
OPENCPS
ITEA3 Project no. 14018

D4.3 Requirement tracing support in Open-
Modelica

Access1: PU

Type2: Prototype

Version: 1.2

Due Dates3: M24, M36

Open Cyber-Physical System Model-Driven Certified Development
Executive summary4:

This deliverable is concerned with support of requirement traceability in OpenModelica and graphical support of requirement
modeling and verification in OMEdit

1Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3Due month(s) according to FPP.
4It is mandatory to provide an executive summary for each deliverable.

D4.3 - Requirement Traceability

Deliverable Contributors:

Name Organisation Primary role in
project

Main
Author(s)5

Deliverable
Leader6

Lena Buffoni LiU T4.3 leader X

Adrian Pop SICSEast T4.3 member

Contributing
Author(s)7

Martin Sjölund LiU WP4 leader

Internal
Reviewer(s)8

Document History:

Version Date Reason for change Status9

1.0 10/11/2017 First Issue In Review

1.1 14/11/2017 Minor corrections after review Released

1.2 30/11/2018 Update of progress Released

5Indicate Main Author(s) with an “X” in this column.
6Deliverable leader according to FPP, role definition in PCA.
7Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9Status = “Draft”, “In Review”, “Released”.

OPENCPS, ITEA3 Project no. 14018 Page 2 of 16

D4.3 - Requirement Traceability

Contents
Abbreviations 3

1 Introduction 4

2 Implementation 4

3 Use Case 4

References 10

Abbreviations

List of abbreviations/acronyms used in document:

Abbreviation Definition
VVDR Virtual Verification of Designs vs Requirements

OPENCPS, ITEA3 Project no. 14018 Page 3 of 16

D4.3 - Requirement Traceability

1 Introduction

This is a deliverable report to accompany the prototype deliverable for requirement traceability and requirement
modeling support in OpenModelica.

The work done in this deliverable is to automate the generation of verification models, proposing a fully Mod-
elica based requirement verification support in OpenModelica and support for tracing requirement verification
results.

2 Implementation

The basic concepts of the VVDR (Virtual Verification of Designs against Requirements) methodology used in this
project are represented in the VVDR library10.

VVDR library is a small Modelica library containing all the interfaces used by the OpenModelica algorithm to
automatically generate the bindings. It is shipped by default with OpenModelica but can also be dowloaded
separately.

It contains the following elements:

Requirement the requirement itself can be represented in different ways: by standard Modelica equations, state
machines or dedicated libraries [OTB+15].

Scenario a scenario describes how the system is stimulated during the simulation

Design a design alternative is a possible implementation of the system. Several design alternatives can be included
in the verification process (eg: different configurations of the system).

Verification Model this is the combination of a set of requirements, a design to be tested and a scenario. A
verification model can be defined by the user or generated automatically.

Bindings package this contains the data structure for specifying the mediators used to generate the connections
between the requirements, designs and scenarios.

The extensions in OpenModelica for requirement modeling are available in the latest version from openmodel-
ica.org11.

The example used in the paper and in the report can be found online12.

In the current prototype support for batch simulation of the models and status report generation has been imple-
mented.

3 Use Case

The first step is to load the VVDRlib, from File -> System libraries (Figure 1).

10https://github.com/lenaRB/VVDRlib
11https://openmodelica.org
12https://gitlab.ida.liu.se/olero90/RequirementsTutorial

OPENCPS, ITEA3 Project no. 14018 Page 4 of 16

https://github.com/lenaRB/VVDRlib
https://openmodelica.org
https://gitlab.ida.liu.se/olero90/RequirementsTutorial

D4.3 - Requirement Traceability

Figure 1: Structure of VVDR library

The next step is to load the example model, by loading the root package in TwoTanksExample, containing the two
tank system model (in Figure 2).

Figure 2: Scenarios, Requirements and Design Alternative

In the package, a set of requirements to verify the model against is also defined. It is implemented based on the
following specification:

Req. 001: The volume of each tank shall be at least 2 m3.

Req. 002: The level of liquid in a tank shall never exceed 80% of the tank height.

Req. 003: After each change of the tank input flow, the controller shall, within 20 seconds, ensure that the level
of liquid in each tank is equal to the reference level with a tolerance of ±1 0.05 m.

Requirements 1 and 2 are modelled as equations and requirement 3 is represented by a state machine.

A set of conditions under which the system will be tested can be found in the package Scenarios.

OPENCPS, ITEA3 Project no. 14018 Page 5 of 16

D4.3 - Requirement Traceability

The VVDR methodology

A set of mediators to define how the requirements, scenarios and design alternatives map to each other [Sch13].
A binding is a causal relation which specifies that, at any simulated time, the value given to the referenced client
instance shall be the same as the value computed by the right-hand expression. The connections between require-
ments and the system model are specified in mediators (Figure 3).

Figure 3: Mediators are used to connect together clients and providers

First the elements needed by the requirements from the system, or clients are defined by the requirement engi-
neer:

record volumeLevel
ex tends M e d i a t o r (mType = " Rea l " ,
c l i e n t s = { C l i e n t (modelID = " TwoTanksExample .Requ i remen ts .Volume_of_a_ tank " ,

component = " tankVolume ") }) ;
end volumeLevel ;

In a second step the system designer defines the way that information can be provided by the system, or providers:

record volumeLevel
ex tends M e d i a t o r (mType = " Rea l " ,
c l i e n t s = { C l i e n t (modelID = " TwoTanksExample .Requ i remen ts .Volume_of_a_ tank " ,

component = " tankVolume ") } ,
p r o v i d e r s = { P r o v i d e r (modelID = " TwoTanksExample .Des ign .Components .Tank " ,

t e m p l a t e = "%g e t P a t h . v o l u m e ") }) ;
end volumeLevel ;

Based on these bindings, the possible combinations of requirements and scenarios together with the system model
are generated and connected together in verification models. The result of scenario generation is a set of models
that can be used to run tests.

Generating bindings for a single scenario

A user defined verification model can be created by dragging and dropping a set of requirements, a design alter-
native and a scenario:

model Graph ica lMode l
ex tends V V D R l i b . V e r i f i c a t i o n . V e r i f i c a t i o n M o d e l ;
R e q u i r e m e n t s . V o l u m e _ o f _ a _ t a n k vo lume_of_a_ tank1 ;
R e q u i r e m e n t s . L i q u i d L e v e l l i q u i d L e v e l 1 ;
Des ign .TwoTanksDesign ;

end Graph ica lMode l ;

In OMEdit the update bindings option can then be selected by right clicking the model and the correct number of
requirements will be instantiated and connected with the model (Figure 4).

OPENCPS, ITEA3 Project no. 14018 Page 6 of 16

D4.3 - Requirement Traceability

Figure 4: Binding generation in OMEdit

The resulting model contains the right number of requirement instances (in green), one requirement of each type
for each tank and the correct connection code (in yellow).

model Graph ica lMode l
ex tends V V D R l i b . V e r i f i c a t i o n . V e r i f i c a t i o n M o d e l ;
TwoTanksExample .Requ i rements .Volume_of_a_ tank volume_of_a_tank1_autogen_bind_0

(tankVolume = twoTanksDesign1.tank1.volume) ;

TwoTanksExample .Requ i rements .Volume_of_a_ tank volume_of_a_tank1_autogen_bind_1

(tankVolume = twoTanksDesign1.tank2.volume) ;

T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l liquidLevel1_autogen_bind_0

(waterLevel = twoTanksDesign1.tank1.levelOfLiquid) ;

T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l liquidLevel1_autogen_bind_1

(waterLevel = twoTanksDesign1.tank2.levelOfLiquid) ;

TwoTanksExample .Design.TwoTanksDesign twoTanksDesign1 ;
end Graph ica lMode l ;

This model can then be simulated and used to verify the requirements. Figure 5 shows the status for requirement
one for tank one.

We can see that as the level of water goes above the 80% of the tank volume, the requirement status changes to
violated (-1). Once the controller gets the water volume below that value, the requirement status switches back to
not violated (-1).

OPENCPS, ITEA3 Project no. 14018 Page 7 of 16

D4.3 - Requirement Traceability

Figure 5: Requirement Req001 status for tank1

Automatic generation of scenarios

All the possible combinations of verification models can be generated by selecting an empty package, right click-
ing it and selecting the generate verification scenarios (Figure 6).

Figure 6: Generation of all verification model combinations

For the example in this tutorial a verification model is generated for each of the three scenarios, connecting all
three requirements. An example of an automatically generated model:

OPENCPS, ITEA3 Project no. 14018 Page 8 of 16

D4.3 - Requirement Traceability

w i t h i n T w o T a n k s E x a m p l e . V e r i f i c a t i o n M o d e l s ;
model v e r i f _ m o d e l _ a u t o g e n _ 2 " A u t o g e n e r a t e d v e r i f i c a t i o n model "

TwoTanksExample .Requ i rements .Volume_of_a_ tank
_agen_Volume_of_a_ tank4_au togen_b ind_0 (tankVolume =
_agen_TwoTanksDes ign1 . t ank1 .vo lume) ;

TwoTanksExample .Requ i rements .Volume_of_a_ tank
_agen_Volume_of_a_ tank4_au togen_b ind_1 (tankVolume =
_agen_TwoTanksDes ign1 . t ank2 .vo lume) ;

T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l _ a g e n _ L i q u i d L e v e l 3 _ a u t o g e n _ b i n d _ 0 (
w a t e r L e v e l = _ a g e n _ T w o T a n k s D e s i g n 1 . t a n k 1 . l e v e l O f L i q u i d) ;

T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l _ a g e n _ L i q u i d L e v e l 3 _ a u t o g e n _ b i n d _ 1 (
w a t e r L e v e l = _ a g e n _ T w o T a n k s D e s i g n 1 . t a n k 2 . l e v e l O f L i q u i d) ;

TwoTanksExample .Requ i r emen t s .Leve lAd jus tmen t
_ a g e n _ L e v e l A d j u s t m e n t 2 _ a u t o g e n _ b i n d _ 0 (inFlow =
_ a g e n _ T w o T a n k s D e s i g n 1 . t a n k 1 . l e v e l O f L i q u i d) ;

TwoTanksExample .Requ i r emen t s .Leve lAd jus tmen t
_ a g e n _ L e v e l A d j u s t m e n t 2 _ a u t o g e n _ b i n d _ 1 (inFlow =
_ a g e n _ T w o T a n k s D e s i g n 1 . t a n k 2 . l e v e l O f L i q u i d) ;

TwoTanksExample .Design.TwoTanksDesign _agen_TwoTanksDesign1 (s o u r c e . f l o w L e v e l =
_agen_Rap idF lowChange0 . f lowLeve l) ;

TwoTanksExample .Scenar ios .Rap idFlowChange _agen_RapidFlowChange0 ;
end v e r i f _ m o d e l _ a u t o g e n _ 2 ;

Report Generation

Once a set of verification is generated, rather than to simulate each model separately and verify the status for each
requirement, an extension has been implemented to simulate all of the verification models and to check which
requirements have been violated in which models. The results are then summarized into a json file, with a list of
models for which requirements have been violated and these can then be investigated further manually.

This file can also be compared to its previous version when something is changed in the model to make tracking
the impact of changes on the model easier.

The report is generated via the call to generateVerificationResults of the OpenModelica API which
takes the repository where the verification models have been automatically generated as a parameter.

v{
" v a l i d a t i o n _ r e s u l t s " : {

" package " : " T w o T a n k s E x a m p l e . V e r i f i c a t i o n M o d e l s " ,
" v e r i f i c a t i o n _ m o d e l s _ t e s t e d " : " 3 " ,
" r e q u i r e m e n t s _ f o u n d " : " 3 " ,
" r e q u i r e m e n t s _ t e s t e d " : {

" number " : " 3 " ,
" names " : [" TwoTanksExample .Requ i rements .Volume_of_a_ tank " ,

" T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l " , "
T w o t a n k s e x a m p l e . R e q u i r e m e n t s . L e v e l A d j u s t m e n t "]

} ,
" r e q u i r e m e n t s _ v i o l a t e d " : [{

" name " : " T w o T a n k s E x a m p l e . R e q u i r e m e n t s . L i q u i d L e v e l " ,
" i n_mode l s " : [" _agen_Volume_of_a_ tank4_au togen_b ind_0 " , "

_agen_Volume_of_a_ tank4_au togen_b ind_1 "]
} , {

" name " : " TwoTanksExample .Requ i r emen t s .Leve lAd jus tmen t " ,
" i n_mode l s " : [" _agen_Volume_of_a_ tank4_au togen_b ind_0 " , "

_agen_Volume_of_a_ tank4_au togen_b ind_1 "]
}]

}
}

OPENCPS, ITEA3 Project no. 14018 Page 9 of 16

D4.3 - Requirement Traceability

References

[OTB+15] Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni, Hilding Elmqvist, Peter Fritzson, Al-
fredo Garro, Audrey Jardin, Hans Olsson, Maxime Payelleville, Wladimir Schamai, Eric Thomas,
and Andrea Tundis. Formal requirements modeling for simulation-based verification, 2015. doi:
10.3384/ecp15118625.

[Sch13] Wladimir Schamai. Model-Based Verification of Dynamic System Behavior against Requirements.
2013.

OPENCPS, ITEA3 Project no. 14018 Page 10 of 16

http://dx.doi.org/10.3384/ecp15118625
http://dx.doi.org/10.3384/ecp15118625

D4.3 - Requirement Traceability

Appendix A

This paper explains the implementation of requirement traceability in OpenModelica.

The paper was presented at the EOOLT2017: 8th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools in Munich, Germany on December 1, 2017.

OPENCPS, ITEA3 Project no. 14018 Page 11 of 16

Traceability and impact analysis in requirement verification
[Work in Progress]

Lena Buffoni
Linköping University
Linköping, Sweden
lena.buffoni@liu.se

Adrian Pop
Linköping University
Linköping, Sweden
adrian.pop@liu.se

Alachew Mengist
Linköping University
Linköping, Sweden

alachew.mengist@liu.se

ABSTRACT
Seamless tracing of the requirements and associating them with
the models and the simulation results is becoming increasingly
important. This can be used to support several activities such as
variant handling, impact analysis, component reuse, verification,
and validation. This work in progress paper presents an approach
for combining traceability with requirement verification in Model-
ica. Traceability is supported via the OSLC specification standard
combined with Git version control system. All operations on arti-
facts of interest are traced. Currently, the traceability data is stored
in a graph database which can be queried for generating various
reports such as impact analysis, variant handling, etc.

CCS CONCEPTS
•Computingmethodologies→Modelingmethodologies;Model
verification and validation;

KEYWORDS
Modelica, Verification, Traceability

ACM Reference Format:
Lena Buffoni, Adrian Pop, and Alachew Mengist. 2017. Traceability and im-
pact analysis in requirement verification: [Work in Progress]. In EOOLT’17:
8th International Workshop on Equation-Based Object-Oriented Languages
and Tools, December 1, 2017, Wessling, Germany. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3158191.3158207

1 INTRODUCTION
In recent years the need for a more formal requirement verification
process and for language and tool support has been increasingingly
recognized by the cyber-physical modeling community. Several
works on language and tool support have been proposed in this
area [2, 4].

Having both the requirement and the model in the same lan-
guage reduces the semantic gap in the terminology used between
the requirement verification engineers and the system modelers,
simplifies the modeling effort and allows for automated combina-
tion between the requirement models. However in industrial scale
projects with complex systems, a large number of requirements,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EOOLT’17, December 2017, Munich, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6373-0/17/12. . . $15.00
https://doi.org/10.1145/3158191.3158207

Figure 1: VVDRlib structure

and several people or teams working on different parts of the sys-
tem, it is still complicated to analyze the results of the requirement
verification process just by looking at the simulation results.

This paper is based on work done in [5] to automate the genera-
tion of verification models and on work done in [1, 6], proposing
a fully Modelica based requirement verification support in Open-
Modelica and combines this with the work on traceability [3] to
propose tool support for tracing requirement verification results.

The paper is structured as follows Section 2 introduces the ba-
sic concepts of the requirement modeling methodology. Section 3
presents the use-case used to illustrate the approach and Section 4
describes the traceability process. Finally conclusions are drawn in
Section 5.

2 BASIC CONCEPTS AND METHOD
The basic concepts of the VVDR (Virtual Verification of Designs
against Requirements) methodology defined in [5] are represented
in the VVDR library1. VVDR library is a small Modelica library
containing all the interfaces used by the OpenModelica algorithm
to automatically generate the bindings.

It has the following elements, represented in Figure 1:
Requirement the requirement itself can be represented in dif-

ferent ways: by standard Modelica equations, state machines
or dedicated libraries [4].

Scenario a scenario describes how the system is stimulated
during the simulation

Design a design alternative is a possible implementation of
the system. Several design alternatives can be included in
the verification process (eg: different configurations of the
system).

1https://github.com/lenaRB/VVDRlib

EOOLT’17, December 2017, Munich, Germany Buffoni, Pop and Mengist

Verification Model this is the combination of a set of require-
ments, a design to be tested and a scenario. A verification
model can be defined by the user or generated automatically.

Bindings package this contains the data structure for specify-
ing the mediators used to generate the connections between
the requirements, designs and scenarios.

It is important to note that these interfaces are used by the tools to
provide requirement modeling support only and do not restrict the
way the elements are implemented themselves. The only restriction
imposed by the library is a requirement interface that provides a
status variable in each requirement which can take the following
values, used to generate the verification reports:

Violated when the conditions of the requirement are not ful-
filled by the design model, represented by -1 in the plots;

Not_violated when the conditions of the requirement are ful-
filled by the design model, represented by 1 in the plots;

Not_applicable when the requirement does not apply, for in-
stance a requirement that describes the behavior of a power
system when it is switched on, cannot be verified when the
system is off. This is important to identify requirements that
were never tested during a simulation, represented by 0 in
the plots.

For each requirement simulated, the following properties are
recorded - wherther the requirement was verified, that is whether it
was applicable at any point in time during the simulation, whether
it was violated and if it was the time of the first violation.

For traceability, all modeling activities of interest and artifacts
are recorded automatically and traced:

• Model creation, modification, deletion
• Simulation results
• Requirement verification reports

The work in [3] has been extended to provide classification of
Modelica models into the VVDR classes: requirements, scenarios,
designs and verification models.

The Open Services for Lifecycle Collaboration (OSLC) specifica-
tion is used for integrating development lifecycle tools using Linked
Data. For traceability purposes, in particular the OSLC Change
Management specification is relevant. The following summarizes
the main workflow that is used to create and record traceability
information in OpenModelica during the development process:

(1) Commit artifact (model file, simulation result, report, etc)
entity to Git repository and record the Git-hash

(2) Create unique URIs of the activity based on the Git-hash
(3) OSLC triples describing the activity are generated using the

URIs
(4) OSLC triples are sent to the traceability daemon (and stored

in a graph database)
(5) Retrieve the traceability information (traces to and traces

from, used for impact analysis)
An example of a traceability graph is given in Figure 2. Entities
(e.g. Modelica files, FMU, simulaiton results, reports) are shown in
green, actions (e.g. model creation, model change, simulation result
generation) are shown in yellow, agents (e.g. users with the names
"Alachew", "Lena") are shown in blue, and their relationships "what

come from what" and "what used what" (e.g. "wasGeneratedBy",
"wasDerivedFrom", "usedTool") are shown with red arrows.

3 USE CASE
The use case presented in this paper is a simple two tank model
already described in detail in [5]. It consists of a single design alter-
native illustrated in Figure 3, three scenarios to illustrate different
usage patterns and the four requirements specified as follows:

Req. 001 The volume of each tank shall be at least 2 m3.
Req. 002 The level of liquid in a tank shall never exceed 80%

of the tank height.
Req. 003 With all tanks full, the maximum time to drain all

tanks shall be 50 seconds.
Req. 004 After each change of the tank input flow, the con-

troller shall, within 20 seconds, ensure that the level of liquid
in each tank is equal to the reference level with a tolerance
of ± 0.05 m.

Req. 005 In a pressurized tank the pressure will not vary by
more than 5% from the reference level.

Figure 4 shows the overall structure of the package.
Once the different components of the system are defined, the

binding algorithm implemented in OpenModelica can be used to
generate all the possible verification models (Figure 5). This is done
by collecting all the possible design alternatives, scenarios and re-
quirements from the selected packages. For each design alternative
and for each scenario a set of all the requirements that can be veri-
fied is collected and a verification model is generated. Since in this
use case there is a single design alternative and 3 possible scenarios,
this results in three possible combinations, one for each scenario.
Every verification model includes the set of requirements for which
bindings could be computed.

Once one of these models is simulated, requirement status values
can be plotted for each requirement to verify whether they were
violated during the simulation. Figure 6 shows that Req 002 is
violated twice for tank 1 during the simulation with the “overflow”
scenario, is first set to 0.06 and increased to 0.25 after 150 seconds.
Each time as the water flow increases, we can see that it reaches
over 80% of the tank volume before it is adjusted by the controller.

However verifying requirements this way, one by one, is cumber-
some for a larger system, moreover when re-simulating a modified
system we want to be able to detect quickly if the changes to the
design or the requirement model have affected the systems abil-
ity to fulfill the requirements. To this end we introduce the first
prototype for traceability support in the next section.

4 TRACING REQUIREMENTS
4.1 Tracing requirement violations
The goal of the verification status report is to simulate all the models
in the selected package that inherits from VerificationModel and
to produce a simulation report which will quickly allow to identify
the areas of interest.

The algorithm for generation of verification models builds a
graph of the relationships between the scenarios, requirements and
design alternatives which is then passed to the function generating
the report. The report is generated by collecting all the instances

Traceability and impact analysis in requirement verification EOOLT’17, December 2017, Munich, Germany

Figure 2: Traceability graph

Figure 3: Tank design alternative

of requirements for each verification model and by checking the
simulation results for each instance.

For instance, the json structure below is part of a generated
data-structure for the use-case presented in this paper.

{
"validation_results":{

"package":"TwoTanksExample.VerificationModels",
"verification_models_tested":"3",
"design_alternatives_found":"1",
"design_alternatives_bound":"1",
"requirements_found":"5",
"requirements_bound":"4",
"requirements_tested":"3",
...

}}
We can use this report to detect several types of problems:

Figure 4: The contents of the TankExample package

Not all the requirements are bound. This means that one of
the requirements is not applicable to the chosen design alternative.
For example a requirement is written for a pressurized tank, but
the design alternative verified has no pressure sensor to connect to
the requirement. This is to be expected, because the requirements

EOOLT’17, December 2017, Munich, Germany Buffoni, Pop and Mengist

Figure 5: Verification models generated automatically

Figure 6: Requirement Req 002 status for tank 1 in the over-
flow scenario

are written from a specification rather than for a particular system
implementation choice, but can be a sign of something missing in
the design.

Not all the bound requirements are tested. If a requirement
is bound but never tested it may be a sign that none of the scenarios
cover the test conditions necessary for this requirement. This is
the case for Req 004, because in none of the scenarios the tank is
ever emptied. This can be a sign that parts of the behavior have not
been correctly or fully tested.

A number of requirements have been violated. The report
provides a list of requirement violations across scenarios. Looking
into the violated requirement will bring up more details.This will
provide a list of scenarios in which the requirement was violated
and the time of the first violation of the requirement.

{
"validation_results":{

...
"validated_models":[{

"name":"verif_model_autogen_0",
"requirements":[{

"name":"_agen_Volume_of_a_tank5_autogen_bind_0",
"type":"TwoTanksExample.Requirements.Volume_of_a_tank",
"wasVerified":"true",
"wasViolated":"false"

},{
"name":"_agen_LiquidLevel4_autogen_bind_0",
"type":" TwoTanksExample.Requirements.LiquidLevel",
"wasVerified":"true",
"wasViolated":"true",
"firstViolationTime":"0"

}]},{
"name":"verif_model_autogen_1",
"requirements":[{

"name":"_agen_LevelAdjustment3_autogen_bind_1",
"type":"TwoTanksExample.Requirements.LevelAdjustment",
"wasVerified":"true",
"wasViolated":"false"

},{
"name":"_agen_LiquidLevel4_autogen_bind_0",
"type":" TwoTanksExample.Requirements.LiquidLevel",
"wasVerified":"true",
"wasViolated":"false"

}]}]}}

4.2 Traceability and impact analysis
The previous section illustrates how we can trace problems in a par-
ticular system design using requirements. However if the modeler
makes a change in the design and goes through verification process
again, some requirements might be affected (eg: a requirement that
was satisfied in all scenarios before might be violated in certain
scenarios). In order to support the verification process throughout
the development life-cycle we can use the variant traceability in
OpenModelica coupled with the requirement violations to track the
places which might have caused the system to fail requirements
satisfied previously.

Because all artifacts and actions are traced one can use the trace-
ability information and the Git repository to provide impact analysis
from different perspectives, i.e. what is affected (with regards to
verification) by a change in: a requirement, a scenario or a design.
One could even start from two different verification reports and
highlight their differences with respect to all involved artifacts.

5 CONCLUSION AND FUTUREWORK
In this paper we have presented ongoing work on providing im-
proved support for requirement verification throughout the devel-
opment process by leveraging the work done on traceability in
OpenModelica and integrating it with the automatic model compo-
sition methodology and by extending it with batch simulation and
agglomerating the information in an easy to interpret report.

Traceability and impact analysis in requirement verification EOOLT’17, December 2017, Munich, Germany

In this first prototype we simply display a list of requirement
violations and corresponding times. In the future it would be useful
to define tolerance levels to requirement violations. For example a
single spike over a value limit might mean a requirement violation
in one case but be tolerated by the system in another.

As this is work in progress we have not yet finished integrating
all the pieces together. We currently have Git versioning support,
the traceability database with all the artifacts linked together and
means to run verification models automatically to generate require-
ment satisfaction and coverage reports. For impact analysis we
need to develop queries over the traceability data starting from
requirement verification reports. Integration of this framework in
the OpenModelica connection editor is under way.

ACKNOWLEDGMENTS
This work has been supported by Vinnova in the ITEA3 OPENCPS
project and in the Vinnova RTISIM project. Support from the Swedish
Government has been received from the ELLIIT project, as well
as from the European Union in the H2020 INTO-CPS project. The
OpenModelica development is supported by the Open Source Mod-
elica Consortium.

REFERENCES
[1] Lena Buffoni and Peter Fritzson. 2014. Expressing Requirements in Modelica.

(2014).
[2] Alfredo Garro, Andrea Tundis, Daniel Bouskela, Audrey Jardin, Nguyen Thuy,

Martin Otter, Lena Buffoni, Peter Fritzson, Martin SjÃűlund, Wladimir Schamai,
and Hans Olsson. 2016. On formal cyber physical system properties modeling:
A new temporal logic language and a Modelica-based solution. In 2016 IEEE
International Symposium on Systems Engineering (ISSE). 1–8. https://doi.org/10.
1109/SysEng.2016.7753137

[3] AlachewMengist, Adrian Pop, Adeel Asghar, and Peter Fritzson. 2017. Traceability
Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC).
In Proceedings of the 12th International Modelica Conference. Modelica Association
and Linköping University Electronic Press.

[4] Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni, Hilding Elmqvist,
Peter Fritzson, Alfredo Garro, Audrey Jardin, Hans Olsson, Maxime Payelleville,
Wladimir Schamai, Eric Thomas, and Andrea Tundis. 2015. Formal Require-
ments Modeling for Simulation-Based Verification. (2015). https://doi.org/10.3384/
ecp15118625

[5] Wladimir Schamai. 2013. Model-Based Verification of Dynamic System Behavior
against Requirements.

[6] Wladimir Schamai, Lena Buffoni, Nicolas Albarello, Pablo Fontes De Miranda, and
Peter Fritzson. 2015. An Aeronautic Case Study for Requirement Formalization
and Automated Model Composition in Modelica. (2015). https://doi.org/10.3384/
ecp15118911

	Abbreviations
	Introduction
	Implementation
	Use Case
	References

