
OPENCPS
ITEA3 Project no. 14018

Annex 6
for D2.3

Scripting support for Papyrus

Access1: PU

Type2: Prototype

Version: 2.0

Due Dates3: M24, M36

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

Annex 6 for D2.3 focuses on the Python scripting support developed into Papyrus, allowing a tight
integration of Papyrus SysML editor with OMSimulator, for configuring, and launching simulations,
as well as analysing and displaying simulation results

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 2 of 13

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main

Author(s)5

Deliverable

Leader6
Sebastien Revol CEA

Task leader of
T2.3

X

Contributing

Author(s)7

David Lopez CEA
Member of
T2.3

Internal

Reviewer(s)8
Akos Horvath IncQuery Labs

Member of
T2.3

Document History:

Version Date Reason for Change Status9

0.1 30/11/2018 First Draft Version Draft

1.0 03/12/2018 Final version Final

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.

9 Status = “Draft”, “In Review”, “Released”.

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 3 of 13

CONTENTS

ABBREVIATIONS ... 3
1 INTRODUCTION ... 4
2 DEVELOPMENT DESCRIPTION ... 5

2.1 Overall architecture .. 5
2.2 FMI and SSP extensions .. 6
2.3 Papyrus FMI EASE scripting module.. 7
2.4 Jupyter integration ... 10
3 CONCLUSION .. 13

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

M&S Modelling and Simulation

N/A Not Applicable

SotA State of the Art

TBD To Be Defined

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 4 of 13

1 INTRODUCTION

Out of the box, Papyrus is a general purpose UML and SysML modeling tool. It provides all

the diagram kinds defined by those standards and can support any regular system architecture

specification methodologies based on them.

However, such methodologies are generally very descriptive, and connections to the lower level

steps in the system design flow remain generally very low, leading to duplication of

information. This duplication generally implies many additional efforts, such as rewriting,

consistency management, and error introduction etc.

The goal of the activities described here is to try to reduce the gap between the system

architecture domain and the system simulation domain, by providing consistent environments

able to efficiently address both activities.

In that context, the documents D2.3-Annex5-SSP-Support-for-Papyrus.pdf describes how a

complete FMU-based simulation architecture can be imported as or generated from a SysML

internal block diagram. More particularly, the SSP standard allows to facilitate the switch

between system architecture definition environment such as Papyrus, and numeric simulation

environment such as OMEdit.

However, in some circumstances, it may be interesting to be able to run system simulations

directly from the SysML architecture definition environment. It can help system architect to

validate architectural choices or provide an integrated debugging/evaluation facility when

building the models.

For that reason we decided to introduce the capability to directly integrate OMSimulator into

Papyrus, thus allowing to configure, run and visualize results of simulations.

Moreover, in order to allow end-users to build their own “decision cockpit”, we also integrated

into Papyrus a dedicated python-based environment called Jupyter Notebook10. This tool,

allows indeed to rapidly create simple web-based user interfaces to configure inputs and

visualize simulation results. The tight integration of Papyrus and OMSimulator offers a

complete integrated environment allowing to easily build interactive dashboards.

In the following sections, we are going to present the global architecture of the developed

solutions, and illustrate on simple examples how python scripting and interactive Jupyter

dashboards can be used.

10 http://jupyter.org/

file:///C:/Users/Akos/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2ERGNQ5I/D2.3-Annex5-SSP-Support-for-Papyrus.pdf
http://jupyter.org/

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 5 of 13

2 DEVELOPMENT DESCRIPTION

2.1 Overall architecture

Figure 1 General Architecture of the presented solution

Figure 1 shows the general architecture of the developed solution. It is based on the integration

of 3 main different tools :

 Eclipse/Papyrus : Eclipse11 is an open source plugin based platform into which

Papyrus12 is integrated as a specific set of plugins. By default, Papyrus provides standard

support of UML and SysML. On top of that, IncQuery Labs and CEA developed FMI

Extensions and SSP Extensions allowing to transform Papyrus into a FMI/SSP graphical

user interface. Moreover CEA also developed a Papyrus FMI EASE Module allowing

read/write access to SysML models with FMI/SSP from scripting languages like Python

or Javascript. Last, CEA also developed a specific Jupyter EASE Engine allowing to

seamlessly interact with Jupyter Notebook.

 Jupyter Notebook, an open-source web application that allows to create and share

documents that contain live code, equations, visualizations and narrative text. Uses

include: data cleaning and transformation, numerical simulation, statistical modeling,

data visualization, machine learning, and much more. Thanks to our connection with

Eclipse/Papyrus, it allows to have a complementary use where Papyrus is the graphical

user interface for defining and visualizing simulation composite models, and Jupyter is

as an interactive dashboard able to configure and launch simulations, as well as visualize

and document simulation results. Jupyter is based on Python scripting language. We

developed a specific EASE Py4J Kernel in Jupyter, equivalent to the Jupyter EASE

Engine on Eclipse side.

11 https://www.eclipse.org/

12 https://www.eclipse.org/papyrus/

https://www.eclipse.org/
https://www.eclipse.org/papyrus/

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 6 of 13

 OMSimulator, the main tool developed in OpenCPS. More particularly we access to

the tool thanks to its Python API, allowing a very low level control of the simulations.

2.2 FMI and SSP extensions

FMI and SSP extensions are detailed in document D2.3-Annex5-SSP-Support-for-Papyrus.pdf.

The main idea is to provide SysML extensions, thanks to the UML Profile mechanism to be

able to import SSP files and to handle them in SysML Block Definition Diagram (BDD) and

Internal Block Diagram (IBD).

Each imported FMU is indeed transformed into a SysML Block definition, whereas the

composition of FMU instances, corresponding to SSD files, is realized in a new hierarchical

block, whose internal structure is described with an Internal Block Diagram.

Figure 2 Saab Demonstrator imported into Papyrus

file:///C:/Users/Akos/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2ERGNQ5I/D2.3-Annex5-SSP-Support-for-Papyrus.pdf

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 7 of 13

Figure 2 shows the result of the SSP import process of the complete T6.3 Saab Aircraft

demonstrator.

The FMU composition was initially done with an OMSimulator Lua script, and then exported

as a new SSP file. The file is then imported into Papyrus with the SSP import functionality.

Notice that the layout has been automatically generated thanks to another Eclipse open source

extension named Eclipse Layout Kernel13 (ELK), and more particularly with its Graphical

Modeling Framework extension on which Papyrus is based.

2.3 Papyrus FMI EASE scripting module

Scripting proposes very complementary functionalities to Graphical User Interfaces such as

Papyrus. Whereas a diagram allows to have a good overview of the complete architecture, or

facilitates the assembly/analysis of simple systems, it can become very cumbersome when

handling complex systems like described in Figure 2, needing to create hundreds of

connections.

On top of Eclipse Advanced Scripting Environment14 (EASE), we developed a communication

bridge allowing to access to Papyrus in-memory models from scripting languages such as

Python.

More particularly, we created a programming interface very similar to OMSimulator Python

API allowing to create in Papyrus the composition of FMUs.

The scripts can be used to create a new composite model, or to modify/update an existing one.

They can also allow the easy creation of model queries, to validate for instance if the models

conforms to in-house modeling rules (naming rules, missing connections detection etc.)

Figure 3 FMU composition script

13 https://www.eclipse.org/elk/

14 https://www.eclipse.org/ease/

https://www.eclipse.org/elk/
https://www.eclipse.org/ease/

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 8 of 13

Figure 3 shows an example of FMU composition script. We can see in line 12 that Papyrus

simulation architecture is accessed with a call to “getSimulatorHandler”. A sequence of calls

to “addConnection” allows then to create SysML connectors between two port instances.

Last we can notice the last line (line 31), that calls the script in Papyrus context with the

“papyrun” function. In practice, this allows to execute the script within an undo/redo

transaction, meaning that all the modifications in Papyrus in-memory model performed by the

script can be easily undone if wrong, allowing a fast iterative development process of the

scripts.

Figure 4 Result of script execution in Papyrus

Figure 4 shows the result of the script of Figure 3 after applying the ELK auto layout

functionality.

Thanks to OMSimulator Python API, it also becomes very easy to create dedicated scripts

allowing to run simulation within the same scripts.

Figure 5 shows an example of such script, executing the Sherpa test case directly from Papyrus.

Lines 21 and 23 show the code to write to initialize OMSimulator, with the call the

“instantiateArchitecture” function. This function is reading the current model in Papyrus

memory, and creates the corresponding model in OMSimulator.

Then regular Python functions from OMSimulator API can be called, such as

“setCommunicationInterval” (simulation time step setting) “setResultFile” or “simulate”15.

15 The complete python API is described in the following web page:

https://openmodelica.org/doc/OMSimulator/html/OMSimulatorPython.html

https://openmodelica.org/doc/OMSimulator/html/OMSimulatorPython.html

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 9 of 13

Figure 5 Definition of an OMSimulator script in Papyrus

We can give a particular attention to lines 1 and 2. Those headers are indeed dynamically

interpreted by EASE framework, allowing to directly launch the script from a corresponding

contextual menu in Papyrus user interface. Line 1 defines the name of the menu “Run Sherpa

Simulation”, whereas line 2 states that this script should be enabled only when an UML Class

is selected in the editor.

The selected Class is then accessed in the script at line 19 thanks to the call to “getSelection”.

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 10 of 13

Figure 6 Dynamic menu creation in Papyrus user interface from scripts

2.4 Jupyter integration

As mentioned in section 2.1, Jupyter Notebook is an open-source web application allowing to

create and share documents containing live code, equations, visualizations and narrative text.

It’s written in Python, and provides its own integration of a Python interpreter.

The challenge of our development was to enable the execution of the scripts described in the

previous section, accessing both to Papyrus model and OMSimulator, with Jupyter Notebook

python interpreter instead of the regular python interpreter provided by EASE.

We managed to do that by the definition of a new EASE scripting engine, the Jupyter EASE

Engine mentioned in Figure 1. This engine is launching Jupyter Notebook from Eclipse/Papyrus

with specific arguments allowing to execute our dedicated EASE Py4J Kernel in Jupyter. This

new Kernel establishes a socket-based communication with Eclipse at Jupyter start-up, relying

on Py4J16 to make Jupyter Python interpreter and Eclipse Java virtual machine working

together.

Jupyter notebook is launched in an external web browser that becomes tightly connected to the

running eclipse session. It is then possible to pilot Eclipse GUI from this web browser, with

commands such as “openEditor” allowing to open a Papyrus file and visualize its diagrams, for

further access to its internal model elements.

Moreover, Jypter Notebook provides easy to use APIs to create simple graphical user interfaces

in the web browser17. Thanks to this API, we developed simple examples of functions allowing

to call OMSimulator, with graphical sliders enabling the setting of the simulation time step and

the simulation end time, as well as the result file name, as shown in Figure 7.

16 https://www.py4j.org/

17 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Basics.html

https://www.py4j.org/
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Basics.html

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 11 of 13

Figure 7 Example of simple user interface in Jupyter

Moreover, Jupyter provides a very good integration of the matplotlib18 plotting and pandas19

data analysis libraries, allowing to easily display and analyze simulation results in the notebook.

Hence, Figure 8 shows how the simulation results of Figure 7 are plot in a simple graph, and

Figure 9 shows how a new column, computing the difference between the two previously

displayed traces, can be created and displayed.

Last, Figure 10 shows how this new column is then analyzed, with a query selecting only the

values where the absolute difference between the traces is greater than 0.6. The result is then

displayed in an interactive table, providing additional formatting and sorting functionalities,

enabling convenient and powerful data analysis.

18 https://matplotlib.org/

19 https://pandas.pydata.org/

https://matplotlib.org/
https://pandas.pydata.org/

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 12 of 13

Figure 8 Plotting simulation results

Figure 9 Creation of a new diff column in simulation results

D2.3 Annex 6: Scripting Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 13 of 13

Figure 10 Query in simulation results, displayed in an interactive table

3 CONCLUSION

The development realized in OpenCPS allowed to transform Papyrus into an integrated

simulation environment, providing scripting capabilities to interact with Papyrus models for

FMU composition, execution of simulations, and result analysis with interactive dashboards.

Those developments have been successfully tested on both Saab and Sherpa demonstrators.

The functionalities, including both SSP extensions developed by IncQuery Labs and scripting

extensions developed by CEA will be released soon as free open source features available on

Eclipse platform repository at the following address:

 https://download.eclipse.org/modeling/mdt/papyrus/components/

They provide a strong base to further developments and investigations, more particularly in

connection with the flows described by Saab and Sherpa in deliverable D2.5 “Integration of

the FMI standard”. This document is proposing to establish tight links between System

Architecture SysML models and lower level simulation models, aiming at increasing

consistency and automation capabilities between those two activities.

https://download.eclipse.org/modeling/mdt/papyrus/components/

	Abbreviations
	1 Introduction
	2 development description
	2.1 Overall architecture
	2.2 FMI and SSP extensions
	2.3 Papyrus FMI EASE scripting module
	2.4 Jupyter integration

	3 Conclusion

