally, in WP2 also the basic communication technology, i.e. the 
lower physical communication layer, which allows the actual physical signal and data transfer 
between system components, is considered. Notice, though, that although this is an important 
aspect of an IoT-system, the main scope of OPTIMUM is to analyze higher level solutions which 
enable the realization of complex tasks or applications. To this intent, only negligible attention 
is paid in WP2 on the actual basic communication. Nevertheless, in Section 2.5.1 a summary 
of currently available technologies for the basic communication are shortly presented. 
Additional soon-to-be-ready enabling technologies, with particular attention to the real-time 
requirements of the distributed control systems, are discussed in Section 3 of D3.1 from WP3. 

1.2 IoT-systems and IoT-protocol-stack 

The IoT-protocol-stack was developed in order to simplify and facilitate the development of 
complex networked systems and, thus, strive the pervasive diffusion of the IoT-systems. In 
Figure 2, the several layers of the IoT-stack are presented and compared to the international 
standard ISO-OSI-model as well as with the consolidated Internet protocol stack (TCP/IP). As 
shown in the figure, the main characteristic of this stack is its simplicity. In fact, differently 
from the ISO-OSI-model, it consists of only four different layers:  

 Application Layer 
 Application Services Platform 
 Network Layer 
 And, Device Layer. 
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Figure 2: Representation of the IoT-protocol-stack and comparison with the ISO-OSI-model as well 
as with the consolidated TCP/IP (Internet) one. 

With this particular structure, Applications, or Services (at Application Layer), can be 
developed and implemented independently from the underlying communication technologies 
(Network Layer). The IoT-platform (Application Services Platform, in the above figure) works 
as middleware to distribute the different Applications throughout the system components 
and, at the same time, it guarantees access to the network functionalities and all low level 
devices, e.g. sensors, actuators (Device Layer). In this way, it is possible to abstract the 
development and deployment of even complex, distributed, applications from the underlying 
protocol layers, thus, facilitating the deployment of IoT-systems. 
The choice for a suitable IoT-platform is nevertheless application oriented and dependent on 
the specific system requirements. In fact, in comparison to multimedia or telecommunication 
systems, where reliable real-time communication does not play a particularly crucial role, 
industrial control systems can have strict real-time requirements and require deterministic 
networks. 
On the basis of the results of WP1, and in particular of the collected use-cases (D1.1), in WP2 
the requirements for industrial control processes, in particular for smart manufacturing and 
material handling, are analyzed and used as starting point to investigate exiting and soon-to-
be-ready technologies that can be used for the implementation of a suitable IIoT-platform. 
As stated earlier, particular attention is given to OCP-UA as an enabling technology at 
application level, since this, as inter alia illustrate in Section 7, seems to able to fulfill most of 
the project requirements related to IoT communication at enterprise level. Additionally, this 
technology is extensively supported by the German mechanical engineering industry 
association, that sees it as the key solution for the fast realization of the so-called Industry 4.0. 
 
The remaining of the document is organized as following. In the next section, current state of 
the art for today’s IoT-platforms are presented in detail. Next, in Section 3, most relevant 
enabling technologies, especially on communication domain, for IoT-systems are given. Data 
storage solutions (Data Management Systems) for IoT are discussed in Section 4, whereas 
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security aspects of (I)IoT-systems are analysed in Section 5. Finally, requirements and 
specifications for the IIoT-platform and the Data Management System are given respectively 
in Section 6, 7 and 8. 

2 State of the Art for IoT Platforms [ERSTE, Thorsis] 
This section aims at providing preliminary information required for designing an IoT platform 
which fulfils the OPTIMUM requirements. Detailed information on prominent enablers for IoT 
and more detailed information on security aspect is given later in the document, but in the 
following subsections, information on IoT platforms is provided at a more abstract level and 
from a broader perspective. Presented material is mostly obtained from academic literature. 
Notice that, in the scope of this section, the terms IoT platform, IoT framework and IoT 
middleware are used interchangeably. 
Structure of subsections are as following. First in Section 2.1, definitions of IoT and IoT 
platform are presented, next in Section 2.2, expectations from IoT platforms are given. 
Common architectural approaches for IoT platforms are presented in Section 2.3. Then 
challenges and common issues in IoT platforms are given in Section 2.4. Finally, in Section 5, 
most prominent and relevant available IoT platforms are listed with some detail. 

2.1 Definitions 

Idea of Internet of Things (IoT) emerged from RFID community and was first coined by British 
entrepreneur Kevin Ashton in 1999. Since then, with an increased interest on IoT, it has gained 
diverse definitions with a broader understanding. Some of the definitions digested in [1] are 
presented here to have a basis for further discussion on IoT and IoT platforms. 
In its special report on Internet of Things issued in March 2014 (IEEE, “Internet of Things,” 
2014), IEEE described the phrase “Internet of Things” as: “A network of items—each 
embedded with sensors—which are connected to the Internet.” 
ITU, which is United Nations specialized agency for information and communication 
technologies, endorses the definition of IoT as a network that is: “Available anywhere, 
anytime, by anything and anyone” and ITU-T Study Group 13, which leads the work of the ITU 
on standards for next generation networks (NGN) and future networks (ITU, SERIES Y, 2005), 
has the following definition: “A global infrastructure for the information society, enabling 
advanced services by interconnecting (physical and virtual) things based on existing and 
evolving interoperable information and communication technologies.” 
The W3C, which is an international community where member organizations, a full-time staff 
and the public work together to develop Web standards, addresses IoT as part of “Web of 
Things” and defines it as follows: “The Web of Things is essentially about the role of Web 
technologies to facilitate the development of applications and services for the Internet of 
Things, i.e., physical objects and their virtual representation. This includes sensors and 
actuators, as well as physical objects tagged with a bar code or NFC. Some relevant Web 
technologies include HTTP for accessing RESTful services, and for naming objects as a basis for 
linked data and rich descriptions, and JavaScript APIs for virtual objects acting as proxies for 
real-world objects.” 
Another general definition of IoT is presented in [2] as “Interconnection of sensing and 
actuating devices providing the ability to share information across platforms through a unified 
framework, developing a common operating picture for enabling innovative applications. This 
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is achieved by seamless large scale sensing, data analytics and information representation 
using cutting edge ubiquitous sensing and cloud computing.” 
Along with these definitions, it is also worth to mention three visions of IoT elaborated in [3] 
and [4], since they well capture the perspectives on IoT. These three visions are things 
oriented vision, internet oriented vision and semantic oriented vision. They are explained by 
Singh at al. in [4] as following. 
The things-oriented vision “is supported by the fact that we can track anything using sensors 
and pervasive technologies using RFID. The basic philosophy is uniquely identifying any object 
using specifications of Electronic Product Code (EPC). This technique is extended using 
sensors. It is important to appreciate the fact that future vision will depend upon sensors and 
its capabilities to fulfill the ‘things’ oriented vision.” 
“The internet-oriented vision has pressed upon the need to make smart objects which are 
connected. The objects need to have characteristics of IP protocols as this is one of the major 
protocols being followed in the world of Internet.” 
The semantic-oriented vision “is powered by the fact that the amount of sensors which will be 
available at our disposal will be huge and the data that they will collect will be massive in 
nature. Thus, we will have vast amount of information, possibly redundant, which needs to be 
processed meaningfully. The raw data needs to be managed, processed and churned out in an 
understandable manner for better representations and understanding.” 
These are just a few of the definitions, some by prominent bodies, and different perspectives 
on IoT. As seen, although there is a common understanding about IoT, there is no commonly 
accepted definition of it. Similar to its definition, there is no common and standard way of 
developing IoT systems and there are numerous approaches and competing technologies, 
each having its own advantages and disadvantages. This diversity, on one hand, means 
alternatives to choose from according to the specific needs, but on the other hand, makes it 
difficult to grasp and challenging to develop IoT systems from scratch. IoT platforms (or 
frameworks or middleware) have emerged to facilitate the development of IoT systems. Here 
are some definitions and discussions on IoT platforms. 
In [5], IoT framework is defined as “a set of guiding principles, protocols and standards which 
enable the implementation of Internet of Things applications. It can but does not need to be 
an active participant of the overall IoT system. Frameworks can enhance IoT application 
development by; rapid implementation, interoperability, maintainability, security and 
technology flexibility. To achieve rapid implementation many of the ‘boiler plate’ tasks can be 
computer aided or removed completely.” 
In [6], an IoT platform is described as “cloud-based and on premise software packages and 
related services that enable and support sophisticated IoT services. In some instances, IoT 
platforms enable application developers to streamline and automate common features that 
would otherwise require considerable additional time, effort and expense. In other instances, 
IoT platforms enable enterprises to manage thousands, millions, and even billions of devices 
and connections across multiple technologies and protocols. Finally, in some cases, IoT 
software enables developers to combine device and connection data with enterprise-specific 
customer and ERP data as well as data from third-party sources like social and weather data 
to create more valuable IoT applications.” 
In [7], IoT middle is defined with its functionality in an IoT system as follows. “a middleware 
can offer common services for applications and ease application development by integrating 
heterogeneous computing and communications devices and supporting interoperability 
within the diverse applications and services running on these devices.” 
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As the last definition given in this section, in [8], IoT platform is presented using following 
description “Internet-of-Things (IoT) platform (often referred to as IoT middleware) is a 
software that enables connecting the machines and devices and then acquisition, processing, 
transformation, organization and storing machine and sensor data.” 

2.2 Requirements of IoT Platforms in General 

After several definitions of IoT platforms provided in the previous section, this section 
presents a more detailed information about the expectations from an IoT platform. Please 
note that, these are not formal lists of requirements but should be treated as general 
guidelines. Please also note that these are not requirements of OPTIMUM, but functional and 
non-functional requirements applicable to IoT platforms in general. Depending on the 
application scenarios one or more of the presented requirements might not be as critical as 
the others. 
 
Razzaque et al. presents a comprehensive study in [9] on IoT middleware. Authors present 
different types of requirements of IoT middleware as following. 
Middleware Service Requirements: 

1. Resource Discovery: IoT resources include heterogeneous hardware devices (e.g., RFID 
tags, sensors, sensor mote, smartphones), devices’ power and memory, analogue to 
digital converter devices (A/D), the communications module available on those 
devices, and infrastructural or network level information (e.g., network topology, 
protocols), and the services provided by these devices. 

2. Resource Management: An acceptable QoS is expected for all applications, and in an 
environment where resources that impact on QoS are constrained, such as the IoT, it 
is important that applications are provided with a service that manages those 
resources. This means that resource usage should be monitored, resources allocated 
or provisioned in a fair manner, and resource conflicts resolved. 

3. Data Management: Data is key in IoT applications. In the IoT, data refers mainly to 
sensed data or any network infrastructure information of interest to applications. 

4. Event Management: There are potentially a massive number of events generated in 
IoT applications, which should be managed as an integral part of an IoT middleware. 

5. Code Management: Deploying code in an IoT environment is challenging, and should 
be directly supported by the middleware. 

Key non-functional requirements: 
1. Scalability: An IoT middleware needs to be scalable to accommodate growth in the 

IoT’s network and applications/services. 
2. Real-time or Timeliness: A middleware must provide real time services when the 

correctness of an operation it supports depends not only on its logical correctness, but 
also on the time in which it is performed. 

3. Reliability: A middleware should remain operational for the duration of a mission, even 
in the presence of failures. The middleware’s reliability ultimately helps in achieving 
system level reliability. 

4. Availability: A middleware supporting an IoT’s applications, especially mission critical 
ones, must be available, or appear available, at all times. Even if there is a failure 
somewhere in the system, its recovery time and failure frequency must be small 
enough to achieve the desired availability. 
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5. Security & Privacy: Security is critical to the operation of IoT. In IoT middleware, 
security needs to be considered in all the functional and non-functional blocks 
including the user level application. Context-awareness in middleware may disclose 
personal information (e.g., the location of an object or a person). 

6. Ease-of deployment: Since an IoT middleware (or more likely, updates to the 
middleware) is typically deployed by the user (or owner of the device), deployment 
should not require expert knowledge or support. Complicated installation and setup 
procedures must be avoided. 

Architectural requirements: 
1. Programming Abstraction: Providing an API for application developers is an important 

functional requirement for any middleware. For the application or service developer, 
high-level programming interfaces need to isolate the development of the applications 
or services from the operations provided by the underlying, heterogeneous IoT 
infrastructures. The level of abstraction, the programming paradigm, and the interface 
type all need to be considered when defining an API. The level of abstraction refers to 
how the application developer views the system (e.g., individual node/device level, 
system level). The programming paradigm (e.g., Publish/Subscribe) deals with the 
model for developing or programming the applications or services. The interface type 
defines the style of the programming interface. 

2. Inter-operable: A middleware should work with heterogeneous 
devices/technologies/applications, without additional effort from the application or 
service developer. Heterogeneous components must be able to exchange data and 
services. Interoperability in a middleware can be viewed from network, syntactic, and 
semantic perspectives, each of which must be catered for in an IoT. 

3. Service-based: A middleware architecture should be service-based to offer high 
flexibility when new and advanced functions need to be added to an IoT’s middleware. 

4. Adaptive: A middleware needs to be adaptive so that it can evolve to fit itself into 
changes in its environment or circumstances. In the IoT, the network and its 
environment are likely to change frequently. 

5. Context-aware: Context-awareness is a key requirement in building adaptive systems 
and also in establishing value from sensed data. The IoT’s middleware architecture 
needs to be aware of the context of users, devices, and the environment and use these 
for effective and essential services’ offerings to users. 

6. Autonomous: Autonomous means self-governed. Devices/technologies/applications 
are active participants in the IoT’s processes and they should be enabled to interact 
and communicate among themselves without direct human intervention. 

7. Distributed: A large-scale IoT system’s applications/devices/users (e.g., WSNs, VANETs) 
exchange information and collaborate with each other. 

These requirements presented in [9] mostly deal with the characteristics of IoT systems 
presented in the same work. Although they are basis for the requirements, they can be taken 
as a more general guideline in IoT platform design. These characteristics are listed below. For 
more detailed information on each item [9] can be referred. 

1. Characteristics of IoT Infrastructure 
a. Heterogeneous devices 
b. Resource-constrained 
c. Spontaneous interaction 
d. Ultra large-scale network and large number of events 
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e. Dynamic network and no infrastructure 
f. Context aware 
g. Intelligence 
h. Location-aware 

2. Characteristics of IoT Applications 
a. Diverse applications 
b. Real-time 
c. Everything as a service 
d. Increased security attack surface 
e. Privacy leakage 

In [10], Ray presents utility factors of IoT. These are not direct requirements on an IoT 
platform, but since IoT platforms are used to develop IoT systems, these should be considered 
in development of IoT platforms. Following IoT utilities are taken as an excerpt from [10]. 

1. Dynamic and self-adapting: IoT devices and systems should have the capability to 
dynamically adapt with the changing contexts and take actions based on their 
operating conditions, user’s context, or sensed environment. 

2. Self-configuring: IoT devices may have self-configuring capability, allowing a large 
number of devices to work together to provide certain functionality (such as weather 
monitoring). These devices have the ability to configure themselves (in association 
with IoT infrastructure), setup the networking, and fetch latest software upgrades with 
minimal manual or user intervention. 

3. Interoperable communication protocols: IoT devices may support a number of 
interoperable communication protocols and can communicate with other devices and 
also with the infrastructure. 

4. Unique identity: Each of IoT device has a unique identity and unique identifier (such as 
IP address or URI). 

5. Integrated into information network: IoT devices are usually integrated into the 
information network that allows them to communicate and exchange data with other 
devices and systems. IoT devices can be dynamically discovered in the network, by 
other devices and/or network, and have the capability to describe themselves (and 
their characteristics) to other devices or user applications. 

6. Context-awareness: Based on the sensed information about the physical and 
environmental parameters, the sensor nodes gain knowledge about the surrounding 
context. 

7. Intelligent decision making capability: IoT is multi-hop in nature. In a large area, this 
feature enhances the energy efficiency of the overall network, and hence, the network 
lifetime increases. Using this feature, multiple sensor nodes collaborate among 
themselves, and collectively take the final decision. 

 
Different from previous studies targeting IoT platforms in general, in [11], presents some 
design considerations for Industrial IoT applications. These design considerations are as 
following. 

1. Energy: How long can an IoT device operate with limited power supply 
2. Latency: How much time is needed for message propagation and processing 
3. Throughput: What is the maximum amount of data that can be transported through 

the network 
4. Scalability: How many devices are supported 
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5. Topology: Who must communicate with whom 
6. Security and Safety: How secure and safe is the application 

2.3 Architectural Approaches to IoT Platforms 

Despite IoT being a still emerging field, there is a plethora of IoT platforms available. This 
section aims to give common features used in IoT systems and classify architecture having 
similar approaches. So that the architectural design of IoT platform for OPTIMUM can make 
use of these approaches, depending on the requirements. 
 
Although there are different architectural approaches to IoT platforms, let alone the actual 
number of different specific architectures, [12] aims to extract a reference architecture to 
better comprehend and compare IoT platforms. As stated in [12], the “reference architecture 
does not present new concepts, but provides a more abstract view on the components of IoT 
platforms and their possible connections.” Components of the reference architecture can be 
omitted in certain IoT platforms. 

 
Figure 3: IoT Reference Architecture [12] 

Components of the reference architecture is depicted in Figure 3 and described below. 
1. Sensor: A Sensor is a hardware component, which is used to measure parameters of 

its physical environment and to translate them into electrical signals. Typically, Sensors 
are connected to or are integrated into a Device to which the gathered data is sent. 

2. Actuator: An Actuator is a hardware component, which can act upon, control, or 
manipulate the physical environment, for example, by giving an optic or acoustic 
signal. Actuators receive commands from their connected Device. They translate 
electrical signals into some kind of physical action. Just like Sensors, Actuators are 
typically connected to or are even integrated into a Device. 

3. Device: A Device is a hardware component, which is connected to Sensors and/or 
Actuators via wires or wirelessly or even integrates these components. To process data 
from Sensors and to control Actuators, typically software in the form of Drivers is 
required. A Driver in our architecture enables other software on the Device to access 
Sensors and Actuators. It represents the first possibility to use software to process data 
produced by Sensors and to control Actuators influencing the physical environment. 
Thus, Devices are the entry point of the physical environment to the digital world. 

4. Gateway: Devices are often connected to a Gateway in cases when the Device is not 
capable of directly connecting to further systems, e.g., if the Device cannot 
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communicate via a particular protocol or because of other technical limitations. To 
solve these problems, a Gateway is used to compensate such limitations by providing 
required technologies and functionalities to translate between different protocols and 
by forwarding communication between Devices and other systems. A Gateway is, 
therefore, responsible for supporting the required communication technologies and 
protocols in both directions and for translating data if necessary. 

5. IoT Integration Middleware: The IoT Integration Middleware is responsible for 
receiving data from the connected Devices to process the received data, for example, 
by evaluating condition-action rules, to provide the received data to connected 
Applications, and to control Devices in terms of sending commands to be executed by 
the respective Actuators. A Device can communicate directly with the IoT Integration 
Middleware if it supports an appropriate communication technology, such as WiFi, a 
corresponding transport protocol, such as HTTP or MQTT, and a compatible payload 
format, such as JSON or XML. Otherwise the Device communicates over a Gateway 
with the IoT Integration Middleware. The IoT Integration Middleware is not limited to 
the functionality described above. It may comprise all kinds of functionality that is 
required by a certain cyber-physical system, for instance, a rules engine or graphical 
dashboards. 

6. Application: The Application component represents software that uses the IoT 
Integration Middleware to gain insight into the physical environment by requesting 
Sensor data or to control physical actions using Actuators. 
 

According to [15], architectures for IoT middleware form three class types: service-based IoT 
middleware, cloud-based IoT middleware, and actor-based IoT middleware. In the study, each 
class is explained as following. 

 
Figure 4: Service-based IoT middleware [15] 

 
The first type, which we refer to it as a service-based solution, generally adopts the Service-
Oriented Architecture (SOA) and allows developers or users to add or deploy a diverse range 
of IoT devices as services. Figure 4 depicts a service-based IoT middleware. It is a three-layered 
architecture adopted by the OpenIoT, a European Union project to standardize IoT platforms. 
This architecture consists of a Physical Plane (sensors and actuators), a Virtualized Plane 
(server or cloud infrastructure) and an Application Plane (utility). The main computational 
units are available in the middle layer or the Virtualized Plane. The generic services available 
in the middle layer range from access control, storage management and event processing 
engine. These services support the data collection part of the BAC-like IoT applications, but 
not the analytic part. The service-based architecture is a high performing heavy weight 
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middleware generally deployed on multiple nodes running in the cloud or on powerful 
gateways between IoT devices and the applications. It is not designed to be deployed in 
resource constrained IoT devices (e.g., smart phones) and does not support device to device 
communication. 
 

 
Figure 5: Cloud-based IoT middleware [15] 

The second type, which is known as cloud-based solution, limits the users on the type and the 
number of IoT devices that they can deploy, but enables users to connect, collect and interpret 
the collected data with ease since possible use cases can be determined and programmed a-
priori. A cloud-based IoT middleware architecture is shown in Figure 5 
The functional components (white box in the diagram) of the middleware are limited to what 
is available on the cloud and it varies widely among cloud-based platforms. Typically, those 
functionalities are exposed as a set of APIs. The provided functionalities could be as simple as 
a very high-performance storage system or a very powerful computation engine with pre-
defined monitoring and analysis tools. The services of IoT devices available in the cloud can 
only be accessed or controlled via either vendor’s provided application or cloud supported 
RESTful APIs. 
 

 
Figure 6. Actor-based IoT middleware [15] 

The third type is the actor-based framework that emphasizes on the open, plug and play IoT 
architecture. A variety of IoT devices can be exposed as reusable actors and distributed in the 
network. An actor-based IoT middleware architecture is first presented in Terraswam, a joint 
research project between universities, government and private companies in USA. A three-
concentric circles visual is used to depict the architecture of the actor-based IoT middleware. 
The outermost circle is the Sensory Swarm (sensors and actuators), the middle circle is the 
Mobile Access (gateways such as smartphone, Raspberry Pi, Swarmbox, Laptop) and the inner 
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most circle is the Cloud. To facilitate the comparison with other types, we map the three circles 
into a three layered architectural view.  
Figure 6 depicts this architecture. As shown in the figure, the middleware (also named as actor 
host) is designed to be light-weight that can be embedded in all the layers (sensory layer, 
mobile access layer and the cloud). The basic middleware computation units are thus 
distributed in the network (the white box). 
In another study [9], IoT middleware design approaches are grouped into 7 as following: 
event-based, service-oriented, virtual machine-based, agent-based, tuple-spaces, database-
oriented, and application-specific. As it can be seen, there are some overlaps with [15]. 
Descriptions of the classes are given as below in [9]. 
 

 
Figure 7: General design model for Event-Based Middleware [9]  

In event-based middleware, components, applications, and all the other participants interact 
through events. Each event has a type, as well as a set of typed parameters whose specific 
values describe the specific change to the producer’s state. Events are propagated from the 
sending application components (producers), to the receiving application components 
(consumers). An event system (event service), may consist of a potentially large number of 
application components (entities) that produce and consume events. 
 

 
Figure 8: General design model for a Service-Oriented Middleware [9] 

The service-oriented design paradigm builds software or applications in the form of services. 
Service-oriented computing (SOC) is based on Service-Oriented Architecture (SOA) 
approaches and has been traditionally used in corporate IT systems. The characteristics of 
SOC, such as technology neutrality, loose coupling, service reusability, service composability, 
service discoverability, are also potentially beneficial to IoT applications. However, IoT’s ultra-
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large-scale network, resource-constrained devices, and mobility characteristics make service 
discovery and composition challenging. A service-oriented middleware (SOM) has the 
potential to alleviate these challenges through the provision of appropriate functionalities for 
deploying, publishing/discovering and accessing services at runtime. SOM also provides 
support for adaptive service compositions when services are unavailable. 
 

 
Figure 9: General design model for VM-based middleware [9] 

Virtual machine (VM) oriented middleware design provides programming support for a safe 
execution environment for user applications by virtualizing the infrastructure. The 
applications are divided into small separate modules, which are injected and distributed 
throughout the network. Each node in the network holds a VM, which interprets the modules. 
This approach is commonly used to address a lack of architectural support such as high-level 
programming abstractions, self-management and adaptivity, while supporting transparency 
in distributed heterogeneous IoT infrastructures. 
 

 
Figure 10: General design model for agent-based middleware [9] 

In the agent-based approach to middleware, applications are divided into modular programs 
to facilitate injection and distribution through the network using mobile agents. While 
migrating from one node to another, agents maintain their execution state. This facilitates the 
design of decentralized systems capable of tolerating partial failures. Previous research in this 
area has presented a number of advantages for using mobile agents in generic distributed 
systems. In the context of the IoT middleware requirements, these are: resource management 
(network load reduction and network latency reduction), code management (asynchronous 
and autonomous execution and protocol encapsulation), availability and reliability 
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(robustness and fault tolerance), adaptiveness and heterogeneity. Moreover, an agent can 
engage in dialogues with other software agents to proactively gather data and update only 
parts of the application. Additionally, agent-based approaches consider resource constrained 
devices. 
 

 
Figure 11: General design model for tuple-space-based middleware [9] 

In tuple-space middleware, each member of the infrastructure holds a local tuple space 
structure. A tuple space is a data repository that can be accessed concurrently. All the tuple 
spaces form a federated tuple space on a gateway (i.e., base station). This approach suits 
mobile devices in an IoT infrastructure, as they can transiently share data within gateway 
connectivity constraints. Applications communicate by writing tuples in a federated tuple 
space, and by reading them through specifying the pattern of the data they are interested in. 
 

 
Figure 12: General design model for database-oriented middleware [9] 

In database-oriented middleware, a sensor network is viewed as a virtual relational database 
system. An application can query the database using SQL like query language, which enables 
the formulation of complex queries. Research in this area has been focused on developing a 
distributed database approach to interoperating systems. 
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Figure 13: General design model for application-specific middleware [9] 

 
An application-specific (i.e., application-driven) approach to middleware focuses on resource 
management support (i.e., QoS support) for a specific application or application domain by 
implementing an architecture that fine-tunes the network or infrastructure based on the 
application or application domain requirements. 
Another study dealing with IoT architectural approaches is [5]. This study classifies IoT 
architectural approaches into three groups as global cloud approach, smart objects approach 
and local cloud concept. These approaches are explained as following in [5]. 

 

 

 

(a) (b) 

Figure 14: (a) Global, and (b) local cloud concepts [5] 

Many frameworks take a data centric or data driven approach. Utilizing a global cloud, they 
focus on enabling collation, visualization and analytics on data. This architecture is well suited 
for applications such as asset tracking, logistics and predictive maintenance. In some cases, 
the framework will allow creation of local hosted instances but do not detail a method of 
interconnecting multiple cloud instances within the framework. This approach is suitable for 
providing data as a service but will generally leave the implementation specific of the end-
points to application developers.  

Figure 14(a) illustrates the concept of a global cloud through which IoT applications connect 
and communicate. 
A smart objects approach makes the endpoints active participants within the framework. The 
end points are included as key aspects of the framework which means the focus of the 
framework is on interconnecting the end-points. This approach is well suited for distributed 
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automation tasks which require a high level of device independence, such as home and 
building automation and manufacturing. The data is produced by end points and consumed 
by end-points, which within this context will usually have some predefine understanding of 
the end-point pairing. 
In both of the approaches mentioned, many features such as end-to-end security and layered 
interoperability suffer due to ad-hoc development either at the end-points or within the cloud. 
A third approach becoming more prevalent, is taking into account the need to satisfy real-time 
automation requirements while not hindering the value of semantic big data and data 
analytics.  
He and Li focus on service-oriented architecture for IoT platforms in [11]. They apply a layered 
approach, sensing, networking, service and interface being the layers from bottom to up. The 
architecture is depicted in Figure 15 and its layers are explained as following: 

 
Figure 15: SOA for IoT [11] 

1. Sensing Layer: In the sensing layer, the wireless smart systems with tags or sensors are 
now able to automatically sense and exchange information among different devices. 

2. Networking Layer: The role of networking layer is to connect all things together and 
allow things to share the information with other connected things. In addition, the 
networking layer is capable of aggregating information from existing IT infrastructures 
(e.g., business systems, transportation systems, power grids, healthcare systems, ICT 
systems, etc.). 

3. Service Layer: Service layer relies on the middleware technology that provides 
functionalities to seamlessly integrate services and applications in IoT. The middleware 
technology provides the IoT with a cost-efficient platform, where the hardware and 
software platforms can be reused. A main activity in the service layer involves the 
service specifications for middleware, which are being developed by various 
organizations. A well-designed service layer will be able to identify common 
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application requirements and provide APIs and protocols to support required services, 
applications, and user needs. This layer also processes all service-oriented issues, 
including information exchange and storage, data management, search engines, and 
communication. This layer includes the following components. 

a. Service discovery: finding objects that can offer the needed services and 
information in an efficient way. 

b. Service composition: enabling the interaction and communication among 
connected things. The discovery phase leverages the relationships among 
different things to discover the desired service, and the service composition 
component is to schedule or re-create more suitable services in order to 
acquire the most reliable services to meet the request. 

c. Trustworthiness management: aiming at determining trust and reputation 
mechanisms that can evaluate and use the information provided by other 
services to create a trustworthy system. 

d. Service APIs: supporting the interactions between services required in IoT. 
4. Interface Layer: In IoT, a large number of devices involved are made by different 

manufacturers/vendors and they do not always follow the same standards/protocols. 
As a result of the heterogeneity, there are many interaction problems with information 
exchange, communication between things, and cooperative event processing among 
different things. Furthermore, the constant increase of things participating in an IoT 
makes it harder to dynamically connect, communicate, disconnect, and operate. There 
is also a necessity for an interface layer to simplify the management and 
interconnection of things. 

 
As the last work to be presented here, in [16], major building blocks of IoT and main 
components of IoT platforms are presented and explained in detail. These are explained as 
below in [16]. 
Major building blocks of IoT: 

1. Hardware: This is where data is produced. The hardware layer includes the physical 
devices with their in-built microprocessors, sensors, actuators and communication 
hardware. 

2. Communication: This is where data gets transported. This part of the technology 
infrastructure ensures the hardware is connected to the network, via proprietary or 
open-source communication protocols. 

3. Software backend: This is where data is managed. The software backend manages all 
connected devices and networks and provides the necessary data integration as well 
as the interface to other systems (e.g., ERP-system). 

4. Applications: This is where data is turned into value. In the application layer, IoT use 
cases get presented to the user (B2C or B2B). Most of the applications run on 
smartphones, tablets, PCs or other devices/things and “do something valuable” with 
the data. 
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Figure 16: The eight major building blocks of an IoT platform [16]  

Main components of IoT platforms: 
1. Connectivity & Normalization: Every IoT platform starts with a connectivity layer. It has 

the function of bringing different protocols and different data formats into one 
“software” interface. This is necessary in order to ensure all devices can be interacted 
with and data is read correctly. Having all device data in one place and in one format 
is the basic necessity to monitor, manage, and analyze IoT devices. 

2. Device Management: The device management module of an IoT platform ensures the 
connected objects are working properly and its software and applications are updated 
and running. Tasks performed in this module include device provisioning, remote 
configuration, management of firmware/ software updates, and troubleshooting. 

3. Database: Data storage is a central piece in an IoT platform. An IoT platform therefore 
usually comes with a cloud based database solution that is distributed across different 
sensor nodes. It should be scalable for big data and should be able to store both 
structured (SQL) and unstructured data (NoSQL). 

4. Processing & Action Management: The data that is captured in the connectivity & 
normalization module and that is stored in the database gets brought to life in this part 
of the IoT platform. A rule-based event-action-trigger allows performance of “smart” 
actions based on specific sensor data. 

5. Additional Tools: Advanced IoT platforms often offer an additional set of tools for the 
developer and the manager of the IoT solution. Development tools allow the IoT 
developer to prototype and test the IoT case. Sometimes even in the form of what-
you-see-is-what-you-get-editors (WYSIWYG) that lets you create simple smartphone 
apps for visualizing and controlling connected devices. 

6. Analytics: Many IoT use cases go beyond action-management and require complex 
analytics to get the most out of the IoT data-stream. The analytics engine encompasses 
all dynamic calculations of sensor data, from basic data clustering to deep machine 
learning. 

7. Data Visualization: Sometimes also referred to as “visual analytics,” data visualization 
presents a much-underrated part of the IoT platform. The combination of human eye 
and brain is still far superior to most analytic and rule-based engines. That is why data 
visualization is so important: it enables humans to see patterns and observe trends. 
Visualization comes in the form of line-, stacked-, or pie charts, 2D- or even 3D-models. 
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The visualization dashboard that is available to the manager of the IoT platform is often 
also included in the prototyping tools that an advanced IoT platform provides. 

8. External Interfaces: IoT enabled businesses are rarely built standalone and on a green 
field. In established companies it is crucial that the Internet of Things integrates with 
existing ERP systems, management tools, manufacturing execution systems and the 
rest of the wider IT-ecosystem. 

2.4 Challenges in IoT Platforms 

IoT systems and IoT platforms are still in the phase of rapid advancement and development 
and there are still many open and challenging points on technology, standardization, security 
and privacy that require special attention. This section provides a collection of such issues 
compiled from different studies. 
 
In [10], Ray provides a long list of technical challenges as following. 

 Design of Service oriented Architecture (SoA) for IoT is a big challenge where service-
based objects may face problems from performance and cost related issues. SoA needs 
to handle a large number of devices connected to the system which phrases scalability 
issues. At this moment, challenges like: data transfer, processing, and management 
become a matter of burden overheaded by service provisioning. 

 IoT is a very complicated heterogeneous network platform. This, in turn enhances the 
complexity among various types devices through various communication technologies 
showing the rude behavior of network to be fraudulent, delayed, and non-
standardized. The management of connected objects by facilitating through 
collaborative work between different things e.g., hardware components and/or 
software services, and administering them after providing addressing, identification, 
and optimization at the architectural and protocol levels is a serious research 
challenge. 

 If we look from the viewpoint of network services, it seems clear that there is always 
a lack of a Service Description Language (SDL). Otherwise, it would make the service 
development, deployment, and resource integration difficult by extending the product 
dissemination time causing loss in market. Hence, a commonly accepted SDL should 
be constructed so as the powerful service discovery methods and object naming 
services be implemented. Novel SDL may be developed to cope with product 
dissemination after validating the requite SDL specific architecture. 

 As of now, IoT is degenerated on a traditional network oriented ICT environment. It is 
always affected by whatever connected to it. Here, a need of unified information 
infrastructure is to be sought. Huge number of connected devices shall produce real-
time data flow which must be governed by high band width frequency path. Hence, a 
uniform architectural base is to be created to cater the infrastructure needs 
sophistically. 

 The originated data may be too much large in size that current database management 
system may not handle in real-time manner. Proper solutions need to be idealized. IoT 
based data would be generated in a rapid speed. The collected data at receiver’s end 
shall be stored in efficient way which current RAID technology is incapable of. Here, an 
IoT based data service centric architecture need to be revised to handle this problem. 

 Different devices attached to the IoT will put down data of variety in type, size and 
formation. These variations should be occupied with the futuristic technology which 
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may involve multi-varied architectural notion for its ideal indentation. Researcher 
should come forward with novel Big IoT Data specific design where data can be 
efficiently handled. 

 Data is a raw fact that generally does not conform to non-relevant handouts. Here in 
case of IoT, data play the massive role in decision making. The value of data is only 
achievable after filtering process is performed on the pool of data. This meaningful 
information can only be obtained by orientation of mining, analysis, and understand 
it. Big data problem is sufficient for handling similar regression. Relevant architectural 
framework is in evident that can hale data mining, analytics, and hence decision-
making services. Big Data approach could be aggregated herewith. 

 In addition, industries must seek the challenges of hardware software coexistence 
around IoT. Variety of devices combined with variety of communication protocols 
through TCP/IP or advanced software stacks would surely manipulate web services 
which shall be deployed by various middleware solutions. Particular architecture 
leveraging the facilitation of heterogeneous protocols shall be devised. 

 The IoT is envisaged to include an incredibly high number of nodes. All the attached 
devices and data shall be retrievable; here in such context, the unique identity is a 
must for efficient point-to-point network configuration. IPv4 protocol identifies each 
node through a 4-byte address. As it is well known that the availability of IPv4 
numbered addresses is decreasing rapidly by reaching zero in next few years, new 
addressing policies shall be countered where IPv6 is a strong contender. This is an area 
where utmost care is needed to pursue device naming and identification capability, 
where appropriateness of architectural proficiency is a must. 

 Standardization is another clot which may precisely be operated for growth of IoT. 
Standardization in IoT signifies to lower down the initial barriers for the service 
providers and active users, improvising the interoperability issues between different 
applications or systems and to perceive better competition among the developed 
products or services in the application level. Security standards, communication 
standards and identification standards need to be evolved with the spread of IoT 
technologies while designing emerging technologies at a horizontal equivalence. In 
addition, fellow researchers shall document industry-specific guidelines and specify 
required architectural standards for efficient implementation of IoT. 

 From the viewpoint of service, lack of a commonly accepted service description 
language makes the service development and integration of resources of physical 
objects into value-added services difficult. The developed services could be 
incompatible with different communication and implementation environments. In 
addition, powerful service discovery methods and object naming services need to be 
developed to spread the IoT technology. Scientists should pave novel architectures to 
cater with these difficulties. 

 The widespread applicability of IoT and associated technologies shall largely depend 
on the network with information security and data privacy protection. Being highly 
complex and heterogeneous in nature, IoT always faces severe security and privacy 
threats. 

 
Xu et al. in [11] also focus on technological challenges of. They are elaborated as following. 

 Design an SOA for IoT is a big challenge, in which service-based things might suffer 
from performance and cost limitations. In addition, scalability issues often arise as 
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more and more physical objects are connected to the network. When the number of 
things is large, scalability is problematic at different levels including data transfer and 
networking, data processing and management, and service provisioning. 

 From the viewpoint of network, the IoT is a very complicated heterogeneous network, 
which includes the connection between various types of networks through various 
communication technologies. Currently, there is lack of widely accepted common 
platform that hides the heterogeneity of underlining networks/communication 
technologies and provides a transparent naming service to various applications. Large 
amounts of data transmission across the network at the same time can also cause 
frequent delay, conflict, and communication issues. It is a challenging task to develop 
networking technologies and standards that can allow data gathered by a large 
number of devices to move efficiently within IoT networks. Managing connected things 
in terms of facilitating the collaboration between different entities and the 
administering devices addressing, identification, and optimization at the architectural 
and protocol levels is a research challenge. 

 From the viewpoint of service, a lack of a commonly accepted service description 
language makes the service development and integration of resources of physical 
objects into value-added services difficult. The developed services could be 
incompatible with different communication and implementation environments. In 
addition, powerful service discovery methods and object naming services need to be 
developed to spread the IoT technology. 

 As IoT is often developed based on a traditional ICT environment and it is affected by 
everything connected to the network, it requires a lot of work to integrate IoT with 
existing IT systems or legacy systems into a unified information infrastructure. 
Furthermore, with the huge number of things connected to the Internet, a massive 
amount of real-time data flow will be automatically produced by connected things. The 
data may not have much meaningful value unless people find an effective way to 
analyze and understand it. Analyzing or mining massive amounts of data generated 
from both IoT applications and existing IT systems to derive valuable information 
requires strong big data analytics skills, which could be challenging for many end users. 
In addition, integrating IoT devices with external resources such as existing software 
systems and Web services requires the development of various middleware solutions, 
since applications vary a lot by industries. Building practical applications in which 
heterogeneous IoT-related data are combined with traditional data can be a 
challenging task for a variety of industries. 

 
Ngu et al. [15] also studies some of the key challenges and issues in IoT realm but with a focus 
on IoT middleware. Following four challenges are discussed in the paper as follows. 

 The first challenge is in developing an IoT middleware that must be available in the 
cloud as well as on the edge (IoT devices and gateways) for supporting all types of IoT 
applications, for better privacy control and latency. This requires the system to be 
portable and lightweight. Among the IoT middleware we studied, only Calvin, Node-
RED, and Ptolemy Accessor Host are designed to be portable and light-weight. There 
is a tradeoff between having powerful services such as semantic based discovery, fraud 
resilient security enforcement, and stream processing versus the ability to deploy an 
instance of the IoT middleware in constrained devices. 
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 The second challenge is to empower consumers to create IoT applications targeted to 
their context. In the cloud-based IoT middleware, no composition engine is provided 
for consumers. This limits consumers to the pre-programmed IoT applications and 
prevents consumers from creating their own innovative applications. For the service-
based architecture, an SDK tool is provided for crafting an IoT application. This requires 
low level programming knowledge and does not empower consumers to create their 
IoT applications targeted to their needs. Currently, only the actor-based IoT 
middleware and the OpenIoT project provide visual composition tools. The visual tools 
provided by Node-RED and Ptolemy Accessor Host are early composition tools in this 
research direction. For example, in Ptolemy Accessor Host, the accessors which are the 
fundamental elements of the composition tool must be designed and implemented 
according to a specific programming model. This requires end users to master 
JavaScript or other scripting languages in order to create an IoT application if the 
desired accessors have not already been provided. Moreover, an accessor in an IoT 
application is “designed to fit” a particular usage. Each new usage requires the 
development of a new accessor. A higher-order accessor or a context-aware accessor 
needs to be developed for flexible composition of IoT applications. For example, by 
gathering some contextual information from consumers (location, time, URL, 
communication protocol), the desired accessor can be configured automatically as a 
subclass of an existing accessor for the desired IoT application. In addition, currently, 
no composition tool supports transactional properties. It assumes IoT applications will 
run from the beginning to the end successfully. There is no provision of rollback or 
restart from a certain point in a composed IoT application when there is a failure. 

 The third challenge is to provide semantic service discovery that goes beyond 
discovery of IP addresses of the nearby IoT devices. Given that the environment that 
the IoT application interacts with evolves continuously, new services or devices could 
come on-line anytime and existing devices might become unavailable. It is essential to 
be able to discover or query for compatible services at the right time and at the right 
place both at design time as well as at runtime. For example, in some critical health 
monitoring IoT application, failed IoT services must be replaced without causing any 
disruption. 

 The fourth challenge is to guarantee the security of IoT applications and also protect 
the privacy of users. Many applications from a variety of domains ranging from smart 
healthcare [17] to digital agriculture [18] are utilizing the IoT infrastructure. Critical 
decisions are going to be made in these applications by analyzing data collected from 
the IoT devices. This has raised the issues of security, privacy and trustworthiness of 
IoT generated data [19]. These issues are not limited to data alone, but also the 
underlying networks and devices. Hence, supporting security, privacy and trust 
mechanisms within IoT middleware has been recognized as a critical and important 
issue for the successful deployment of IoT applications, and is deemed as one of the 
major challenges in both industry and academic communities. Security is generally 
supported via some kind of authentication and encryption protocols and privacy is 
addressed by giving the end user the ability to specify different level of access controls 
without the guarantee of data ownership. 

 
[9] follows a different organizational approach to discuss challenges in IoT middleware. It 
discusses the possible challenges in relation with the requirements that it provides, which are 
also presented in Section 2.2. The study presents the challenges as below. 
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Challenges related to Functional Requirements: 
1. Resource Discovery: The dynamic and ultra-large-scale nature of the IoT infrastructure 

invalidates centralized resource registries and discovery approaches. However, 
deciding between purely distributed and hybrid solutions is complicated. A trade-off is 
necessary between registry distribution and the number of registries. Fewer registries 
provide consistent and fast discovery of resources under normal circumstances, but 
will not scale well when there is a large number of service discovery queries in IoT 
applications. 

2. Resource Management: Frequent resource conflicts occur in IoT applications that 
share resources (e.g., actuators). Conflict resolution will be required to resolve 
conflicts in resource allocation among multiple concurrent services or applications. 
This is not considered in most existing middleware solutions 

3. Data Management: A vast amount of raw data continuously collected needs to be 
converted into usable knowledge, which implies aggregated and filtered data. Most of 
the surveyed middleware offer support for data aggregation, but do not consider data 
filtering. 

4. Event Management: A large number of events are generated proactively and reactively 
in IoT. Because of this, it is expected that middleware components may become 
bottlenecks in the system. 

5. Code Management: Re-programmability is one of the major challenges not only in IoT, 
but also in software development. Updates or changes in business logic should be 
supported by any IoT component. 

Challenges related to Non-Functional Requirements: 
1. Scalability: Since most existing middleware (Table II) are WSNs centric, their network 

level scalability is also limited to WSNs. They will perform poorly in IoT’s ultra-large-
scale network. 

2. Real-time: Applications and services rely on being directly connected to the physical 
world. Getting real-time information about the state of the real world is still a 
challenging task. Some middleware approaches are by nature non real-time (e.g., 
database or tuple-space middleware), while the rest provide at least soft real-time 
services. Hard real-time can be provided by application-specific middleware approach 
and a few event based middleware. Current middleware solutions need to consider 
real-time service composition or self-adaptivity. 

3. Reliability: Reliability is not addressed in most existing proposals. To achieve 
middleware reliability, every component or service of a middleware needs to be 
reliable. 

4. Availability: Maximizing system availability and fast recovery from failures are 
challenges that are not specific to IoT, but to any distributed system. In the context of 
IoT, availability of things and services offered is important. Hardware devices fail 
periodically and any service they provide will be unavailable when they fail. 

5. Security and Privacy: All the concerns of security, privacy and trust in all the 
technologies (e.g., traditional Internet, WSNs, M2M communications, RFID, SCADA, 
and cloud computing) used in IoT are clearly present in the context of the IoT. 
Unfortunately, security, privacy and trust are not completely resolved in these 
technologies. 

6. Ease-of deployment: Deployment, post-deployment, and re-programmability are 
important tasks in an IoT middleware lifecycle. 
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Challenges related to Architectural Requirements: 
1. Programming Abstraction: Most middleware offers programming abstraction support. 

However, the new languages and tools that need to be adopted have a steep learning 
curve for developers and users. 

2. Interoperability: Network interoperability is well supported by most existing 
middleware, but many lack support for semantic and syntactical interoperability. 
Semantic interoperability is very challenging in IoT because of heterogeneity and the 
lack of standard in ontologies. From all middleware categories, the service-oriented 
approach offers the best support for semantic interoperability. However, support for 
syntactic interoperability is limited. 

3. Service-based: Most of the middleware are service-based. Each service needs to 
provide a description for service composition or discovery. A standard service 
description is mandatory to ensure semantic and syntactic interoperability. 

4. Adaptive: In a number of approaches, adaptation decision making is hard-coded and 
requires recompiling and redeploying the system or a part of the system. Where 
adaptation is more dynamic, policies, rules or QoS definitions are used, which can be 
changed during runtime to create new behaviour. Even though most middleware uses 
a dynamic approach, the rules, policies and QoS definitions are mostly hard-coded and 
are not context-aware. In IoT, this approach is not scalable. 

5. Context-awareness and Autonomous behaviour: Different types of middleware have 
exploited some level of context awareness. For instance, MUSIC [20] exploits context 
for self-adaptation to maintain a satisfactory QoS. Popular uses of context (e.g., 
context-aware resource discovery, context-aware composition, context-aware data 
management) are missing. 

2.5 Available IoT Platforms 

2.5.1 Cloud based Platforms 

2.5.1.1 Cumulocity 

Cumulocity allows customers to create their own service wrappers that means delivering 
their own services to their customers. It proposes service as a platform technology instead 
of using complex infrastructure. Cumulocity offers dashboard platform via contextualized 
data that can create KPI and reports to provide an insight to forecast. In context of 
architecture and component, sensor node integrated with platform uses methods for 
access and manipulations to communicate with RESTFULL HTTPS API. This API uses an 
agent to connect to Cumulocity server where commands are pulled and sent to related 
client applications. Depending on pull frequency, throughput latency and network delay 
might occur.  This tool is only compatible with RESTful HTTP/S protocol [9] 

2.5.1.2 ThingWorx 

Thingworx is directly integrated with social media platforms and weather services. Among 
services, applications and sensors the data will be exchanged via a virtual bus, but this 
does not support peer to peer communication. The data transfer is provided via network 
protocols such as MQTT, REST/HTTP and CoAP and Web socket protocols. Mashup 
builders are correspondent to asset tracking, monitoring and creating dashboards with 
data retrieved from different agents [9]. 
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2.5.1.3 Xievly 

Xievly as two previous models mentioned above will include a bus layer to provide data 
transfer among the devices via different protocols The message bus integrated with Xively 
API and web sockets creates data interoperability layer that provides fine grain access for 
data feeds and data streams. Each device with serial id number is registered to the system 
and they can retrieve the setup configuration via mutual authentication [9].  

2.5.2 Device to Device Platforms 

2.5.2.1 IzoT 

The architecture will be based on communication stack supporting peer2peer 
communication. The general use is more compatible with IIOT. Communication stack will 
help multiple communication for unconstrained devices. The authentication and 
authorization cases are guaranteed for this platform. IzoT also supports asymmetric and 
symmetric key encryption and authorization. Private key communication stack degrades 
Izot performance [9].  

2.5.2.2 ThingSquare 

The architecture relies on stacks supporting peer2peer communication. The general use 
is more compatible with IIoT. Communication stack will help to establish multiple 
communication for unconstrained devices.  The authentication and authorization cases 
are guaranteed for this platform. IzoT also supports asymmetric and symmetric key 
encryption and authorization. Private communication stack degrades Izot performance 
[9].  

2.5.2.3 Bluemix 

Bluemix offers end to end enterprise solution for industry and consumer protocols 
consisting of Bluemix application providing data management and authorization, 
Websphere integration middleware supporting MQTT network, Message Sight 
application supports the network communication among sensors and middleware. 
MessageSight is able to handle high volume data and can transfer data at high rate speed 
[9]. 

2.5.2.4 Open MTC  

The architecture consisting of different blocks which are front end block linked to sensors 
and actuators used for data retrieval and application platform, Back-End block connected 
to other M2M platform and another application platform covering various and multiple 
mobile applications such as e-health, smart grid etc. Data transfer between these two 
blocks will be handled via middleware platform, consisting core features and connectivity 
segment working as a message converter from front end applications. This part also 
implements data analysis and rules application via electronic product code segment 
(EPC). Connectivity component is in charge of device management and core function will 
provide seamless data communication. It covers protocol adapter (such as Zigbee, 
Profinet, OPC-UA, Robot OS), apps like load (generator, advanced dashboard, analytics), 
historical data handling [12]. 
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2.5.2.5 FIWARE 

FIWARE allows to connect all devices, to integrate the services and application and to 
analyze and to reveal the contextual information. By isolating network services and 
application layers among each other, it reduces network latency and increases scalability 
and modularity. It encompasses IoTAgents (IoTA), a Context Broker (Orion), Short Term 
Historic (STH), Connector Framework (Cygnus), Security Component. It contains enriched 
generic enabler (GE) libraries providing open interfaces for application developer and 
support interoperability among other GEs. GE is on charge of cloud hosting, data/context 
management, advanced based user interface. It consists of IoT edge concerned with 
communication IoT back-end platform and devices and data context broker which 
establishes intercommunication among application interfaces. This system also includes 
NGSI devices, interacting with data providers. NGS device, being system entities, helps to 
transfer the data through IoT broker [12]. 

2.5.3 ROBOTICS in Industrial Use 

Modern robots used in the industry [13] can possibly modify the production mechanisms in 
the way computers have transformed the office workplace environment. Robots are used for 
their capabilities to accomplish tasks rapidly, accurately and continuously. They are relevant 
in various areas in the production industry and brought exceptional value to multiple 
construction mechanisms. For instance, the petrochemical industry uses robots to increase 
effectiveness and safety by also reducing the harmful impact towards the environment. In 
environments where is hazardous for people to work, robots come in handy because of their 
ability to provide maintenance and repairs. Still, there are some issues regarding trust and 
responsibility. The robots’ purposes within the organizational structure should also be 
considered. In the end, every shared system presents network layer vulnerabilities. Several 
robots autonomously function, whereas some may be controlled remotely. Robots have to be 
sufficiently predictable to function under complicated and active environments with increased 
confidence levels and still have the capacity to be firmly controlled or instead, to be stopped 
by the operator, so that the following generation of users and administrators to confide in 
autonomy. Keeping up this adaptability in the future framework will deliver adequate levels 
of trust in the activities performed by our robotic correspondents. The people's reaction to 
extended levels of autonomy has to be considered. Considering that robots do not have 
enough autonomy, then the administrator will linger on taking care of robots instead of their 
work. Likewise, another ability should advance for future administrators, in order to repair 
and preserve robots in their environments. The autonomous capacities primary advantages 
are to broaden and supplement people’s performances, not to fully substitute them. If robots 
have high autonomy levels, the awareness activities might decrease. Robots can enhance 
people’s speed, perception, ingenuity, resistance to tiredness. Several robots will include the 
capacity to investigate and carry samples and others will do more refined activities such as 
repairs and preservation. Mobile robots such as unmanned flying vehicles have been 
produced to function during a disaster, or just for examinations.  
Nanobots represent a branch within robots’ field, being widely explored in the security and 
defense domains nowadays. 

2.5.4 Nanobots 

Nanobots represent a type of a little robot [14]. A nano-robot represents an artificial robot 
with the dimension of few micrometers or less, comprised from nanoscopic elements with 
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distinctive sizes in the interval from 1 to 100 nm. A nanobot displayed the ability to travel 
freely through the hole human body circulatory system. In the future, these nanobots could 
be utilized in production systems, as in the provisioning of a microscopic view towards the 
situations crucial to specific bio-pharmaceutical or nuclear facilities. The idea of studying the 
state of fluid suspension with entire groups of nanobots could be explained in the 
bloodstream. A nanobot in a vein has shown the ability to feel the metabolic sequence of the 
family of cells fed by the vein itself, therefore examining the cells restrained within a given 
length of the tube. Each nanobot is a self-propelled device, taking energy from the 
environment, being able to identify and anchor to the elements within their process. They can 
sense membranes and consequently recognize the state of health of its environment. They 
also may be applied to collect the information, to transmit it to the central unit, and ultimately, 
take actions that might affect the overall process situations. Within an entire group of 
nanobots, each bot holds particular chemicals to be released for detection by other nanobots. 
This could also be used in a production facility to carry a message from one location to the 
other. 
It is a difficult matter to ensure that nanobots and nanobot groups are working securely. 
Nanobots are by definition tiny and are therefore very challenging to monitor for unique 
malicious behaviors, especially if a massive group of nanobots is transmitted. If nanobots 
alone are programmed with software, how may someone scan the nanobot’s operating code 
for malware? If nanobot groups are programmed with chemical means, would there be a 
means to assure that the use and control of the swarm not be taken over by a malicious entity, 
in the same manner, that bacteria and viruses affect the biological receptors? How the 
nanobot group will be supported and monitored? How nanobots are disposed, when they 
reach their end of life? As with other features of innovative IoT devices, nanobot systems 
provide great utility but have not been yet analyzed or developed for security and safety. 
 

3 IoT-framework Standards and Enabling Technologies for IoT-systems 
In this chapter a summary of the most relevant available standards and enabling technologies 
for IoT-Systems is presented. In particular, protocols that operate at the different levels of the 
IoT-stack are introduced by following the structure of the IoT-stack itself from a top-down 
perspective, i.e. from the Application Services Layer till the Device Layer. These standards 
were proposed over the past decade to meet IoT current and future needs, but not all of them 
are necessarily suitable for industrial applications.  
In the following, the protocols OPC-UA, oneM2M and DDS for Application Services Layer are 
presented. Then, in Section 3.2 protocols for the Application Protocol Layer such as MQTT, 
CoAP, XMPP and AMQP are discussed. Although the analysis and implementation of the 
Network Layer is not the primary goal of the project, a review on exiting protocols is presented 
in Section 3.3. Finally, the Device Layer is discussed in Section 3.4. 

3.1 Application Services Layer 

3.1.1 OPC Unified Architecture (OPC-UA) [ifak] 

OPC-UA is an M2M communication protocol specifically developed by the OPC foundation for 
industrial automation with the goal of combining all previous and/or existing protocols to a 
common (unified) data model in order to facilitate interoperability at different levels.  
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The protocol is specified by the IEC 62541 norm. Its main feature is to enable the exchange of 
information models of any complexity – both instances and types (metadata) – thus, realizing 
interoperability between machines at semantic level. It was designed to support a wide range 
of systems, ranging from PLC’s in production to enterprise servers, which are characterized by 
their diversity in terms of size, performance, platforms and functional capabilities. To this aim, 
OPC-UA was specifically developed considering explicitly following features: 

 Being independent from the underlying Physical Layer, i.e. solutions like CAN, Profinet 
IO or industrial WiFi can be used for the actual data transfer. 

 Being independent from the functionalities of the available operative system. 
 Considering explicitly security communication aspects such that data manipulation can 

be prevented. 
 Describing data semantically such that complex data types rather than simple bits or 

bytes can be easily exchanged. 
The protocol supports two different type of communication paradigms: client/server as well 
as publish and subscribe, where the OCP-UA-Server is configured such that specific 
information is automatically delivered to OPC-UA-Clients that are interested in receiving 
certain information. Both solutions are also independent from the underlying Transport Layer 
and, depending on the application and performance that shall be realized, can be easily 
implemented over TCP, HTTP, HTTPs as well as UDP, AMQP and MQTT, by implementing 
different transport profiles.  
Figure 17 gives an overview of the implementation of the OPC-UA-Stack in an industrial 
environment. As described in the figure, the standard specifies mainly two different 
paradigms: OPC-UA for Services (client/server) and OPC-UA for Message Model (public and 
subscribe). As the name suggests, the first paradigm is specifically thought for the realization 
of (web)services, where information is exchanged in XML- or JSON-format. This particular 
encoding makes the exchanged data easy to read and to process, but it can be poorly 
performing for industrial application that have restricted available resources.  
The second paradigm, on the other hand, is specifically conceived for industrial automation 
systems. In this case, data are represented in a binary way such that the exchanged messages 
require less overhead and less resources in order to achieve higher system performance.  
The OCP-UA-standard is nowadays still in evolution and subject to current and future 
standardization, in particular for industrial applications. Further information about it and its 
implementation can be found for instance in [21]. 
 

 
Figure 17: OPC-UA transport profiles. 

 
OPC-UA over Time Sensitive Networks (TSN) [URO] 
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Although OPC-UA-Binary can provide higher performance than OPC-UA-XML, it does not 
directly take tight time constraints of real-time system into account. Therefore, it cannot 
guarantee network determinism for those industrial application that might require it.  
To solve this issues, recent research has focus on the idea of implementing OCP-UA over Time 
Sensitive Networks (TSNs) or Time Sensitive Networking (TSN), [22]. TSN is the IEEE802.1Q 
defined standard technology to provide deterministic messaging on standard Ethernet 
networks. TSN is managed centrally and can deliver guarantees of delivery as well as minimize 
jitter by using time scheduling for real-time applications that require determinism. 
The three main characteristic of TSN can be summarizes as follows: 

 Time synchronization: all devices requiring real-time communication need to have a 
common understanding of time. 

 Scheduling and traffic shaping: all devices share common rules w.r.t. how 
communication packets are processed and forward. 

 Selection of communication paths, path reservation and fault-tolerance: all devices 
share common rules in selecting communication paths and in reserving time-slots, 
possibly providing path-redundancy to ensure fault-tolerance. 

The IEEE802.1Q standard works at Data Link Layer (level 2 protocol) and it can be used in any 
kind of environment, i.e. it is not limited to applications that work over the Internet, but it can 
essentially also be used for industrial applications. Therefore, it possible to implement the 
OPC-UA protocol over TSN in order to guarantee determinism for those industrial applications 
that requires it.  
Further information about OPC-UA over TSN can be found for instance in [23],[24] and [25]. 
Notice that the TSN standard is quite new and practical applications as well as commercial 
devices implementing this standard are still limited. This is also due to the fact that at the 
current state of the art, the components for TSN are highly expensive and the deployment of 
even small networks can sum up to a few thousand euros. Additionally, for the moment being, 
the standard is limited to cabled networks and no solution is currently provided for wireless 
ones. This partially limits the spreading of TSN-solutions, in particular for IoT applications in 
which wireless connectivity plays in many cases a crucial role. 

3.1.2 oneM2M for the Industry Domain [ETRI] 

oneM2M Overview 
oneM2M is the global standards initiative that covers requirements, architecture, API 
specifications, security solutions and interoperability for Machine-to-Machine and IoT 
technologies. It has been formed in 2012 and consists of eight of the world's preeminent 
standards development organizations: ARIB (Japan), ATIS (U.S.), CCSA (China), ETSI (Europe), 
TIA (U.S.), TSDSI (India), TTA (Korea), and TTC (Japan).  
The goal of oneM2M is to develop technical specifications which address the need for a 
common M2M Service Layer that can be readily embedded within various hardware and 
software, and relied upon to connect the myriad of devices in the field with M2M application 
servers worldwide. It also provides a framework to support applications and services such as 
the smart grid, connected car, home automation, public safety, and health. oneM2M actively 
encourages industry associations and forums with specific application requirements to 
participate in oneM2M, in order to ensure that the solutions developed support their specific 
needs. 

oneM2M Architecture 
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oneM2M functional architecture consists of three types of entities (AE, CSE, NSE) and 
interfaces between each entity. AE means the “Application Entity”, which is a SW application 
operated by devices, gateways or user terminals. CSE refer to the “Common Service Entity”, 
which represents an instantiation of a set of "common service functions" of the M2M 
environments. NSE refer to the “Network Service Entity”, which provides services from the 
underlying network to the CSEs. 
Each CSE can be located on an infrastructure node or a middle node. Typically, the 
infrastructure node (IN) is a cloud or remote server, and the middle node (MN) is the site 
gateway. ADN, which refers to Application Dedicated Node, is generally a device that cannot 
load CSE but can load only AE function. ASN, which refers to Application Service Node, is a 
device that can be loaded with CSE and has a service function to AE. The interface between 
CSE and AE is referred to as Mca. The interface between CSEs is referred to as Mcc. 

  
Figure 18: oneM2M functional architecture. 

 

 
Figure 19: Configuration supported by oneM2M architecture. 

 
Common Service Function (CSF) 

CSF is referred to the services provided by the Common Services Layer in the M2M System and 
reside within a CSE. It provides services to the AEs via the Mca reference point and to other CSEs 
via the Mcc reference point. 
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Figure 20: Common Service Function (CSF) 

Industrial domain architecture using oneM2M 
oneM2M technology can also be applied to industry domains. oneM2M technology is 
considered to achieve the communication and interaction from machine-to-machine without 
human support. This technology provides opportunities to achieve synchronous, continuous 
and effective information exchange in manufacturing scenarios. 
In an industrial domain architecture, a variety of devices within the plant can provide each 
other's capabilities via M2M communications. Each manufacturing services connect with 
factories via the M2M system. In addition, the complex service can be sent to several factories 
synchronously, to enable effective collaboration between factories 

 
Figure 21: Industrial Domain Architecture. 

In this document, we present three use cases in an industry environment using oneM2M. 
oneM2M technology can also be applied to industry domains. The first case is “On-demand 
Data Collection for Factories”. In order to collect every real time data, oneM2M gateway need 
to be interfaced with industrial bus system (Real-time Ethernet; IEC TC 65). But, it is difficult 
to gather all data. oneM2M gateway can handle the necessary data depending on user policy 
(rule based, pre-processing/filtering); data catalogues. Figure 22 shows the structure applied 
to the data collection of factory environment by applying oneM2M. 
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Figure 22: High-level Illustration of On-demand Data Collection for Factories 
 
The second use case is “Data Process for Inter-Factory Manufacturing”. To achieve remote 
manufacturing, a significant amount of data is generated for monitoring purposes and 
broadcast via an intra-factory network (e.g. real-time Ethernet) through PLCs or Distributed 
Control Systems (DCS), etc. For monitoring product lines efficiently and effectively, Middle 
Nodes (MNs) (which means the gateway) will selectively collect necessary data from an intra-
factory network and then send this data to the oneM2M services platform for use by 
manufacturing control applications. Figure 23 shows the structure in which data collected in 
each plant environment is processed at the MN level and forwarded to the server. 
 

 
Figure 23: High-level Illustration of Data Process for Inter-factory Manufacturing 
 
The last use case is “Realtime Data Collection”. To achieve adequate control, real-time 
Ethernet, with which sensors and devices are connected through controllers, are required to 
provide real-time transmission and a high level of reliability. The oneM2M MN shall be able 
to transmit data according to priority in preparation for temporal performance degradation 
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of underlying network, and for temporal increase of the amount of information data. Figure 
24 shows the structure for real-time data collection. For real-time data processing, a plurality 
of MNs are required, and each MN needs to include a buffering function for data processing. 

 
Figure 24: High-level Illustration of Real Time Data Collection 

3.1.3 Data Distribution Service (DDS) [URO] 

DDS is a content-based publish-subscribe communication protocol for Machine-to-Machine 
(M2M) applications. It is a decentralized implementation of the publish/subscribe concept 
that uses, among others, multicasts to distribute the messages instead of a centralized broker. 
For this reason, DDS is referred to as real-time capable and suits well for one-to-many as well 
as many-to-one applications. However, the standard also defines the client-server pattern as 
an alternative. Furthermore, it focusses on Quality of Service (QoS) and reliability by 
introducing several parameters, e.g., for data availability, delivery, timeliness and security. 
The protocol offers built-in security mechanisms like data confidentiality and integrity, 
authentication and authorization of publishers (data writer) and subscribers (data reader). 
DDS is a data-centric approach and introduces the concept of a virtual global data space (see 
Figure 25). Using this concept, a device can access information of all devices in the DDS 
network comparable to getting data from a local data storage. In this way, the data exchange 
looks from an application perspective similar to accessing local system memory. The DDS API 
translates these virtual data read and write commands into real-world actions because the 
data is stored on all devices across the network. Due to the content-based approach, complex 
filter queries are possible to receive only the required data. 
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Figure 25: DDS Global Data Space Concept, derived from portals.omg.org 

Furthermore, DDS offers an interoperability layer that makes it independent of the underlying 
layers (DDSI-RTPS, see Figure 26). In this way, it supports communication over, e.g., TCP and 
UDP as well as shared memory. Currently, solutions that use DDS as the communication layer 
for OPC UA are also subject of research. 
 

 
Figure 26: DDS and other Protocols in the Network Stack [27] 

Further information about DDS can be found inter alia in [26] and [27]. 

3.2 Application Protocol Layer 

3.2.1 Message Queue Telemetry Transport (MQTT) [URO] 

MQTT is a lightweight machine-to-machine (M2M) protocol for message transport. It is one 
of the currently most popular publish-subscribe (pub/sub) solutions and was initially 
developed for (many-to-one) data collection.  
This protocol is a centralized pub/sub implementation, standardized by the Organization for 
the Advancement of Structured Information Standards (OASIS) as a protocol for the IoT, with 
topic-based filtering and a dedicated broker (Figure 27). Furthermore, it uses the connection-
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oriented transport protocol TCP and TLS/SSL for secured communication. Independent of 
reliability mechanisms in TCP, MQTT offers three Quality of Service (QoS) levels listed in Table 
1 to ensure the successful transmission of messages. These levels can be set individually for 
each topic, publisher-broker and broker-subscriber relation. 

Publish data BrokerPublisher

Subscriber

Subscriber

Topics

 
Figure 27: MQTT Publish-Subscribe Pattern 

An advantage of MQTT is the centering of complex logic in the broker while the publishers and 
subscribers can be simple and lightweight applications running on resource-constrained 
devices. 

Table 1: MQTT QoS Levels 

QoS Level Description 
0 (at most once/ 
fire and forget) 

Best-effort delivery, no acknowledgement (ACK) from receiver, no re-
transmission on application layer, only reliability mechanisms of TCP 
used 

1 (at least once) A message is at least once delivered to a receiver, receiver sends ACK 
message, multiple message delivery possible 

2 (exactly once) Message is delivered exactly once by using a four-part handshake, 
slowest but safest level, e. g., necessary if duplicate messages can disrupt 
receiver program flow 

 
There exists a derivate of MQTT called MQTT-SN for sensor networks. While MQTT requires a 
lossless connection via TCP/IP, MQTT-SN was developed to be agnostic of the underlying 
network protocols. Usually, this derivate is used on top of the connection-less protocol UDP 
that causes less communication overhead at transport layer due to missing reliability 
mechanisms. For resource-constrained embedded devices, e. g., nodes in sensor networks, 
the additional energy cost of a reliable connection-based transmission (TCP) can have a major 
impact on battery life. One of several reasons for this problem is the communication pattern 
of sensor nodes. In general, such a device remains for a long time in a low power state (sleep 
mode) and wakes up only by interrupt of an external trigger or timer. After interrupt, the 
device sends only one or a few messages and goes back to sleep again. When using a TCP-
based communication, additional management messages need to be sent besides the data 
messages due to connection establishment, maintenance and teardown. After each sleep 
phase, the connection is again established with the same communication overhead (see 
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section 3.2.2 for more details). In comparison, using connectionless protocols, only the 
necessary data messages are transmitted. Besides the change in transport layer protocol, a 
major difference to normal MQTT is the requirement of a gateway between 
publisher/subscriber and broker (Figure 28). The devices running a publisher or subscriber use 
a connection-less protocol like UDP. However, the broker is still based on TCP communication. 
Therefore, a gateway needs to translate between the communication partners. Furthermore, 
an additional QoS level (-1) is introduced to simplify the publishing process of data for 
resource-constrained devices. 

UDP UDP

Publisher Subscriber

Gateway

Broker
Topics

TCP

 
Figure 28: MQTT-SN Publish-Subscribe Pattern 

 
Further detailed information about the MQTT protocol can be found in [28] and [29]. 

3.2.2 Constrained Application Protocol (CoAP) [URO] 

CoAP is a representative of the Representational State Transfer (RESTful) concept suitable for 
distributed embedded systems due to its decentralized architecture. REST protocols apply the 
client-server pattern. Clients establish connections to servers. A connection initiation by the 
server is not provided. Furthermore, connections between servers and clients are stateless. In 
this way, requests from a client are processed on server side independently of the previous 
communication. Thus, individual connections are independent of each other. In order to keep 
a communication history, it is possible for each client to cache the data. The RESTful 
architecture enables the independent development of individual services, which together 
form a large architecture. Another feature of such protocols is the ability to run as multi-
layered systems. In this case, a client sends a request to a server. If the server needs further 
information to answer this client message, it sends a request to other servers. The 
transmission of executable code from server to client is also supported (code-on-demand). To 
assign addresses to services in a RESTful architecture, the Uniform Resource Locator (URL) is 
used. A service can offer multiple resources. To address the individual resources, the Uniform 
Resource Identifier (URI) is used. 
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Client-Server Pattern Stateless Caching

Code-on-DemandLayered SystemUniform Interfaces
 

Figure 29: Features of a RESTful Architecture 

CoAP is very similar to Hyper Text Transfer Protocol (HTTP). However, it has a smaller header 
than HTTP because it uses binary encoding. In addition, as shown in Figure 30, CoAP is based 
on UDP instead of TCP (HTTP). If an HTTP client wants to send a request to an HTTP server, a 
connection must first be established via TCP. The TCP handshake needs three messages before 
the application can exchange messages over HTTP. Each TCP connection is terminated by 
another three-way handshake. With UDP, however, no connection is established. The data is 
immediately sent to the server via UDP. Thus, CoAP is particularly suitable for micro devices, 
since fewer and shorter messages are sent in comparison with HTTP. 

Ethernet/...

IPv4/v6

UDP/DTLS

CoAP

Ethernet/...

IPv4/v6

UDP/DTLS

CoAP

 
Figure 30: CoAP Protocol Stack 

Each CoAP server provides resources to clients accessing the resources through CRUD 
operations. CRUD operations are Create, Read, Update, and Delete. These operations are also 
supported by HTTP. Due to the strong similarity of CoAP and HTTP, proxies can be 
implemented that translate between both protocols. CoAP defines a mandatory resource 
(well-known/core) that every server has to offer. After requesting this resource, the client gets 
an overview of all resources of the server. Another property of CoAP is the asynchronous 
eventing mechanism. Clients subscribe to a resource on a server. The server stores all 
subscribers and sends notification of a resource change.  
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CoAP messages are based on UDP and therefore have no security features such as encryption 
and integrity. The CoAP standard defines the Datagram Transport Layer Security (DTLS) 
protocol for the aspect of communication security. DTLS encrypts the data, so the 
confidentiality of the information is ensured. In addition, data secured with DTLS can be 
checked for change during transmission (message integrity). DTLS also ensures message 
authenticity. The sender of a message can be identified by, e. g., the use of symmetric keys 
and certificates. A certificate includes a public key and meta information about the device. 
Server and client certificates ensure bidirectional authenticity.  
On the network layer, CoAP supports IPv4 and IPv6 as well as the 6LoWPAN set of underlying 
layers (IPv6, 6LoWPAN Adaption Layer, IEEE 802.15.4) for constrained environments.  
More information about the CoAP standard can be found for instance in [30]. 

3.2.3 Extensible Messaging and Presence Protocol (XMPP) [URO] 

XMPP is a simple instant messaging standard that was developed for near real-time text, audio 
and video chatting. It uses TCP and is a partial decentralized protocol that supports both 
communication patterns, client-server and publish-subscribe. Looking at the communication 
structure, it is located between MQTT (centralized) and CoAP (decentralized). Clients need 
always a server as a relay to exchange messages with each other, but multiple servers can be 
interconnected to form a decentralized network. XMPP uses the human readable Extensible 
Markup Language (XML) as message format. Due to the large message payload caused by XML 
encoding, the extension Efficient XML Interchange (EXI) is currently under development for 
XMPP to reduce this communication overhead. Furthermore, it supports extensions to 
customize the protocol for application requirements. XMPP can be combined with TLS and 
Simple Authentication and Security Layer (SASL) to support security features, but end-to-end 
security was no goal during design time. 

Server Server

ClientClientClient  
Figure 31: Distributed Architecture of XMPP 

 
Additional information about the XMPP Core Standard are available in [31]. 

3.2.4 Advanced Message Queuing Protocol (AMQP) [URO] 

AMQP is a binary communication protocol using a centralized publish-subscribe pattern with 
broker instances. Initially developed in the context of financial services, the protocol became 
in 2014 an open standard (ISO/IEC 19464) and is currently used in a wide range of application 
domains. It supports self-describing data encoding and reliable message exchange using QoS 
primitives similar to MQTT (see 3.2.1). To realize such delivery guarantees, a reliable transport 
layer like TCP is required. The self-description concept in AMQP can be extended with 



, D3.1, VERSION 1.0, 2019-02-06 

 

 - 39 - 

additional meta-data during runtime. This allows use case specific type interpretations and 
also the extension of messages with additional information during transmission through a 
network, e. g., by gateways and brokers. 

Broker

Producer

Consumer

Consumer

BindingExchange 
Service

Binding

Consumer
Queue 1

Queue 2

 
Figure 32: AMQP Communication Model 

Similar to MQTT, producers send messages to a broker and these packets are delivered to 
consumers. The difference to MQTT is the internal structure of the broker. It consists of an 
exchange module and message queues. Published messages are directly sent to the exchange 
service and based on bindings (predefined rules), the packets are distributed to specified FIFO-
queues. All consumers associated with these queues can obtain the stored messages on 
request or in a subscription relation. To interconnect producer and consumer, the name of an 
exchange service is necessary. Several brokers/exchange services are possible in a network. 
The way of how to forward the published messages to the message queues can be specified 
by exchange types that are listed in Table 2. 
  

Table 2: Exchange Types of AMQP 

Exchange Type Description 
Direct Content of message header field ‘routing key’ needs to match exactly the 

‘binding key’ of a message queue. The message is forwarded to this 
queue. 

Topic A message is distributed to all queues that have a complete or matching 
key compared to the message key. Realized by wildcard symbols: #, * 

Fanout Keys are ignored, messages are delivered to all queues attached to the 
exchange service. 

Header Keys are ignored, header fields are used instead. Therefore, key-value 
pairs are used to find matching queues. 

 
In a case where multiple consumers use the same message queue, as shown in Figure 32, the 
messages are only delivered once to one of the consumers. In this way, e. g., tasks can be 
distributed among several clients with the guarantee that a message is only processed by one 
client. AMQP supports security by using TLS and Simple Authentication and Security Layer 
(SASL). Further information about the protocol and its specifications can be found in [32], [33] 
and [34]. 
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3.3 Network Layer [Thorsis] 

In this section, some of the currently available network technologies for communication are 
presented, with particular focus on Datalink, Routing and Encapsulation Layers. These 
protocols are essentially responsible, together with the Physical Layer, for the actual 
networking of the system components. Notice, though, that most of the protocols presented 
in this section rely on an Internet and on a Transport Layer protocol for the end-to-end 
communication (see Table 3 for more details), which are typically IP and UPD/TCP. A complete 
analysis of available solutions for the Physical Layer is on the other hand outside the scope of 
this document. 
The Datalink Layer provides Medium Access Control (MAC) and node-to-node data transfer, 
i.e. it creates a link between two nodes that are directly connected through a physical 
medium. The main responsibility of this layer is to guarantee access to the lower physical layer, 
as well as detect and correct, when possible, errors that may occur at lower level. Functions 
for flow control are typically implemented here. Some of the most common protocols which 
have gained quite success in the industrial fields are summarized in the following. 
Additionally, some standard and non-standard protocols for routing and encapsulation for IoT-
applications are presented. Routing protocols provide mechanisms to handle the packet 
transfer from source to destination. On the other hand, encapsulation protocols form the 
actual packets that are sent through the network. One of the problems in IoT-applications is 
that all components of the IoT-system need to be addressed. Typically, this is done by using 
standard IPv6-addresses, which are too long to fit in most of the IoT datalink frames that 
require much smaller packet overhead. In the following, some of the available protocols for 
encapsulation are presented. 
 

Table 3: Relation between the IoT-protocol-stack (orange) and commonly available protocols 
w.r.t the ISO-OSI-model. 

Application Layer 

App. Services Layer OPC-UA, oneM2M, DDS, 
… 

App. Protocols Layer MQTT, SMQTT, DDS, 
CoAP, XMPP, … 

Network 

Transport TCP,UDP, DCCP, … 
Internet IP, ICMP, ECN, … 
Encapsulation 6LowPAN, 6TiSCH, 6Lo, …  
Routing RPL, CORPL, CARP, … 
Datalink and 
Physical WiFi, BLE, LTE-A, … 

Device Layer 
 

3.3.1 IEEE 802.15.4 and IEEE 802.15.4e 

IEEE 802.15.4 is a low data rate wireless connectivity solution with focus on very low 
complexity and extended battery lifespan that is in the range of multiple months to multiple 
years. Potential applications of the solution include sensors, interactive toys, smart badges, 
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remote controls, and home automation. IEEE 802.15.4 is a simple packet-based radio protocol 
aimed at very low-cost, battery-operated devices that can intercommunicate and send low-
bandwidth data to a centralized device. The protocol supports data rates of 1 Mbps, 850, 250, 
100, 40, and 20 kbps. The data rate is dependent on the operating frequency as well as on the 
coding and modulation scheme. The transmission range varies from tens of meters up to 1 
km, the latter introduced with IEEE 802.15.4g. The protocol is fully acknowledged for transfer 
reliability. The basic frame size is limited to 127 bytes in the original specification, and the 
philosophy behind that is two-fold: to minimize power consumption and to reduce the 
probability of frame errors. However, with IEEE 802.15.4g, the maximum frame size is 
increased to 2047 bytes. 
The IEEE 802.15.4 standard only defines the functions of the physical and MAC layers. It serves 
as the foundation for several protocol stacks, some of which are non-IP, including Zigbee, 
Zigbee RF4CE, Zigbee Pro, WirelessHART, ISA100.11a, and RPL.  
IEEE 802.15.4e is the next-generation 802.15.4 wireless mesh standard. It aims to improve on 
its predecessor in two focus areas: lower energy consumption and increased reliability. The 
standard introduces a new MAC layer to 802.15.4 while maintaining the same physical (PHY) 
layer. Hence, it can be supported on existing 802.15.4 hardware. Two key capabilities are 
added: time synchronization and channel hopping, hence the acronym TSCH. Time 
synchronization addresses the requirement for better energy utilization whereas channel 
hopping aims at increasing the reliability of communication 

3.3.2 IEEE 802.11ah (Low Energy WiFi) 

IEEE 802.11ah is a light (low-energy) version of the original IEEE 802.11 wireless medium 
access standard that defines a WLAN-system operating at sub-1 GHz license-exempt band. 
Due to the favorable propagation characteristics of the low frequency spectrum, this protocol 
is capable of providing improved transmission range compared to conventional WiFi. 
Additionally, in order to meet IoT-requirements, it was designed with a reduced overhead in 
comparison to the original WiFi. It also benefits from lower energy consumption, thus, 
allowing the realization of large networks of devices, e.g. sensors that cooperate to share 
signals. At the current state of the art, this protocol is the main Bluetooth competitor, since it 
can provide at the same time high data rates and wide coverage range. 

3.3.3 WirelessHART 

WirelessHART is a datalink protocol that operates on the top of IEEE 802.15.4. It provides a 
secure and reliable MAC protocol that uses encryption to cypher exchanged messages and 
checks their integrity in order to guarantee a high reliability level. Similar to other protocols, 
it used Time Division Multiple Access (TDMA) to provide fair share of the underlying 
communication medium.  
In 2010, WirelessHART was approved by the International Electrotechnical Commission (IEC) 
unanimously, making it the first wireless international standard as IEC 62591.  

3.3.4 Bluetooth Low Energy (BLE) 

Bluetooth Low Energy (BLE) – also called Bluetooth Smart – is a short-range wireless 
communication protocol widely used for WPANs. Its main goal is to provide considerably 
reduced power consumption and costs, while maintaining communication ranges similar to 
Bluetooth. In comparison to it, the power consumption can be up to ten time less; its latency 
though can increase up to 15 times compared to classic Bluetooth. Notice that BLE is not 
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compatible with classic Bluetooth. However, since both standards use the same radio 
frequencies, they can share the same physical antenna, which allows for the development of 
dual-mode devices that can operate with both BLE and classic Bluetooth. 
The protocol follows a client/server architecture, where a client is a device that requests 
pieces of information, e.g. a smart-phone or a computer, and a server is a device that provides 
information, e.g. sensors. Thanks to an advertising mechanism, data are transferred only when 
necessary and/or available, such that considerably less energy for transmission is consumed. 
Additionally, nodes are usually awake only when they are communicating and they go to sleep 
otherwise to save their power 

3.3.5 Zigbee 

ZigBee smart energy is an IEEE 802.15.4-based specification for a suite of high-level 
communication protocols used to create WPANs with small, low-power digital radios, e.g. for 
home automation, medical device data connection, and low data rate, as well as close 
proximity. It supports a wide range of network topologies including star, peer-to-peer, or 
cluster-tree. A coordinator controls the network and is the central node in a star topology, the 
root in a tree or cluster topology and may be located anywhere in peer-to-peer.  
ZigBee standard defines two stack profiles: ZigBee and ZigBee Pro. These stack profiles support 
full mesh networking and work with different applications allowing implementations with low 
memory and processing power. ZigBee Pro offers more features including security using 
symmetric-key exchange, scalability using stochastic address assignment, and better 
performance using efficient routing mechanisms. 
Its low power consumption limits the transmission distance to approximately 10-100 m line-
of-sight, i.e. the only way to pass data over longer distances is to use intermediate devices to 
reach the more distant ones. 

3.3.6 LTE-A 

Long-Term Evolution Advanced (LTE-A) is a set of standards designed to fit M2M 
communication and IoT applications in cellular networks. LTE-A is a scalable, lower- cost 
protocol compared to other cellular protocols. It uses OFDMA (Orthogonal Frequency Division 
Multiple Access) as a MAC layer access technology, which divides the frequency into multiple 
bands, which can be used independently. Notice that LTE-A is not the same as LTE. In fact, LTE 
is an actively developing technology, whose evolution was planned over a long time interval. 
LTE-A brings step by step toward the realization of 5G, which at the current state of the art is 
still on the specification phase. How long this migration process to a fully available 5G network 
will take is still an open question, which is difficult to answer at this point. It is though hard to 
imagine that this technology will be commercially available before the next 5 to 10 years. 

3.3.7 RPL 

Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance-vector protocol that 
can support a variety of datalink protocols, including the ones discussed in the previous 
section. It builds a Destination Oriented Directed Acyclic Graph (DODAG) that has only one 
route from each leaf node to the root in which all the traffic from the node will be routed to. 
At first, each node sends a DODAG Information Object (DIO) advertising itself as the root. This 
message is propagated in the network and the whole DODAG is gradually built. When 
communicating, the node sends a Destination Advertisement Object (DAO) to its parents, the 
DAO is propagated to the root and the root decides where to send it depending on the 
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destination. When a new node wants to join the network, it sends a DODAG Information 
Solicitation (DIS) request to join the network and the root will reply back with a DAO 
Acknowledgment (DAO-ACK) confirming the join.  
RPL is probably the most commonly used standard protocol for IoT-applications. 

3.3.8 CORPL 

CORPL – cognitive RPL – is a non-standard extension of RPL which is designed for cognitive 
networks and uses DODAG topology generation but with two new modifications to RPL. CORPL 
utilizes opportunistic forwarding to forward the packet by choosing multiple forwarders 
(forwarder set) and coordinates between the nodes to choose the best next hop to forward 
the packet to. DODAG is built in the same way as RPL. Each node maintains a forwarding set 
instead of its parent only and updates its neighbor with its changes using DIO messages. Based 
on the updated information, each node dynamically updates its neighbor priorities in order to 
construct the forwarder set, [35]. 

3.3.9 CARP 

Channel-Aware Routing Protocol (CARP) is a distributed routing protocol designed for 
underwater communication, which can be used for IoT-application thanks to its lightweight 
packets. It considers explicitly link quality, which is computed based on historical successful 
data transmission gathered from neighboring sensors, in order to select the forwarding nodes. 
There are two scenarios: network initialization and data forwarding. In network initialization, 
a HELLO packet is broadcasted from the sink to all other nodes in the networks. In data 
forwarding, the packet is routed from sensor to sink in a hop- by-hop fashion. Each next hop 
is determined independently.  
The main problem with CARP is that it does not support reusability of previously collected 
data. In other words, if sensor data are required only when they change significantly, then the 
CARP protocol is not particularly beneficial to this specific application due to the implemented 
data forwarding mechanism. An enhancement of CARP was done in E-CARP by allowing the 
sink node to save previously received sensory data, thus, reducing the communication 
overhead considerably, [36].  
Although explicitly designed for IoT-applications, CARP has been not standardized yet and it 
was proposed just in literature. 

3.3.10 6LoWPAN 

6LoWPAN stands for IPv6 over Low power WPAN. It is probably the most commonly used 
standard for encapsulation, since it is capable of efficiently enclose IPv6 long headers in 
IEEE802.15.4 small packets, which cannot exceed 128 bytes. The specification supports 
different length addresses, low bandwidth, different network topologies, power consumption, 
low cost, scalable networks, mobility, unreliability and long sleep time.  
Additionally, this standard provides header compression to reduce transmission overhead, 
fragmentation to meet the 128-byte maximum frame length in IEEE802.15.4, and support for 
multi-hop delivery. Frames in 6LoWPAN use four types of headers: No 6loWPAN header (00), 
Dispatch header (01), Mesh header (10) and Fragmentation header (11). In No 6loWPAN 
header case, any frame that does not follow 6loWPAN specifications is discarded. Dispatch 
header is used for multicasting and IPv6 header compressions. Mesh headers are used for 
broadcasting; while Fragmentation headers are used to break long IPv6 header to fit into 
fragments of maximum 128-byte length. 
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3.3.11 6TiSCH 

The 6TiSCH group of the Internet Engineering Task Force (IETF) is working on developing 
standards to allow IPv6 to pass through Time-Slotted Channel Hopping (TSCH) mode of IEEE 
802.15.4e datalinks.  
The basic idea behind this protocol is to define a channel distribution usage matrix consisting 
of available frequencies in columns and available time-slots for network scheduling operations 
in rows. The resulting matrix is distributed to all the network nodes and, therefore, it is globally 
known to all, such that nodes within the same interference domain can negotiate their 
scheduling.  
In this way, scheduling becomes an optimization problem where time slots are assigned to a 
group of neighboring nodes sharing the same application. This protocol is relatively new and 
still not completely standardized yet. A second official draft was proposed at the beginning of 
2018.  
In its current version, the protocol does not specify how the scheduling shall be done. This 
decision is left to the developer, in order to choose the proper solution for the specific realized 
application and provide the necessary flexibility for IoT-systems. Therefore, the scheduling can 
be either centralized or distributed, [37]. 

3.3.12 6Lo 

IPv6 over Networks of Resource-constrained Nodes (6Lo) working group in IETF is developing 
a set of standards on transmission of IPv6 frames on various datalinks. Although, 6LowPAN 
and 6TiSCH, which cover IEEE 802.15.4 and IEEE 802.15.4e, were developed by different 
working groups, it became clear that there are many more datalinks to be covered and so 6Lo 
working group was formed. At the time of this writing most of the 6Lo specifications have not 
been finalized and are in various stages of drafts. For example, IPV6 over Bluetooth Low 
Energy Mesh Networks, IPv6 over IEEE 485 Master-Slave/Token Passing (MS/TP) networks, 
IPV6 over DECT/ULE, IPV6 over NFC, IPv6 over IEEE 802.11ah, and IPv6 over Wireless Networks 
for Industrial Automation Process Automation (WIA-PA) drafts are being developed to specify 
how to transmit IPv6 datagrams over their respective datalinks, [38]. Two of these 6Lo 
specifications “IPv6 over G.9959” and “IPv6 over Bluetooth Low Energy” have been approved 
as RFC. 

3.3.13 IPv6 over BLE 

[39] provides the specifications for IPv6 over BLE. It reuses most of the 6LowPAN compression 
techniques. However, since the Logical Link Control (LLC) and Adaptation Protocol (L2CAP) 
sublayer in Bluetooth already provides segmentation and reassembly of larger payloads into 
27 byte L2CAP packets, fragmentation features from 6LowPAN standards are not used in this 
protocol. Another significant difference is that BLE does not currently support formation of 
multi-hop networks at the link layer. Instead, a central node acts as a router for the lower-
powered peripheral nodes. 
 
As it might be noticed from the amount of available standard and non-standard protocols, IoT-
solutions are quite fragmented. It is difficult to find an overall solution that is capable of 
covering the requirements of heterogeneous IoT-systems. In particular, most of the available 
solutions are designed to be used with low-power networks, e.g. distributed sensors, with 
strong energy and bandwidth limitation, which might operate over a large range, but are not 
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explicitly thought for industrial applications (IIoT), where sensors, actuators and distributed 
control strategies are used. 

3.4 Device Layer [EZERIS] 

In this section, the components that make up IoT devices - also referred to as “smart things” - 
will be explained.  along with some of the most common protocols within these systems. The 
device layer of an IoT architecture is the foundation from which all other layers are built upon. 
Generally speaking, an IoT system is deployed usually when a network of sensors, actuators, 
or interconnected and independent subsystems are necessary to reach a goal. In this regard, 
the IoT devices that make up this system compose the Device Layer of the infrastructure, and 
is the first point-of-contact between the environment to monitor and the digital system.  

3.4.1 IoT Device 

IoT devices are generally composed of smaller systems which by themselves serve specific 
purposes, such as sensors, actuators, and microcontrollers. However, utilizing these systems 
in tandem make IoT devices very flexible, allowing them to be used in a multitude of domains 
such as home automation, healthcare, automotive, agriculture, smart cities, and many others, 
including the industrial domain. 
A fully-fledged IoT-enabled device is composed of a stack of interconnected hardware and 
software components with the capacity of connecting to the internet and whose main roles 
are to capture and communicate data as well as to physically act upon the environment. In 
order to capture data from the environment, hardware sensors are employed. To perform 
physical actions that modify the environment, actuators are put in place, such as an actuator 
that controls a water valve. In order to connect the hardware components with the software 
components, devices such as microcontrollers (MCU) and system-on-a-chip (SoC) are used. 
These components allow for interfacing with the hardware components via onboard firmware 
and software stored on random-access and read-only memory areas which allows for a fine-
grained control over the hardware components. Generally speaking, the role of the MCUs and 
SoCs are of utmost importance to IoT devices, given that they can also be used to connect to 
other systems by making use of network component stacks to provide access to the internet, 
which is a fundamental requirement of an IoT device. 
Technical Committee ISO/IEC JTC 1/SC 41: Internet of Things and related technologies has 
recently published the ISO/IEC 30141 standard in August of 2018 with the goal of creating a 
reference architecture for IoT systems, which provides, among other things, security 
methodologies, a standardized vocabulary, IoT characteristics and conceptual models to be 
used during the design and implementation stages of said systems. The following conceptual 
model greatly summarizes the high-level components which interact with IoT devices: 
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Figure 33: IoT conceptual model 

Following a top down approach, it can be said that a virtual entity represents a physical entity. 
Physical entities are real world “things” that can be measured or acted upon by other “things” 
or systems. The virtual entity, on the other hand, is the virtual or digitized representation of 
said physical entity within a digital system. Typically, physical entities that participate in an IoT 
system contain identifying tags such as RFID to facilitate the integration of the physical entity 
into the system. These physical entities are monitored by sensors, but depending on the 
sensor, it may also be able to monitor the tag instead and fulfill the same purpose. 
Additionally, actuators perform actions upon the physical entity or its immediate environment 
to affect it in some way. In this conceptual diagram, actuators and sensors are both classified 
as specialized types of IoT devices, however it is important to note that not all sensors and 
actuators fall into this description. For instance, there exist “dumb” sensors which have no 
way of producing information on their own, and do not connect to a network or the internet 
by themselves either, which disqualify them from being considered IoT devices. Finally, the 
IoT gateway is used to connect multiple IoT devices to a Wide Area Network. 

3.4.2 Sensors 

Sensors are devices capable of detecting changes in the environment and measuring physical 
phenomenon, such as temperature or pressure, and are also capable of transmitting the 
acquired data as an electric signal. Efficient sensors should be very sensitive to the physical 
phenomenon they are measuring and should not modify it during the measurement, whilst 
ignoring other physical phenomena. 
Examples of sensors are thermometers, pressure sensors, light sensors, accelerometers, 
gyroscopes, motion sensors, gas sensors and many more.  
A sensor can be described from several properties: 

 Range: The maximum and minimum values of the phenomenon that the sensor can 
measure. 

 Sensitivity: The minimum change of the measured parameter that causes a detectable 
change in output signal. 
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 Resolution: The minimum change in the phenomenon that the sensor can detect. 
Most modern sensors communicate their acquired data by sending electrical impulses which 
can vary in voltage and current. These impulses can then be sent to a microcontroller unit 
(MCU) or system-on-a-chip (SoC) and these systems can convert them into understandable 
values in terms of the magnitude that has been measured. 

3.4.3 Actuators 

Actuators operate in a manner opposite to the behavior of sensors. An actuator takes an 
electrical input and transforms it into a physical phenomenon. While in typical IoT solutions a 
sensor is monitoring data, technicians in a control center or even autonomous systems can 
take decisions using this data and perform actions through actuators. 
Some types of actuators are: 

 Servo Motor: It is a closed-loop servomechanism that uses position feedback to 
control its motion and final position.  

 DC Motor: It converts electrical into mechanical energy. When current is applied, the 
wire loops generate a magnetic field, which reacts against the outside field of the static 
magnets. 

 Stepper Motor: It is a DC motors that moves in discrete steps. 
 Linear actuator: It creates motion in a straight line. They are used in machine tools and 

industrial machinery. 
 Relay: It is an electrically operated switch. Their advantage is that they take a relatively 

small amount of power to operate. 
 Solenoid: It is a specially designed electromagnet used for on-off applications such as 

latching, locking or triggering. They are common in home appliances, office equipment 
and factory automation. 

3.4.4 SOC 

A SoC (System on a Chip) is single physical device with all the necessary components for a 
complete system. SoC components may include analog-to-digital converters, logic control 
circuits, memory modules, and digital, analog or mixed-signal functions. Due to their size and 
low power consumption, SoCs have become very popular in embedded systems. 
In the IoT ecosystem the main responsibility of a SoC is the communication between sensors 
and actuators. A SoC must have different interconnection options to provide connectivity with 
different kind of sensors and actuators. Moreover, SoCs need to understand different 
protocols to send and receive data within systems. 
Generally, the requirements for building IoT devices vary among industries such as agriculture 
or urban planning. In some industrial environments, devices may work in extreme conditions. 
For example, sensors may need to collect data underwater or withstand high temperatures. 
In addition, some devices will require special hardware components. In isolated places, for 
example, devices could require powerful antennas to cover communicating over long 
distances. Consequently, the deployment requirements vary greatly. SoCs are usually 
manufactured on common process platforms in large manufacturing facilities capable of 
producing hundreds of millions of chips per month, which means lower prices. 
The challenge in the design of SoC is that its components are locked into a single 
manufacturing process which adds difficulties to upgrade or switch out components 
individually. 



, D3.1, VERSION 1.0, 2019-02-06 

 

 - 48 - 

3.4.5 Smart Things 

A smart thing is a real-world object (products, assets, devices, machinery, etc.) with enhanced 
interaction with its environment. Smart things have enhanced connectivity capacities, which 
allow them to exchange data with other smart things and external systems. Moreover, they 
allow objects to exist outside of its physical device and boundaries, in terms of virtual entities 
represented in digital systems. The data collected from these products can be then analyzed 
to aid in decision-making, enable operational efficiencies and continuously improve the 
performance of the product or other processes. 
Some examples of Smart things are smart cars, smart meters, connected home appliances, 
interconnected pumps and valves, street lighting, and wearables. 
Some characteristics of smart things are: 

 Awareness: Smart things should be aware of their environment and be capable of 
sensing, reacting and interpreting events which occur in the real world.  

 Connectivity: Smart things need to provide connectivity to its environment, other 
smart things and possibly external systems. This connectivity can be wired, wireless or 
both. 

 Autonomy: Smart things should operate autonomously, to some extent.  
 Reconfiguration: Smart things should be configurable in order to adapt to requirement 

changes. 
 Auto-management: Smart things should have, to some extent, autonomy to manage 

local resources such as energy or data storage. 

3.4.6 Communication interfaces for sensors and actuators 

In this subsection, some of the available low-end communication protocols, such as I2C, are 
discussed. 
In order to interlink IIoT devices to allow for the exchange of information and commands, they 
must share a common communication protocol. The low-end communication protocols allow 
the communication between different physical devices through microcontrollers. A 
microcontroller is a self-contained system, usually composed of different integrated circuits 
(IC) which make up several attached components such as a Processing Unit and different types 
of memory (RAM and ROM), with the capacity of interfacing with devices and other hardware 
components such as LCD displays, relays, switches and sensors via the use of GPIO (general 
purpose input/output) pins, other specialized connection pins used for digital or analog 
communication, and different data interfaces. 
Some microcontroller systems are more sophisticated, while others have minimal 
requirements. Due to the heterogeneous nature of the devices and their different use cases, 
there is a large amount of different types of microcontroller interfaces available. Figure 34 
shows the taxonomy of a subset of different microcontroller interfaces. 
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Figure 34: Taxonomy of microcontroller interfaces 

These protocols can be classified into two main categories: (i) digital, and (ii) analog. On the 
one hand, digital microcontroller interfaces handle digital signals which are typically discrete 
in nature. One the other hand, analog interfaces handle analog signals, or continuous signals 
that are directly interpreted from voltage or current measurements.  
Information between devices is transmitted through electric signals. Analog and digital signals 
are used to transmit information. In analog signals, data is translated into electric pulses of 
varying amplitude. Although an analog signal can only represent data within a range, there 
are an infinite number of possible values within. In digital signals, on the other hand, data is 
translated is into a discrete binary format (zero or one) where each bit is representative of 
two distinct amplitudes. This indicates that digital signals only have a finite set of possible 
values.  
If we represent both digital and analog signals in a graph where time is plotted on the 
horizontal axis, an analog signal will take the form of smooth and continuous waves, whereas 
a digital signal would take the form of square waves. 

 
Figure 35: Digital and analog signal waves 

Both types of signals have advantages and disadvantages. Digital signals, for example, can be 
immune to noise and are very well suited to translating digital information; nevertheless, they 
are limited to a finite range of discrete values they can represent, which can result in a loss of 
quality with respect to the signal source. On the other hand, analog signals are low cost, easily 
portable and are not limited to discrete values; however, they require more power and they 
are prone to noise, which is an important factor in industrial environments. 
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IIoT solutions need to deal with both analog and digital signals, inputs and outputs. Most 
microcontrollers can deal both with digital and analog signals with the use of analog-to-digital 
converters (ADC), which are used to transform an analog electric signal into a digital one. 

3.4.7 Digital Interfaces 

The digital interfaces can be separated into two main categories: parallel and serial. Whereas 
parallel interfaces transfer multiple streams of data at the same time across multiple wires, 
serial interfaces stream data, one single bit at a time in one wire. Parallel communication is 
fast, straightforward, and easy to implement but it requires many more input/output (I/O) 
lines resulting in additional cost. Serial communication sacrifices potential speed for a lower 
amount of utilized interfaces and resources on the microcontroller board. Additionally, there 
is also a specialized digital interface which is used to transmit single binary values, referred to 
as an On/Off interface. 

3.4.7.1 Binary (On/Off) 

The binary on/off interface is a simple digital interface which can control devices such as 
buttons or switches that may have two excluding states.  
These kind of interfaces are simple, low-cost, fast and produce low programming overhead, 
which makes them a suitable decision for some scenarios. However, they lack functionality in 
situations when only two states are insufficient. In addition, this interface is only capable of 
managing one device and usually at a short distance. 

3.4.7.2 Parallel 

Parallel interfaces can send data between several electrical connections simultaneously. 
Parallel communication is usually established through the use of multiple digital input/output 
pins on a microcontroller, which can be quite costly on available resources and may impose a 
serious problem depending on the specific case. The advantage of parallel communication 
channels is that they are able to transmit several bits in one clock transition of the 
microcontroller’s CPU, effectively increasing the data throughput. Some peripherals require 
data transmission to be done in parallel, such as certain LCD displays. 

3.4.7.3 Serial 

There are several serial protocols nowadays. Each of them can be mainly classified into (i) 
synchronous or (ii) asynchronous. On the one hand, synchronous serial interfaces include a 
clock signal in the transmission, so all plugged devices share a common clock. This makes a 
robust serial transfer but it also requires an extra wire. SPI and I2C are examples of serial 
synchronous protocols. On the other hand, asynchronous serial protocols transfer data 
without an external clock signal minimizing the required wires and I/O pins. However, it 
requires extra effort to enable reliable transmission of data.  
Serial protocols are easiest to implement because they require low pin counts in contrast with 
parallel buses which may require, for instance, eight or more. Another benefit is that serial 
protocols allow implementing large tasks with several inexpensive smaller processors. Serial 
interfaces allow processors to communicate without the need of shared memory and 
semaphores, and the problems they can create. 
Serial interfaces are used to provide standardized logic levels between transmitters and 
receivers, they define the transmission medium and connectors, and specify timing and data 
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rates. In addition, serial interfaces can perform serial-to-parallel and parallel-to-serial 
conversion. 

3.4.7.3.1 Synchronous 

Synchronous protocols require that the participants in the exchange of data use a clock signal 
to transmit data at the same rate. Synchronous protocols support high data transfer rate but 
they need a special line for the clock signal. These types of protocols usually require a 
master/slave configuration, where it is the responsibility of the master device to provide the 
clock signal to all the receivers or slave devices. 

3.4.7.3.1.1 I2C 

The Inter Integrated Circuit (I2C) is a de-facto world standard protocol used for communication 
between different components. The implementation of this protocol does not require any 
licensing fees since 2006. 
The I2C bus is developed using a simple bidirectional 2-wire bus. All the devices compatible 
with this protocol incorporate an on-chip interface which allows them to communicate 
directly with each other via the I2C bus. This fact solves issues between the interfaces when 
designing digital control circuits. 
Each device can operate as a transmitter (such as LCD driver), receiver or, in some cases, both 
(such as a memory). 
 

Term Description 

Transmitter Device which sends data 

Receiver Device which receives data 

Master Device which initiates a transfer, generates clock signals and 
terminates a transfer 

Slave Device addressed by a master 

Multi-master There are cases where more than one master can attempt to control 
the bus at the same time. An arbitration mechanism ensures that, if 
more than one master simultaneously tries to control the bus, only one 
is allowed to do so and the winning message is not corrupted 

Synchronization Procedure to synchronize the clock signals of two or more devices 

Figure 36: I2C communication concepts 

The I2C protocol allows the master devices to communicate using a 7-bit or 10-bit address. 
Each device has a global and specific address that is assigned to the manufacturer of the 
device. 

3.4.7.3.1.2 SPI 

Serial Peripheral Interface (SPI) is a de-facto standard for synchronous communications used 
to send data between microcontrollers. It uses separate clock and data lines.  
SPI is "full duplex" which means it has separate send and receive lines, so, it is possible to 
transmit and receive data at the same time. 
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The clock line is responsible in keeping communication synchronized. Given this, the 
frequency of the clock line also sets the maximum speed at which interconnected devices may 
send data. 
 

 
Figure 37: Diagram of data communication synchronized by a clock line 

3.4.7.3.2 Asynchronous 

Asynchronous serial protocols require mechanisms to ensure robust and error-free data 
transfers. These mechanisms include the use of synchronization bits, a baud rate or parity bits. 
These protocols are highly configurable but requires that that devices on a serial bus are 
configured to use the exact same configuration. 

3.4.7.3.2.1 One-Wire 

One-Wire is a device communications bus system designed that provides low-speed data and 
power over a single conductor. Its common use-case is for establishing communications across 
small and inexpensive sensors. 

3.4.8 Analog Interfaces 

Microcontrollers also typically have analog interfaces which can be used to establish 
communication with sensors or other devices that generate analog signals, which, as stated 
earlier, are continuous signals. This is a very common way of establishing communications, 
since a lot of the more used sensor types are designed in such a way that they communicate 
their measured value in terms of analog voltage or current. However, this analog signal won’t 
do much by itself, and first needs to be filtered through an ADC, or analog-to-digital converter. 
These components convert the analog signal into a digital value and depending on the amount 
of bits that the ADC can handle, it will have either a higher or lower precision. 
Data from sensors can also be sent using voltage or current as drivers, and this will very much 
depend on the application. If sending data over large distances via a wire, it is most common 
to use a current-emitting sensor. This is because the resistance of the long wire will not impact 
the amount of current that is received from the other end of the wire. A voltage, on the other 
hand, will drop over large distances and information may be lost through the transportation 
medium. 
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4 Data Management in IoT-systems [EZERIS] 
Data management in IoT system is a challenging task due to (i) high velocity sampling rates 
required for some monitoring actions, (ii) data diversity, meaning data may vary from one 
domain to another, and (iii) massive volume could require certain activities such as monitoring 
in real time or maintaining a historical data archive. These characteristics results in the non-
trivial task of deciding which storage systems are better suited to manage IoT data with minor 
caveats. 
In section 4.1 different natures of data generated from sensors are presented. In section 4.2, 
an analysis is made comparing relational and non-relational database storage systems aimed 
at IoT systems, and in section 4.3, different strategies and mechanisms to support efficient 
data access are examined according to the different types of data that have been identified. 

4.1 Sensor data 

Sensors and actuators can communicate among themselves and interact with the 
environment. While physical entities sense, act and react to the real-world, they create data. 
It is possible to discern between two types of data, according to their nature. On the one hand, 
there exist sensors that monitor real-world events by performing periodic observations. This 
continuous monitoring usually requires large amounts of data storage, especially if the 
sampling rates are small. On the other hand, some sensors can react to external stimuli, and 
thus can be programmed to sample data when a specific event occurs. These kind of situations 
usually requires fast responses instead of large storage capabilities. 
As the need for more scalable systems arises, storage solutions have seen a shift from 
relational storage systems to non-relational storage systems. Relational storage systems are 
based on a schema and relies on the structured query language (SQL) for defining and 
manipulating data. Relational storage systems are powerful because they are versatile and 
reliable; however, they can be restrictive because they rely on predefined schemas to 
determine the structure of the data. On the other hand, non-relational databases have 
reached great popularity because they can be better adapted in situations where data schema 
varies from one domain to another or even when the schema is not well-known. This is usually 
the case in IoT systems that deploy several different types of sensors or even sensor modules 
that can measure different phenomena at once.  

4.2 Non-relational data storage  

Non-relational data storage systems provide dynamic schemas for unstructured data. As data 
is stored in many ways, it is easier to store data without structure (each document could have 
its own structure) and generally, data is more scalable. As IIoT devices may generate large and 
heterogeneous amount of data, scalable schemas are more suitable for industrial and sensor 
environments. 
In general, non-relational data storage presents the following benefits for IIoT: 

 Flexible Data Model: Flexible data model, such as documents, graphs, key-value pairs 
make it easier to combine data of any structure because they allow dynamic 
modification of the schema without an impact on performance. 

 Scalability and Performance: NoSQL can easily partition its datasets, allowing to scale 
out on commodity hardware deployed on premise or in the cloud. 
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 Always-On Global Deployments: NoSQL systems are designed to run across many 
nodes, including replication to automatically synchronize data across servers, racks, 
and data centers. 

4.3 Data access 

The following sections describe different storage-solutions that can be implemented in non-
relational databases. Different storage solutions are better fitted to different tasks, and a brief 
analysis is presented after these descriptions to showcase some specific scenarios where 
some storage solutions are better fits for different-natured sensor data.  

4.3.1 Document data store 

A document data store manages a set of named string fields and object data values in an entity 
referred to as a document. These data stores typically store data in the form of JSON 
(JavaScript Object Notation) documents. Each field value could be a scalar item, such as a 
number, or a compound element, such as a list or a parent-child collection.  

4.3.2 Column-family 

A column-family data store organizes data as a table, using columns and rows. This storage 
alternative is conceptually similar to relational databases. However, in this structure columns 
are divided into groups known as column families. Each column family holds a set of columns 
that are logically related that are typically retrieved or manipulated as a unit.  

4.3.3 Key/value 

The key is used to index the data by using a hashing function, responsible to provide an even 
distribution of hashed keys across the data storage. This organization method supports 
queries for selecting, inserting, and delete items. To update a element, the system may 
overwrite the existing data. Other relevant fact is that reading or writing are atomic 
operations, which can indicate that, if the value is large, this operation may take some time. 

 
Figure 38: Key/value store 

This schema is not suitable for scenarios where it is needed to query by non-key values. 
Although it is typical in relational databases for filtering using a WHERE clause, in non-
relational databases searching an element by a non-key could require a slow scan of all values. 

4.3.4 Graph data 

In a graph data structure there are two types of information: nodes and edges. While nodes 
represent entities, edges represent the relationship between them. Both nodes and edges can 
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have properties that provide extra information. Edges can also have a direction indicating the 
nature of the relationship. Graphical structures allow to perform queries that traverse the 
structure and analyze the relationships between entities.  
An example of a query in graph database could be "find all sensors which report directly or 
indirectly to the central server". Many graph databases provide a query language that can be 
used to traverse a network of relationships more efficiently. 

4.3.5 Time-series 

Time-series data storage allows to efficiently store data by time intervals. This organization 
method supports a very high number of writes, as they typically collect large amounts of data 
in real time from a large number of sources and they are very suitable in IoT scenarios where 
updates and deletes are rare. 
Due to the nature of IoT platforms and the high sampling rate of sensors, a time-series 
database can grow rapidly. In addition, time-series systems can handle data that arrive out of 
order and data which arrive late comparative to their origin timestamp, as well as automatic 
indexing of data points and optimizations for queries described in terms of windows of time. 
This last feature enables queries to run across millions of data points and multiple data 
streams quickly, in order to support time series visualizations, which is a common way how 
time series data are consumed. 

4.3.6 Object data 

Object data stores are suited for the management of binary objects or blobs containing media-
data such as images, text files, streaming content. Object are hashed by a unique ID. In 
addition, they can include metadata. This type of storage system is designed for supporting 
large files, therefore it provides large amounts of total storage to manage all files. 

4.3.7 External index 

External index data allows to combine different data types and it is suitable for indexing 
massive volumes of data. An example use case consists in the combination of file finding and 
searching within its data. Finding a specific file could be fast, but searching based on the 
contents of the file would require a scan of all of the files, which is slow. An external index 
allows for the creation of secondary search indices and then quickly find the path to the files 
that match some specified criteria. Another example application of an external index is with 
key/value stores that only index by the key. A secondary index can be constructed based on 
the values in the data, and quickly look up the key that uniquely identifies each matched item. 

4.4 Application in IoT systems 

Taking into account the previously described data storage solutions and access methods, 
specific IoT system scenarios can be directly mapped to one of these storage solutions to 
optimize the overall efficiency of the system. For instance, in a situation where multiple 
sensors are being sampled repeatedly throughout an indefinite amount of time, for example 
in a situation where the parameters of an object, location, process, system, or phenomenon 
are being monitored, and the data is kept as a historical dataset and there is no intention of 
updating or deleting any records, a time-series storage is an optimal solution. This decision 
will also support the visualization of said data further down the data value chain. In the case 
of having a diverse variety of sensor types, or modules composed of different sensors that 
sample their environment in response to a specific event or trigger, a document store best 
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suits the task. This is because it is generally difficult to structure a general schema to which all 
sensor types and devices must adapt. Rather, an unstructured object may be stored in JSON 
format which allows for a much more flexible way of storing the data obtained from the sensor 
ecosystem. 

5 Security Aspects of (I)IoT-platforms [NXP] 

5.1 Introduction 

Sensors, actuators, processors, networks and radios are key elements in building smart 
connected devices. These devices in turn enable real time sensing and contextual 
understanding, active modification and manipulation of the environment, and communicate 
with one another and humans. 
In diverse fields from industry, to medicine, to transport, to smart cities and home 
automation, user interactions will change drastically and smart devices and services will 
become integral parts of daily lives. This new world of connectivity however brings with it 
openness to potentially millions of attackers. As society becomes more and more dependent 
on these systems, it becomes more vulnerable to malfunctions.  
Smart factories will face similar challenges. Production sites, workshop floors, business 
procedures, designs, construction processes, and many of the products themselves will be 
“smart and connected”. Sensors and extensive networks of computers, mostly as small 
computational components in industrial networks, will become mainstream for every step of 
the industrial production process. This in turn will allow connecting production to logistics, 
customers to products on the shop floor, and robots and workers to each other. 
This chapter gives s generic overview on background, security concepts and principles for IIoT 
Solutions that will be considered when defining a security concept for the OPTIMUM platform 
to be created in this project. The OTIMUM specific security solution will be described in detail 
in deliverable D4.2 in scope of the work package WP4 / Task T4.2. 

5.2 Use Cases, Resulting Security Requirements & IIoT Characteristics 

5.2.1 What are typical IoT use cases? 

Three are many areas for the IoT application solutions. Examples are: 
 Smart Home,  
 Car2X for autonomous driving 
 Banking 
 Healthcare 
 … and many more 

Nowadays using the IoT platform in Industrial area becomes more and more important. The 
corresponding domain is called Industrial Internet of Things (IIoT).  
A typical example of it is the so-called Industry 4.0: 
It is applied to run and maintain flexible, efficient state-of-the-art production facilities, up-to-
date and complete data about the status and properties of individual machines and 
components is essential. Data is not only required on the shop-floor but must also be 
provided, on a need-to- know basis, to other relevant parties. This will enable suppliers to 
adapt dynamically to changes in demand and production as well as enabling maintenance 
service providers for predictive maintenance activities. All this will happen autonomously with 
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no, or minimal, human interaction. In the predictive maintenance use case, data from sensors 
may be collected from all of a company’s machines via the cloud for analysis to determine 
exactly the right time for exchanging parts or performing maintenance, to prevent costly, and 
unnecessary downtime. 
Further, it will optimize the service intervals and related costs. 
Access to the Operational Technology (OT) for (external) service providers is mandating the 
requirement to secure production against manipulation, assembly line stops and IP theft. 

5.2.2 What security related requirements result from these use cases? 

The new and also the already existing solutions need to be adapted based on the answers to 
a set of specific questions: 

 What attacks are relevant?  
 What are the protection requirements? 
 What is the impact of a successful attack against one node?  

…and so on. For example, remote logical attacks to company routers are relevant and likely, 
while a local attack targeting the secret key of a single router within the company is less likely. 
There will also be differences in the strength of the required security measures – the 
manipulation of a complex machine has a more severe impact on related costs and human 
safety, compared to a home HVAC device, unless it is used to attack the power grid. 
In the end, there is no one solution that fits all purposes, rather a set of options is presented 
to select from for protecting various assets. Too many security measures will lead to an 
uncompetitive solution, while insufficient measures may mean significant risk to the business, 
safety or reliability of a process. 
A system view is important when considering assets. The IIoT node itself might not be of high 
value to an attacker, but its computing & networking capability is of interest for integrating it 
into a botnet. The networking capability of IIoT nodes may enable scalable remote attacks, 
which can lead to a huge impact even if the impact on the single device is minimal. 

5.2.3 What are the general characteristics of IIoT systems? 

Many IIoT systems are highly autonomous. They act on their own and generate data during 
their operation, possibly without their owner even being aware. This autonomous operation 
opens IIoT systems to additional attack vectors. IIoT systems are also quite heterogeneous in 
terms of their intended use, their technical architecture, and their connectivity. 
Further, the number of devices deployed and the amount of data being generated are 
expanding exponentially. Furthermore, the ability to remotely monitor, maintain and upgrade 
the millions of deployed IIoT devices in the long-term is a challenge. The IIoT nodes might be 
in difficult to access locations or even have no continuous connection to their host devices.  
IIoT devices need fast, secure over-the-air firmware and software updates, and measures to 
enable decommissioning at the end of their lifetimes. Vulnerabilities must be patchable within 
an appropriate amount of time. 
Another degree of complexity arises from the required interoperability of devices from 
different vendors, without compromising security. 
Finally, some IIoT devices will have a lifetime of 20 years or more. It is not likely that all IIoT 
devices will be supported, updated or patched for the complete lifetime in a cost-effective 
manner. These long lifetimes will present new security challenges that were not known at the 
time of production. Here, precautions should be considered and defined in the design stage. 
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5.3 Background, Security Concepts and Principles for IIoT Solutions 

5.3.1 Why are IIoT systems attacked? 

IIoT system are attacked for one of the following purposes: 
 IP theft from (part of) a system 

For example, companies taking software from a device and using it to create 
counterfeit devices. 

 Intentional damage 
Examples include causing cars to crash, opening lock gates on waterways to cause 
deliberate flooding or sending too much traffic to a system to overwhelm it (DDoS 
attack). 

 Reputation and notoriety 
For example, security researchers trying to demonstrate their expertise by exposing 
vulnerabilities in a system. A more institutionalized purpose is academic honors: 
security researchers in universities need to demonstrate successful attacks to advance 
their careers. Similar motivations hold for security research companies. 

5.3.2 When Do Attacks Happen? 

A product can be attacked at any point in its lifecycle: 
1. Production of devices and the components used in them 
2. In the logistics chain 
3. During installation 
4. During use 
5. After end of life (information or key extraction from a discarded device) 

5.3.3 Types of Attacks 

Attacks can be categorized as either remote or local. 
 Remote attacks can be carried out by sending commands over a network connection. 

The attacker does not need to be physically near the device under attack. Due to their 
scalability, these attacks are the most dangerous: with one PC, an attacker has the 
potential to attack millions of devices. Although the development of an attack may 
require significant expertise, carrying it out can be automated and executed by 
unsophisticated adversaries on a huge scale. In fact, there are black markets where 
such attacks are sold and some even include help desks in case the attacker who 
purchased the script has a problem deploying it!  
These are the attacks that are most often reported in the press and that most people 
have in mind when talking about attacks. 

 Local attacks require physical access to the device meaning they are much less scalable 
and the attacker normally needs to be more skilled. However, it is possible that 
through a local attack the entire code of a product can be obtained. Analyzing that 
code may lead to the discovery of vulnerabilities which may be applied to similar 
devices through remote attacks. 

Another way of categorizing attacks is to group them into physical or logical.  
 Physical attacks exploit vulnerabilities in a device either through direct manipulation 
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or by observing its operation.  
 Logical attacks only rely on messages sent to the device to cause damage. 

 
The above categorizations have overlaps.  
Analogously, while most local attacks are physical, some local attacks are logical. An example 
of a local logical attack is sending messages over an interface that is not available remotely, 
such as a debug interface. 

5.3.4 Levels of Protection 

The set of attacks to protect against shall be a balance between complexity and impact. 
Compare it to securing your house. It does not make sense to have a very strong lock on the 
front door while leaving the backdoor open. Also, if you have many valuables in your home 
that are attractive for thieves, you will want stronger safety measures than if you only have 
shabby second-hand furniture. 

5.3.5 Confidentiality, Integrity, Authenticity and Availability 

When considering security, it is important to understand the difference between 
confidentiality and integrity. 
The objective of confidentiality is to ensure that only authorized entities can read information 
while people who are not authorized cannot. For example, an encrypted email may only be 
read by the targeted recipients who have the correct keys. 
The objective of integrity is to protect information against unauthorized modification. A 
related concept is authenticity where it is not only clear that data has not been modified, it is 
also clear where the data originates from. For example, sending an email that is 
cryptographically signed will allow the recipient to determine whether the message was 
altered between sender and recipient and confirm the identity of the sender. 
While similar cryptographic means are used, it is important to recognize that confidentiality, 
integrity and authenticity are different. Encrypting a message will prevent unauthorized 
people from seeing the contents, but an adversary can change a part of the encrypted 
message and it will still decrypt. In general, the result will be nonsense, but it may also yield a 
legitimate looking message with different contents to the original. The error may not be 
detected, especially if it is used in machine to machine communication where only a few bytes 
are used to make a decision. 
A common way to guarantee the integrity of data is to calculate a cryptographic hash, 
normally just referred to as hash, over the data for which the integrity needs to be protected. 
A hash is a function to condense the data to be protected into a fixed, small number of bytes 
(the hash) in a way that it is not possible to construct another set of data that delivers the 
same hash without trying all possible datasets. This is much more complex than other types 
of checksums, such as those used to protect data from unintended corruption, for example, 
during transmission over an unreliable channel. 
Another form of integrity is control flow integrity. The integrity of all data and code may be 
perfectly intact, but certain attacks may cause the flow of the software execution to be 
changed in a way that compromises the integrity of the device. The term run time protection 
refers to maintaining control flow integrity. 
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In some cases, confidentiality is essential to maintain integrity. For example, if the 
confidentiality of passwords is not maintained it may lead to adversaries gaining access to a 
system, enabling them to compromise its integrity. 
Confidentiality and integrity are often mentioned together along with availability creating the 
abbreviation CIA. Availability is highly important especially for IIoT. It definitely is an issue to 
consider at the end to end system level, for example to ensure that an adversary is not 
deliberately overloading a system so that real messages cannot be processed or to jam a 
communication channel such that a device cannot send an important message. 

5.3.6 Symmetric and Asymmetric Cryptography 

Cryptography is used to protect the confidentiality and integrity of data. 

There are two main classes of cryptography: 

 Symmetric cryptography 

The same (secret) key is used for encryption and decryption. 
For integrity protection, the key is used to calculate a Message Authentication Code, 
or MAC, over the data, for example a message, which is then sent along with the data. 
When checking that the integrity of the data has not been compromised, the same key 
is used to recalculate the MAC, which is compared to the MAC sent with the message. 

 Asymmetric cryptography 

Two keys are used: a private key and a public key. When something is encrypted using 
the public key, the private key is needed for decryption. 
For integrity protection, data can be signed with the private key and then verified by 
using the public key. 

The advantage of symmetric cryptography is that it can be done very quickly on large amounts 
of data. Asymmetric cryptography is much slower and cannot be applied efficiently to large 
amounts of data but it has the advantage that key management is easier. 
As the name suggests, the confidentiality of a public key is not important since it will only be 
used to encrypt or to verify. However, integrity of the public key is quite important. If an 
adversary can change a public key that someone is using to send messages, the adversary will 
be able to decrypt them, since he has obviously the private key that belongs to the public key 
he inserted. 

5.3.7 Signing 

In asymmetric cryptography, if a user is given a unique private key which they can use to sign 
data, other people can check the authenticity of the signature by using that user’s public key. 
Although integrity protection is also possible with symmetric crypto by using a MAC as 
explained above, it is not possible to use it for signing, because both the creator of the MAC 
and the verifier need to have the key, so it is not possible to relate a MAC to one individual. It 
is impossible to tell from the MAC whether it was created by the sender or the receiver since 
they both have the key. 

5.3.8 Certificates 

A certificate consists of a public key and other data, such as the name of the person and the 
certificate expiration date, and is signed using the private key of the person or body that issued 
the certificate. 
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The user of the certificate will in some way have obtained the public key of the issuer.  The 
main methods are by configuring it during production, or by obtaining it from another 
certificate. Of course, the validity of that certificate must be checked before using it. This way, 
a complete certificate tree can be built, but at the root of the tree, there is always a certificate 
that must be trusted on its face value. 

5.3.9 Protecting keys versus protecting usage of keys 

The confidentiality and integrity of cryptographic keys are at the heart of the security of any 
IIoT system. If keys are disclosed, the confidentiality and integrity of the system and devices 
are at stake. However, if the usage of these keys is not well protected, the security of the 
system is still at risk. 
Consider a case where a key is well protected in a Secure Element (SE) that is in turn connected 
to a Micro Processing Unit (MPU). If malware can be loaded into the MPU that allows it to 
make use of the key in the SE, the system is still compromised since the malware can encrypt, 
decrypt and sign using the keys. The security of the specific device is compromised to the same 
extent as if the key itself had been exposed, although the key cannot be cloned into other 
devices. If this is an attack that can be done remotely, then the attack is scalable and even 
more powerful. 
As with blacklists and whitelists, an authority governing and monitoring the overall system 
could take the necessary action. If no central authority exists, then stronger local protection 
may be necessary. 

5.3.10 Protection against counterfeiting, including cloning 

Copycat behavior is not new or unique to IIoT. Manufacturing companies can attempt to 
reverse engineer PCBs and produce copies, adding software they have extracted from an 
original device before selling their own counterfeit version. 
We make a distinction between counterfeiting and a specific form of it, namely cloning. With 
cloning, a complete copy of the original device is created including all software and key 
material. In the more general concept of counterfeiting, a device with similar functionality is 
created, potentially starting from the same hardware design and the same software, but not 
copying the keys and possibly other data. 
Counterfeiting can happen at the level of the complete IIoT device, or at the level of 
components. 
Not only is the brand owner of the original device missing out on revenue, but they may also 
have to provide the back-end services for those counterfeit devices. In addition, there may be 
issues with the quality of the counterfeit, but the customer is not able to identify it as a 
counterfeit. There are incidents where companies have had to replace defective counterfeit 
devices by original devices under warranty. 

5.3.11 Protection against IP theft 

The software on IIoT devices is often highly valuable and will have taken considerable 
resources to develop. Copycat manufacturers may not just steal the entire software for use 
on cloned devices, they may steal parts of it which they modify or reuse in their own products. 
The proposed NXP IIoT Hub has mechanisms to protect against IP theft as well. See Section 
4.9 for further information. 
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5.3.12 End of life and decommissioning 

In the IIoT market, the lifetime of a device may be significantly longer than assumed at its 
introduction to the market. That’s especially true for IIoT devices 20y+ systems and devices. 
There is generally no managed end of life process for IIoT devices, unlike passports or banking 
cards that are actively terminated after a certain time. 
What should be done with an expensive tractor that is mechanically fine, but for which there 
is no software update available anymore to defeat a new attack? This scenario may happen 
for a variety of reasons such as a vendor having gone out of business or the device running 
out of memory. 
A more familiar example is WiFi keys stored in routers. After a router has broken or been 
discarded it may still be feasible to extract the key. If the key is not sufficiently protected after 
end of life, the network would be vulnerable to unauthorized use. 
A general recommendation could be that users need to decommission their devices before 
taking them out of service. However, it is highly unlikely that everyone will do so and it may 
not even be possible if the device is broken. 
Currently there is not much interest in this type of problem, but it will undoubtedly arise in 
future. There are already indications of increased awareness with a proposed bill in the United 
States which stipulate that a vendor selling to the US government must specify for how long a 
device will be supported, among other requirements. 

 

5.4 Principles for IIoT Solutions 

5.4.1 What attacks should be protected against? 

It will not be possible to protect against every attack. Apart from the fact that many potential 
attacks will be unknown when a device is launched into the market, protection against certain 
attacks is too costly to implement without there being a realistic threat. 
The picture below summarizes which attacks to protect against and the relative priorities. 
However, a trade-off should always be made between the risks and cost of protection. 

 
Figure 39: Protection to be provided for different classes of attack 

If an attacker can get local 
access to the device, make a 

cost/benefit trade-off and 
protect against relevant local 

physical attacks over the 
lifetime of the device

If an attacker can get local 
access to the device, aim to 
protect against local logical 

attacks. Reason: can be 
automated and executed by 

laymen

Aim to protect against remote attacks
Reason: scalable attacks can be automated and executed by 

laymen from anywhere in the world

Physical Logical

Local

Remote
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IIoT devices will normally be connected to the internet, but this is not guaranteed and does 
not mean that they will always have an open and direct connection to the cloud as they could 
connect through edge nodes or have only an intermittent connection. However, in many cases 
an attacker can reach a device when he can access the right part of the network. 
 
Since even very complicated attacks can be automated it is necessary to provide defense 
against remote attacks in most cases. 
 
Resistance to local attacks is a different matter though: 

 If a local attack only causes loss or damage to the device-owner-turned-adversary and 
there is no damage to the rest of the system, there may be no need for protection. 

 Consider a WiFi router in a private residence. It is likely that with a local attack the WiFi 
key can be extracted. However, there is no benefit to the owner as he chooses the key in 
the first place. If the router is stolen and keys are obtained from it by another adversary, 
its obvious nature will prompt the owner to change the WiFi keys in all devices previously 
connected to the router, creating a simple countermeasure. 

 If a local attack on an IIoT device can have a wider impact than described above, defense 
against local attacks needs to be considered. Conceptually, one only needs to defend 
against those attacks where the cost of the attack is lower than the anticipated gain. 
Applying this principle in practice is not as simple as it may seem: 
 The developer of IIoT device will generally not know where the IC will be used and 

the potential benefit of an attack 
 Even if the developer knows where the IIoT device is to be used, the most appropriate 

security will also depend heavily on the system level architecture 
 Some attacks will get easier and less costly over time 
 It is not always easy to quantify the gain for an attacker. For example, influencing an 

election or someone with a terrorist motive 
 
Note that local attacks can also take place without the knowledge of the person who enables 
the actual attack. For example, when inadvertently connecting malware infected smartphones 
or USB sticks. 

5.4.2 General Assets to Protect 

These are some general assets to consider protecting: 
• Data Integrity and authenticity 

Although there may be ways to tolerate corrupted information in a system, in general, 
protection of data integrity and authenticity is needed. 

• Control flow integrity and run time protection 
If control flow integrity is compromised, the processing cycles of an IIoT device can be 
used for other purposes, such as becoming part of a botnet. 

• Confidentiality when needed (often the case) 
For example, user data is normally to be treated confidentially, however the 
confidentiality of sensor readings in a factory may be of no particular concern. 

• Availability when needed 
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For example, in a production line the unavailability of a device can have a big impact, 
whereas a non-functioning internet connected baby doll for a day or so is not 
catastrophic. 

• Control over the device 
While defense against certain attacks may not be applicable, always consider 
protecting against local physical attacks that may give control over the device.  

• Privacy when applicable 
For example, data that can be used to get personal information about people needs to 
be protected against misuse, whereas privacy is not generally an issue for sensors in a 
factory. 

5.4.3 Recommendations for creating secure IIoT systems 

NXP formulated a set of recommendations to be considered for IIoT security: 
• Strive to use isolation whenever possible 

Isolate keys, crypto and essential functions by putting them on different cores and 
different memory 

• Keep implementations as simple as possible 
• Make sure the device can be updated remotely 

o Plan for capabilities (e.g. memory, crypto, processing) that will be sufficient 
during the foreseen lifetime of the device 

o Enforce rollback protection and do not allow factory resets, which may cause 
security patches to be bypassed 

• Apply key diversification 
o Do not use the same private or symmetric key in more than one device or use 

the same key for more than a single purpose 
• Devices that have limited capabilities should protect themselves by refusing any 

incoming connections. They should connect only to authenticated, and thus trusted, 
hosts or gateways that are capable of properly protecting themselves 

o Some devices may have such a limited set of capabilities that not all desired 
countermeasures can be implemented. In that case they should not accept any 
incoming network connection, but rather poll the server or gateway on their 
own initiative. This will reduce the attack surface for remote attacks. Note: This 
does of course assume that such devices will have enough capabilities to set up 
a secure connection to the server or gateway. 

• Do not store any passwords or keys in the software 
o Software can be extracted, if not by a remote attack then by local attacks. 

Passwords in software will generally not be diversified, meaning that attacking 
one device can allow an attacker to compromise devices of the same type, 
often via a scalable remote attack 

• Disable debug mode for production devices. This should be done before they leave the 
factory at the very latest. 

• Take care of privacy, when applicable. When there is a privacy aspect, make sure it is 
taken care of. 

5.4.4 Recommendation when deploying IIoT devices or IIoT systems 

For those who deploy IIoT devices or IIoT systems, consider the following recommendations: 
• Know what to deal with 
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Because it is difficult even for experts to know what security level a device offers, 
demand that product has been certified. 

• Demand a security software update service 
This is essential for new versions of software to be downloaded. Vendors must be 
explicit about how long their customers can count on getting such software updates. 
Demand that this is stated in the contract. 

• Manage end of life 
Decide what to do at the end of the security update service period, if a vendor goes 
out of business or if updates go beyond the hardware capabilities of the device, for 
example if there is insufficient memory available. Either stop using the device or take 
extra protection steps such as placing the device behind extra firewalls to prevent 
remote attacks and limiting physical access to the device to protect against local 
attacks or retrieve information periodically and delete some memory.  

• Remove secrets at end of life 
When taking the device out of operation, make sure that any secret on the device is 
securely erased before releasing control of it. In some cases, nothing else is needed 
other than simply decommissioning the device in the server. In other cases, secrets 
may have to be actively removed or, if a device is broken so that nothing can be erased, 
it may need to be physically destroyed. 

5.5 Common Architectural Elements in IIoT Solutions 

5.5.1 Security by Design 

Security by design is the key to enabling smooth integration of security features into IIoT 
devices. Integrating security into an existing product very often leads to unwanted overheads 
and security issues which cannot be avoided at later stages of the implementation. Security 
by design leads to a sound security concept, including a balanced split of security between 
hardware and software while still considering costs and performance. Doing so is not pure 
technical ability or a process, it is more a mindset to consider security during all design 
decisions in the development and lifecycle of a product. In businesses like banking or ID this 
mindset is already well established. In new business areas like IIoT there is a lack of the 
required security mindset, because there is a low demand from customers and regulators, and 
knowledge on the impact of security flaws is missing. IIoT device vulnerabilities are shown, 
almost on a daily basis, by attacks being published on devices ranging from Automotive, to 
pacemakers and light bulbs.  
Each development project with a security scope must have dedicated people assigned to 
determining, specifying and reviewing the security architecture. They must act as the security 
advocates within the engineering organizations and promote the central security competence. 
Reviews uncovering security issues late in the development cycle or after release, therefore 
saving money and protecting the reputation of the developing company. As security by design 
is the responsibility of everyone in the development process, enabling it requires a lot of 
discipline and the necessary measures to establish it. 
NXP recommend following a staged approach, tailored to the different levels of security 
maturity existing inside of NXP. 
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5.5.2 Security architectures and their security properties 

For the IIoT use cases described previously, four basic requirements must be met: integrity 
and authenticity must always be taken care of, plus confidentiality and availability when they 
are required. These data requirements can be mapped into the three principles for IIoT 
solutions. 
 

 
Figure 40: IIoT device features derived from for IIoT data requirements 
 
For example, to maximize data availability the devices must have a minimum attack surface, 
and if successfully attacked the device should attempt to recover. Recovery of the IIoT device 
could take the form of reduced functionality, bandwidth or other attributes to thwart or 
minimize future attacks. 
In order to accomplish some form of recovery and also for its functionality in standard 
operation mode, an IIoT device needs to be able to establish a secure end-to-end 
communication with its backend server. This comprises of: 

• mutual authentication of the end points, so that both end-points are certain that they 
are communicating with a trustworthy partner 

• data integrity of the communication must be ensured which enables the opposite end-
point to check if data has been changed, inserted or deleted in transit 

• data confidentiality for all or some data, depending on the use case 
The secure end-to-end communication is shown in the figure below, where SSS stands for 
Secure Sub System. 

 
Figure 41: End-to-End communication for IIoT. 
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From these principles for IIoT solutions, the following requirements for IIoT devices are 
derived: 

• Secure System Lifecycle 
Realized by secure boot, including the secure power-up, as a pre-condition to lifecycle 
management and configuration protection, with an irreversible path from virgin 
device, via secure debug, to a fully functional device in the field. It also includes the 
option to securely perform a remote update of FW/SW in the field with secure 
firmware over the air updates, secure logging and secure handling of field returns. 

• Crypto & Key Protection 
Realized by state-of-the-art secure key storage and key usage by a rich/secure 
execution environment. Used in an IIoT device for encrypting, decrypting and run 
authentication procedures, creating and executing integrity checks, and returning a 
device to a safe state if it has been compromised. A device must also provide means 
for protected secure root key provisioning and storage of key and certificate 
credentials, and handle the security of derived keys. 

• Resource Isolation 
To minimize the attack surface, the resources in HW, such as memory, and SW used 
for platform security features must provide isolation from other parts of the IIoT 
system. 

• Run Time Integrity & Attestation 
Software must be protected against modification by remote attestation and 
modification of the program flow prevented by solid Anti-rollback, counterfeiting is a 
further security feature for this class 

5.5.3 Network protocols 

5.5.3.1 Overview of Existing Protocols 

The landscape of IIoT network protocols and connectivity frameworks is very fragmented, 
countless group initiatives and standardization entities have created their own standards and 
frameworks geared towards the IIoT market. In addition to standards and open frameworks, 
individual companies are also defining and promoting completely closed eco-systems like 
Apple’s HomeKit. These diverse standards and frameworks differ in scope and the layers in 
the protocol stack which they address. Many protocol stacks reuse parts of other protocols 
and standards that can be combined with each other or instead provide multiple options to 
choose from. This further increases the complexity of the overall picture. 
The figure below provides an overview of the most important protocol stacks and connectivity 
standards typically used by IIoT and their security protocol layers (shown in orange). 
 



, D3.1, VERSION 1.0, 2019-02-06 

 

 - 68 - 

 
Figure 42: Protocols and connectivity standards for IIoT with security protocol layers in 
orange 
Generally, simpler IIoT end nodes like smart light bulbs typically use a wireless connectivity 
stack like ZigBee, Bluetooth or Thread to define all layers from physical to transport or even 
the application layer while more capable end nodes and gateways typically use more 
application layer oriented standards for direct connections to the cloud like CoAP, MQTT or 
XMPP on top of an IP-based protocol stack. Some higher layer oriented frameworks such as 
Weave, IoTivity, Fairhair and others build on one or more of these protocol stacks and are 
therefore omitted in the overview. 
Network security protocols used for IIoT can be categorized based on their layer in the 
communication stack i.e. link, network or transport: 
 

• Link layer security is typically used to ensure only authorized devices can enter a 
network. Communication is protected from eavesdroppers but it provides no end-to-
end security like most networks where any device that is part of the network can 
decrypt any communication, 

 
Communication to peers that are not part of the same network have to be relayed (i.e. 
decrypted and forwarded after re-encryption) by an access point or gateway. Link layer 
security provided by the wireless connectivity standard (for example WiFi, Thread, 
ZigBee) is in most cases the only network security measure used for protecting the 
communication of simpler IIoT devices like smart light bulbs with a gateway. 

 
• Network layer security (for example IPsec as used for VPN) provides protection of 

confidentiality and integrity for a specific communication link for example a 
connection between an IIoT device and a gateway. In contrast to link layer security the 
connection can cross different networks. There are approaches optimizing IPsec for 
use in IIoT, but deployment in typical network setups is complex and error prone and 
there is no widespread adoption of IPsec for IIoT deployments so far. 

 
• Transport layer security is used to create a secure channel between two applications 

on two endpoints and provides full end-to-end security. The most widespread security 
protocols on the transport layer are Transport Layer Security (TLS) and Datagram 
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Transport Layer Security (DTLS) used for securing communications of IIoT devices but 
also for many other applications like web browsing. These protocols are commonly 
used for securing direct connections to cloud services. All major cloud providers that 
offer IIoT cloud services support TLS for accessing their services. 
The Thread network uses DTLS for commissioning new devices into the network. The 
security layer of the proprietary HomeKit Accessory Protocol (HAP) can also be 
categorized as a transport layer security protocol. 
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6 Requirements from IIoT perspective [ifak (Table from ETRI)] 
As a general definition of IoT, considering the IIoT platform as a comprehensive definition 
including device, network, and application service layers, it is necessary to build an IIoT 
platform considering the following conditions. 
 
Objectification Scale: In the case of mechanical devices in a factory, basically, a unit of PLC 
equipment or a unit of controller constituting DCS can be defined as an object. If the control 
equipment is configured per a process unit, the objects are located in the control layer on 
behalf of the individual process. If the control equipment is configured per a specific facility 
unit, multiple pieces of control equipment are distributed in one process to perform control 
functions. In addition, sensor information management equipment that monitors the factory 
environment, and transportation equipment can be defined as objects. 
Level of Intelligent Things: Since control equipment such as PLC or DCS operates according to 
the driving conditions and procedures programmed by the operator in advance, if the 
production process is changed or an exception occurs, it will respond according to preset 
control conditions or lead to operational failure. Assuming a typical scenario, when control 
equipment detects an exceptional situation, the operator intervenes to analyze the problem 
and take action accordingly. Therefore, the intelligence of objects needs to be distributed as 
a unit of things where human intervention occurs, and at a level where the situation analysis 
based on human decision making is carried out autonomously. 
Real time Analysis: The process control of the production process focuses on input data 
monitoring and real-time control of events. In contrast, the IIoT platform is based on the 
building of the big data needed for data analysis, so the data source is transported to the top 
level. However, for real-time data analysis, it must be possible to analyze in the machine layer 
that directly controls the device, and the corresponding data processing and storage function 
should be placed in the machine layer. Assuming such an environment configuration, it may 
be effective to adopt a continuous query-based data analysis method that performs a query 
directly on the input stream rather than a snapshot query-based data analysis that targets 
data stored in the database. 
Collaboration between Machines: Collaboration between machines is a process of requesting 
and receiving data between entities, regarding a machine as a single independent intelligent 
entity. In here, the data may be process-sharing information between facilities or flow control 
information between various processes in one production process. To collaborate between 
machines, individual machines must be aware of things related to themselves and should be 
capable of one-to-one or one-to-many communication and interaction so that they can 
distribute their status information to other machines or request if necessary. 
Distributed Computing: In the IIoT environment, the distributed computing can basically be 
configured through the extension of the edge computing architecture. Edge computing is 
conceptually structured in a different way from DCS, which had previously been applied to 
factory automation. DCS has a structure in which individual control devices are distributed to 
perform independent process control and a central main server collects and analyzes events 
generated from the control devices in a batch manner. In contrast, the edge computing 
method has a structure in which distributed edge clouds have the role and authority as much 
as a central cloud in its area. Usually, edge computing architecture can be suitable for small-
scale scenario, where meaningful analysis is possible for small amounts of data. 
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The requirements for developing the target technology can be derived by reference to the 
general considerations described above and use cases limited to the scope of development. 
Requirements drawn up to date are defined in WP 1.2, and the related requirements are 
summarized as follows.  
 

Table 4. General Requirements 

ID Requirement Statement WPs addressed 
R-GEN-001 The system MUST be able to support wired and wireless communication 

between the control components. 
WP2,WP3 

R-GEN-002 Wireless communication MUST be highly available WP2 
R-GEN-003 Communication MUST be suitable for Safety-Related Functions (at least 

PL d according EN ISO 13849) 
WP2, WP3, WP4, 
WP5 

R-GEN-004 Communication data rate MUST be suitable for the defined Use Cases WP2,WP3 
R-GEN-006 The overall operational system SHOULD be dynamically scalable. WP2,WP3 
R-GEN-007 System MUST provide cooperation between operators and machines ALL 
R-GEN-009 The overall system MUST be modular and scalable ALL 
R-GEN-010 System MUST comply with existing safety and security regulations ALL 
R-GEN-014 Machines MUST be able to assist semi-autonomously (assisted 

movements) in factory environment 
ALL 

R-GEN-015 System MUST provide embedded control panels to support the new 
functions of the machines 

ALL 

R-GEN-019 The data communication MUST be secured from unauthorized access   WP2, WP4 
R-GEN-020 Machines MUST be self-described  WP2 
R-GEN-021 Integrity of localization data MUST be protected  WP3, WP4 
R-GEN-022 Collision avoidance between transported loads and human operators 

MUST be implemented 
WP2, WP3, WP4 

R-GEN-023 Collision avoidance between transported loads and other machines or 
obstacles MUST be implemented 

WP2, WP3, WP4 

R-GEN-028 System SHOULD support external sensor module data storage and 
management 

WP2 

R-GEN-029 System SHOULD allow access to the stored sensor module data to 
external systems 

WP2 

 

Table 5. Detailed Requirements 

ID Requirement Statement Nature WPs addressed 

R-DET-001 Control components MUST be cost effective  non-functional ALL 

R-DET-002 Control system MUST have short reaction times (real-time 
capabilities) 

non-functional WP2/WP3 

R-DET-004 The control components MUST support short set up time  non-functional WP2/WP3/WP4 

R-DET-005 Wireless communication MUST be highly available non-functional WP2/WP3 

R-DET-006 Wireless communication MUST be suitable for high 
transmitter density 

non-functional WP2 

R-DET-007 M2M communication data rate w/o video-data SHOULD be in 
a specific range 

non-functional WP2 

R-DET-008 The communication system SHOULD support fast 
communication set up time 

non-functional WP2 

R-DET-009 The control components SHOULD be characterized with a 
Cat.3 Architecture  

non-functional WP2, WP3, WP4 
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R-DET-010 Control system's HW components SHOULD have compact 
dimensions 

non-functional ALL 

R-DET-011 Control system MUST be modular and scalable non-functional WP2, WP3, WP4 

R-DET-013 The control System SHOULD allow deterministic guarantees non-functional ALL 

R-DET-016 System SHOULD provide machine cooperation functions functional ALL 

R-DET-017 Manual system operability MUST be guaranteed in case of 
communication or system break down 

functional ALL 

R-DET-019 Interoperability with existing machines and machines from 
other manufactures SHOULD be guaranteed 

non-functional WP2, WP3, WP4 

R-DET-020 Wired control-panels CAN be available on the machines non-functional ALL 

R-DET-022 Wireless HMI devices SHOULD be made available to the 
operator for the remote control of the machine 

non-functional ALL 

R-DET-023 GUI for wireless HMI devices SHOULD be provided non-functional WP2, WP3, WP4 

R-DET-024 HMI SHOULD provide manual selection of machines for the 
execution of specific tasks 

functional WP2, WP3, WP5 

R-DET-025 HMI CAN allow specification of tasks and their corresponding 
properties, e.g. size and weight of load be transported 

functional WP2, WP3, WP6 

R-DET-030 System SHOULD collect machine usage information functional WP2, WP3, WP4 

R-DET-031 System CAN store and manage data for data-analysis and 
reporting 

functional WP2, WP3, WP4, 
WP5 

R-DET-033 System SHOULD allow remote firmware updates functional WP2, WP3, WP4 

R-DET-035 Wireless communication between machines SHOULD be 
provided 

functional WP2 

R-DET-037 Secure and safety compliant communication proto-cols MUST 
be used to connect wireless control- and HMI-devices 

non-functional WP2 

R-DET-040 Connection-oriented solutions for low-level communication 
SHOULD be implemented 

non-functional WP2 

R-DET-043 A standard M2M protocol SHOULD be used for the inter-
machine communication 

non-functional WP2 

R-DET-044 Standard M2M communication protocols SHOULD be used 
for communication at high-level (enterprise level) 

non-functional WP2 

R-DET-051 Disconnections and/or interruptions of communication 
between operator and machines MUST preserve human 
safety 

non-functional WP2 

R-DET-067 Machines MUST be able to avoid collisions with other 
stationary machines, operators and obstacles 

functional WP2, WP3, WP4 

R-DET-068 Machines MUST be able to avoid collisions with other moving 
machines and moving operators 

functional WP2, WP3, WP4 

R-DET-072 System SHOULD allow the definition of virtual exclusion zones functional WP2, WP4, WP5 

R-DET-082 Control system MUST be able to collect incoming data stream 
in real time (e.g. sampling rate given any sensor). 

functional WP2, WP3 

R-DET-084 The machines MUST be able to monitor their circumstance 
and detect specific events in real time. 

functional WP2, WP3 

R-DET-086 The machine SHOULD be able to filter and manage unstable 
data (data loss, collection error, collection delay, etc.) that 
occur during the data collection process. 

functional WP2 

R-DET-118 System SHOULD support machine data collection, data 
management, and data communication to/from machines 

Functional WP2 
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7 Specification of the IoT-platform Architecture for OPTIMUM [ERSTE, 
Thorsis, ifak] 

7.1 Provided Functionalities 

The analysis of the requirements specified in deliverable D1.2 and summarized in Section 6 
allows to define the following functionalities for the IIoT-platform: 

 Connectivity and information exchange  (high priority) 
 Reliability of the communication (high priority) 
 Wireless communication (high priority) 
 Providing standard-interfaces (high priority) 
 Support remote HMI (high priority) 
 Security (high priority) 

 Machine authentication 
 User authentication 
 HMI authentication 
 Authentication of localization devices 

 Interoperability with existing machines (medium priority) 
 Compatibility with existing standards (medium priority) 
 Data storage, data management (medium priority) 

 Position information of connected devices 
 Dynamic resource discovery (low priority) 

 List of machines connected to the system 
 Descriptions of machine connected to the system 

 Remote firmware update (low priority) 
The functionalities are ordered by priority, from “high” till “low”. These values are derived 
directly from D1.2 depending on the priority assigned to the specifications contained in the 
document.  
From the list above, it is clear that the main functionality provided by the IIoT-platform is the 
secure and reliable interconnection of different industrial devices, machines and HMIs, 
possibly via wireless communication. In the following a general description of the IIoT-
platform architecture is given. More details about the available components are presented in 
Section 7.3. 

7.2 General Description 

In Figure 43 the overall structure of the OPTIMUM-architecture is presented. As illustrated, 
the system is built hierarchically: at the low-level the communication between the industrial 
devices, e.g. cranes and fork lifters, but also sensors and actuators, takes place; at high-level, 
enterprise solutions, such as data storage systems and cloud-systems, are present. The 
user/operator is practically located at the center of the system and s/he can control different 
devices and trigger specific tasks by using a remote or a local HMI.  
The specifications analysis shows that at low-level delays and information losses in the 
communication might strongly compromise the system performance, such for example in the 
use-case “Follow Machine”, where two cranes must cooperate to realize a tandem function 
and carefully carry together a heavy load. For this reason, solutions and protocols that can 
guarantee connection-oriented real-time communication are preferred in the OPTIMUM-
project. 
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For this purpose, in accordance with the specified requirements, the lightweight MQTT-
protocol is selected as good candidate for the communication between the components of 
the industrial device, such as DCP and IIoT-platform (see Figure 44). Although MQTT is not 
proven to be real-time, it provides small packet overhead and, therefore, it can guarantee an 
efficient use of the communication medium. Performance analysis to investigate the real-time 
capabilities of MQTT are planned during the execution of WP6.  

 
Figure 43: Interaction between industrial devices, HMI and cloud data system. 

At high level (or enterprise level), the communication is not time-critical. Therefore, OCP-UA 
was selected as candidate protocol for the M2M communication. As illustrated in Figure 44, 
the IIoT-platform is responsible for translating the MQTT messages into the OPC-UA protocol 
and vice versa, such that interoperability between different industrial devices can be 
guaranteed. The binding between external systems such as the 3D-Simulation and the Data 
Management System is also realized via OPC-UA.  
The localization sensors are directly connected to the embedded hardware via CAN-bus. They 
communicate with the DCP and provide directly information to the control units, without 
using the IIoT-platform. Safety requirements related to the position between industrial 
devices, such as collision avoidance, are solved directly at this level by the localization system 
– which directly provides proximity zones – together with the DCP, without requiring the 
intervention of the IIoT-platform. In other words, the position information of other industrial 
devices is exchanged via the IIoT-platform only for the execution of specific complex tasks that 
are not time-critical. Further information on how collision avoidance is realized w.r.t. the 
implemented localization system is provided in the documentation of the demonstrators 
(WP6).  
It shall also be noticed that, from the Physical Layer point of view, the choice of what 
technology shall be used for the communication between the industrial devices is left open. 
Different systems can, therefore, use different technologies, such as WiFi, LTE 5G, or Ethernet, 
as long as the available infrastructure provides TCP/IP functionalities, i.e. the IIoT-platform 
architecture of OPTIMUM is independent from the actual communication medium which can 
be both wired and wireless but requires its resources to be addressable with proper IPs. 
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Further information about the components of the IIoT-platform are specified in the following 
section.  

 
Figure 44: Overall hardware-software representation of the OPTIMUM industrial devices and its 
binding with the existing embedded hardware as well as other OPTIMUM subsystems. 

7.3 Architecture Overview 

The IIoT-platform is composed by different blocks which represents logical components 
implementing one or more sets of functions. An overview of the IIoT-platform architecture is 
presented in Figure 45.  
It is assumed that the industrial device provides a real time operating system (OS), where the 
IIoT-platform is implemented as a stand-alone container (see Figure 44) with interfaces to the 
other external – w.r.t. the IIoT-platform – components. Functions like process- and thread-
execution, memory management, network management at Physical, Datalink, Transport and 
Network Layer – w.r.t. to the ISO-OSI-Model – are provided explicitly by the OS.  
In the remaining of this chapter, the single components of the IIoT-platform are described in 
more detail. Notice that these are the minimal components to fulfil the requirements of D1.2 
and realize the functionalities specified in Section 7.1, but they might not necessarily be the 
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only components of the IIoT-platform. In fact, depending on the specific implementation, 
additional functionalities might be required and further components at Application Level can 
be added. Nevertheless, the presented IIoT-architecture provides sufficient degrees of 
freedom to further extend the results of the OPTIMUM-project also after its conclusion.  

 
Figure 45: Architecture of the IIoT-platform. 

7.3.1 Connectivity Manager (CM) 

It is assumed that the OS and the communication infrastructure provide TCP/IP functionalities, 
i.e. basic communication for the Physical, Datalink, Transport and Network Layer are provided 
by the OS. The Connectivity Manager (CM) is responsible to control and manage all possible 
internal and external connections w.r.t. the industrial device. In other words, the CM ensure 
that a connection, for instance between the IIoT-platforms of two different industrial devices, 
is reliable and still alive. If the connection is performed over WiFi, Ethernet, or another 
communication technology is irrelevant from the CM point of view.  
With respect to the available requirements, the CM provides specific support for different 
standards: 

 MQTT, for the internal and external communication at industrial device level, e.g. the 
communication between DPC and IIoT-platform of the same industrial device, or of 
two different devices.  

 HTTP and/or CoAP, both for the external communication at enterprise level, e.g. for 
the communication with the Data Management System or the CAS. 

By providing support to different protocols, the CM allows the implementation of the standard 
OPC-UA, which in OPTIMUM is, in particular, used for the Data Management System and the 
3D-virtualization and Simulation System as well as M2M-standards like oneM2M or etsiM2M. 
Support for the direct binding of OCP-UA with TCP/IP is also provided. Therefore, the CM 
implements the basis for both IoT-stacks for oneM2M and OPC-UA as well as all functionalities 
which are required for the instantiation of (logical) Connections among the components of 
the industrial devices. 
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Connection 
A Connection is a logical remote or local link between components of the industrial devices. 
Whenever connections are remote, if not already provided by other components, a “keep 
alive” mechanism to guarantee that the link is never interrupted shall be implemented. 
Whenever no further response from the other industrial device is received, the connection is 
considered broken and the corresponding associated service is interrupted or preempted. 
Solutions to automatically awake a preempted service whenever the logical connection is 
restored shall be provided by the CM. 

7.3.2 Interface Context-Awareness-System (CAS) 

To interact with the Context-Awareness-System (CAS) the IIoT-platform includes a specific 
communication interface. All data which need to be exchanged to internal or external CAS 
shall be directed through this interface. The interface includes an MQTT-client for lightweight 
communication, such that the coupling between IIoT and CAS is loose.  

7.3.3 Interface Distributed Control Platform (DCP) 

The interactions between IIoT and DCP are realized via this interface. All data which are 
needed from or by the DCP are communicated via MQTT. Therefore, an MQTT-client for the 
loose coupling between DCP and IIoT is included in the Interface DCP. At the DCP-side an 
MQTT-broker shall be provided. 

7.3.4 Interface IIoT 

The IIoT of one industrial device can require communication with the IIoT of another one. For 
this reason, a specific interface for the communication between the IIoT-platforms of two 
different devices is provided. Since the communication can happen both at high and low level, 
the Interface IIoT component provided both services for MQTT, by implementing an MQTT-
client, and for OPC-UA, by implementing both an OPC-UA-client and an OPC-UA-server. Both 
types of connections are loose and non-time-critical for the execution of specific tasks. 

7.3.5 Interface 3D-Virtualization-System (3D-VS) 

To bind the 3D-simulation software with the industrial device a specific interface is provided. 
In this case, since the communication is at high level, only OPC-UA functionalities are provided. 
An OPC-UA-client and an OPC-UA-server are implemented in the Interface 3D-VS. The 
communication is also in this case loose and non-time-critical.  
Notice that a direct connection between 3D-VS and DCP in case of time-critical information 
exchange is also possible. This topic is although outside the scope of this document and related 
to the specification of the DCP. Therefore, it is not discussed in this deliverable. 

7.3.6 Interface Human-Machine-Interaction (HMI)  

The IIoT-platform shall provide also support for the connection of (remote) HMI devices. To 
this aim, the IIoT-platform integrates an Interface HMI, which implements the OPC-UA-
protocol. Both an OPC-UA-client and OPC-UA-server are implemented.  
Notice that the support and implementation of specific communication protocols for the 
remote HMI which rely on time-relevant data exchange for control purposes with the DCP, 
e.g. wirelessCAN, is outside the scope of this document. 
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7.3.7 Application Manager (AM) 

Services or Application Objects as well as the other components implemented in the IIoT-
platform may require instantiation, coordination, management, preemption, triggering, or 
access to low-level functions provided by the OS. To this intent, an Application Manager is 
implemented in the IIoT-Platform. This component is, in particular, responsible for managing 
the tasks between the Application Objects as well as the communication and data exchange 
with other internal and external components of the IIoT-platform, by commanding the 
Connection Manager the opening and closing of new connections. It grants the high level 
services access to the communication as well as to all functionalities provided by the OS and 
the other components of the industrial device, such as DCP and CAS. 

7.3.8 Application Objects (AO) 

An Application Object is a high level Service at Application Level. In practice, this realizes the 
high level or functionalities that the IIoT-platform shall provide. 
According to the specified requirements, the IIoT-platform is responsible for providing three 
main services: Device Manager, Resource Discovery, Data Management.  
These are only the basic services that were derived from the document D1.2. The IIoT-platform 
is although not limited to these and it can be extended with additional application objects or 
services, which are outside the scope of the OPTIMUM-project. 

7.3.9 Service Device Manager  

The Service Device Manager is responsible for the management of all information and 
functionalities which are strictly related to the industrial device, its function, its hardware and 
its software. In particular, these can be summarized as follows: 

 Management, storage and reporting of the current device status 
 Identification, isolation and reporting of errors, failures and malfunctions 
 Management of software updates related to the IIoT-platform and its functionalities2 
 Management and optimization of energy consumption  
 Management of device and components authentication 

7.3.10 Service Resource Discovery  

The IIoT-platform shall also provide support for dynamic resource discovery. To this intent, 
the Service Resource Discovery is implemented as Application Object in the IIoT-platform. The 
functionalities of the Service Resource Discovery include: 

 Store and report information about the attributes of the device (type, characteristic, 
available functions, etc.) 

 Inform surrounding devices about the presence/activation of a new industrial device 
 Manage the list of reachable available (active) devices (add, remove, store, etc.) 

7.3.11 Service Data Management  

The Service Data Management is an Application Object with the aim of providing following 
functionalities: 

                                                      
2 Updates related to other components such as DCP, OS, e.g. firmware updates, are not in the scope of the Service 

Device Manager. 
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 Storage and management of local data essential for the industrial device 
 Collect and temporary store data that must be transferred to the data system 
 Communicate and exchange data with the data- and cloud-system 
 Identify and sort out incorrect, invalid and/or inconsistent data before submitting 

them to the data system 

8 Specification of the Data Management System for OPTIMUM 

8.1 Provided Functionalities 

The Data Management System will allow integration with External Sensing Devices 
One of the main responsibilities of the Data Management System (DMS) is to allow integration 
and connectivity with External Sensing Devices (ESD), which in turn shall allow non-monitored 
machines and processes to access the OPTIMUM environment. In order to integrate ESDs into 
the OPTIMUM environment and kick-start the data storage and management processes 
handled by the DMS, the ESD needs only to integrate with the industrial device via the MQTT 
interface of its internal IIoT subcomponent. Figure 46 illustrates this integration process: 

 
Figure 46: ESD integration with OPTIMUM DCP via MQTT broker 

The Data Management System will provide multiple storage solutions, such as local and 
cloud approaches. 
In order to appeal to different needs and situations, the Data Management System will provide 
functionality to store data associated to a machine or process locally. The following figure 
illustrates this process: 
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Figure 47: ESD data flow and local storage 

The initial setup of the situation described in Figure 47 is that an industrial device is linked or 
associated to an existing industrial process or hardware, such as a crane, press, conveyor belt, 
or a whole process such as cutting metallic pieces. The workflow regarding data generation 
and storage relevant to the industrial hardware or process is as follows: 

1. Data Acquisition: Once the initial scenario is established, the first step corresponds to 
data acquisition. The data acquisition step involves using the ESDs associated to the 
industrial hardware or process in question. There could be one or more ESDs 
associated to this data acquisition process. For instance, one ESD could be responsible 
for measuring the time taken to complete a process, while another ESD could be 
responsible for other metrics such as throughput and amount of produced waste. 
Additionally, these metrics could also be managed by a single ESD. This is where the 
flexibility of ESDs come into play and it is responsibility of the ESD user or manufacturer 
to produce a device that suits its needs. 
 

2. Communication with DMS: Having collected the data, the next step would be for the 
involved ESDs to establish communication with the DMS component located in the IIoT 
platform of the industrial device. This will be done by having the ESD connect to the 
MQTT broker situated within the DCP component of the industrial device.  
 

3. Data Storage: When the DMS receives the incoming data from the different ESDs, it is 
this component’s responsibility to locally store the data within the IIoT-platform for 
later use. 

This data acquisition and storage procedure can be repeated for all the machines and process 
that wish to be monitored or integrated into the OPTIMUM environment: 
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Figure 48: Multiple industrial devices with associated ESDs 

With respect to accessing the data by a cloud application or system, the process would simply 
add another step as shown in Figure 49: 

 

Figure 49: Cloud communication in industrial device monitoring 

Regarding this functionality, all the steps are the same up until data are correctly stored in the 
DMS within the industrial device’s IIoT platform. However, the DMS will offer an API that 
provides access to its stored data and thus a way to interface with cloud solutions.  

8.2 General Description 

This section provides a general description of the responsibilities of the proposed Data 
Management System for the OPTIMUM project, as well as further detailing the concept of 
External Sensor Module.  
In general, the main responsibility of OPTIMUM’s DMS is to store and manage data coming 
from External Sensing Devices or any general IoT sensor with compatible interfacing 
capabilities. In this context, we will refer to an ESD as an IoT device created for the sole reason 
of integrating an existing machine or process that does not inherently have any sensing 
capabilities, with the industrial device, and ultimately, into the OPTIMUM environment.  
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Figure 50: Integration between OPTIMUM environment and ESD 

In terms of architecture, an ESD is made up of one or more sensors and possesses the ability 
to communicate its acquired sensor data with the OPTIMUM environment.  
 

 
Figure 51: High level ESD component diagram 

These IoT devices are external to the OPTIMUM system, and they may be prototyped or 
manufactured by third-parties. However, the idea is to allow the industrial device to interface 
with these ESDs and store their data within the DMS. This will broaden the scope of 
OPTIMUM’s usability by allowing many types of machines and equipment, without having to 
worry about their inherent interfacing capabilities, to be integrated into the OPTIMUM 
environment via the use of ESD’s acting as a middleware or intermediate step. 
As a practical example, it is helpful to consider a factory that is not yet equipped with modern 
tools and machinery and is subject to using antiquated equipment. Whereas modern 
machinery will possibly be equipped with interfacing capabilities with other systems, for 
instance, to monitor the tools usage statistics, system metrics, or overall health, outdated 
equipment will have no possibility of doing so. Given that overhauling the factory’s whole set 
of tools and machines to newer models in order to propel that initial undertaking into an 
Industry 4.0 workspace may be expensive and poses its own limiting barriers, a more adequate 
approach would be to introduce ESD’s into the factory floor which will be capable of externally 
monitoring a machine or process’ metrics, which can thusly be integrated into the OPTIMUM 
system. 
Additionally, OPTIMUM’s DMS will allow communicating with cloud applications and systems 
in order to centralize the data that it has obtained.  
In conclusion, the Data Management System of OPTIMUM will allow the storage and 
management of data obtained from External Sensing Devices and other compatible IoT 
devices and provide functionalities to centralize the data in a cloud environment. 
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8.3 Architecture Overview 

This section aims to describe the overall architecture of the Data Management System by 
taking a look at the intended integration with the other OPTIMUM components, including the 
External Sensing Devices as well as the DCP within the industrial device. 

 
Figure 52: Architectural overview of ESD, DCP and DMS 

As we can see from the diagram, the first integration occurs between the ESD and the DCP of 
the industrial device. This is where data acquisition occurs, and the integration is done via the 
DCP’s MQTT broker. Afterwards, the integration between the DMS and the DCP takes place, 
also using the MQTT broker provided by the DCP component. This integration allows for data 
storage and management by including the DMS into the overall view. Finally, the DMS will 
contain an API that allows external systems such as cloud solutions to access the data stores.  
To further detail the DMS components, the following diagram can be observed: 
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Figure 53: DMS architecture 

 OPC-UA Client & Server: the DMS comes equipped with OPC-UA client and server 
instances that will allow it to obtain and share data from the IIoT Platform’s OPC-UA 
server located within the Interface IIoT component. 

 Storage Application Middleware: this application middleware is the logical connection 
between the data received from the MQTT client and the underlying database engine. 
This is the software that manages the logic between the received data and the storage 
media. 
 

 Database Engine: the database engine is responsible for managing the data and 
storing it in the physical media of the device. This component handles the basis of all 
storage and management functions. 
 

 API: the API provides a set of endpoints to the application middleware, which in turn 
decides which functionality can be ported from the database engine. With this API, 
external systems such as solutions stored in the cloud can access the data stored within 
the DMS via the permitted functionality established by the application middleware. 
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9 Abbreviations  

3D-VS 3D-visualization software OR 3D-virtualization software 

AND Application dedicated node 

AE Application entity 

AM Application manager 

AMQP Advanced message queuing protocol 

AO Application objects 

API Application programming interface 

ASN Application service node 

B2B  Business to business 

B2C Business to customer 

BLE Bluetooth low energy 

CARP Channel-aware routing protocol 

CAS Context awareness system 

CIA Confidentiality, integrity, availability 

CM  Connectivity manager 

CoAP Constrained application protocol 

CORPL Cognitive RPL 

CSE Common service entity 

CSF Common service function 

DAO Destination advertisement object 

DAO_ACK DAO acknowledgment 

DCP Decentralized control platform 

DCS Distributed Control System 

DDS Data distribution service 

DIO DODAG information object 

DIS DODAG information solicitation 

DODAG Destination oriented directed acyclic graph 

DTLS Datagram transport layer security 

EPC Electronic product code 

ERP Enterprise resource planning 

ICT Information and communication technology 

IEC International Electrotechnical commission 

IETF Internet engineering task force 

IIoT  Industrial Internet of Things 



, D3.1, VERSION 1.0, 2019-02-06 

 

 - 86 - 

IN Infrastructure node 
IoT Internet of things 
IP Internet protocol 
GE Generic enabler 
HAP HomeKit accessory protocol 
HMI Human-machine-interaction (device or interface) 
HVAC Heating, ventilation and air conditioning device 
JSON JavaScript object notation 
LLC Logical link control 
LTE Long term evolution 
M2M Machine to machine 
MAC Medium access control  

OR Message authentication code 
MD  Middle node 
MPU Micro Processing Unit 
MQTT Message queuing telemetry transport 
MS/TP Master-slave/token-passing 
NGN Next generation networks 
NSE Network service entity 
OASIS Organization for the advancement of structured information 

standards 
OPC-UA Open platform communications unified architecture 
OS Operative system 
OT Operational technology 
PHY  Physical layer 
PLC Programmable logic controller 
QoS Quality of service 
REST Representational state transfer 
RFID Radio frequency identifier 
RPL Routing protocol for low power and lossy networks 
SDL Service description language 
SE Secure element 
SoA Service oriented application 
SoC Service oriented computing  
SoM Service oriented middleware 
SSL Secure socket layer 
TCP Transmission control protocol 
TDMA Time division multiple access 
TLS Transport layer security 
TSCH Time synchronization channel 
UDP User datagram protocol 
URI Uniform (or unique) resource identifier 
URL Uniform resource locator 
VDMA Verband Deutscher Maschinen- und Anlagenbau 
VM Virtual machine 
VPN Virtual private network 
WIA-PA Wireless network for industrial automation process automation 
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WLAN Wireless local area network 
XML Extensible markup language 
XMPP Extensible messaging and presence protocol 
WPAN Wireless personal area network 
WPx Work package x, where x corresponds the work package number 
w.r.t. With respect to 
WSN Wide sensor network 
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