
OPENCPS
ITEA3 Project no. 14018

Annex 5
for D2.3

SSP support for Papyrus

Access1: PU

Type2: Prototype

Version: 2.0

Due Dates3: M24, M36

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

Annex 5 for D2.3 focuses on the tool support developed for the System Structure and

Parameterization (SSP) standard for defining the input models of the master simulation tool.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 2 of 19

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main

Author(s)5

Deliverable

Leader6
Ákos Horváth IncQuery Labs

Task leader of
the annex

X

Contributing

Author(s)7

Rebeka Farkas IncQuery Labs Contributor X

Krisztián Mócsai IncQuery Labs Contributor X

Zoltán Ujhelyi IncQuery Labs Contributor X

Dániel Segesdi IncQuery Labs Contributor X

Internal

Reviewer(s)8
Sebastien Revol CEA Reviewer

Document History:

Version Date Reason for Change Status9

0.1 10/11/2017 First Draft Version Draft

1.0 17/11/2017 Final version Final

1.1 17/11/2017
Modification done based on
feedback

Final

2.0 28/11/2018
Updated version based on the
newly developed features

Final

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.

9 Status = “Draft”, “In Review”, “Released”.

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 3 of 19

CONTENTS

ABBREVIATIONS ... 3
1 OVERVIEW .. 4
1.1 Introduction .. 4

1.2 SSP ... 4
1.3 Papyrus ... 4
1.4 Model transformations ... 5
2 ARCHITECTURE ... 5
2.1 Environment ... 5

2.1.1 Eclipse .. 5

2.1.2 Eclipse Modeling Framework .. 6

2.1.3 VIATRA .. 6
2.2 Transformations ... 6
2.2.1 Parsing the EMF model ... 6
2.2.2 SSP to UML transformation .. 6

2.2.3 UML to SSP transformation .. 7
2.2.4 Referencing parent FMUs .. 7

2.3 Project structure ... 7
3 USER GUIDE .. 8
3.1 Installation .. 8

3.2 Downloading Eclipse ... 9
3.3 Setting up the Eclipse ... 12

3.4 Setting up the project ... 14
3.5 Using the application ... 15

3.6 Currently supported features .. 15
3.7 Description of the used SSP ... 16
3.7.1 In OpenModelica ... 17

3.7.2 In Eclipse ... 17
4 SUMMARY ... 19

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

M&S Modelling and Simulation

N/A Not Applicable

SotA State of the Art

TBD To Be Defined

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 4 of 19

1 OVERVIEW

1.1 Introduction

The goal of this module is to provide support for a standardized FMU composition format in

Papyrus. Currently the majority of the OpenCPS members who are working on the Master

Simulation Tool (MST or OMSimulator) want to support the System Structure and

Parameterization (SSP) soon-to-be standard that is developed by the Modelica Association,

which makes it a desired feature of Papyrus to be able to directly work with ssp files.

This document is structured as follows. Section 1 provides some background knowledge about

SSP and Papyrus and explains the basics of out solution to the SSP support in Papyrus, Section

2 presents the architecture, including technologies we used in our software and the theoretical

basics of the used transformations, Section 3 provides a user guide that explains the usage of

our software from the installation and provides an example and Section 4 concludes this

document.

M36

The final version of the Papyrus FMU-SSP simulation configuration module uses SysML block

definition diagrams for defining the structure of the simulation scenarios instead of the UML

class diagram as provided in M24 in order to support the demonstrators using SysML for

architecture descriptions (T6.3 and T6.5). Additionally, we extended the module to include

support for exchanging FMU’s within an SSP simulation configuration and also provide

support of handling Buses through a special type of Annotations. These extensions provided

the capability to use our module for configuring the OMSimulator through and SSP descriptor.

Due to timing constrains within the project, we have kept the original package names for all

our source code, thus many still contains the uml string.

1.2 SSP

The SSP working draft with the documentation, examples and the schema definition (xsd) for

the used xml descriptor can be accessed in the OpenCPS SVN

The SSP file shows much similarity with an FMU file, as it is also an archive that packs the

components of the system and a system description in xml. This xml file contains the structure

of the system described by mainly components, connectors (ports) and connections between

these ports. Additionally the descriptor contains information about the parameterization of the

inner components, and it may also contain graphical information.

1.3 Papyrus

Papyrus is an open source project to provide an integrated environment for editing UML and

SysML models. Additionally to graphical support, Papyrus also provides advanced functions

for model-based development, such as simulation and code generation. For more information

on Papyrus please visit the Papyrus website.

https://trac.opencps.eu/OPENCPS/browser/trunk/Documentation/SSP
https://www.eclipse.org/papyrus/

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 5 of 19

1.4 Model transformations

The core of the SSP support in Papyrus is a two-way model transformation: a batch

transformation that processes the SSD file and creates the corresponding SysML model (block

definition diagram), and a live transformation that monitors the SysML model and diagram

changes, instantly modifies the in-memory SSD model, and saves it when the Papyrus model is

saved.

The workflow starts by parsing the SSD model to its EMF model. Then the SysML components

are created and linked to the parent FMUs. While the event-driven transformation is running,

every time the corresponding SysML changes, the modified versions are transformed back to

SSP. The SysML can be edited through the Papyrus diagram editor.

Figure 1. The complete SSP workflow

2 ARCHITECTURE

2.1 Environment

This application is implemented as a plugin for the popular Eclipse framework.

2.1.1 Eclipse

Eclipse is a Java-based IDE with an extensible plug-in system, that allows the user to customize

the environment as well as to develop and install their own plug-ins. The developed plugin can

be installed to the Eclipse instance or - during earlier development phases - another, temporary

Eclipse can be created (the so-called Runtime Eclipse) that has the plugin installed, but

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 6 of 19

disappears when closed (however, the workspace is saved so the user doesn’t lose files). For

more information on Eclipse please visit the Eclipse website.

Many applications are based on Eclipse, including Papyrus. This software is also based on an

Eclipse and uses its aforementioned functionalities (see: Section 3).

2.1.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is also based on Eclipse. It provides a modeling

environment, that allows the user to design class diagram-like metamodels and a code generator

that generates Java structures (classes, interfaces, etc.) from the model. This improves the

simplicity of creating complex data structures. For more information on Eclipse Modeling

Framework please visit the EMF website.

This software uses EMF to parse and manage SSP models.

2.1.3 VIATRA

The Eclipse VIATRA framework supports the development of model transformations including

event-driven transformations. VIATRA offers a language to define transformations and a

reactive transformation engine to execute certain transformations upon changes in the

underlying model. Transformations are defined by transformation rules. For more information

on VIATRA please visit the VIATRA websie.

This software uses VIATRA for describing and executing both the SSP to SysML and the

SysML to SSP transformations.

2.2 Transformations

2.2.1 Parsing the EMF model

First, the unzipped SSD model is parsed to EMF and the corresponding SSP model is created.

This is performed by the SSPParser that traverses the SSD and creates the model elements.

2.2.2 SSP to SysML transformation

This transformation traverses the elements of an SSD, and hierarchically creates the

corresponding elements in SysML. This is a batch transformation designed to be executed once

at the beginning of the workflow.

It consist of of four rules:

 The SsdRule applies the profile to the model, transforms the root TSystem, creates the

resource for traces and adds the first trace (TSystem).

It also starts the subsequent rules.

 The ConnectorRule transforms the connectors (Ports) of the root TSystem, applies

stereotype and adds trace.

https://www.eclipse.org/home/
https://www.eclipse.org/modeling/emf/
https://projects.eclipse.org/projects/modeling.viatra

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 7 of 19

 The SystemComponentRule transforms the child components of the root TSystem,

applies stereotype, adds trace and calls ConnectorRule to transform the connectors of

these components.

 The ConnectionRule transforms all the connections, applies stereotype with the

corresponding properties and adds trace.

2.2.3 SysML to SSP transformation

This transformation incrementally converts the changes on the SysML model back to the SSD.

This is an event-driven transformation, designed to keep the SSP model updated with the

SysML model. It is also based on model transformation rules.

There are two types of changes: removals and modifications (including the creation of new

elements).

Removals are taken care of by the TraceRule, which fires if anything, that has a trace, is deleted

from the SSD’s SysML model. It deletes the elements from the SSD and traces from the

corresponding models.

The rules fired after modifications depend on the stereotype. For instance, the ConnectionRule

transforms Connections back to SSD and sets certain properties from the stereotype. Similarly,

Ports and Components are transformed by the PortRule and the ComponentRule. The

TSystemRule modifies both the root TSystem and the SystemStructureDescriptionType element

in SSD.

When an element is created, the rules add traces to the Trace model, except for the

TSystemRule, where creation is not supported.

2.2.4 Referencing parent FMUs

This is a batch transformation, that goes through every component in SysML, searches for its

parent FMU (in SysML), and sets it onto the stereotype property of the component.

2.3 Project structure

 SSP (org.eclipse.papyrus.moka.ssp)

This Eclipse project provides the support for parsing SSP models to EMF. It contains

the EMF metamodel, and the parser classes.

 Common (org.eclipse.papyrus.moka.ssp.common)

This Eclipse projects contains classes that are commonly used by many other projects

that handle different domains. The utils package contains useful functions for the

transformation.

o Class EditingDomainHelperUtility contains a function, in which other

functions can run through an editing domain via a Command.

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 8 of 19

o Class TraceHelperUtility helps creating and adding traces.

 Profile (org.eclipse.papyrus.moka.ssp.profile)

This project contains the SysML profile.

Class StereotypeStrings in the root package contains fully qualified names of the

stereotypes and stereotype properties (since it is not generated, and functions related to

stereotypes need fully qualified names as parameter).

 Trace (org.eclipse.papyrus.moka.ssp.trace) This project contains the EMF

metamodel for Traces. This metamodel helps to connect the logically same model

elements between the SSD and the UML models.

Each SSD element has one element in UML and each UML element has one SSD

element in UML, but the root TSystem (in UML) has two, the

SystemStructureDescriptionType and the root TSystem itself.

 SysML to SSP transformation (org.eclipse.papyrus.moka.ssp.uml2ssp)

This project is responsible for the SysML to SSP transformation. It contains the

common functions, the transformation rules discussed above, a data structure class and

everything else that belongs to this transformation. We kept the original package name

for this module.

 SSP to SysML transformation (org.eclipse.papyrus.moka.ssp2uml)

Similarly to the project above, this project is responible to the SSP to UML

transformation. It has the required classes for the transformation as well as the classes

responsible for editing the UML model through the diagram. We kept the original

package name for this module.

 UI (org.eclipse.papyrus.moka.ssp2uml.ui)

This project is responsible for the SysML diagram editor. It contains the stylesheet for

the diagram, an .ini file that sets the default theme, and classes that help preparing and

starting SSP to SysML transformations. We kept the original package name for this

module.

3 USER GUIDE

3.1 Installation

The project environment requires Java to be installed. It can be downloaded from Oracle’s

website.

There is no update-site yet, where an Eclipse with the required plugins can be downloaded.

Instead, this guide uses the Eclipse Installer, which can be downloaded from

https://www.eclipse.org/downloads/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 9 of 19

The project also relies on Papyrus-moka, so you will also need to clone this repository.

3.2 Downloading Eclipse

1. Run the Eclipse Installer in advanced mode. This can be achieved by clicking on the

three horizontal lines in the upper right corner and selecting ADVANCED MODE.

2. The first task is to choose the Eclipse distribution to install.

a. Make sure everything is up-to-date, by clicking on the Install available updates

button, next to the Back and Next buttons on the bottom.

b. From the list of products, choose Eclipse Modeling Tools.

c. In the lower part of the screen select product version Oxygen, and make sure the

settings are correct.

d. Finally, hit Next

Figure 2. Eclipse Installer 1

3. The next task is to import the eclipse projects you will use.

a. Click the green + button in the upper right corner.

b. In the appearing window choose GitHub projects from the drop-down menu.

https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git/

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 10 of 19

c. The required Resource URI can be retrieved the following way.

i. Make sure you are logged into GitHub and have an access to the

repository.

ii. Open this link and copy the URL from the browser (it will have your

token at the end).

iii. Copy the link and paste it to the Eclipse Installer.

Figure 3. Eclipse Installer 2

d. Hit OK.

e. You’ll see, that a new folder, named <User>, has been created in the GitHub

category, which has a project named opencps-hungary. Select it.

f. Finally, hit Next.

https://github.com/IncQueryLabs/opencps-hungary/raw/master/moka/org.eclipse.papyrus.moka.ssp.setup/OpenCPS-Hungary_ssp.setup

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 11 of 19

Figure 4. Eclipse Installer 3

4. The next task is to select where you want to keep the resources for Eclipse. If you select

Show all variables you can set the paths of more resources in a more advanced way,

otherwise the defaults will be set.

a. Choose a folder to install Eclipse.

b. Set a workspace folder. Eclipse uses workspaces to organize the Eclipse projects

you are working on, many settings for this application will be stored in the

selected folder, however the projects themselves will be imported from the Git

clone location.

c. Browse your folders and set the one where you cloned the GitHub repository of

this project.

d. Browse your folders and set the one where you cloned the GitHub repository of

Papyrus.

e. Set the target platform to Oxygen.

f. Finally, hit Next.

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 12 of 19

Figure 5. Eclipse Installer 4

5. In the appearing window, click Finish and the setup process begins. It migtht take up a

few minutes, but once it’s finished, it will open the newly installed Eclipse Oxygen

automatically.

3.3 Setting up the Eclipse

After launching, Eclipse will need to take some time and import the projects. You can see the

progress in the down right corner. Once it’s done, there will be a lot of errors in the workspace

(as you can see in the Model Explorer once you close the Welcome tab), but the following steps

will resolve them.

1. First of all, you have to generate the model code from each genmodel (they are located

in the model folder in each project), which are in the following projects:

o org.eclipse.papyrus.moka.ssp

o org.eclipse.papyrus.moka.ssp.profile

o org.eclipse.papyrus.moka.ssp.trace

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 13 of 19

Figure 6. Genmodel in the project

2. To generate model code, open a .genmodel file, right click on the root element, and

click Generate Model Code. Wait until Eclipse builds the workspace and then do the

same with Generate Edit Code and Generate Editor Code.

Figure 7. Generating model code

A more simple solution is to simply click Generate all, and remove the generated

test-related projects.

3. After you’ve generated code from all genmodel files, select Project > Clean and

clean all projects.

4. The org.eclipse.papyrus.moka.ssp.uml2ssp project has still errors, so you need to

install the org.eclipse.papyrus.moka.ssp.profile project.

o To do this, right-click on the project, Export….

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 14 of 19

o From the Plug-in development folder choose Deployable plug-ins and

fragments, Next.

o In the Destination tab choose Install into host Repository:, and hit

Finish.

o It’ll pop a security warning about unsigned content. Click Install anyway.

o After it’s complete, eclipse will ask for a restart, Restart now.

5. A clean might be needed (mostly for uml2ssp project).

6. That’s it, you are all set now, the workspace should be errorless.

3.4 Setting up the project

1. First, you have to start a runtime Eclipse with the plugins installed.

2. You have to create a new Papyrus Project.

a. On the first page, you can leave everything as it is, hit Next.

b. Type the Project Name.

c. Click Finish, nothing else needs to be set.

3. Open the .di file if it doesn’t open automatically.

4. Open Model Explorer if it was not opened already.

a. Window at top of Window → Show View → Other… (or use Alt-Shift-q q

shortcut), search for Model Explorer and click open.

5. To import an SSP and start the transformations, right-click on the root of the model in

the Model Explorer: Import SSP as SysMML model.

6. Choose an SSP file, and click Open.

Now you should see, that there are 3 items in the root package.

 Composite Structure Diagram: the diagram you can edit and work on.

 FMULibrary: the FMUs from the SSP are exported here.

 A (root) System with the SsdTSystem stereotype. This is the root element of the SSD

file you transformed. When you edit the diagram, basically you edit this, and its

children.

Your project folder should look similar to Figure 8.

Figure 8. Project structure

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 15 of 19

In the SSPLibrary you can find .ssp file(s), witch contain(s) the used FMUs. They are saved

here.

There is one other file, but just in memory, which is responsible for connecting between SSP

and SysML. If you save the trace file will appear (Figure 9).

Figure 9. New files

3.5 Using the application

To use the application, you’ll need to open the diagram and you are all set to work. The event-

driven transformation works in the background, as you work. When you save, it’ll save the SSP

too in the project folder, so you have it, when you need it.

3.6 Currently supported features

Modeling elements

Unfortunately our SSD to SysML synchronization feature does not support all language

elements available in the current version of the SSP standards. The basic elements are

supported, such as System, Component, Connector and Connection. Additionally, we also

provide support for signals (SignalDictionary, SignalDictionaryReference). A unique

feature of the module is that it provides support for buses an extension developed within

OpenCPS to support the TLM algorithm available in the OMSimulator. These buses are added

as extensions to the current standard and are handled by the provided Annotation mechanism.

The currently missing features are the transformations (LinearTransformation,

MappingTransformation), parameterization (ParameterBindings), special types (Enum and

Unit) and non-functional elements, e.g. graphical information and annotations are not yet

supported.

End-user features

In general, our module provides graphical specification of complex simulation scenarios

through SysML block definition diagrams that are automatically transformed into SPP standard

compliant descriptions. Additionally, as the standard allows SSPs to contain other SSPs we also

provide support for importing already available SSPs into the editor. Finally, as SPPs are

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 16 of 19

encapsulating FMUs that are used as black box components we also provide support for

exporting/importing FMU’s into an SSP and also to give support for changing already installed

FMU’s within an SSP to a newer version, with diff/merge capabilities to see what has changed.

As changing an FMU within an already defined SSP is a complex task, its workflow is defined

in Figure 10. First the new FMU (v2) is parsed into an EMF representation. Then we execute a

diff/merge operation between the two FMU versions (parsed FMU v1 and v2), which based on

the results of the selected operations to be executed during the merge operation will result in

the v3 version of the FMU. Then the EMF representation of the FMU is transformed into the

appropriate SysML format that is updated and can be used in the SSP SysML representation.

Importing a new FMU to an SSP works similarly just the diff/merge parts are missing as there

is no other version of that particular FMU available.

Figure 10: Workflow for replacing FMU witihn an SSP with a newer version.

3.7 Description of the used SSP

This SSP connects two FMUs, which are generated from OpenModelica. You can find the

original modelica models of these FMUs, FMU files and the SSP file in the /moka/ssp folder

of the repository.

Naturally, Controller.fmu is the FMU generated from the Controller.mo modelica model and

pidSystem.fmu is the FMU generated from the pidSystem.mo modelica model.

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 17 of 19

3.7.1 In OpenModelica

Temp_controller.mo modelica model is where the other two have connected two each other,

which connects you can see in Figure 10.

Figure 11. Modelica Temp_controller model

For ease of understanding this model is a simple example for demonstrating how to connect

models, however, OpenModelica is able to handle significantly larger and more complex

models (e.g., see WP6.3 Saab avionics demonstrator).

The input of pidSystem1 is the filled triangle at left side. This is the expected temperature. The

empty triangle on the right side of pidSystem1 denotes the output of the model, which is the

controller temperature. The controller has a state machine inside with two states, low and high.

If state machine is in state high and the controller temperature is low (lower than 20°), then the

state machine will step to state low and the output will be 23°. If state machine is in state low

and the controller temperature is high (higher than 23°), then the state machine will step to state

high and output will be 20°.

3.7.2 In Eclipse

For the sake of simplicity we use the same model to show what can be done in Papyrus for

connecting the two FMUs that are exported from the OpenModelica (controller and pidSystem)

with SSP. We use the Papyrus editor to create the connections between the appropriate ports

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 18 of 19

and the graphical representation looks like as depicted in Figure 12, while the abstract syntax

representation looks like as depicted in Figure 13.

Figure 12. Room model in Eclipse

As it can be seen that abstract syntax representation show all the UML specific elements created

for the model with the appropriate profiles (e.g., <<SSD>>, <<CS_FMU>>,

<<SsdConnection>>) applied. The FMUs are stored under the FMU library element as each

FMU can be instantiated multiple times in a single simulation scenario, while the SSDs are

present under the SSD library.

Figure 13. Project in Model Exploler

Finally, the corresponding SSP configuration XML (called SSD) look like as follows:

D2.3 Annex 5: SSP Support for Papyrus

OPENCPS, ITEA3 Project no. 14018 Page 19 of 19

<?xml version="1.0" encoding="UTF-8"?>

<ssd:SystemStructureDescription xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ssc="http://www.pmsf.net/xsd/SystemStructureCommonDraft"

xmlns:ssd="http://www.pmsf.net/xsd/SystemStructureDescriptionDraft"

xsi:schemaLocation="http://www.pmsf.net/xsd/SystemStructureDescriptionDraft

http://www.pmsf.net/xsd/SSP/Draft20170606/SystemStructureDescription.xsd" name="Room"

version="Draft20170606">

 <ssd:System description="void description" name="Connection of Models">

 <ssd:Elements>

 <ssd:Component name="controller" source="resources/controller.fmu" type="application/x-

fmu-sharedlibrary">

 <ssd:Connectors>

 <ssd:Connector kind="output" name="y">

 <ssc:Real unit=""/>

 </ssd:Connector>

 <ssd:Connector name="u1">

 <ssc:Real/>

 </ssd:Connector>

 </ssd:Connectors>

 </ssd:Component>

 <ssd:Component name="pidSystem" source="resources/pidSystem.fmu" type="application/x-fmu-

sharedlibrary">

 <ssd:Connectors>

 <ssd:Connector kind="output" name="y">

 <ssc:Real unit=""/>

 </ssd:Connector>

 <ssd:Connector name="u">

 <ssc:Real/>

 </ssd:Connector>

 </ssd:Connectors>

 </ssd:Component>

 </ssd:Elements>

 <ssd:Connections>

 <ssd:Connection endConnector="y" endElement="controller" startConnector="u"

startElement="pidSystem"/>

 <ssd:Connection endConnector="y" endElement="pidSystem" startConnector="u1"

startElement="controller"/>

 </ssd:Connections>

 </ssd:System>

</ssd:SystemStructureDescription>

The SSD XML contains all necessary information and links/connections defining the

simulation scenario and also provides the relative links to the used FMUs in the resources

folder within the SSP.

4 SUMMARY

The current document presents a demo software developed within D2.3 to evaluate the possible

usage of SSP for defining the input configuration of the master simulation tool. The approach

is promising and as OMSimulator also support SSD as its input format the current extension to

Papyrus can be used as an authoring tool for defining complex simulation scenarios. The change

from UML to SysML was driven by the demonstrators developed in WP6 as both the Saab and

the Sherpa demonstrator uses SysML as its architecture description language, thus our final

solution provides a complete round-trip engineering approach for both architecture and

simulation design as demonstrated in D6.3.

	Abbreviations
	1 Overview
	1.1 Introduction
	1.2 SSP
	1.3 Papyrus
	1.4 Model transformations

	2 Architecture
	2.1 Environment
	2.1.1 Eclipse
	2.1.2 Eclipse Modeling Framework
	2.1.3 VIATRA

	2.2 Transformations
	2.2.1 Parsing the EMF model
	2.2.2 SSP to SysML transformation
	2.2.3 SysML to SSP transformation
	2.2.4 Referencing parent FMUs

	2.3 Project structure

	3 User guide
	3.1 Installation
	3.2 Downloading Eclipse
	3.3 Setting up the Eclipse
	3.4 Setting up the project
	3.5 Using the application
	3.6 Currently supported features
	3.7 Description of the used SSP
	3.7.1 In OpenModelica
	3.7.2 In Eclipse

	4 Summary

