

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018

D2.2
Interoperability of the standards

Modelica-UML-FMI

Access1: PU

Type2: Report

Version: 0.3

Due Dates3: M12, M24

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

M12 version of D2.2 enabled the specification of a precise semantics for UML state machines and to identify

semantics differences between UML and xtUML state machines. The purpose of such work was twofold: (1)

enable state machines to be used in the specification of simulation models described in UML (2) Evaluate how

Executable UML semantics could be specialized to account for semantics associated to xtUML. This deliverable

established the basics to make sure that both UML and xtUML could be used in a simulation process.

M24 version of D2.2 provides an exploratory analysis of different strategies to integrate simulation models

specified using UML and xtUML in a co-simulation process. In particular, the deliverable specifies two families

of approach enabling these kind of simulation models to be exported in an FMU (Functional Mockup Unit).

The first kind of approach advocates that such integration could be made using a profile and an extension of the

semantics of the language used to specify the simulation model. The second kind of approach advocates for a

wrapping based strategy.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 2 of 36

Deliverable Contributors:

 Name Organization
Primary role in

project

Main

Author(s)5

Deliverable

Leader6
Jérémie TATIBOUET CEA Task Leader X

Contributing

Author(s)7

 Ákos HORVATH IncQuery Labs Contributor X

Zoltan GERA ELTE-Soft Contributor X

 Boldizsár NEMETH ELTE-Soft Contributor X

Dániel SEGESDI IncQuery Labs Contributor X

 Sébastien REVOL CEA Contributor X

Gergely Dévai ELTE-Soft Contributor X

Internal

Reviewer(s)8
 Ákos HORVATH IncQuery Labs Contributor X

 Sébastien REVOL CEA Contributor X

Document History:

Version Date Reason for Change Status9

0.1 10/11/2017 Initial version of the deliverable Draft

0.2 17/11/2017 Contribution and review from Akos Draft

0.3 17/11/2017 Minor editorial corrections Released

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8 Typically, person(s) with appropriate expertise to assess deliverable structure and quality.

9 Status = “Draft”, “In Review”, “Released”.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 3 of 36

CONTENTS

ABBREVIATIONS ... 3
1 INTRODUCTION ... 4
1.1 FMI and UML / xtUML ... 4

1.2 Problem statement .. 4
2 TEST CASE ... 5
3 FMI INTEGRATION WITH UML AND XTUML 6
3.1 FMU Structure ... 6
3.2 Specify FMI Structure with UML / xtUML .. 6

3.2.1 UML ... 7

3.2.2 xtUML .. 9

3.3 Formalize Interactions between an FMU and the Master 9
3.3.1 Approach N°1: Extend UML Semantics.. 9
3.3.2 Approach N°2: Wrap Models into a Higher Level Component 14
3.4 Comparisons .. 24

3.5 Issues to be resolved .. 27
3.5.1 Roll-Back Support ... 27

3.5.2 Inputs Consumption Support ... 28
3.5.3 Outputs Production Support ... 29
3.5.4 Time Support ... 31

4 CONCLUSIONS .. 33
TABLE OF FIGURES .. 35

REFERENCES .. 36

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

UML Unified Modelling Language

FUML Semantics of a Foundational Subset for Executable UML Models

PSCS Precise Semantics of UML Composite Structures

PSSM Precise Semantics of UML State Machines

RTC Run to Completion

SW Software

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 4 of 36

1 INTRODUCTION

1.1 FMI and UML / xtUML

FMI [1] is a standard defining how to couple two or more simulation models in a co-simulation

environment. The simulation models may be specified with different languages whose support

is provided in different tools. However, the FMI standard was designed to support the

simulation of continuous time modeling languages, thus typical SW modeling languages based

on discrete event-based formalisms cannot be easily mapped to the constructs defined in FMU.

Within the context of OpenCPS, the three different platforms used to design complex cyber-

physical systems for various engineering domains are: Open Modelica, Bridge Point and

Papyrus. All of these platforms are based on different languages, where Open Modelica relies

on the Modelica language a standard for continuous time modeling, Bridge Point relies on

xtUML and Papyrus on UML as well as all UML-based languages (i.e., languages formalized

as profiles), the latter two used for SW modeling with event based formalism.

UML [2] and xtUML [3] are heavily used in industry to design control systems. In the classical

design process, these systems can be formalized in a sufficient level of detail in order to make

them executable or to enable the generation of an executable code. Since the models are

executable it is possible to export them into FMU in order to use them in co-simulation. The

interest here is to evaluate the different mapping opportunities of UML/xtUML models into

FMU in order to further the quality of multi-domain simulations of cyber-physical systems.

1.2 Problem statement

The export of simulation models specified in UML or xtUML into FMU used in a co-simulation

immediately raise two issues:

1. How can systems formalized with these languages be exported into FMU? How are the

exported software components identified? What are the variables of these components

being exposed as FMU variables? How are these variables identified and formalized

into the model?

2. While the communications between the master and FMUs involved in a co-simulation

process are formalized in the FMI [1] specification, the translation of these

communications into a form that can be understood by the underlying simulation model

formalized either with UML or xtUML remains unspecified. As an example, lets

consider the assignment of an FMU variable. From the master algorithm point of view,

the set action merely corresponds to a call to the fmiSetXXX(…) API function.

However, on the other side, depending on the way the variable is formalized into the

original simulation model, it may be necessary to convert that call to a signal sending

or an operation call through a port. This kind of event base communication depending

on the form of the simulation model may imply the triggering of computations while a

doStep request has not already been received from the master.

The first objective of this deliverable is to clarify how systems specified with UML and xtUML

shall be designed (i.e., identification of the main component, identification of the exposed

variables) in order to make possible their export into an FMU. The second objective is to

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 5 of 36

formalize the translation of the master algorithm interactions with an FMU containing a

simulation model specified with UML or xtUML into communications that can be understood

by this latter. The hard constraint here is to ensure that the translated communications will

preserve the semantics initially intended by the calls performed by the master.

The outline of the document is organized as follows: section 2 presents the test case used to

evaluate the different approaches to integrate UML and xtUML simulation models in FMUs.

Section 3 identify the modeling constraints applying on each approach and precisely how the

interactions with the master will be performed.

2 TEST CASE

Figure 1 shows a composite assembly of three FMUs. The Control Interface FMU

corresponds to the part of the system enabling the user to power on or off the control of the

temperature level in a room. The Thermostat FMU is in charge of deciding the strategy to

apply in order to maintain the temperature in the room. To do so, it takes as inputs the status of

the control interface (either ON or OFF) as well as the current temperature in the room. Based

on its decision, the Thermostat FMU forwards the order to turn the heating system ON or

OFF to the Room FMU.

Figure 1 - Test Case Environment

Figure 2 - Behavior specification of Thermostat FMU

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 6 of 36

While the Control Interface FMU and the Room FMU are specified using Open

Modelica, the Thermostat FMU is specified using UML or xtUML. The behavior of the

Thermostat FMU is defined as a state machine. An example of behavioral specification for

is shown in Figure 2.

The state machine is split into four states and eight transitions. Sate TurnedOff is one entered

by the Thermostat when the system starts. It indicates the situation where no temperature

control is performed. The state Updating indicates that the Thermostat is on and shall

control the room temperature. To do so it requires to receive at least once the current

temperature room. At this point, it has the opportunity to move either to states

TurnHeatingOff or TurnHeatingOn.

One can notice that transitions in that test case are triggered. The triggering of these latter is

can only be done upon the acceptance of signal event occurrences (i.e., powered and

roomTemperature).

3 FMI INTEGRATION WITH UML AND XTUML

3.1 FMU Structure

An FMU is described as a black box component exposing variables (see section 4.1.1 in [1]).

The component is mainly used to materialize the software artefact manipulated by the master.

Variables identify the interaction points at which the master can post and retrieve data from the

FMU.

Both the component and its variables expose FMI specific information. As an example, a

variable is not only defined by a type constraining data that can be hold by this latter but also

with a variability and causality. The variability identifies the time dependency

of the variable to time (e.g., discrete or continuous). Finally, the causality enables to specify

if the variable is an input (i.e., the value hold by this variable can be provided from another

model or slave), an output (i.e., the value hold by this variable can be provided to another

model or slave) a parameter, a calculatedParameter, local, or independent.

While both UML and xtUML already provide reusable concepts to model a FMU, they do not

provide the capability to capture information that are specific to the FMI standard (see section

2.2 in [1]).

3.2 Specify FMI Structure with UML / xtUML

Both UML and xtUML provide concepts that can be reused to specify both the component to

be exposed through the FMU as well as the variables attached to that component. Sections 3.2.1

and 3.2.2 identify in both languages the concepts to be reused. These sections also identity how

to capture FMI specific information.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 7 of 36

3.2.1 UML

3.2.1.1 Component

UML provides the concept of Class (see section 11.8.3 in [2]). This concept is heavily used

in system design to specify classification of object types exposing features and operations. Such

object type may also be attached to behaviors intended to define the computations that have to

be performed by any instance of the object type.

The Class concept looks appropriate to model the component corresponding to an FMU for

three reasons:

1. It has the capability to own structural features (see section 11.8.3.6 in [2]) which can be

used to model components variables.

2. It has the capability to own operations (see section 11.8.3.6 in [2]) which can be called

to request computations to be performed on the component.

3. It has the capability to own a classifier behavior (see section 10.5.1.5 in [2]) which can

be used to specify how to handle events received by the component.

3.2.1.2 Variables

UML provides concepts of Property (see section 9.9.17 in [2]) and Port (see section

11.8.14 in [2]). Both can be used to specify the variables of an FMU component. Indeed, they

are TypedElement (see section 7.8.22 in [2]) hence they can be associated to a type that will

constrain the type of information that can flow through them. In [1] section 2.2.7 in states that

the type used to type variables can only primitives or enumerations.

3.2.1.3 FMI specific information

The FMI domain specific information put on a FMU component and its variables (e.g.,

causality meta-property, FMU canInterpolateInputs meta-property – see section

4.3.2 in [1]) cannot be natively captured by Class, Property and Port concepts. This issue

suggests to use a UML profile for FMI that will define the necessary extensions to the UML

concepts in order to capture FMI domain specific information.

An excerpt of such profile is given in Figure 3. Stereotypes FMU, and ScalarVariable

formalize information that need to be captured specifically for FMI variables and the

component holding these latter.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 8 of 36

Figure 3 - Excerpt of a UML profile for FMI

Using a regular UML model with the FMI profile applied, an FMU can be described as shown

in Figure 4. The class Thermostat is an FMU since it has stereotype FMU (see Figure 3)

applied. FMU Variables are the ports displayed on right and left sides of the FMU. Each port

is typed by a UML primitive type and has the stereotype ScalarVariable applied. This

stereotype enables each port playing the role of an FMU variable to expose information about

the way the variable is initialized (see initial property in Figure 3), its causality as well

as its variability.

Figure 4 - Thermostat FMU defined with UML and the FMI profile

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 9 of 36

3.2.2 xtUML

3.2.2.1 Component

xtUML provides the concept of Component. Components formulate the basis of xtUML

based system design and they are used to specify and encapsulate classes defining certain

aspects and behavior of the system.

The direct mapping of xtUML Components to FMU Components is a straightforward

approach as both are used for the same purpose in their respective languages: to hide internal

details and execution semantics from the outside world, and to provide a well-defined

communication means to the outside world.

3.2.2.2 Variables

As UML, xtUML also provides the concepts of Property and Port. Both can be used as an

information flow between the FMU variables and the xtUML model. Further details on the

different mapping strategies of FMU variables to xtUML Properties and Ports are

described in Section 3.3.2.

3.2.2.3 FMI Specific Information

In case of the xtUML to FMU mapping, we opted to follow a different approach compared to

the profile based extension used in case of UML. The main reason for our option was to provide

a Bridgepoint agnostic solution that can work with any xtUML modeling environment out of

the box. For this reason, all FMU specific domain information are encoded into separate Eclipse

Modeling Framework models that drive the FMU wrapper generation process. The defined

EMF models and the realization of the FMU wrapper generator are described in Annex 1 [4].

3.3 Formalize Interactions between an FMU and the Master

This section describes two approaches to provide the capability to a simulation model defined

either in UML or xtUML to be exported in a FMU and responds to the master interactions.

3.3.1 Approach N°1: Extend UML Semantics

The approach presented in this section proposes to extend the UML base semantics in order to

enable the usage of simulation model specified in UML in the FMI context. Section 3.3.1.1

identifies the modeling constraint that applies to a simulation model specified using this

approach. Section 3.3.1.2 presents the proposed extensions to the UML base semantics and

rationalize these extensions to ensure the capability of the simulation to be executed and to

account for requests received from the master. Section 3.3.1.3 describes how the interactions

(set, doStep and get) between the master and the simulation work in the context of the extended

UML semantics.

3.3.1.1 Modeling Constraints

In this approach, the component to be exported in an FMU is always expected to be specified

as a nonhierarchical active class (i.e., a class with a classifier behavior and the meta-property

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 10 of 36

isActive set to true). This class can have one to many ports which play the role of FMU

variables. Each port is required to be typed by a primitive type or an enumeration.

The classifier behavior attached to the class modeling the FMU component is required to be

either an activity or a state machine. In addition, triggers used on transitions or accept event

actions can only be for ChangeEvent (see section 13.4.4 in [2]) and TimeEvent (see

section 13.4.10 in [2]). This constraint implies that the classifier behavior is only allowed to

accept event occurrence related to the change on variable value and the elapsing of time.

Finally, the model containing the specification of this simulation model shall always have the

FMI profile applied. The FMU component defined through the active class will have the

stereotype FMU (see Figure 3 in section 3.2.1.3) applied. Each port will have the stereotype

ScalarVariable (see Figure 3 in section 3.2.1.3) applied. If defined according to these

constraints the model will have a form similar to the one presented in Figure 4.

3.3.1.2 Semantics Extensions

UML semantics is precise and formal for the subset of the syntax including classes, composite

structures, activities and state machines. This implies that any model built using this subset can

by construction be executed.

Unfortunately, an FMU conforming to the modeling constraints specified in section 3.3.1.1

cannot be also conformant with the executable UML subset. Indeed, to be executed the FMU

will require that semantics for ChangeEvent (see section 13.4.4 in [2]) and TimeEvent

(see section 13.4.10 in [2]) is defined.

Figure 5 - Semantics for ChangeEvent

Figure 5 shows the extension introduced to [5] in order to provide a support for change events.

Semantics for this event type is formalized as a specialization of class EventOccurrence

(see section 8.4.3.2.6 in [5]). The FMUChangeEventOccurrence class overrides the

semantics of the match operation. A change event occurrence matches a trigger for a change

event when the changed property is the same property than the one specified in the change

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 11 of 36

expression. Such event is generated only when the value of an observed property changes and

the new value is different from the new value.

Figure 6 - Semantics for TimeEvent

Figure 6 shows the extension introduced to [5] in order to provide a support for time events.

Semantics for this event type is formalized as a specialization of class EventOccurrence

(see section 8.4.3.2.6 in [5]). The TimeEventOccurence class overrides the match

operation. Such event occurrences only match a trigger for a time event when the time at which

the time event occurrence was produced matches the time specification evaluated from the time

expression attached to a trigger.

Figure 7 - Semantics for FMUObjectActivation

The introduction of a support ChangeEvent (see section 13.4.4 in [2]) and TimeEvent (see

section 13.4.10 in [2]) requires the semantics defined for an object activation to also be

specialized. Such extension is shown in Figure 7. A new type of object activation that is specific

to FMU object is defined, this object activation enables the capability for a change event

occurrence to be registered at the event pool. One can notice that an

FMUObjectActivation specializes TimedObjectActivation that already enables

the capability to register a time event occurrence at the event pool.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 12 of 36

To use the newly defined object activation, a new type of object is defined: FMUObject. This

class is shown in Figure 8.

Figure 8 - FMU Object Class

The second purpose of defining a new type of object is to enable any instance of an FMU

represented via this object to be manipulated directly via the master controlling the execution

the execution of a graph of FMUs. To make this possible, an FMUObject implements the

FMUInterface (see Figure 8). This interface provides the operations fmiGetXXX,

fmiSetXXX and doStep. In this configuration, any instance of an FMU available at the locus

(i.e., abstraction of a physical memory) can interact with any master algorithm capable of

handling objects of type FMUInterface.

3.3.1.3 Master Interactions

This section explains how master calls are handled by FMUs in which the exported model is

specified in UML. Sections 3.3.1.3.1, 3.3.1.3.2 and 3.3.1.3.3 focus on the major interactions

occurring between the master and an FMU: variables assignment, triggering of doStep and

variables reading.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 13 of 36

3.3.1.3.1 Set variables values

Figure 9 - Set a variable of an FMU Object

The sequence model presented in Figure 9 presents the consequences of setting a variable of an

FMU object. When a variable is about to be assigned, this implies a new change event

occurrence is registered at the event pool of the FMU if (and only if) the assigned value is not

equal to the old value. Equality between objects is formally defined in section 8.3.3.2.19 in [5].

3.3.1.3.2 Perform a doStep

Figure 10 - Request a doStep on an FMU

The sequence model presented in Figure 10 shows the impact of a doStep request on a FMU.

The principle is simple: the execution progresses according to the UML semantics until the time

marking the end of the doStep is reached. In order to let the execution to progress, events of

active objects are dispatched. When no event can anymore be dispatched in any active object

then the time can progress. If the current time corresponds to the time at which the FMI step

shall end, then the step terminates which implies the master is released and can request a doStep

to another FMU.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 14 of 36

3.3.1.3.3 Get variables values

Figure 11 - Get a FMU variable value

The sequence model presented in Figure 11 shows how a request to retrieve a variable value is

handled by an FMU object. The object gets the feature value (i.e., an object maintaining the

relationship between) corresponding to the variable that needs to be read. As soon as this feature

value is retrieved the values hold by this latter can accessed by the master.

3.3.2 Approach N°2: Wrap Models into a Higher Level Component

The approach proposed in this section is based on the idea that in order to execute a UML model

in an FMU then this latter needs to be encapsulated in a higher level component. This

component will then provide wrappers in charge of the translation of master calls into

communications that can be natively handled by the simulation model. In order to execute a

deeper evaluation of these FMU wrapper approaches, we have developed prototype generators:

 The xtUML to FMU wrapper generator is based on the Bridgepoint xtUML code

generator and exemplifies the “variables as class attribute”s and the “port typed by

interfaces” variants described in Section 3.3.2.2.1 and 3.3.2.2.3, respectively.

 The UML to FMU wrapper generator is based on the txtUML and exemplifies the
attributes of distinguished signals variant described in Section 3.3.2.2.2.

The summary of our findings is discussed in Section 3.4, while the implementation details of

the prototype xtUML and UML wrapper generators are discussed in Annex 1 [4] and Annex 2

[6], respectively.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 15 of 36

3.3.2.1 Model Wrapping

Figure 12 - Proposal to wrap a UML application model in a FMU

Figure 12 shows the general architecture of the wrapping approach. In that architecture, the

simulation model specified in UML (see the blue component on the figure) is not directly

exposed to master calls. Indeed, these calls are first handled by the InputWrapper and the

OutputWrapper.

 The InputWrapper is in charge of the translation of master calls aiming to set

variables of the wrapped UML simulation model. The translation consists in

transforming the fmiSetXXX calls into messages or operation calls that can be

understood by the simulation model. These messages or operation calls when received

by the simulation model will then imply an update of the targeted variable.

 The OutputWrapper is in charge of the translation of master calls aiming to read

variables of the wrapped UML simulation model. The translation consists in

transforming the fmiGetXXX calls into messages or operations calls that can be

understood by the simulation model. These messages or operation calls when received

by the simulation model will then enable the wrapper to get access to the targeted

variable. At this point, the variable value will be communicated back to the master.

Figure 12 also set the focus on a third component: the ControlWrapper. This component is

in charge of handling the remaining FMI functions (i.e. lifecycle and simulation control

functions). It is also responsible for scheduling the execution of the UML application and

possibly modifying the states of the other wrapper components (e.g. resetting them between

simulation steps).

3.3.2.2 Modeling Constrains

This section identifies the modeling constraints applying on the application design for each

variant of the wrapping approach. These modeling constraints are respectively detailed in

sections 3.3.2.2.1, 3.3.2.2.2 and 3.3.2.2.3.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 16 of 36

3.3.2.2.1 Variables as Class Attributes

This solution uses the attributes of a selected UML class as the exposed variables of the FMU.

The selected class must be a singleton, so that each exposed variable can be matched to a single

value during runtime, or the class must expose static (class-level) attributes for the same

purpose. Note that output variables can be marked as calculated using the isDerived (see

section 9.9.17.5 in [2]) attribute of a Property (see section 9.9.17 in [2]). This implies that

the value of an output depends one to many other variables values.

The behavior of the class is expected to be a state machine. This state machine can only react

to the reception of a specific signal: DoStep. This signal will be available in a model library

and be exclusively sent by the master. Such constraint implies the state machine can only have

transitions with a trigger referencing a signal event for the DoStep signal. Guards placed on

transitions will implement the conditions allowing the state machine to switch from one state

to the other. A state machine conforming to these modeling constraints is shown in Figure 13

(this state machine is a refined version of the one presented in Figure 2).

Figure 13 - Every transition is triggered by DoStep

It is very important to note that with this configuration it is only possible for the state machine

defining the behavior of the class to traverse at most one transition per FMI step. This means

one step requested by the master implies at most one RTC step to be performed in the state

machine.

3.3.2.2.2 Attributes of Distinguished Signals

This solution proposes to group input values provided to an FMU and output values produced

by an FMU in signal attributes. The role of these signals is to enable the passing of data from

the input wrapper to the UML application and also from the UML application to the output

wrapper. In this approach, it is not mandatory for the UML application to maintain internal

properties holding the values provided as inputs.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 17 of 36

Figure 14 – Every transition is triggered by InputData

The behavior attached to the UML application is intended to be a state machine. Figure 14

shows the state machine that may implement the Thermostat behavior. Such state machine

can only have transitions triggered by the acceptance of an InputData signal.

The signature (i.e., signal attributes) of the signal is aligned with the number of inputs that are

expected to be received by the UML application. Figure 15 shows the specification of the

InputData signal in the context of the Thermostat example. This signal has two attributes

that represents inputs (i.e., current room temperature and power status) that need to be taken

into account by the UML application. Figure 15 also shows the specification of the

OutputData signal. This signal has a single attribute representing the output produced by the

UML application.

Figure 15 - Input and Output signals

It is important to note that with this approach, the UML application is intended to define a

reception for the InputData signal. This signal is the only one that when accepted can make

the state machine defining the UML application behavior to evolve. In addition, the

OutputData signal is the only type of signal that can flow out of the UML application.

3.3.2.2.3 Port Typed by Interfaces

In this solution, the provided features (i.e., messages that can be accepted by the class) represent

the input variables and the required features (i.e., messages that can be sent by the class)

represent the output variables. This implies that each attribute in signal that can be received by

the UML application is considered as an input variable of the FMU. In addition, attributes of

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 18 of 36

signals that can be received by the UML application are considered as outputs of the FMU. By

mapping FMI variables on signals that can be sent and received, any UML model can be used

through its original interface; no other design constraints apply on the model.

Figure 16 - Provided and Required Signals

Figure 16 shows signals that can be sent and received by the Thermostat. Each signal (see

right hand side of the figure) defines an attribute describing the type of data that need to be

provided either as an input or an output. In the context of the Thermostat example, the

current room temperature and the power status corresponds to inputs while the heating order

corresponds to the output.

The behavior attached to the UML application is intended to be a state machine. As there are

no constraints regarding the communications that can be received and emitted by the UML

application then no change is required to the original state machine. Hence, this state machine

corresponds to the one presented in Figure 2.

3.3.2.3 Master Interactions

This section defines for each variant of the wrapping approach their interactions with the master

when setting input variables, requesting a doStep and getting output variables. These

interactions are respectively presented in sections 3.3.2.3.1, 3.3.2.3.2 and 3.3.2.3.3.

3.3.2.3.1 Variables as Class Attributes

Wrapping

Figure 17 - Class Attributes Wrapped Model

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 19 of 36

Figure 17 shows an application of the wrapping strategy on a UML application whose main

applicative component exposes its internal attributes as variable of the FMU. As for the general

architecture, interactions with the master algorithm are handled by the input and output

wrappers. Communications between the input wrapper and the UML application are always

synchronous. This is also true for communications occurring between the UML application and

the output wrapper. These communications are formalized as call to operations. The called

operations are the setters and getters provided by the UML application for its internal properties.

Set Variables

Figure 18 shows that when the master requests to set a variable then this request is translated

by the wrapper into an operation call dispatched on the class instance representing the main

application component at runtime. After this call was dispatched the value of the property in

the class instance is updated and the master fmiSetXXX requests can terminate.

Figure 18 - Set variable – “Class attributes” approach

Do Step

Figure 19 – Request a doStep – “Class attributes” approach

Figure 19 shows that when the master requests a doStep to be performed then the wrapper

receiving the call sends a DoStep signal event occurrence to the class instance representing

the main application component at runtime. After the signal was sent, the wrapper waits for the

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 20 of 36

notification indicating the end of the step on the application side. While the wrapper is waiting

for the application notification, the master can also poll its status to check if the step is ended

or not for the FMU. In this situation, the status will remain pending until the application

responds to the wrapper. As soon as the application has responded, the status will be updated

and it will be possible for the master to read that status.

Get Variables

Figure 20 shows that when the master requests to read a variable then this request is translated

by the wrapper into an operation call dispatched on the class instance representing the main

application component at runtime. After this call was dispatched the value of the property in

the class instance is returned and the master fmiGetXXX request of can terminate. At this point

the master knows the value that was read.

Figure 20 – Get variable – “Class attributes” approach

3.3.2.3.2 Variables as Signal Attributes

Wrapping

Figure 21 - Variable as Signal Attributes - Wrapped Model

Figure 21 shows an application of the wrapping strategy on a UML application designed

according to the modeling constraints specified in section 3.3.2.2.2. In this instantiation of the

general wrapping architecture, the input and output wrappers communicates with the UML

application thanks to signal passing. It exists at most one output port for the input wrapper. This

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 21 of 36

port enables InputData signals to be sent from the input wrapper to the UML application. It

also exists at most one input port for the output wrapper. This port enables OutputData

signals to be received by the output wrapper from the UML application.

Set Variables

Setting of the FMU variables for this approach is different from the one presented in Figure 18.

Indeed, in this approach when an fmiSetXXX operation call is received by the input wrapper

from the master, the input wrapper updates the value of an internal property used to store the

value. The update of the input is performed thanks to a call to a setter provided by the input

wrapper. Such a behavior is presented in Figure 22.

Figure 22 - Set Variable – “Signal attributes” approach

Do Step

Figure 23 shows how a doStep operation call is handled by the input wrapper. When received,

the operation call triggers the sending of specific signal InputSignal to the UML

application. Values associated to the event occurrence are the input values received by the FMU

during the variable setting phase. When the event occurrence is accepted by the UML

application a RTC is performed in the state machine defining its behavior that may lead to the

sending of an output signal to the output wrapper.

Figure 23 - Do Step - "Signal attributes" approach

Get Variables

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 22 of 36

Figure 24 shows how a request to get an output is handled by the output wrapper. When

received, the fmiGetXXX call triggers the execution of the reading of an output stored at the

output wrapper. This reading is performed thanks to the execution of the getter corresponding

to the target variable.

It is important to note that variables values maintained by the output wrapper can only be

updated upon the reception of an OutputSignal event occurrence. Values hold by the signal

attributes are used to updates the output wrapper variables values.

Figure 24 – Get Variable - "Signal attributes" approach

3.3.2.3.3 Ports Typed by Interfaces

Wrapping

Figure 25 - Ports Typed by Interfaces - Wrapped Model

Figure 25 shows an application of the wrapping strategy on a UML application designed

according to the modeling constraints specified in section 3.3.2.2.3.

In this instantiation of the general wrapping architecture, the input and output wrappers

communicates with the UML application thanks to signal passing. Passed signals are those

originally intended to be received by the UML application. This implies the input wrapper

output ports will require the interfaces provided by the UML application input ports while the

output wrappers input ports will provide the interfaces required by the UML application output

ports.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 23 of 36

Set Variables

Figure 26 shows how a call to the fmiSetXXX operation is handled by the input wrapper.

When such call is received it is translated as call to the cacheValue operation. This operation

is provided by an InputCache object which is in charge of the storage of input variables

values.

Figure 26 - Set Variable - "Ports typed by interfaces" approach

Do Step

Figure 27 shows how a call to the doStep operation is handled by the input wrapper. When

such call is received, the wrapper queries cached value that are required to be sent to the UML

application. Each value is then encapsulated in a signal event occurrence and sent to the UML

application. This latter dispatches and accepts received events occurrences until the event pool

gets emptied. When the event pool is empty and the UML application is in stable state (i.e.,

there are not anymore possibilities to continue the execution) it sends a StepEnd signal to the

input wrapper. This signal indicates the end of the simulation step on the UML application side.

The master has then the possibility to account for the completion of the step.

Figure 27 – Do Step - "Port typed by interfaces" approach

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 24 of 36

Get Variables

Figure 28 shows how a call to the fmiGetXXX operation is handled by the output wrapper.

When such call is received it is translated into a call to the getCachedValue operation

provided by the OuputCache. This call returns the value attached to the target variable. It is

important to note that the value maintained by the OutputCache for a specific variable can

only have been updated if the output wrapper received a signal from the UML application

specifying the new value.

Figure 28 - Get Variable - "Ports typed by interfaces" approach

Sections 3.3.1 and 3.3.2 presented two approaches to integrate system specification described

with UML / xtUML into an FMU. The approach presented in section 3.3.1 proposes to handle

the FMU integration thanks to extension of the semantics defined for UML. Conversely, the

approach presented in section 3.3.2 proposes to handle the FMU integration through the

wrapping of the original UML application into an higher level component providing interfaces

directly compatible with those provided by a master algorithm. Three different variants of the

second approach are proposed.

Next section presents a comparison of the four different solutions.

3.4 Comparisons

The purpose of this comparison is to determine the approach offering the best trade-off between

the integration quality and the tooling required to be developed in order to make the integration

usable. The evaluation criteria are the following:

1. Compatibility

 Specify the compatibility of the different approaches with the languages (i.e.,

UML and xtUML) used to design the application to be exported in the FMU.

 Values:

 UML – xtUML – UML / xtUML

2. Constraints on the original design

 Specify if the approach used to integrate the application in a FMU requires the

original design to be refactored.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 25 of 36

 Values:

 YES – NO

3. Efforts to perform the changes on the original design

 Evaluate the efforts required to change the original design in order to conform

to the modeling constraints implied by the chosen approach.

 Values:

 WEAK – AVERGAGE – SIGNIFICANT - NONE

4. Capability to automate the changes on the original design

 Specify if the changes to be applied on the original design in order to conform

to the constraints implied by a chosen approach can be automated.

 Values:

 YES – NO

5. Efforts to automate the changes on the original design

 Evaluate the difficulty to implement tools to automate the changes to be

performed on the original design per approach.

 Values:

 WEAK – AVERAGE – SIGNIFICANT – NONE

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018

 Semantic Extension Variables as Class attributes Variables as Signal Attributes Ports typed by interfaces

Compatibility
UML. This approach was not

evaluated on xtUML.
UML / xtUML UML / xtUML UML / xtUML

Constraints on

the original

design

YES. It is mandatory for the

designer to use the FMI profile to

configure the FMU. In addition,

triggers on transitions can only be

for change events and time

events.

YES. It is mandatory for the designer

to define getters and setters for all

properties that are desired to be

exposed as FMU variables.

YES. The application can only have a

single input and output port. The input

port enables receptions of InputData

signals while the output enables

receptions of OutputData signal.

NO.

Effort to

perform the

changes on the

original design

AVERAGE. FMU stereotypes

need to be applied on the

application. In addition the state

machine transition shall be

refined.

SIGNIFICANT. Getters and setters for

FMI variable are required to be

provided. The behavior shall be refined

to only account for DoStep signals.

SIGNIFICANT. The behavior shall be

refined to only account for InputData

signal events and send variable updates

as OutputData signal events..

NONE.

Capability to

automate the

changes on the

original design

YES. YES YES NO

Effort to

automate the

changes on the

original design

WEAK. For instance, Papyrus

already provides the capability to

use the FMI profile. Few more

accelerators are required to make

the application of stereotypes on

multiple model elements in a

single click.

AVERGAGE. It requires the definition

of an in-place model transformation.

AVERAGE. It requires the definition

of an in-place model transformation.
NONE.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018

The comparison sets the focus on the wrapping approach, in particular on the “Port typed by

interfaces” variant. Indeed, this variant of the wrapping approach is compatible with both UML

languages and does not require the original model to be changed (i.e., the wrappers are designed

to communicate only via messages originally supported by the application).

However, it is important to mention that even if the “Port typed by interfaces” does not require

changes in the original UML model, integrating the approach into a multi FMU simulation

scenario can be cumbersome as processing the UML signals mapped to the FMU variables

requires additional data transformations.

3.5 Issues to be resolved

Although this document specifies the basics to integrate simulation models described with

UML or xtUML in FMU, some issues have been identified by the T2.2 task force. This issues

still need to be discussed and resolved in order to enable a full usage of the UML and xtUML

simulation models in the FMI context. These issues and their proposed resolutions (if any) are

described in the following sections.

3.5.1 Roll-Back Support

3.5.1.1 Issue Description

An FMU supporting rollback has the capability to refuse a step requested by the master (e.g.

due to an incompatible communication step size). This implies either fmi2Error or

fmi2Discard status are returned to the master after a doStep call was received and

computed by the FMU. The difficulty here is that the FMU state may have changed. Hence,

before redoing a step it is required to restore the FMU to its previous state (i.e., the one known

before the failure of the first doStep).

3.5.1.2 Issue Discussion / Resolution

At runtime, the different states of the application designed in UML or xtUML is not maintained.

Hence it is not possible (at least currently) to allow an FMU encapsulating a simulation model

designed in UML or xtUML to support rollback.

In order to provide a support for rollback it is required to build a trace model along the

simulation of UML and xtUML models. Such models will be used to keep track of the states of

the simulation models before and after each doStep. In this way, it will be possible to restore

the state of an FMU encapsulating a simulation model specified either with UML or xtUML

after the failure or the discarding of a doStep.

It is important to note that the definition and the implementation of such tracing capability is a

significant work. In addition, the possibility to define a common trace meta-model for UML

and xtUML is required to be evaluated. However, it can be anticipated that for the behavioral

aspects, the trace models for UML and xtUML will be different. Indeed, in UML activities are

used while it is not the case for xtUML which replaces them with the possibility to specify low

level computations a textual action code.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 28 of 36

3.5.2 Inputs Consumption Support

3.5.2.1 Issue Description

In approaches presented in sections 3.3.1 and 3.3.2.2.3 FMU inputs are provided in separated

event occurrences. Indeed, in the approach presented in section 3.3.1 each time an input is

provided a change event occurrence is placed at the event pool of the UML application. In the

approach presented in section 3.3.2.2.3, all inputs are forwarded to the UML application as

signal event occurrences. Each input is placed in a different signal event occurrence.

At runtime, the master algorithm expects the FMU to consume all inputs at the same time (i.e.,

at the beginning of a step). However, this is not what happen if modeling approaches presented

in sections 3.3.1 and 3.3.2.2.3 are used. Indeed, each event occurrence corresponding to an input

will trigger a RTC step that may modify the state of the UML application. Hence, as the state

of the application may be modified by the acceptance of an event occurrence then the order in

which these event occurrences are accepted has a great impact on the behavior of the

application.

Figure 29 - Thermostat Behavior - "Ports typed by interfaces" approach

The issue can be highlighted through the example presented in Figure 29. Let consider the state

machine is in state TurnedOff and the two different ordering of the event occurrences

received by the Thermostat:

1. {RoomTemperature{value=19}, Powered{value=true}}

 In such situation, the state machine can accept the Powered event occurrence

and traverse transition T1. Next depending on the specified target temperature,

either T3 or T4 can be traversed upon the acceptance of RoomTemperature.

2. {Powered{value=true}, RoomTemperature{value=19}}

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 29 of 36

 In such situation, the state machine is not in a configuration allowing the

acceptance of the RoomTemperature event occurrence. Per the UML

semantics, an event that is extracted from the event pool and cannot be consumed

is lost. At this point the state machine remains in state TurnOff. When the

Powered event occurrence is accepted then T1 is traversed and the state

machine reaches the state Updating.

The ordering has an impact on the behavior execution since with the two different event pools

presented above, the state machine does not reach the same configuration when all events

occurrences have been dispatched.

3.5.2.2 Issue Discussion / Resolution

UML and xtUML semantics are precise: an event occurrence, if accepted triggers a RTC step

in the behavior of the object that accepted this latter. The issue here is inherent to the way the

UML application is notified about input variables updates.

Approach presented in sections 3.3.2.3.1 and 3.3.2.3.2 only partially resolve this issue. Indeed,

the approach presented in section 3.3.2.3.1 suggests that input variables are updated

synchronously (via calls to setters) within the context of the UML application. Hence all

variables are available locally when the doStep is triggered by the acceptance of a DoStep

signal. The approach presented in section 3.3.2.3.2 suggests that variables updates and

triggering of a doStep are combined. Hence, a step is triggered by the acceptance of single

signal InputData. This signal event occurrence also contains all input values. These latter

become available in the same RTC step.

However approaches presented in sections 3.3.2.3.1 and 3.3.2.3.2 both require the behavior of

the UML application to be changed to receive a signal that is not natively used by this latter

(i.e., DoStep and InputData). The best trade-off between the preservation of the of the

communications natively supported by the UML application and the presence of a specific

signal to trigger a step might be to:

1. Ensure all variable updates have been received first.

2. Make sure the UML application send to itself a user defined signal enabling the actual

FMI step to be performed.

An alternative to this might to rely on deferred event semantics (see section 14.2.3.4.4 in [2]).

It is important to note that both solutions are clearly hypothetical and require to be evaluated in

order to make sure they are applicable.

3.5.3 Outputs Production Support

3.5.3.1 Issue Description

In UML or xtUML multiple messages can be propagated through output ports of a composite

structure along a single RTC step. However, in the FMI context, if the output variables of an

FMU are updated multiple times then only the latest values will be available at the time at which

the master will propagate the output. This is an important issue since values may have been lost

and so no have been communicated to the environment of the FMU.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 30 of 36

This issue is highlighted thanks to the Feeder example. In this example two discrete UML

models are connected in a FMI co-simulation. Their interactions are serialized to two variables

between the two FMUs.

One of the models is a source and the other one is a sink. The interaction between them is the

following: The Sink asks for a given amount of data, and the source responds with the given

number of signals each one containing one unit of information. If the UML models are

connected in a non-FMU simulation the result is as expected, all of the sent messages arrive.

However, in an FMU environment, when using the "Keep the last signal10" strategy, for each

interaction only the last data message is kept. For this reason, the behavior of the system will
not be the expected.

Another example from the Sink part:

3.5.3.2 Issue Discussion / Resolution

Three different strategies were discussed by the T2.2 task force in order resolve this issue.

These strategies are presented in sections 3.5.3.2.1, 3.5.3.2.2 and 3.5.3.2.3

10 This strategy ignores all messages but the last one. That is, the wrapper overwrites the output variables whenever an output signal arrives.

@From(Running.class)@To(Running.class)@Trigger(RequestSignal.class)

class ReceiveResponse extends Transition {

@Override

public void effect() {

RequestSignal trigger = getTrigger(RequestSignal.class);

for (int i = 0; i < trigger.amount; i++) {

 Action.send(new ResponseSignal(3),

assoc(SinkSourceAssoc.sink.class).selectAny());

}}}

@From(Running.class)@To(Running.class)@Trigger(ResponseSignal.class)

class ReceivedLastResponse extends Transition {

@Override

public boolean guard() {

return remaining <= 1;

}

@Override

public void effect() {

ResponseSignal trigger = getTrigger(ResponseSignal.class);

Action.log("" + trigger.data);

Action.log("RECEIVED " + requested + " MESSAGES");

++requested;

remaining = requested;

Action.send(new RequestSignal(requested),

assoc(Assoc.source.class).selectAny());

}}

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 31 of 36

3.5.3.2.1 Report on Error

In this case, an error is reported upon the arrival of the second signal of the same type in the

same simulation step. This solution is safe and simple but it only works well with UML models

that behave according to this limitation.

3.5.3.2.2 Arrays of Values

This solution is a generalization of the one in section 3.5.3.2.1. For each signal type s, an upper

bound ubs is defined: The model is allowed to send signals of type s at most ubs times within

one simulation step. For the signal type s, there are several exported variables: An integer ns,

which tells how many signals of type s have been sent during the simulation step, and for each

attribute a of s, there are ubs exported variables, a1, a2, …, aub, to hold the values of the signal

attribute in the signal instances that have been sent. When a simulation step completes, then

only the first ns variables, namely a1, a2, …, an contain relevant values. If no output signal of

type s appeared in the simulation step, then ns=0, and none of the a1, a2, …, aub variables hold

relevant data. If the upper bound of a signal is violated, then an error is raised and the co-

simulation is stopped. This encoding is similar to a variable sized bounded vector, which is

encoded using an integer (length) and a partially filled buffer.

3.5.3.2.3 Rollback

This solution assumes that UML models are enriched with time information, and the simulators

of the UML models support roll-back (see issue on rollback support in section 3.5.1), that is,

going back to previous states in the execution. If these requirements are fulfilled, then a UML-

FMU detecting more than one signal of the same type can inform the master simulation tool

that it is in a un stable state, and ask for smaller execution step. All the co-simulated models

will then be rolled back to the beginning of the simulation step. The smaller step size will then

give a chance to the problematic FMU to emit at most one signal (of each type), so that the

problem gets resolved.

3.5.4 Time Support

3.5.4.1 Issue Description

The integration of UML and xtUML models in FMU requires that interpreters for these models

enable the capability to account for time (i.e. to have the capability to maintain a representation

of the simulated time). The purpose of having this representation of time is to have the

capability to control that steps performed on the UML application side are constrained by the

step size imposed by the master algorithm when it requests a doStep.

Both xtUML and UML provide the capability to specify time constraints on the model (e.g.,

information on the model specifying the execution during of model elements or dates at which

a time event shall be received). However:

1. Time in UML has no formal semantics (i.e., the time semantics is not defined in a way

that allows time to be represented during a simulation). Indeed, time is not part of the

UML subset considered by the Executable UML specifications: fUML [5], PSCS [7]

and PSSM [8].

2. Time has semantics in xtUML but its representation is based on real-world time rather

than an abstraction of time. This works fine with models that are meant to be executed

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 32 of 36

in a real environment, but during a simulation it would cause problems. To be able to

simulate time in an xtUML model, it has to be based on the simulation time.

Both issues are required to be resolved in order to make sure that modeled timings can be

accurately simulated and to prevent a simulation models to execute more tasks than allowed in

the time frame specified by the master algorithm for the requested step.

3.5.4.2 Issue Discussion / Resolution

3.5.4.2.1 xtUML

In order to have the possibility to represent simulated time, the proposal is to substitute the

existing timers with modified ones that increment the time based on the simulation steps, the

same timed events can then be used as in the original implementations. The events delayed to

a certain point in time will occur as soon as the simulation time passes that timestamp.

In order to ensure that simulated computation time fits into the constraint imposed by the step

size requested by the master, it is proposed to introduce the notion of remaining execution

duration of operations, which has to be maintained for the next operation. If the operation

cannot be completed in the current step, then the remaining duration of the simulation step

should be subtracted from the remaining duration of the operation, and the event processing

should be paused. The operation should be examined again in the next step. The operation

should only be executed in the simulation step it can be completed in, to make sure it doesn’t

yield results before it should be able to.

Note that this method also provides solution to the problem of infinitely running execution

loops. If a model generates internal events during its execution, then the event queue might

never be empty, causing the run-to-completion method to become an infinite loop. By halting

event processing if a certain amount of work is completed, this cannot happen. Even if the

execution times of operations are not provided in the model, a special timer could be introduced,

that ends the simulation step and pauses the execution loop after a certain amount of time, to

avoid infinitely running simulation step.

3.5.4.2.2 UML

In order to represent time during simulation semantics of time in UML was formalized. This

extension is defined as an extension of the Executable UML standards: fUML [5], PSCS [7]

and PSSM [8]. In particular it integrates a support for TimeEvent (see section 13.4.10 in [2]).

However, it is important to note that this semantics are not normative. Hence support for time

semantics in UML models is currently specific to Moka.

As specified in section 3.3.1, Moka provides an extension of the Executable UML semantics

that enables the integration between FMI and UML. This extension combined to the one adding

the capability to account for time during simulation guarantee that a UML model executed in

an FMU will not execute more operations than allowed in a step requested by the master during

a doStep. Indeed, when the master requests a step, the discrete clock handling the simulation

time is notified (i.e., it receives a notification about the time at which the simulation step shall

end). If the behavior of the UML application suspends for time events, then if these events are

timestamped with a date that is on the future of the end of the FMI step then these events will

not be dispatched. If these events are not dispatched, then they cannot trigger any RTC step in

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 33 of 36

the UML application. It is important to note that the aforementioned behavior make the

assumption that the designer of the application provided specifications regarding timing. If not,

then everything is executed in zero-time meaning that a simulation step will end only when all

events in the pool of the UML application have been dispatched. This situation may obviously

lead to situations where the requested FMI step never ends.

It is also important to note that this handling of time and FMI integration through a semantics

extension is specific to Moka. The same model in a different tool may be executed in a different

manner if it does not conform to the same semantics extensions.

4 CONCLUSIONS

This document describes two families of approaches to integrate simulation models specified

in UML or xtUML in FMUs.

The first approach (see section 3.3.1) advocates for an integration based on semantics

extensions. While this approach applies well for the UML context, it does not fit with xtUML

whose semantics is not intended to be extended. In addition, this approach is currently specific

to the implementation provided in Papyrus Moka.

The second approach (see section 3.3.2) advocates in favor of an integration based on wrapping

strategy. The core idea is to have input and output wrappers responsible for translating master

requests in communications that can be understood by the simulation model (i.e., the UML or

xtUML application). Three variants of this approach were proposed.

 Two of them (see sections 3.3.2.2.1 and 3.3.2.2.2) impose strong constraints regarding

the refinement to be applied on the original simulation model in order to make it usable

in the context of an FMU. In particular, they both suggest the usage of domain specific

signals to control the execution of the application behavior. These approaches will likely

not be accepted by the final users if the refinement of the original model cannot be made

automatically. While the automation could be made, it requires a development effort

that cannot be neglected.

 The third variant (see section 3.3.2.2.3) has the advantage to preserve the original design

from being changed while still enabling its integration within an FMU. The core idea is

to make sure that wrappers enabling the communications with the simulation model

only uses communication natively handled by this latter. However, one significant issue

with this approach is the way inputs and outputs are “provided to” the simulation model.

Inputs are sent as signal events occurrences. These event occurrences are sent

asynchronously and received in a certain order. The order in which the event

occurrences are dispatched has a great impact the behavior realized in the simulation

model (see issue presented in section 3.5.2).

In presents situation, the approach based on the wrapping strategy is applicable both to UML

and xtUML. In addition, the third variant “Port typed by interfaces” is one minimizing the

impact on the original design. Hence, the task T2.2 task force promotes the usage of this

approach to integrated UML and xtUML with the FMI standard. However, the acceptability of

the solution is strongly conditioned by the availability of the tooling enabling designers to

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 34 of 36

automatically produce the input and the output wrappers in charge of making the translations

between the master requests and the communications with the underlying simulation model.

Further developments to better integrate FMI with UML and xtUML should address issues

presented in section 3.5.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 35 of 36

TABLE OF FIGURES

Figure 1 - Test Case Environment ... 5
Figure 2 - Behavior specification of Thermostat FMU 5

Figure 3 - Excerpt of a UML profile for FMI ... 8
Figure 4 - Thermostat FMU defined with UML and the FMI profile 8
Figure 5 - Semantics for ChangeEvent ... 10
Figure 6 - Semantics for TimeEvent ... 11
Figure 7 - Semantics for FMUObjectActivation ... 11

Figure 8 - FMU Object Class .. 12
Figure 9 - Set a variable of an FMU Object .. 13
Figure 10 - Request a doStep on an FMU ... 13
Figure 11 - Get a FMU variable value .. 14
Figure 12 - Proposal to wrap a UML application model in a FMU 15

Figure 13 - Every transition is triggered by DoStep 16

Figure 14 – Every transition is triggered by InputData 17

Figure 15 - Input and Output signals ... 17
Figure 16 - Provided and Required Signals .. 18
Figure 17 - Class Attributes Wrapped Model ... 18

Figure 18 - Set variable – “Class attributes” approach 19
Figure 19 – Request a doStep – “Class attributes” approach 19

Figure 20 – Get variable – “Class attributes” approach 20
Figure 21 - Variable as Signal Attributes - Wrapped Model 20
Figure 22 - Set Variable – “Signal attributes” approach 21

Figure 23 - Do Step - "Signal attributes" approach ... 21
Figure 24 – Get Variable - "Signal attributes" approach................................... 22

Figure 25 - Ports Typed by Interfaces - Wrapped Model 22

Figure 26 - Set Variable - "Ports typed by interfaces" approach 23

Figure 27 – Do Step - "Port typed by interfaces" approach 23
Figure 28 - Get Variable - "Ports typed by interfaces" approach 24

Figure 29 - Thermostat Behavior - "Ports typed by interfaces" approach 28

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 36 of 36

REFERENCES

[1] MODELISAR Consortium / Modelica Association Project, "Functional Mock-up

Interface for Model Exchange and Co-Simulation," 2014.

[2] OMG, "OMG Unified Modeling Language (UML)," 2015.

[3] OneFact, "Executable, translatable UML with BridgePoint," [Online]. Available:

https://xtuml.org/.

[4] OpenCPS Consortium, "Annex 1 of D2.2: xtUML to FMU prototype generator".

[5] OMG, "Semantics of a Foundational Subset for Executable (fUML)," 2016.

[6] OpenCPS Consortium, "Annex 2 of D2.2: The txtUML modeling tool".

[7] OMG, "Precise Semantics for UML Composite Structures (PSCS)," 2015.

[8] OMG, "Precise Semantics for UML State Machines," 2015.

OPENCPS
ITEA3 Project no. 14018

Annex 1
of D2.2

xtUML to FMU Prototype Generator

Access1: PU

Type2: Prototype

Version: 1.1

Due Dates3: M24

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

Annex 1 of D2.2 focuses on the developed xtUML FMU wrapper generator prototype that helped us
to understand the different options available for mapping xtUML methods and events to FMU
variables. Our findings about the different wrapping based approaches are summarized in ection
3.3 of D2.2.

1Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.

2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 2 of 34

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main
Author(s)5

Deliverable
Leader6 Ákos Horváth IncQuery Labs

Task leader
(for the annex)

X

Contributing
Author(s)7

Rebeka Farkas IncQuery Labs Contributor X

Krisztián Mócsai IncQuery Labs Contributor X

Zoltán Ujhelyi IncQuery Labs Contributor X

Dániel Segesdi IncQuery Labs Contributor X

Internal
Reviewer(s)8

Document History:

Version Date Reason for Change Status9

0.1 10/11/2017 First Draft Version Draft

1.0 17/11/2017 Final version based on feedback Final

1.1 17/11/2017 Apply remarks for Magnus Final

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8Typically person(s) with appropriate expertise to assess deliverable structure and quality.

9Status = “Draft”, “In Review”, “Released”.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 3 of 34

CONTENTS

CONTENTS .. 3

Abbreviations ... 3

1 Overview .. 4

1.1 Introduction ... 4

1.2 xtUML and BridgePoint .. 4

1.3 FMI and FMU .. 4

1.4 xtUML transformation to FMU ... 4

2 ARChITECTURE .. 6

1.5 Environment .. 6

1.6 Models ... 6

1.7 Project structure ... 9

User GuIDE .. 15

2.1 Overview ... 15

2.2 Environment setup ... 15

2.3 Usage ... 25

2.4 Description of the used xtUML model .. 32

3 SUMMARY ... 33

 ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

M&S Modelling and Simulation

N/A Not Applicable

SotA State of the Art

TBD To Be Defined

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 4 of 34

1 OVERVIEW

1.1 Introduction

The goal of this sub-project is provide support for transforming xtUML models to standardized

FMU which has to be capable of co-simulation with other FMUs.

The document is structured as follows. Section 1 provides some background information on the

used technologies and standards and explains the basics of our solution of the xtUML to FMU

transformation, Section 2 presents the architecture of our implementation, including the used

technologies, the models we work on and explains each steps of the transformation, Section 3

provides a user guide that explains how to use the software from the installation phase, and

provides an example and Section 4 concludes this document.

1.2 xtUML and BridgePoint

Executable and translatable UML (xtUML) accelerates the development of real-time,

embedded and technical software systems. Proven and well defined, xtUML is a fully

automated methodology utilizing a UML notation. The most common tool for xtUML models

is called BridgePoint (BP).

For more information of xtUML and BridgePoint please visit this website.

1.3 FMI and FMU

The Functional Mock-up Interface (FMI) is a tool independent approach for model exchange

(ME) and co-simulation (CS), and on the way to become the industry standard for exchange of

models and cross-company collaboration. Its main purpose is to share and reuse simulation

artifacts among a wide variety of tools and environments, by putting the model specifications

into a simple compressed file called Functional Mockup Unit (FMU). The FMU contains a

model description in XML format, source written in C and/or binaries ready to run and optional

components such as documentation, model logo, etc.

For more information of FMI please visit this website.

1.4 xtUML transformation to FMU

The FMI standard was created with continuous-time models in mind, which makes this

transformation a non-trivial task.

The solution of the transformation is generate wrapper in C code to the executable code, which

provides the connection interface of xtUML and the interface of FMI standard. The structure

of this wrapper is depicted in Figure 1. The inner components of such an FMU wrapper can be

grouped into three parts:

1. The input-wrapper which translates incoming FMI variables into actions to be

performed on the underlying UML model.

https://xtuml.org/learn/articles/
http://fmi-standard.org/

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 5 of 34

2. The output-wrapper which translates certain actions and changes of the UML model

into outgoing FMI variables.

3. The control-wrapper which can handle the remaining FMI functions (i.e. lifecycle and

simulation control functions). This component is responsible for scheduling the

execution of the UML application and possibly modifying the states of the other wrapper

components (e.g. resetting them between simulation steps).

Figure 1 FMU wrapper

Generating this wrapper is refined to 5 sub-steps, which is can be found in Figure 2 signed with

red circle. The detailing of this steps described in the Architecture section.

Figure 2. xtUML to FMU

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 6 of 34

2 ARCHITECTURE

1.5 Environment

1.5.1 Eclipse

Eclipse is a Java-based IDE with an extensible plug-in system, that allows the user to customize

the environment as well as to develop and install their own plug-ins. For more information on

Eclipse please visit the Eclipse website.

Many applications are based on Eclipse, including BridgePoint. This software is also based on

an Eclipse.

1.5.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is also based on Eclipse. It provides a modeling

environment, that allows the user to design class diagram-like metamodels and a code generator

that generates Java structures (classes, interfaces, etc.) from the model. This improves the

simplicity of creating complex data structures. For more information on Eclipse Modeling

Framework please visit the EMF website.

This software uses EMF to represent xtUML models and transform them to FMUs.

1.5.3 BridgePoint

In BridgePoint you can create and edit xtUML models. BridgePoint has a code generator that

creates executable code from the xtUML models to many languages. In this project we used

and modified the C code generator of BridgePoint.

For more information of xtUML and BridgePoint please visit this website.

1.5.4 FMU SDK

The FMU SDK is a free software development kit provided by QTronic to demonstrate basic

use of Functional Mockup Units (FMUs) for model exchange and for co-simulation as defined

by the FMI Specification version 2.0 and 1.0. FMU SDK can also serve as a starting point for

developing applications that create or process FMUs.

1.6 Models

1.6.1 FMU model

Our FMU metamodel is an EMF model that corresponds to the FMI standard. This is a big

model, however, the important information about it is that at its lowest level it has the primitive

variable ScalarVariable from which the FMU model is constructed.

https://www.eclipse.org/home/
https://www.eclipse.org/modeling/emf/
https://xtuml.org/learn/articles/

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 7 of 34

For more information, please visit this website.

1.6.2 xtUML model

Project structure of xtUML project generally looks like next snippet.

RootPackage //Root of Project

|

+-- component1 //Component is the main

| | //of the logical model

| | //Cardinality of Component is zero or more

| +-- componentPackage

| |

| +-- classPackage

| | |

| | +-- class1

| | |

| | +-- instanceStateMachine

| | |

| | +-- classStateMachines

| |

| +-- port1 //Implementation of an interface

| | //At this point implemented what

| | //should happen at communication

| +-- portK

|

+-- interface1 //Interfaces to make inner

| //or outer connections

|

+-- interfaceN

Components can use interfaces as both provided interfaces and required interfaces, which will

appear as ports. Over these ports the component can connect to other xtUML or OpenModelica

models. In xtUML interfaces can contain both signals and operations, but this project does not

support the latter. However, signals can contain parameters, that are supported.

Because of this, the transformation from xtUML to FMU is not straightforward. In xtUML there

are signals with zero or more parameters while an FMU only has the ScalarVariable. The other

problem is that signals can be triggered more than once in a simulation step.

Our solution for these problems is demonstrated on the following example.

The signal1(Real param1, integer param2) should be mapped to the following variables:

 signal1Count [integer]

 signal1_param1_1 [real]

https://svn.modelica.org/fmi/branches/public/specifications/v2.0/

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 8 of 34

 signal1_param1_2 [real]

 …

 signal1_param1_N [real]

 signal1_param2_1 [integer]

 signal1_param2_2 [integer]

 …

 signal1_param2_N [integer]

1.6.3 xtComponent model

Figure 3. xtComponent model

An xtComponent model is the representation of an xtUML model under EMF, generated by the

emfGenFromXtUML.py python script.

The root element of this model is the XtPackage element. The value of its name attribute is

derived from the xtUML project’s name.

The XtPackage has XtComponent elements, that have XtInterface elements. XtInterfaces are

either provided (ProvidedInterface) or required (RequiredInterface). XtInterfaces have Signal

elements, that are also of two types: FromProvider or ToProvider. Signals may have Parameter

elements, that have name, type and index attributes. The index is required, because later at the

C code generation phase the order of the parameters becomes important.

The data flow direction is defined by the XtInterface and Signal pair:

 ProvidedInterface RequiredInterface

FromProviderSignal Output Input

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 9 of 34

 ProvidedInterface RequiredInterface

ToProviderSignal Input Output

1.6.4 Mapping model

The mapping model maps between a xtComponent model and FMU model. The root element

of this model is the Mapping element. This element has references to an xtComponent model

and to an FMU model.

It has Link elements and a maxIndex attribute representing the number of links belong to one

Parameter of the XtComponent. This attribute determines how many event can be handled at

co-simulation.

A Link is either a ParameterLink or a SignalLink. Every Link refers to an FMU’s parameter: a

SignalLink refers to a Signal and a ParameterLink refers to a Parameter of the XtComponent,

such that for each Parameter there are exactly maxIndex referring ParameterLink elements,

indexed from 0 to maxIndex-1.

Figure 4. Mapping model

1.7 Project structure

This section presents the five steps that - as it was mentioned in the Overview section in Figure

2 - make up the transformation.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 10 of 34

Table 1. Description of steps

Steps Derive Environment Responsible Plugin

BP code

generator

BP with

modification
BP

plugins/com.incquerylabs.

opencps.bp.mc.c.source/

Python

code

generator

IncQueryLabs

(using BP’s python

libraries)

Terminal
simulator/pyxtuml/

emfGenFromXtUML.py

Generate

FMU and

Mapping

models

IncQueryLabs Eclipse

plugins/com.incquerylabs.

opencps.XtUML.

mapping.transformation/

Generate

interface

IncQueryLabs Eclipse

plugins/com.incquerylabs.

opencps.mapping.

transformation/

FMUSDK

interface

FMUSDK with

modification
Terminal

simulator/fmuCreator/

Makefile

1.7.1 BP code generator

The first step is to generate the C code, witch implements the behavior of the model.

A generator is already implemented in BP to generate an application in C code. In our

implementation it modified to generate C code that can be wrappered to FMU. For example the

generated code does not simulate time, but relies on outer sources to provide the simulation

time.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 11 of 34

1.7.2 Python code generator

The next step is to generate an EMF model, which is the representation of the xtUML model.

This step allows us to move the xtUML model to EMF environment so that other steps can use

it later.

Table 2. Matching between xtUML and xtComponent

xtUML element xtComponent element

rootPackage XtPackage

component XtComponent

port XtInterface

signal Signal

parameter Parameter

1.7.3 Generate FMU and Mapping models

The next step is to generate an FMU model and a Mapping model, which has the connections

between the Component model and FMU model.

This solves the problem mentioned in Section 2.2.2. The matching between xtComponent

model and FMU model is listed in the following table.

Table 3. Matching between xtUML and xtComponent

xtComponent element FMU element

XtPackage ---

XtComponent ---

XtInterface ---

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 12 of 34

Table 3. Matching between xtUML and xtComponent

xtComponent element FMU element

Signal ScalarVariable [Integer]

Parameter [type X] ScalarVariable [type X]*

At this moment the cardinality of the ScalarVariable at the Parameter-ScalarVariable pair is

fixed to 3.

1.7.4 Generate interface

The next step is to generate the wrapper C code and provide a modelica model.

1.7.4.1 Wrapper C code

First, the wrapper C code is generated that creates the connections between the source code and

standard FMI functions. For example the param1_1 ScalarVariable derived from signal1(Real

param1, integer param2) output signal, generates an fmi2GetReal method.

1.7.4.2 Modelica interface model (optional, not necessary for making FMU)

The Modelica model is an optional help to make data transformation automatically at Modelica.

The Modelica can handle only one signal (as data) at one simulation step, hence the user has to

define how to aggregate the parameters of the signal. There are already 6 options to that:

minimum, maximum, first, last, sum and avg. The default method is last.

The output of the model can be multiple data, because if the receiver is xtUML-FMU, it can

handle more signals and if the receiver is Modelica-FMU, it can chose what to do as described

above. Therefor this interface Model collects how many times the output signal was triggered

in one simulation step.

The following example shows the modelica model generated from a simple xtUML model. The

xtUML has one component within one provided interface within 2 signals. The first signal’s

message direction is from provider, and second signal’s message direction is to provider. The

first signal is an output in the xtUML model, therefore it will appear as input at Modelica. For

ease of understanding the first signal was named InputSignal and second OutputSignal.

InputSignal has an Integer and a Real parameter and OutputSignal has a Boolean and an Integer

parameter.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 13 of 34

The generated transformed modelica model can be seen in Figure 5. In the picture you can see

the signals appear as Boolean input and output. The inner logic counts how many times the

OutputSignal is triggered and caches the parameters of the signal those moments.

Figure 5. The generated transformer modelica model

The data transform interface is shown in Figure 6.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 14 of 34

Figure 6. Data transform interface

You can find this example in repository at models/model_src/Modelica_interface.

1.7.5 FMU SDK interface

The final step is to generate a standard FMU. At this point all sources are available to make an

FMU, and all that is left to do is to compile them together. This can be performed by FMU

SDK.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 15 of 34

 USER GUIDE

2.1 Overview

2.2 Environment setup

2.2.1 Installation

The project environment requires Java to be installed. It can be downloaded from Oracle’s

website.

There is no update-site yet, where an Eclipse with the required plugins can be downloaded.

Instead, this guide uses the Eclipse Installer, which can be downloaded from

https://www.eclipse.org/downloads/.

The project also relies on Python to be installed. It can be downloaded from this website. The

project work with both main version of Python (2.x and 3.x).

2.2.2 Eclipse setup

2.2.2.1 Downloading Eclipse

1. Run the Eclipse Installer in advanced mode. This can be achieved by clicking on the

three horizontal lines in the upper right corner and selecting advanced mode.

2. The first task is to choose the Eclipse distribution to install.

a. Make sure everything is up-to-date, by clicking on the Install available updates

button, next to the Back and Next buttons on the bottom.

b. From the list of products, choose Eclipse Modeling Tools.

c. In the lower part of the screen select product version Oxygen, and make sure the

settings are correct.

d. Finally, hit Next.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/
https://www.python.org/downloads/

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 16 of 34

Figure 7. Eclipse Installer 1

3. The next task is to import the eclipse projects you will use.

a. Click the green + button in the upper right corner.

b. In the appearing window choose GitHub projects from the drop-down menu.

c. The required Resource URI can be retrieved the following way.

i. Make sure you are logged into GitHub and have an access to the

repository.

ii. Open TODO make public link link and copy the URL from the browser

(it will have your token at the end).

iii. Copy the link and paste it to the Eclipse Installer.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 17 of 34

Figure 8. Eclipse Installer 2

d. Hit OK.

e. You’ll see, that a new folder, named <User>, has been created in the GitHub

category, which has a project named opencps-hungary. Select it.

f. Finally, hit Next.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 18 of 34

Figure 9. Eclipse Installer 3

4. The next task is to select where you want to keep the resources for Eclipse. If you select

Show all variables you can set the paths of more resources in a more advanced way,

otherwise the defaults will be set.

a. Check Show all variables

b. Choose a folder to install Eclipse.

c. Set a workspace folder. Eclipse uses workspaces to organize the Eclipse projects

you are working on, many settings for this application will be stored in the

selected folder, however the projects themselves will be imported from the Git

clone location.

d. Browse your folders and set the one where you cloned the GitHub repository of

this project.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 19 of 34

e. Set the target platform to Oxygen.

f. Finally, hit Next.

Figure 10. Eclipse Installer 4

5. In the appearing window, click Finish and the setup process begins. It migtht take up a

few minutes, but once it’s finished, it will open the newly installed Eclipse Oxygen

automatically.

2.2.2.2 Resolving compile errors

After launching, Eclipse will need to take some time and import the projects. You can see the

progress in the down right corner. Once it’s done, there will be a lot of errors in the workspace

(as you can see in the Model Explorer once you close the Welcome tab), but the following steps

will resolve them.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 20 of 34

1. First of all, you have to generate the model code from each genmodel (they are located

in the model folder in each project), which are in the following projects:

 com.incquerylabs.opencps.fmu.from.xsd

 com.incquerylabs.opencps.simulation.model

 com.incquerylabs.opencps.xtComponent.model

 com.incquerylabs.opencps.xtuml.mapping.model

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 21 of 34

Figure 11. Genmodel in the Project

2. To generate model code, open a .genmodel file, right click on the root element, and click

Generate Model Code. Wait until Eclipse builds the workspace and then do the same

with Generate Edit Code and Generate Editor Code.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 22 of 34

Figure 12. Generating from genmodel

A more simple solution is to simply click Generate all, and remove the generated test-

related projects.

3. After you’ve done that, clean all projects.

4. That’s it, you are all set now, the workspace should be errorless.

2.2.3 xtUML setup own code generator

First you need to import a project into BridgePoint. It is under opencps-hungary repository in

plugins folder named com.incquerylabs.opencps.bp.mc.c.source.

Now, right click on your project witch contain the xtUML model and select Properties.

Left side of the current open window select Builders. To create new builder press the New…

button. Select Program, OK.

The build name could be IQL_Model_Compiler or what ever you want.

Location would be the xtumlmc_build.exe of the previously imported project’s. Something like

this:

${workspace_loc:/com.incquerylabs.opencps.bp.mc.c.source/mc302

0/bin/xtumlmc_build.exe}

Working Directory would be the gen folder of the project:

${build_project}/gen

Arguments have to be the following:

-home

"${workspace_loc:/com.incquerylabs.opencps.bp.mc.c.source/}" -

l3s -e -d code_generation -O ../../src/

Click OK

Lastly, disable the original Model Compiler.

The result is illustrated in Figure 13.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 23 of 34

Figure 13. Build for xtUML project

2.2.4 Install python dependencies

2.2.4.1 In Linux

Download ply from this website, extract and install with the next commands.

$ cd ply-3.10 #The version may be different

$ sudo python setup.py install

Fetch the source code from github and install it manually:

$ git clone https://github.com/xtuml/pyxtuml.git

$ cd pyxtuml

$ sudo python setup.py install

2.2.4.2 In Windows

Add the path of Python to environmental variables is not necessary, but make more conforuble

the useage of it. So we recommend to see this page. If you do not want to do that, you can write

"C:\Program Files (x86)\Python\python.exe" insted python or something

like this, depend where the python is installed.

Download ply from this website, extract and install with the next commands.

> cd ply-3.10 #The version may be different

https://pypi.python.org/pypi/ply
http://pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://pypi.python.org/pypi/ply

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 24 of 34

> python setup.py install

Fetch the source code from github and install it manually:

> git clone https://github.com/xtuml/pyxtuml.git

> cd pyxtuml

> python setup.py install

2.2.5 Install Cygwin in Linux

This is a large collection of GNU and Open Source tools which provide functionality similar to

a Linux distribution on Windows.

It is needed to be able to execute Makefiles in Windows.

It can be downloaded from here.

1. At installation you have to add all packages that are needed to make.

a. At Select packages page choose view to Category.

b. Search the word make.

c. Choose install option on the right side of Devel.

d. Next

https://www.cygwin.com/

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 25 of 34

Figure 14. Cygwin packages

2.3 Usage

2.3.1 Generation of xtUML executable code (BridgePoint)

Generating the xtUML C code is done by building the xtUML projects (use

Project\Clean…)

Move the generated source files into the correct location:

 Create a folder inside the directory opencps-hungary/simulator/fmusdk2/

fmu20/src/models. It has to be named the same as the project in BridgePoint.

 Copy the generated code to this folder.

The result is generated into src folder, you can see it using Java perspective. Your project should

look as illustrated in Figure 15.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 26 of 34

Figure 15. xtUML project after executable code generation

2.3.2 Generation of EMF model describing the xtUML interfaces (Python script)

 Merge all xtUML files

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 27 of 34

 Java perspective → in Package Explorer right click → Export… → xtUML Model

 Generate EMF model with the python script located at opencps-

hungary/simulator/pyxtuml from the exported xtUML

 From a terminal:

 Command syntax: python emfGenFromXtUML.py [File

location]/[xtUML file] [Target location]

 The script has 2 arguments. The first is the path of the xtUML file with

file name, the second is the target folder where the EMF file will be

created.

 From VS Code using a launch configuration:

 Be sure the relative path in the program parameter is correct

 The arguments are the same as in the terminal. You probably have to

overwrite it.

{

 "version": "0.2.0",

 "configurations": [

 {

 "name": "Python",

 "type": "python",

 "pythonPath":"${config.python.pythonPath}",

 "request": "launch",

 "stopOnEntry": true,

 "console": "none",

 "program":

"${workspaceRoot}/pyxtuml/emfGenFromXtUML.py",

 "cwd": "${workspaceRoot}",

 "args": ["/home/course/git/opencps-

hungary/simulator/fmus/xtThermostat/thermostat.xtuml",

"/home/course/git/opencps-hungary/models/model_src/"],

 "debugOptions": [

 "WaitOnAbnormalExit",

 "WaitOnNormalExit",

 "RedirectOutput"

],

 "env": {"name":"value"}

 }

]

}

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 28 of 34

The outcome of this section is a xtComponent model and after opened in runtime-eclipse it

looks as illustrated in Figure 16.

Figure 16. xtComponent Example

2.3.3 Generation of Mapping model and FMU model (Eclipse)

 Open the previously generated component model in runtime Eclipse.

 Right click on the XtPackage element and select Generate Mapping Model.

 Move xml file and Makefile where to the xtUML executable code is.

The outcome of this section is an fmi2modeldescription model, a mapping model and a

Makefile. The mapping model maps each of the component model’s signals and parameters to

a different fmu model’s scalarVariable.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 29 of 34

Figure 17. Generate Mapping model

2.3.4 Generation of Interface between xtUML and FMU (Eclipse)

 Open the previously generated mapping model in runtime Eclipse.

 Right click on the Mapping element and select Generate Interface between

XtUML and FMI.

 Move these files to where the xtUML executable code have moved.

The outcome of this section are two C files, one with header, and a modelica model. Except for

the modelica model, these files provide wrapping xtUML model that works like other FMUs

from outside.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 30 of 34

Figure 18. Generate interface between xtUML and FMU

2.3.5 Generation of FMU from xtUML (FMUSDK)

 Make sure the three types of resources are in the correct location (opencps-

hungary/simulator/fmusdk2/fmu20/src/models/[systemName])

from the first, third and fourth section.

 Open a terminal and navigate to opencps-hungary/simulator/fmuCreator.

 In Windows it is not enough to open a simple terminal, but Cygwin terminal.

 Run Makefile

 Command syntax: make -i -k model=[systemName]

 You have to change [systemName] to the name of the folder where resources are.

The outcome of this section is an FMU. The Makefile copies this FMU to the other FMUs

(opencps-hungary/simulator/fmus)

Figure 19. Execute fmuSDK

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 31 of 34

2.3.6 Usage of the modelica interface model

Open OMEdit. Open the generated modelica interface model with File → Open

Model/Library File(s), search the model and Open. This Modelica model is a

package, which contents interfaces.

Figure 20. Loaded Modelica interface model

Drag and drop the Port and the PortTransformer pairs that you want to use. And make

connections between the Port and the PortTransformer.

For example if you want use only HeatingControl, then Drag and drop ThermostatControlPort

and ThermostatControlPortTransformer and add this line to the model at equation block to

make connection (or just simply connect these in Diagram View). (Names of components can

be different, because you can name the components at drag and drop)

connect(heatingControlPort1,

heatingControlPortTransformer1.HeatingControlPort1);

Now you are ready to use this interface, you just have to connect to its input and output ports

that you want.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 32 of 34

2.4 Description of the used xtUML model

Figure 21. advancedThermostat xtUML model

The Thermostat is designed to control the heating of a room to keep its temperature at a desired

value. It can communicate with 3 interfaces that it has: TemperatureStream, HeatingControl

and ThermostatControl. The TemperatureStream is responsible for getting the current

temperature of the room. The ThermostatControl is responsible for controlling the thermostat.

It has 3 signals: turn on and off the thermostat and set temperature that heats the room to the

desired temperature. HeatingControl has signals for both directions. Turn heating on and off are

outputs of the model and set hysteresis intervallum is an input signal.

The inner logic of the model is represented in Figure 22.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 33 of 34

Figure 22. Thermostat class

The model starts in the first state and steps to Updating state when turn_thermostat_on

signal is received. At the updating state it compares the measured temperature to desired

temperature and if the measured temperature is bigger than desired temperature (plus

hysteresis), then it steps to heating_off state but if the measured temperature is smaller than

desired temperature minus hysteresis, then it steps to heating_on state. Otherwise it steps to

hysteresis state. Heating_on and heating_off states send turn_heating_on and

turn_heating_off signals, if a token enters them. From heating_on, heating_off and

hysteresis states the model steps back to updating state if an update event is generated, that

happens when the desired temperature, measured temperature or hysteresis intervallum

changes. From all states the model will step to thermostat_off state, if it receives

turn_thermostat_off signal.

3 SUMMARY

The current annex presents an FMU generator for tranlsatting xtUML to FMU. The main idea

behind the transformation is to generate a wrapper for the xtUML executable code, which

provides the interface between xtUML and FMU by performing translations between FMI

variables and UML actions and also handling the control functions.

D2.2 – Annex 1 – xtUML to FMU Prototype Generator

OPENCPS, ITEA3 Project no. 14018 Page 34 of 34

OPENCPS
ITEA3 Project no. 14018

Annex 2
of D2.2

The txtUML modeling tool

Access1: PU

Type2: Report

Version: 1.2

Due Dates3: M24

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

This document presents txtUML latest version (0.7.0) which is a textual modeling tool for software
development according to the executable UML paradigm. It provides two textual notations for defining
models which can then be executed, debugged, integrated into Java programs, visualized, animated,
exported to a standard UML representation and translated to C++ code. The generated C++ code is
also packaged to a standard FMU.

1 Access classification as per definitions in PCA; PU = Public, CO = Con-

fidential. Access classification per deliverable stated in FPP.

2 Deliverable type according to FPP, note that all non-report deliverables

must be accompanied by a deliverable report.

3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 2 of 23

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main
Author(s)5

Deliverable
Leader6

Jérémie TATIBOUET CEA Task Leader

Contributing
Author(s)7

 Dávid János NEMETH ELTE-Soft Contributor X

András NAGY ELTE-Soft Contributor X

Zoltán Gera ELTE-Soft Contributor

Boldizsár NEMETH ELTE-Soft Contributor

Máté SZOKOLAI ELTE-Soft Contributor

Internal
Reviewer(s)8

Document History:

Version Date Reason for Change Status9

0.1 10/11/2017 Initial version of the deliverable Draft

1.0 17/11/2017 Final version based on feedbacks Final

1.1 17/11/2017 Apply remarks from Magnus Final

1.2 20/11/2018
Updated version on FMI compati-
bility

Final

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected

contributing partners stated in FPP.

8 Typically person(s) with appropriate expertise to assess deliverable

structure and quality.

9 Status = “Draft”, “In Review”, “Released”.

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 3 of 23

CONTENTS

CONTENTS3
ABBREVIATIONS3
1 OVERVIEW4
2 MOTIVATION4

3 ARCHITECTURE6
3.1 Standalone syntax7
3.2 Embedded language9
3.2.1 Static validation of the embedded language11
3.3 Exporting UML2 models11

3.4 Diagram generation12
3.5 Execution, debugging and animation13
3.6 Compilation to C++14

3.7 FMU export15

4 USER GUIDE16
4.1 Installation16

4.2 Sample models17
4.3 Creating own models17
4.4 Modeling language17

4.5 Generating diagrams18
4.6 Running and debugging models19

4.7 State machine animation20
4.8 Compilation to C++20
4.9 FMU export21

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

API Application Programming Interface

CSS Cascading Style Sheets

DSL Domain-Specific Language

EMF Eclipse Modeling Framework

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

IDE Integrated Development Environment

JDT Java Development Tools

JVM Java Virtual Machine

UML Unified Modeling Language

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 4 of 23

1 OVERVIEW

The name txtUML stands for textual, executable, translatable UML [1]. It is an Eclipse-based

tool built on top of JDT [2], Xtext [3] / Xbase [4] and Papyrus UML [5]. The tool is designed

for textual model editing. This makes storage, version control, compare and merge processes,

editing and searching easier and more efficient.

The tool supports two textual syntaxes for modeling: the standalone syntax which is designed

to be clean and short and alternatively, the txtUML Java API which can be used to define

models as standard Java programs. The tool supports the generation of graphical UML diagrams

from the textual descriptions in the form of class and state machine diagrams. The layout of the

diagrams can be controlled by a simple textual diagram layout language [6]. Models can be

seamlessly integrated into Java programs, they can be executed and debugged. Generated state

machine diagrams can be animated during model execution to further enhance comprehension

of model dynamics.

Compatibility with other tools is ensured by generating standard UML models in EMF-UML2

[7] format. This representation is the input for our model compiler which generates C++ code,

optionally packaged to produce an FMU.

2 MOTIVATION

Executable UML [8] models define both behavior and structure of software. These models can

be executed, debugged and tested independently of the target platforms, providing early

validation [9]. Model compilers translate them to efficient, platform-specific target code.

Providing a practical toolchain for large scale executable UML modeling in industrial setup is

challenging: version control, compare and merge functions, convenient editor, debugging

support, high quality diagrams and model compilation need to be provided. On the other hand,

the toolchain should be lightweight for scalability, stability and for low tool development costs.

Executable software modeling starts with a platform-independent model. Such a model is com-

pletely independent of the execution platform and implementation language and can be

executed, debugged and tested on model-level. This enables early functional validation of the

software being developed. In order to test and deploy the product on the target platforms, model

compilers are used to generate code in selected implementation languages. These code

generators take additional information about the specifics of the targeted platform (in the form

of platform-specific model or platform description).

The key point here is model-level execution which enables the following two use cases:

 Interactive debugging: The execution of the model can be analyzed using the usual

debugging features (breakpoints, stepping, variable view) and model specific features

such as the animation of state machines. This use case requires the integration of the

model execution engine with the user interface of the development environment.

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 5 of 23

 Automated mass testing: The model is exercised on a configured set of test cases as part

of nightly testing or sanity checks before a commit. In this case command line

compatible tooling is needed which can be easily integrated into testing frameworks.

Runtime performance of the model execution engine is important in this use case.

An executable software modeling environment must support many functionalities: a model

editor with the graphical visualization of the model, tools for model compare and merge, a

debugger with graphical animations, a model compiler, etc. Figure 1 depicts the many different

use cases such a toolset is responsible for. Our experience shows that the available open source

tools still need to evolve a lot to provide convenient, robust, scalable and stable solution for all

these requirements.

Textual modeling [10] solves many of these concerns: High-quality text editors with

sophisticated editing and search-related features are available and users can select from

numerous compare and merge tools. It is also faster for experienced developers to edit models

Figure 1: Use cases of executable UML modeling

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 6 of 23

in text rather than to edit graphics which is partly the consequence of the maturity of text editors

compared to graphical model editors. However, merely defining a textual notation for modeling

does not solve all the issues. Text editors need plugins to do syntax highlighting and auto-

completion correctly for the new language. Moreover, graphical visualization of certain kinds

of models, like UML for example, is essential: Understanding a model is much easier by

looking at an expressive diagram than reading text. Thus the visualization of the textual model

must be established. Executable modeling makes even more heavy-weight demands: interpreter

and debugger are also required.

3 ARCHITECTURE

txtUML proposes a novel architecture for text-based executable software modeling, taking into

account the use cases and challenges discussed in Section 2. Figure 2 gives an overview of this

architecture. Dashed lines on the diagram denote interaction between two modules, while

continuous lines represent input and output. Modules with gray background are developed in

the txtUML project while white ones are independent components we rely on.

Figure 2: Overview of txtUML

Users define the UML models in text and have two options regarding the syntax: Standalone

syntax is clean and short but users need to learn new syntactic elements. The other option is an

embedded language in Java which is realized by a Java API providing the necessary constructs

to define models. This option is useful for Java programmers not willing to learn new syntax

and opens up possibilities to edit, run and debug txtUML models in non-Eclipse Java

development environments.

Models in standalone syntax are translated on-the-fly to the embedded Java syntax using Xtext

and Xbase as underlying Eclipse technologies. See Section 3.1 and Section 3.2 for details of

the two syntaxes and the translation process. The resulting Java programs – on top of the

txtUML runtime libraries – can be run and debugged in any Java environment. If Eclipse is

used, Xtext and Xbase makes the standard debugging features (breakpoints, variable view,

stepping in the code) available in the standalone syntax as well.

The Java programs defining models can be translated to EMF-UML2 representation which is

the de facto standard format of UML models in Eclipse environment. In order to help

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 7 of 23

understanding and validating the models created in text, we generate UML diagrams compatible

with the Papyrus open source UML framework, see Section 3.4. Currently class and state

machine diagrams are supported. The txtUML runtime is able to communicate with the

generated state machine diagrams and can animate them when the model is running or being

debugged.

The toolchain is completed by a C++ code generator that uses the EMF-UML2 model as input,

see Section 3.6. The toolchain can be extended by further project-specific code and document

generators all working on the same, platform-independent EMF-UML2 representation.

The main novelty of this architecture is the multi-purpose Java syntax which is (1) a full-fledged

language frontend, (2) the target of the translation from the standalone syntax and (3) the source

of the UML model generation process at the same time. We summarize the most important

advantages of this setup as follows:

 Running the models as Java programs provides higher performance than interpretation.

This is important in automated testing scenarios.

 Learning new syntax and using its editor is not mandatory: The Java frontend is standard

Java with a smart API and can be used in any Java development environment.

 The platform-independent, high abstraction level language allows the generation of

standard UML models with diagrams and translation to platform-specific

implementation languages.

3.1 Standalone syntax

From now on, XtxtUML will stand for the standalone syntax variant (as an abbreviation of

Xtext-based txtUML) whereas we will refer to the Java-embedded alternative as JtxtUML (for

Java-based txtUML) which will be discussed in detail throughout Section 3.2.

Essentially, the XtxtUML syntax can be considered syntactic sugar on top of JtxtUML as we

map the elements of the former back the latter one. The base of this mapping is Xtext's built-in

JVM types Ecore metamodel which is a sophisticated internal representation of the Java type

system covering structural concepts such as class attributes and methods as well. As the

compilation of its constructs to Java is predefined, in most of the cases merely specifying the

connection between elements of our syntax and the JVM metamodel was sufficient to provide

automatic code generation. The mapping itself is defined with the help of the framework's JVM

model inferrer API.

One of the main advantages of using Xtext for implementing the standalone syntax variant is

that in this way, highly customizable Eclipse IDE support such as syntax highlighting,

hyperlinking and reference lookup is provided out of the box by the framework. Validation for

language elements can also be defined in a declarative manner. The aforementioned mapping

makes it possible to use XtxtUML entities and their generated JtxtUML equivalents

interchangeably across other XtxtUML or even Java sources.

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 8 of 23

Based on Xtext, not only structural but also behavioral parts of the new language can be imple-

mented. For the latter, significantly more challenging task we heavily modified Xtext's reusable

expression language, Xbase – both in its grammar and semantics to suit our needs. Due to the

overall customization-oriented nature of the framework it was even possible to extend Xbase

with new expressions – e.g. signal sending and association navigation – by defining their

syntax, type computation, compilation to Java and optional validation.

For a brief insight into XtxtUML, see the following example.

package examples.counter;

signal S;

class Sender {

 public void emit() {

 send new S() to this->(SR.r).one();

 }

}

class Receiver {

 private int count;

 initial Init;

 state Accepting;

 transition Initialize {

 from Init;

 to Accepting;

 }

 transition Accept {

 from Accepting;

 to Accepting;

 trigger S;

 effect { count++; }

 }

}

association SR {

 hidden 1 Sender s;

 * Receiver r;

}

This simple model consists of two classes, Sender and Receiver which are connected by the

association SR. When the emit method of a Sender instance is called, it sends a new instance of

signal S to one of the Receiver instances which are accessed by the aforementioned association.

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 9 of 23

The arrival of the signal triggers a reflexive transition in the receiver which – as its effect –

increments the counter containing the number of received signals.

One of the main design concepts of XtxtUML was to provide a clean and intuitive, Java-like

syntax both for structural entities and action code. We believe that using this approach not only

is it easier for Java developers to become familiar with the language but the mapping to

JtxtUML can be defined in a more straightforward way as well.

3.2 Embedded language

JtxtUML, our second syntax, is embedded in pure Java without any extensions or modifications

to the host language, enabling users to write their models using only well-known language

constructs and our API. The current implementation is based on Java SE 8, the newest version

of Java as we aimed to provide a convenient, fast, easy-to-read syntax and for this reason we

were ready to take advantage of any features that are provided by the Java SE.

As it was mentioned in previous sections, a JtxtUML model is also a runnable Java program in

itself therefore speed is indeed an important aspect here. Although creating a user-friendly API

sometimes requires slight compromises on runtime performance, our experience so far is that

the achieved performance is more than good enough for testing and debugging purposes.

The following short example is the same that is shown in Section 3.1 but this time in JtxtUML.

package examples.counter;

import hu.elte.txtuml.api.model.*;

class S extends Signal {}

class Sender extends ModelClass {

 public void emit() {

 Action.send(new S(), this.assoc(SR.r.class).one());

 }

}

class Receiver extends ModelClass {

 private int count;

 class Init extends Initial {}

 class Accepting extends State {}

 @From(Init.class) @To(Accepting.class)

 class Initialize extends Transition {}

 @From(Accepting.class) @To(Accepting.class) @Trigger(S.class)

 class Accept extends Transition {

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 10 of 23

 @Override

 public void effect() {

 count++;

 }

 }

}

class SR extends Association {

 class s extends HiddenEnd<One<Sender>> {}

 class r extends End<Any<Receiver>> {}

}

As it can easily be noticed, JtxtUML is more verbose than its counterpart, the XtxtUML syntax

but being an embedded language it has many advantages that make it a reasonable option to

choose, like the aforementioned familiarity of Java developers or the off-the-shelf massive

language support.

The example also shows the similarity of JtxtUML and XtxtUML which was an aim of our

project as they are only syntactic variants of the same language with the ability to switch from

one to the other, learning only minimal extra information. In case of becoming familiar with

JtxtUML, this extra information is mainly about the Java language elements we use to represent

those UML features that are not present in Java.

To describe the structure of a model, no mutable language constructs (like variables) are used

to prevent accidental modification of the model structure at runtime. This approach resulted in

the fact that almost all model elements are represented by a Java type – a Java class, in most

cases – with a special super type to show the kind of the particular element and also to inherit

behavior which becomes important when executing models. To keep JtxtUML code free from

string literals referencing model elements by name – making refactoring really hard –, we take

advantage of Java reflection which let us refer to a type at runtime through its associated

java.lang.Class object.

Annotations and generics (type arguments) are widely used as well to write static information

in JtxtUML models. Annotations are suitable for adding data that is not always required (e.g.

the trigger of a transition), explicitly naming properties (e.g. the @From and @To annotations)

or containing primitive values (e.g. the @Min and @Max annotations which are used to write

custom association end multiplicities; this feature is not presented in the above example).

Generics can help to reference types when this information is also required at compile time,

like in the case of association ends, as the this.assoc call has to return a collection of the desired

type. These type parameters are retrievable at runtime as well because they are set in the

declaration of a type and that can be inspected with Java reflection.

Despite these powerful features of Java, some limitations of the language proved extremely

hard to overcome. Type erasure, to begin with, deprived us of many possibilities to write things

in a simpler way. The lack of value types forced us to use immutable classes which can be

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 11 of 23

inconvenient for the users too, as they also have to manually implement custom value types in

an immutable and therefore verbose way. Garbage collection gives us no opportunity to force

the deletion of objects from the heap or at least to check whether the user's code holds any

references to them which would be helpful to effectively implement and dynamically validate

model object deletion. The parameter passing rules of Java will make it challenging to

implement UML's out and in-out parameter passing modes. However, the greatest limitation

seemed to be the single inheritance of Java which made us unable to introduce multiple

inheritance between model classes which is allowed in UML. The default Java solution for this

problem, the usage of interfaces, could not be applied here because Java interfaces are too

limited in features to be used instead of classes and it would be very inconvenient for a user to

create both the interface and the implementing class for a single model class.

In case of the action code, both our opportunities and requirements proved to be much less than

in the case of the model structure. It is simple Java action code with the extension of public and

protected methods of API types, most importantly the class Action, whose static methods

implement basic operations of JtxtUML, like sending signals, linking associations or deleting

model objects.

3.2.1 Static validation of the embedded language

Enhancing Java with the required UML features is only part of the task when defining an

embedded language like JtxtUML as Java provides many tools that cannot be translated to UML

at all or only if they are used with certain restrictions. Examples include casting, threading and

synchronization, local and anonymous classes; not to mention the various features of the

standard library or any other libraries written in plain Java which may only be accessed from

JtxtUML in a well-controlled way.

For this reason and to ensure the semantical correctness of the models as well, a validator is

provided which uses the Java Development Tools Eclipse plugin to parse and check JtxtUML

models. The use of JDT instead of standard Java reflection is an unfortunate necessity which is

further explained in the next section as we first faced the decision between these two options

during the implementation of the model exporter.

3.3 Exporting UML2 models

For visualizing and compiling the models we decided to export them into standard UML model

format. The generated UML models are used as an intermediate representation for compilation

to other programming languages and they can also be processed by external tools.

The export process is currently implemented as a batch operation converting the whole model

at once. It parses all Java source files and outputs an EMF-UML2 model. We tried two

approaches for extracting information from txtUML models:

 Java reflection and AspectJ: This solution uses standard Java reflection to analyze the

structural elements (for example classes, method signatures) of the code. However, Java

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 12 of 23

reflection cannot provide information on method internals. Therefore, we experimented

with AspectJ to export operations. AspectJ can inject aspects (additional method calls)

to predefined points in the Java code and these aspects can collect the necessary

information to complete the export.

 Parsing: In this case we parse the Java code using JDT and walk through the abstract

syntax tree in order to translate the txtUML model to an EMF-UML2 model.

We have found out some drawbacks of the first solution: In that case the system has to run

methods to analyze their body and each time a method call has parameters, dummy values need

to be produced which complicates implementation and makes it fragile. Furthermore, AspectJ

caused inconveniences while running the Java debugger on the model and interfered with

debugging features provided by Xtext/Xbase for the XtxtUML syntax. As these problems

became unmanageable, we switched to the second, JDT-based solution.

Another dilemma is about the representation of action code in the UML model. One possibility

to encode behavior in UML is using opaque behaviors: These are just strings labeled with the

name of the language they are written in. We decided not to use opaque behaviors for two

reasons: Polluting the UML model with action code in XtxtUML or JtxtUML syntax would

introduce non-standard elements, limiting the compatibility with third party tools. Also, a model

compiler would have to parse and type check these opaque behaviors and do reference

resolution, which introduces a lot of complexity. Therefore, we have chosen the other

possibility, namely UML activities. This provides standard and language-independent action

code format. On the other hand, it requires nontrivial translation logic both in the exporter

module and in the model compiler. It is also a threat that UML activities are extremely verbose

and this might lead to scalability problems in case of large models with much action code.

3.4 Diagram generation

While textual modeling is beneficial in several aspects, we consider graphical diagrams

extremely important for understanding models. For this reason, we included a diagram

generation module into the toolchain which produces Papyrus or JointJS diagrams on top of the

exported EMF-UML2 models. As of now, class diagrams and state machine diagrams are

supported.

The most important question of visualization is the layout. A popular solution is the application

of autolayout algorithms. However, that is not ideal if users want to control the layout, possibly

partially, and would like to store layout information under version control. To solve this

problem, we have created a small DSL, embedded in Java, to define diagram layout concisely.

The following example shows a layout definition for the model presented earlier in Section 3.1

and Section 3.2:

public class ExampleDiagram extends ClassDiagram {

 @Left(val = Sender.class, from = Receiver.class)

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 13 of 23

 public class MyLayout extends Layout {}

}

This description requests the Sender class to be the left neighbor of the Receiver class. The

resulting, generated Papyrus diagram is shown on Figure 3.

The language includes constructs to define the relative positioning of boxes on the diagram.

The constraints are transformed to a linear inequality system of special form that can be solved

by the Bellman–Ford graph algorithm. Once the boxes are placed on the diagram, the links are

laid out on a grid using the A* algorithm with a cost function that minimizes length, number of

crosses and turns.

3.5 Execution, debugging and animation

The architecture presented in this paper provides model-level execution for models written in

any of the two syntactic variants. In case of the embedded language, the models are Java

programs using the txtUML API and runtime library therefore these can be executed and

debugged in any Java development environment. For models in the standalone syntax,

execution and debugging controls are provided by Xtext, based on the transformation to the

embedded language. This includes breakpoint support, variable view and session control

functions like step over, step into, step out, resume and stop.

The model execution runtime library adds two useful features: runtime validation and state

machine diagram animation. Runtime validation generates warnings, for example when

multiplicity constraints are violated or signals are dropped. This feedback helps the modelers

to find bugs early in the development process, even without generating code and deploying it

on a target platform.

The runtime behind txtUML API does have sophisticated tracing capabilities. These are

switched off by default when the program is run as a plain Java application. If the extra

Figure 3: Generated Papyrus class diagram

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 14 of 23

functionality is switched on, the Eclipse-side plugin makes a connection towards the runtime

in order to receive trace information. Data is provided even about individual object states and

are fully kept track of.

The trace data is on one hand used to provide the user with sophisticated warnings, and on the

other hand to animate the generated state machine diagrams. This is achieved by the CSS

capabilities of Papyrus and modern web browsers. Because normal debugging features still

work in this mode, breaking or reaching a breakpoint gives the possibility to examine various

model states on the paused animation (see on Figure 4 and Figure 5).

3.6 Compilation to C++

We made a significant design choice by compiling from EMF-UML2 instead of using the

original XtxtUML/JtxtUML code. The EMF-UML2 representation created from

XtxtUML/JtxtUML code is a de facto standard and gives enormous flexibility for our tool. By

using EMF-UML2 directly, compilation fits into the general exporting framework and can use

all the benefits and generality of other export methods. Support for a new language, a new tool

or even a graphical representation can be easily added the same way because the exporting

mechanism does not rely on any specifics of the Java code. This gives a true independence

between model execution/testing and the compiled code which makes the development more

robust. Currently we support compilation to standard C++14 (tested on gcc, clang, msvc).

We separate the compiled code into the following parts:

 Code generated from the EMF-UML2 representation of models.

 Prewritten runtime with the following components:

o Model executors, currently two is provided:

 The single threaded executor which processes model messages

synchronously in a central event loop and terminates when all of them

are handled.

 The multithreaded executor which deploys model objects to separate

threads – according to the deployment configuration – and runs multiple

Figure 4: State machine is residing in

a state

Figure 5: State machine is performing

a transition

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 15 of 23

event loops, not terminating even if there are currently no messages to

process.

o API based on JtxtUML action methods. It facilitates communication between

models and the outside word to make integration with external applications

easier.

o State machine and event support with predefined base classes for model elements.

This is to keep the amount of code needed to be generated to a minimum.

 Generated deployment configuration settings specifying thread usage – including object

distribution and scaling – and the type of model executor to be used.

By keeping these isolated, the generated code is practically easier to integrate. Deployment

settings reside in a few specific files and do not pollute the model code which stays clean this

way. Settings can be easily changed in the configuration files without recompilation. The

support runtime can be freely interchanged by another one. We plan to support the versatile

usage of the compiled code by spending efforts on adding more runtimes and developing a rich

deployment configuration for multiple target platforms. Support for composite structures is

released which is also make possible to model interprocess communication between

components via ports.

3.7 FMU export

Opposed to physical models usually described by differential equations, executable UML

models are represented by classes and event-driven state machines. As the interface defined by

the FMI standard is mostly suitable for models of the former type, transforming an UML model

into an FMU is not a trivial task. An FMU wrapper has to be provided to manage exposed

variables, life cycle and execution of UML models through FMI functions. An ideal solution

should work for any existing UML models without requiring additional modifications but

unfortunately, in our current implementation we had to make certain constraints on source

models.

We have decided to explicitly represent the environment (or physical reality) with a predefined

class even on model level. In each model a singleton object has to be specified which should

connect itself with the instance of the aforementioned environment – passed through its

constructor – via an association. Simulation steps are controlled with preselected signals. At the

start of a step, a signal containing the values of input variables in its attributes (the input signal)

is sent to the model object. The simulation step ends when the model object sends a signal

containing the values of output variables in its attributes (the output signal) to the environment.

To keep the packaged FMU as lightweight as possible, we have decided not to use the

XtxtUML/JtxtUML representation with our model executor written in Java as its base. Instead,

we rely on the model compiler discussed in Section 3.6 to generate C++ code from the source

model and then include the exported code in the FMU. This also makes implementing the

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 16 of 23

necessary C functions of the FMI standard easier. In fact, the class representing the environment

in the source model is only a stub which is handled differently during the code generation

process, eventually being transformed into the partially predefined implementation of our FMU

wrapper.

Note that the wrapper is not entirely predefined: some parts are generated dynamically from the

source model, e.g. which depend on input variables. In order to improve maintainability, we

split the wrapper definition in half:

 An abstract base class containing attributes and functions which are required to ensure

compatibility with the C++ model execution runtime but are independent from FMI

concepts.

 A subclass of the aforementioned base which implements FMI-specific features only.

This is where FMI functions are defined according to the semantics specified above.

For example, the fmi2DoStep function sends an input signal to the model object

parameterized with the input variables stored in the wrapper. Similarly, when the

wrapper processes an instance of the output signal it updates the output variables based

on the received signal and calls the stepFinished callback to mark the simulation step as

finished.

While this solution certainly works, it is unfortunate that UML models have to satisfy specific

constraints if we want to translate them into FMUs.

4 USER GUIDE

This short user guide is intended to provide practical details about the usage of the tool. A more

complete documentation can be found at the official website10 of the project. We also

recommend watching our introductory video11. Alternatively, you can visit our GitHub

repository12 as well.

4.1 Installation

As txtUML is implemented as a set of Eclipse plugins, at first you have to install Java and

Eclipse. Currently Java 8 and Eclipse 4.6.2 (Neon.2) is supported. For version 0.7.0, add the

following update site in Eclipse (Help > Install New Software... > Add...):

Select txtUML to be installed and let Eclipse guide you through the rest of the installation

process. Restart Eclipse at the end of the installation process. In case of a successful installation,

10

11

12

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 17 of 23

the txtUML menu appears in Eclipse's menu bar and there is a txtUML wizard category when

selecting File > New > Other....

4.2 Sample models

For a quick start we recommend experimenting with the sample models13. Download and unzip

the sample models. Import them into your Eclipse workspace (File > Import... > General >

Existing Projects into Workspace). Clean and build the projects (Project > Clean...). Sample

models are implemented using either XtxtUML syntax (see the source packages <name of

example>.x.model) or JtxtUML syntax (see the source packages <name of example>.j.model),

or both. In addition, the sample models are accompanied with diagram descriptions (see the

Java classes inheriting from the ClassDiagram or StateMachineDiagram type).

4.3 Creating own models

 New txtUML project: txtUML models should be placed in txtUML projects. A new

txtUML project can be created by selecting File > New > Project... > txtUML > txtUML

Project and setting the project name. By default, the project will be created in the current

workspace. To override this, uncheck the Use default location checkbox and select a

location for the new project.

 New txtUML model: Select File > New > Other... > txtUML > txtUML Model. Select

a Source folder from an existing project for the new model. Select an existing Package

from that folder or type a new package name. Type a Name for the new model. Select

the syntax of the new model: XtxtUML for custom modeling syntax or JtxtUML for

Java syntax. Both XtxtUML and JtxtUML models can be connected with Java code, can

be run and debugged and used as a source for Papyrus UML model generation. A

txtUML model is a package with either a package-info.java file (in case of JtxtUML)

where the package has an annotation of the form @Model(“ModelName”) or a model-

info.xtxtuml file (in case of XtxtUML) which has a model declaration of the form model-

package example.x.model as “ModelName”;. All files in this package (and its subpackages)

are part of the model. The wizard described above creates one of these files depending

on the XtxtUML/JtxtUML selection.

 New model elements: For XtxtUML syntax, select File > New > Other... > txtUML >

XtxtUML File. Fill in the source folder and package to place the new source file in, then

enter a file name. You can also choose between the two possible extensions: .xtxtuml

or .txtuml. For JtxtUML syntax, select File > New > Class to create a new Java class.

4.4 Modeling language

The txtUML language covers a subset of UML. We summarize the supported elements below:

13

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 18 of 23

 Class modeling: classes with attributes and operations; simple binary associations;

compositions; (single) inheritance.

 State modeling: simple and composite states; transitions triggered by signals; guards;

choice states.

 Behavior modeling: action code can be written in operations of classes, entry and exit

actions of states and effects of transitions. Supported base types are int, double, boolean

and String with the usual arithmetic and logic expressions, variables and assignment.

Control structures (loops, branches), attribute access and operation calls are supported.

UML-specific actions: creation and deletion of objects; linkage and unlinkage via

associations and connectors; reading links; sending signals; accessing signal data in

entries, exits and effects.

 Component modeling: interfaces containing signals; ports; connectors.

The design of the two language variants follows a pattern: kinds of the model elements are

shown by keywords (signal, class, transition) in XtxtUML while the Java version uses inheritance

from Signal, ModelClass and Transition. These classes are provided by the txtUML Java API.

Properties of the transitions are expressed by Java annotations (e.g. @From) in Java, while

attribute-like syntax with keywords (e.g. from) is used in the standalone version. See the demo

models or the Language Guide14 to study the txtUML language both in XtxtUML/JtxtUML. In

case of JtxtUML, the JavaDoc15 of the API can also be used.

4.5 Generating diagrams

It is possible to generate EMF-UML2 models together with Papyrus or JointJS diagrams from

txtUML models. Currently class and state machine diagrams can be generated. Content and

layout of the class diagrams and flat state machine diagrams can be defined by textual diagram

descriptions.

The following simple example assumes classes A, B, C and D in the model. We create a class

diagram where classes A, B and C are in a row, and class D is below B. Diagram definitions can

be written using a Java API. See the Diagram Language Guide16 for a detailed description.

public class ExampleDiagram extends ClassDiagram {

 @Row({A.class, B.class, C.class})

 @Below(val = D.class, from = B.class)

 class ExampleLayout extends Layout {}

}

14

15

16

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 19 of 23

To generate diagrams, select txtUML > Generate Papyrus diagrams from txtUML or txtUML >

Generate JavaScript diagrams from txtUML from the menu bar. Diagram descriptions are

grouped by projects. You can select several descriptions – if the descriptions are related to

different models, a separate Papyrus project will be generated for each individual model.

Diagrams can be generated from a context menu as well, either in the Project Explorer or in

the Package Explorer. Simply right click on a diagram description file (you can select several

descriptions too) and choose Visualize as Papyrus diagram or Visualize as JavaScript diagram.

4.6 Running and debugging models

Models in txtUML can be run as Java applications with the help of a model executor which is

part of the txtUML modeling API. While it is possible to write custom model executors, the

default one will be sufficient in most cases. Model executors can be managed through the

ModelExecutor interface. This interface has two static create methods to instantiate the default

executor. The first is without parameters while the second one takes a single String argument as

an optional name for the new executor instance. This name will appear in the automatic logs.

In the simplest case, a main Java class that solely executes a model would look like this:

public class Tester {

 public static void main(String[] args) {

 ModelExecutor.create().run(() -> {

 MyClass instance = Action.create(MyClass.class);

 Action.start(instance);

 Action.send(new MySignal(), instance);

 // ...

 });

 }

}

The run method takes a Runnable instance, the initialization of the model execution which should

create, link, start and send signals to the model objects which are required at the beginning of

the model execution. This initialization code will run as part of the model, so any action that is

allowed in the model is also allowed here.

The model executor writes log messages to the console and to a log file. Runtime errors and

warnings are always logged but there is an optional trace logging which reports all important

events during the model execution, for example, when a state machine of a model object leaves

or enters a state. This trace logging is switched off by default but can be switched on with the

setTraceLogging method. It is important to call this method before starting the model execution

with the run method.

Models in txtUML can be debugged as well. Switch to Java or Debug perspective and create a

new run/debug configuration of type Java Application. Breakpoints can be created and

managed the same way as for Java programs. The standard debug controls (stop, pause, resume,

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 20 of 23

step, step-into) work as usual. The variable view can show the current signal, current state,

associations and the attribute values of the actual object.

4.7 State machine animation

State machine diagrams generated by txtUML can be animated. Create a new run/debug

configuration of type txtUML Application. Open the generated Papyrus or JointJS diagram and

start the model either in run or in debug mode. For a JointJS diagram, the port displayed by the

running model must be copied into the appropriate field in the browser then the switch must be

turned ‘on’. The current state and currently executed transition gets highlighted. For each state

machine diagram, the state changes of the first activated object of the corresponding type will

be highlighted. An expected later improvement will make it possible to select the object to be

animated during the debug session.

4.8 Compilation to C++

The C++ model compiler can be reached by selecting the txtUML > Generate C++ code from

txtUML menu. To generate code, a txtUML deployment configuration must be specified. The

runtime library contains only prewritten .cpp files so they can be used for other generated

models too. A deployment configuration is a description of how the object instances will be

distributed into different threads. This is a special class which is derived from the Configuration

base class. The model classes can be grouped together and the events that arrive to classes

belonging to the same group will be served by a configured thread pool.

For example, consider the following configuration:

@Group(contains = {A.class, B.class},

class DefaultConfiguration extends Configuration {}

This means that A and B will be served by the same thread pool and the remint classes will be

grouped in the default group. A more complex example:

@Group(contains = {A.class, B.class}, max = 10, constant = 2, gradient = 0.5)

@Group(contains = {C.class})

class ExampleConfiguration extends Configuration {}

This means that instances of classes A and B are served by the same thread pool which contains

two constant threads plus one for every 2 A or B instances created, but no more than 10.

Instances of class C are served by another thread pool which contains only one thread

(according to the default values).

The generated C++ code is saved in the cpp-gen folder of the selected project. Note that you

might have to refresh the folder so that the newly generated files become visible in Eclipse.

You can compile the generated files with any C++ compiler manually but we suggest using the

compiler environment selector dialog to create native “makefiles” that can be used in the

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 21 of 23

compiler environment of your choice. The generated compiler environment is placed under the

<environment>_build folder.

The selector contains only the commonly used environments so you can create any other

environment by the generated CmakeList.txt file. It is recommended to create a new folder next

to the generated files, where the build environment should be created. The compilation can be

performed by the following command:

cmake -G <environment> -D CMAKE_BUILD_TYPE=<type> <path>

Where the parameters mean the following:

 <environment>: The chosen build environment. You can use the cmake --help command

to list the possible build environments.

 <type>: The type of the build. Can be Debug or Release.

 <path>: The relative path to the generated CMakeLists file.

A concrete example:

cmake -G "MinGW Makefiles" -D CMAKE_BUILD_TYPE=Release ..

After translating a txtUML model to C++, you might want to create a main.cpp for testing

purposes where you instantiate model objects and send signals to them. This can be achieved

with our C++ runtime API. For more information, see the main.cpp files included with the demo

models (look for the source packages <name of example>.j/x.cpp where they exist). A custom

main.cpp file can be selected by the exporter dialog.

4.9 FMU export

The FMU export functionality is not yet released but it can still be tested using a custom txtUML

build. From our GitHub repository download tag fmu-export217 and set up a development

Eclipse according to our GitHub wiki page titled Installation of the Development

Environment18. Using the Launch Runtime Eclipse run configuration you can start an Eclipse

instance with FMU export capabilities. The complete feature will be launched in the next

release.

In this Eclipse instance import the MoonLander project from the examples/tests folder of the

downloaded branch into your workspace (File > Import... > General > Existing Projects into

Workspace). Select txtUML > Generate C++ code from txtUML, specify the

MoonLanderConfiguration class as deployment configuration, check the Generate FMU option

and select the MoonLanderFMIConfiguration class as FMI configuration. After choosing Finish,

the MoonLander model gets exported as an FMU. The generated files are placed under the cpp-

17 fmu-export-2

18

https://github.com/ELTE-Soft/txtUML/releases/tag/fmu-export-2

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 22 of 23

gen folder of the project and they are automatically complied under the fmu_build folder. A

<modelname>.fmu file is also placed here which is possible to run by the OMSimulator.

It is also possible to run the compiled FMU with our debugger tool. This takes a text file as

input where each line represents a simulation step and contains values of input variables. The

debugger instantiates the FMU (fmi2Instantiate) and for each line of the input file it sets input

model variables (fmi2Set), requests a simulation step (fmi2DoStep) and finally queries (fmi2Get)

and prints output variables to the console. The debugger is automatically compiled along model

files as the fmudebug executable to the same folder where other C++ files are built. Assuming

that this directory is <project root>/cpp-gen/<model package> and an input file named

input.txt is defined in <project root>, from the folder of the generated files the debugger can

be started with the following command:

./fmudebug ../../input.txt

Such an input file is provided for the MoonLander example as well. Feel free to experiment

with its contents and see how the FMU reacts.

Refeences

[1]

OMG, "Unified Modeling Language (UML)," 2015. [Online]. Available:

http://www.omg.org/spec/UML/2.5/.

[2]

Eclipse Foundation, "Java Development Tools," [Online]. Available:

https://www.eclipse.org/jdt/.

[3]

Eclipse Foundation, "Xtext," [Online]. Available: https://www.eclipse.org/Xtext/.

[4]

Eclipse Foundation, "Xbase," [Online]. Available: https://wiki.eclipse.org/Xbase.

[5]

Eclipse Foundation, "Papyrus," [Online]. Available: https://www.eclipse.org/papyrus/.

[6]

B. Gregorics, T. Gregorics, G. F. Kovács, A. Dobreff and G. Dévai, „Textual Diagram Layout

Language and Visualization Algorithm,” in ACM/IEEE 18th International Conference on

Model Driven Engineering Languages and Systems, Ottawa, Canada, 2015.

[7]

Eclipse Foundation, "EMF-UML2," [Online]. Available: http://www.eclipse.org/mode-

ling/mdt/?project=uml2.

[8]

S. J. Mellor and M. . J. Balcer, Executable UML: A Foundation for Model-Driven

Architecture, Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[9]

G. Dévai, M. Karácsony, B. Németh, R. Kitlei and T. Kozsik, "Execution via Code Genera-

tion," in 1st International Workshop on Executable Modeling, Ottawa, Canada, 2015.

[10]

D2.2 – Annexe 2 – The txtUML modeling tool

OPENCPS, ITEA3 Project no. 14018 Page 23 of 23

H. Grönniger, H. Krahn, B. Rumpe, M. Schindler and S. Völkel, „Textbased modeling,” in 4th

International Workshop on Software Language Engineering, Nashville, TN, USA, 2007.

	Contents
	Abbreviations
	1 Overview
	2 Motivation
	3 Architecture
	3.1 Standalone syntax
	3.2 Embedded language
	3.2.1 Static validation of the embedded language

	3.3 Exporting UML2 models
	3.4 Diagram generation
	3.5 Execution, debugging and animation
	3.6 Compilation to C++
	3.7 FMU export

	4 User guide
	4.1 Installation
	4.2 Sample models
	4.3 Creating own models
	4.4 Modeling language
	4.5 Generating diagrams
	4.6 Running and debugging models
	4.7 State machine animation
	4.8 Compilation to C++
	4.9 FMU export

