
OPENCPS

ITEA3 Project no. 14018

D4.1 Debugging state machines

Access1: PU

Type2: Prototype

Version: 1.0

Due Dates3: M36

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

D4.1 deliverable provides an overview of developments realized on debuggers for Modelica state
machines and UML state machines. These supports for state machines debugging are respectively
developed in OpenModelica and Papyrus Moka.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.

2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.

3 Due month(s) according to FPP.

4 It is mandatory to provide an executive summary for each deliverable.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 2 of 10

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main

Author(s)5

Deliverable

Leader6
Jeremie Tatibouet CEA T4.1 leader X

Contributing

Author(s)7

 Adeel Asghar
RISE SICS
East AB

WP4 member X

Internal

Reviewer(s)8
Sébastien REVOL CEA WP2 leader

Document History:

Version Date Reason for Change Status9

0.1 15/11/2018 First Draft Version Draft

0.2 16/11/2018 Added OpenModelica contribution Draft

0.3 20/11/2018 Added CEA contribution Draft

1.0 30/11/2018 Reviewed by CEA Final

5 Indicate Main Author(s) with an “X” in this column.

6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.

8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.

9 Status = “Draft”, “In Review”, “Released”.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 3 of 10

CONTENTS

ABBREVIATIONS ... 3

1 INTRODUCTION .. 4

2 IMPLEMENTATION... 4

2.1 OpenModelica .. 4

2.1.1 Modeling .. 5

2.1.2 Debugger .. 7

2.2 Papyrus & Moka ... 8

2.2.1 UML State Machines Modeling .. 8

2.2.2 UML State Machines Semantics ... 8

3 AVAILABILITY OF THE PROTOTYPE .. 9

3.1 OpenModelica .. 9

3.2 Papyrus & Moka ... 9

REFERENCES .. 10

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

OMEdit OpenModelica Connection Editor

PSSM Precise Semantics for UML State Machines

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 4 of 10

1 INTRODUCTION

In the context of T4.1, debuggers are developed in both OpenModelica and Papyrus Moka [1].

These debuggers are intended to enable debugging of both Modelica state machines and UML

state machines. The capability of debugging such behavioral models consists in enabling the

user to suspend the execution of state machines, inspect contextual variables values, let the state

machine execution to progress in a step by step mode, etc.

State machines specified and debugged in OpenModelica are different from those specified in

Papyrus and debugged in Moka. Indeed, the language used to specify these two kinds of state

machines are different and have different semantics.

1. Modelica state machines are similar to StateCharts [2]. They extend on synchronous

language extension, supports hierarchic and parallel composition of states, immediate

and delayed transitions. In the past, the library-based approach was used (e.g.,

StateGraph and StateGraph2 library) which requires the user to write the custom code

so is not very convenient and powerful.

2. UML state machines derive from Harel state charts and ROOM [3] state machines. They

execute according to a RTC (a.k.a, Run to Completion) semantics. The principle is

simple: the state machine has an event pool, events occurrences available in that pool

are dispatched in order, if an event occurrence can be accepted then it triggers a RTC

step. Semantics of UML state machines are formalized and normative. They are fully

specified in PSSM (Precise Semantics for UML State Machines) [4].

This is the final iteration of the deliverable. Section 2.1 provides and overview of the

prototyping work on the OpenModelica side while section 2.2 focus on the developments

realized on the Papyrus & Moka side. Finally, section 3 provides pointers to install both tools.

2 IMPLEMENTATION

2.1 OpenModelica

Support for Modelica state machines was added in the Modelica Language Specification v3.3.

OMEdit uses the specification standard as a basis for the graphical support Figure 1. Modelica

models can be defined as states as shown in the Figure 2.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 5 of 10

Figure 1. State machines in OMEdit.

2.1.1 Modeling

2.1.1.1 Creating a New Modelica State Class

Creating a new Modelica state class in OMEdit is rather straightforward. Choose any of the

following methods,

 Select File > New Modelica Class from the menu.

 Click on New Modelica Class toolbar button.

 Click on the Create New Modelica Class button available at the left bottom of Welcome

Perspective.

 Press Ctrl+N.

Additionally, make sure you check the State checkbox.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 6 of 10

Figure 2. Creating a new Modelica state.

2.1.1.2 Transitions

In order to make a transition from one state to another the user first needs to enable the transition

mode () from the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor.

To start the transition press left button and move while keeping the button pressed. Now release

the left button. Move towards the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes.

Cancelling the dialog will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition

attributes.

Model/Block instances are represented as states and allows to and from transitions. Each

transition has “from” and “to” block instances and a condition that defines when to fire the

transition. The “immediate” attribute defines whether it is strong or weak transition.

Figure 3. Transition attributes.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 7 of 10

2.1.2 Debugger

Modelica state machines debugger is implemented as a visualization, which allows the user to

run the state machines simulation as an animation Figure 4.

Figure 4. State machine debugger in OMEdit.

A special Diagram Window is developed to visualize the active and inactive states. The active

and inactive value of the states are stored in the OpenModelica simulation result file [5]. After

the successful simulation, of the state machine model, OMEdit reads the start, stop time values,

and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,

 Rewind – resets the visualization to start.

 Play – starts the visualization.

 Pause – pauses the visualization.

 Time – allows the user to jump at any specific time.

 Speed – speed of the visualization.

 Slider – controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result

file are supported i.e., mat, csv and plt where mat is a matlab file format, csv is a comma

separated file and plt is an ordered text file.

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 8 of 10

It is only possible to debug one state machine at a time. This is achieved by marking the result

file active in the Variables Browser. The visualization only read the values from the active

result file. It is possible to simulate several state machine models. In that case, the user will see

a list of result files in the Variables Browser. The user can switch between different result files

by right clicking on the result file and selecting “Set Active” in the context menu.

2.2 Papyrus & Moka

In 2017, CEA put the focus on the development of a debug feature for UML state machines

models conforming to PSSM. This year, CEA has focused on the consolidation of the tool

dedicating to state machine modeling. In addition, CEA remained strongly involved at OMG to

ensure the finalization of the PSSM specification. These two axis of work are presented in

subclauses 2.2.1 and 2.2.2.

2.2.1 UML State Machines Modeling

The Papyrus team took advantage of this deliverable to fix a set of issues preventing the user

from specifying valid state machines. Issues that have been fixed in the context of the state

machine diagram are the following:

1. Bug 481499 – Prevent the capability to add regions within a final state

2. Bug 521260 – Prevent deletion of a transition when its kind is updated to internal

3. Bug 528502 – Disable “RemoveOrphanViewPolicy” in state machine diagram

In addition to the improvements made on the modeler side, CEA has focused on the update of

the Precise Semantics of UML State Machines specification (a.k.a., PSSM). The provided

updates are presented in subclause 2.2.2.

2.2.2 UML State Machines Semantics

PSSM is a specification of the standard semantics of a large subset of UML state machines.

This specification is composed of the following artifacts:

1. The syntax model: a model of the syntactic subset for which semantics are defined

2. The semantic model: a model of the visitors capturing semantics of syntactic elements

3. The test suite model : a model describing a set of tests that a tool must be able to pass

in order to claim to conform to the semantics defined in this specification

4. The specification document: a document presenting the syntactic subset, the semantic

model as well the test suite.

The PSSM initial version (i.e., 1.0b) was released in February 2017. Since this initial

release, many feedbacks (e.g., issues in tests, need alignment with other executable

specifications, etc.) were provided to the PSSM finalization task force (FTF). Based on

these feedbacks, the FTF (co-chaired by CEA and Model Driven Solutions) submitted

a finalized version of the specification. This version includes a large set of issue

resolutions contributing to make the standard more robust. All issue resolutions

submitted to update PSSM are presented in a report that is provided as an annex [6] of

this deliverable (see file ptc-18-11-01-PSSM_FTF_Report.pdf). This report is going to

be evaluated for acceptance by the OMG architecture board on December 10th, 2018.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=481499
https://bugs.eclipse.org/bugs/show_bug.cgi?id=521260
https://bugs.eclipse.org/bugs/show_bug.cgi?id=528502

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 9 of 10

3 AVAILABILITY OF THE PROTOTYPE

3.1 OpenModelica

The graphical support for state machines is part of OpenModelica since version 1.12.0, the

debugging of state machines is a rather new development and is available through the nightly

builds. The full functionality of state machines including the debugging will be part of the

upcoming 1.13 release.

All releases can be downloaded through https://openmodelica.org.

3.2 Papyrus & Moka

The version of Papyrus and Moka including the very last issue resolution both for the modeling

and semantics aspects are available at the following URLs:

1. https://hudson.eclipse.org/papyrus/job/Papyrus-

Master/lastSuccessfulBuild/artifact/repository/

2. https://hudson.eclipse.org/papyrus/view/Moka/job/papyrus-moka-

master/lastSuccessfulBuild/artifact/releng/org.eclipse.papyrus.moka.p2/target/reposito

ry/

https://openmodelica.org/
https://hudson.eclipse.org/papyrus/job/Papyrus-Master/lastSuccessfulBuild/artifact/repository/
https://hudson.eclipse.org/papyrus/job/Papyrus-Master/lastSuccessfulBuild/artifact/repository/
https://hudson.eclipse.org/papyrus/view/Moka/job/papyrus-moka-master/lastSuccessfulBuild/artifact/releng/org.eclipse.papyrus.moka.p2/target/repository/
https://hudson.eclipse.org/papyrus/view/Moka/job/papyrus-moka-master/lastSuccessfulBuild/artifact/releng/org.eclipse.papyrus.moka.p2/target/repository/
https://hudson.eclipse.org/papyrus/view/Moka/job/papyrus-moka-master/lastSuccessfulBuild/artifact/releng/org.eclipse.papyrus.moka.p2/target/repository/

D4.1 Debugging state machines

OPENCPS, ITEA3 Project no. 14018 Page 10 of 10

REFERENCES

[1] CEA, «Papyrus Moka,» Online]. Available:

https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution#Moka_Overview.

[2] D. Harel, «Statecharts: A visual formalism for complex systems,» Science of Computer

Programming, vol. 8, pp. 231-274, 1987.

[3] B. Selic, «Tutorial: Real-TIme Object-Oriented Modeling (ROOM),» chez Real-Time

Technology and Applications Symposium, Brookline, 1996.

[4] OMG, «Precise Semantics for UML State Machines,» OMG, 2016.

[5] B. Thiele, A. Pop et P. Fritzson, «Flattening of Modelica State Machines: A Practical

Symbolic Representation,» chez Proceedings of the 11th International Modelica

Conference, Versailles, France, 2015.

[6] OMG, «Report of the PSSM 1.0 FTF 2 Finalization Task Force to the OMG Platform

Technical Committee,» 2018.

[7] S. A. Asghar et S. Tariq, «Design and Implementation of a User Friendly OpenModelica

Graphical Connection Editor,» Linkoping University, 2010.

