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Executive summary4: 

The purpose of this work is to develop a prototype simulation system for efficient simulation of 
physical systems controlled by discrete-time controllers that are described using the standard PLC 
programming set of languages: IEC 61131-3. Using the same actual control code for simulation as 
for physical deployment is expected to reduce the number of errors that are introduced in the final 
control code with respect to present state-of-the-art, when continuous function blocks are 
manually transcribed in the PLC programming system. 

 

In this M36 final-edition of the report, the structure of the system is described along with the 
implemented numerical methods. The report concludes with an evaluation of the prototype system 
for software in the loop PLC testing with EQUA tools. 
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ABBREVIATIONS 

List of abbreviations/acronyms used in document: 

 

Abbreviation  Definition 

BPS   Building performance simulation 

HIL   Hardware-In-the-Loop 

HVAC   Heating ventilation and air conditioning 

Hybrid DAE   Differential-Algebraic Equations with discrete events and hysteresis 

IDA ICE   IDA Indoor Climate and Energy – an EQUA product 

IDA SE   IDA Simulation Environment – an EQUA product 

IDE    Integrated (IEC 61131-3) Development Environment  

NMF   Neutral Model Format – a simple modelling language for Hybrid DAEs 

PLC   Programmable logic controller 

SIL   Software-In-the-Loop  
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1 INTRODUCTION 

Many industrial processes and plants are controlled by so called PLC:s, i.e. dedicated processors 

with the sole purpose of running a control algorithm. PLC:s are programmed using a series of 

connected languages that have been standardized in IEC 61131-3:  

 

• Ladder diagram (LD), graphical 

• Function block diagram (FBD), graphical 

• Structured text (ST), textual 

• Instruction list (IL), textual  

• Sequential function chart (SFC), graphical. 

 

The objective of this work is to develop functionality for efficient simulation of IEC 61131-3 

PLC code in conjunction with large physical system models. 

 

Study of complex control strategies plays an increasing role in building and tunnel design. 

(EQUAs two main areas of application.) Discrepancy between the intentions of the designer, 

often expressed as non-formalized control laws, and the as-built implementation is a frequent 

source of malfunction and energy waste.  

 

With a control object as costly, cumbersome, and slow as a building or tunnel, thorough testing 

of algorithms with respect to a real object is only rarely possible. A single seasonal storage 

borehole strategy, for example, may take a few years to evaluate in real time. The only option 

is to rely on a simulation model with all relevant systems, a model close enough to reality to 

allow off-line testing of all important control modes.  

 

Within an equation-based simulation framework, the behavior of both the physical object and 

the control system can be modeled. Continuous-time models of all standard functional blocks 

allow construction of controllers with the same topology and parameters as those employed in 

the physical controller. This allows realistic development of any control strategy that can be 

formulated by basic control blocks.  

 

In addition to the obvious advantage of having the same control description for both simulation 

and hardware deployment, there are two fundamental reasons for simulating complete discrete-

time control programs in the context of a simulated building or tunnel: 

 

• Some complex control schemes cannot conveniently be expressed exclusively by 

“extended” equations. Truly algorithmic descriptions are sometimes needed. An 

example is model predictive control, where a simulation model of the control object 

itself is exercised by the control algorithm in order to find an optimal control scheme. 

 

• Quality assurance. To find programming errors, a testing environment as close as 

possible to the as-built situation is desirable. In addition, effects that stem from the 

limited sampling rate of the real implementation can only be investigated in the correct 

time scale. 

 

One way of studying the behavior of as-built control programs with respect to a simulated 

building or tunnel is hardware-in-the-loop simulations, where a physical controller is 
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interacting with a simulated control object. Although often valuable as a last step before 

physical commissioning, this approach is cumbersome since experiments normally must be 

carried out in close to real time.  

 

A more attractive option is to execute the actual control code much faster than real time while 

retaining the realistic algorithmic and sampling behavior of the physical controller. In its most 

straightforward implementation, this implies simulation of both controller and control object at 

the sampling rate of the controller, i.e. a global simulation time step is taken for each controller 

sample. For a building, this normally yields excessive simulation times, since a typical 

controller operates with an unsuitably short step (possibly less than a second). Below, in Section 

2, an IDA Simulation Environment (IDA SE) implementation of discrete-time controllers is 

presented that enables multi-rate simulation, i.e. a short fixed time step is used for the simulated 

controller, while a physically motivated much longer (and variable) step is used for the building  

 

The first requirement for multi-rate simulation of discrete-time controllers is obviously to have 

a numerical method that enables this. A major part of the development of this method was 

carried out during the OPENPROD ITEA2 project. In OPENCPS, focus is instead on the 

automatic generation of C code that can be linked to the simulator.  

 

The original plan for OPENCPS T3.3 was to develop a C code generator for IEC 61131-3 

Structured text and Function block diagrams. However, during the initial stages of the work it 

was discovered that an open source implementation of a Structured text to C translator already 

exist: the MATIEC compiler. Associated with this is also an open source, complete IEC 61131-

3 programming system: Beremiz. Focus was then shifted into evaluation of the usefulness of 

these tools and an analysis of how the generated code could be adapted to simulation. 

 

In the next section, the numerical method of simulation for combined discrete and continuous 

systems is described. 

2 DISCRETE-TIME ALGORITHMIC CONTROLLERS IN IDA 

SIMULATION ENVIRONMENT 

Often, when discrete-time controllers are simulated within a basically continuous system 

simulator, the simulation is restarted for each sample of the controller, i.e. the (fixed) time 

step of the controller is used for all submodels. If the dynamics of the physical system are 

such that this time step is fairly well suited to resolve relevant transients, this will yield 

acceptable simulation performance. However, this is rarely the situation for buildings. On 

average, a suitable time step for a whole-year, whole-building building simulation will be at 

least a few minutes. In a variable time step environment, steps of several hours may be taken 

during the night, when little is happening in the system. Meanwhile, a typical PLC will 

repeatedly execute its program at full speed rendering a sampling interval on the order of 

seconds. Buildings and similar objects that are slow with respect to typical sampling times 

will clearly require special methods. Such a method has been developed for IDA SE and it 

will be presented in the next few sections. 
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2.1 Multi-rate simulation method 

The method described has been implemented in IDA SE and can presently be applied either by 

direct interactive construction of controllers using discrete time block libraries (not yet 

described by IEC 61131-3) or by incorporating a controller that is described in, for example, C. 

2.1.1 Solver characteristics 

The numeric solver used in IDA SE is a variable step and variable order prediction-corrector 

solver based on the MOLCOL methods (Dahlquist, 1983), a generalization of the implicit 

BDF methods. In each normal time step, the future development of all continuous variables is 

predicted using a polynomial extrapolation. A solution of the system of equations is then 

calculated by a modified Newton-Raphson method, outlined next. 

 

The global system Jacobian is assembled and factorized. The predicted values are inserted in 

the equations and residuals are calculated and used as right-hand side when solving the linear 

system of equations to get a correction vector. The scheme is iterated until residuals and 

corrections become sufficiently small. Jacobians are not necessarily computed in each time 

step, just when convergence is poor. 

 

The predictor-corrector step may fail, either due to lack of convergence, or, because the local 

truncation error of the difference approximation is deemed too large. This error depends on 

time step size and on the order used, and can be expressed in terms of the difference between 

the predicted and calculated solutions. In either case, the time step is reduced and a new 

prediction is calculated. After a successful step, the local truncation error is used to control the 

order and the tentative length of the next time step. 

 

When the integration is started, an initial value calculation is made to find a start solution to the 

equations. An initial value calculation will also be made when a discontinuity is met in driving 

data or an abrupt event is signaled by a component model. 

 

2.1.2 Interface to programmable sampling components 

IDA SE handles component models written in either the Neutral Model Format (NMF) or IDA 

Modelica. The component models are automatically translated to Fortran or C and linked into 

Windows dynamically linked libraries (DLLs), i.e. individual component models are normally 

pre-compiled. 

 

To incorporate an arbitrary discrete-time programmable controller in an IDA simulation, it has 

to meet some basic requirements:  

 

• It must be written in a language that can be translated to a Windows DLL. 

• It may have internal memory and internal states that should be preserved between 

activations. However, since the solver will need to rerun sequences of sampling steps, 

the internal states must be stored in an array that is accessible from the solver. 
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The interface between solver and sampling component has been implemented as a shell model. 

The shell delivers inputs to, and fetches output from the discrete component. It also provides 

memory space for the internal states of the sampling component. 

 

2.1.3 Connecting continuous and sampling pre-compiled components 

The solver normally divides the simulated system into three distinct sections: The central 

aggregate of continuous components (equation-based), an algorithmic section preprocessing 

input data and providing input to the continuous section, and an algorithmic section performing 

post-processing of simulation results. In each time step, the sections are processed in order pre, 

central, post. 

 

The components making up the system are linked together by links (signal aggregates) that can 

be directed (causal) or undirected (acausal). Within the central section, acausal links are 

permitted, while in pre and post sections all links must be causal (inputs of one component 

connected with outputs of another).  

 

 
When sampling components are added to this setup, they change the pattern. The sampling 

components will only be connected by causal links. They are allowed to take input from pre 

and central sections and to deliver output to central and post sections. The pre and post sections 

will retain their positions first and last in the processing chain, but the central section will be 

interacting intimately with the sampling components. In this interaction, the sampling 

components will fetch input from the central section and deliver output back to the central 

section. See Figure 1. 

 

2.1.4 Groups of sampling components 

In the current implementation, each sampling component is connected to a clock, defining a 

constant sampling rate. Several components may be combined into a sampling group, provided 

that they use the same clock, and that they are connected by causal links into a directed network 

with a defined execution order. The solver will always activate the group as a whole. 

 
 

Figure 1. Component categories. 
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2.1.5 Typical integration algorithm 

The rationale behind the implementation is the possibility to use multi-rate integration, with the 

central system taking steps much longer than the sampling steps. This is possible if the sampling 

outputs during longer periods appear as continuous, differentiable signals. 

 

A typical global integration step will progress as follows (see Figure 2). A prediction is 

calculated for the continuous system, including the variables that are connected to sampling 

components. In a simple case with a single controller, these variables could be e.g. a 

temperature sent to the sampling component and a control signal coming back. A more complex 

case could include several sampling groups, with possibly different sampling rates, and each 

having multiple inputs and outputs.  

 

Integration time is advanced through the global step and the sampling groups are executed at 

their respective intervals. For each such sampling execution, input signals are interpolated in 

the prediction. The outputs from the sampling groups are compared with the interpolated 

predictions for the receiving continuous variables. The sample stepping continues to the end of 

the global step, unless a too large discrepancy develops underway. In the latter case, the latest 

sampling execution is cancelled, and the global step is truncated prior to the divergence. 

 

Next, the global system is solved with Newton iteration, and the accuracy is checked. This 

scheme is based on the assumption that, as long as the prediction is good enough to provide 

acceptable truncation error in the continuous equations, the sampling steps, run against the same 

prediction, can also be accepted as they are, without update to match the corrected continuous 

solution. Some problems related to this assumption appear, and the remedies taken are 

discussed below. 

 

2.1.6 IDA Implementation 

The chosen solution introduces an extra continuous component for each sampling group. This 

‘black box’ component is described as an NMF component and emulates the sampling group, 

seen from the continuous system. It partakes in all activities pertinent for continuous 

components; it delivers residuals and Jacobians, the latter obtained by numeric differentiation. 

This makes a reliable and effective Newton iteration possible. 

 

The component defines one equation for each output from the sampling group, equating this 

output to the corresponding controlled variable in the continuous system. 

 

 
Figure 2. Solution sequence. 
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All sampling outputs from the group, required for calculation of residuals in these equations, 

are obtained concurrently by a call of a solver routine. The id of the sampling group is provided 

as a parameter together with the inputs to the sampling group. The solver uses these data to 

execute the group, rerunning the latest sampling step with sampling state memory fetched from 

backup. 

 

The black box component is only active in the solving of the continuous system. The activation 

of the group when stepping through the global step is done by the solver without reference to 

the black box.  

2.1.7 Short step regime 

The discussion so far focuses on the continuous behavior of the sampling systems. An entirely 

different scenario appears, if the global time step happens to be shorter than the sampling steps. 

This may very well happen, when an abrupt change in the central system or in its inputs triggers 

fast transients. 

 

Now, the activity of a sampling group can no longer primarily be regarded as smoothly 

incorporated in a continuous long-term progression. Rather, its discrete nature comes to the 

fore. When some short global steps have been taken, and the time to activate a sampling group 

is reached, whatever output it produces will have to be accepted. If they represent a 

discontinuous change, the solver will make an initial value calculation and then resume global 

integration. If they appear small, the global integration will have opportunity to increase step 

length and return to the normal long step regime.   
 

2.2 Application examples 

2.2.1 Basic performance experiments 

The performance of the modified implementation is illustrated by some test results presented 

below. The simulated system is a single office zone with local heating and cooling. Tests were 

run for a three month summer period with observed climate data.  

The cooling room unit was controlled by a PI-controller, implemented both as a continuous 

model and as a sampling discrete-time algorithm with a rate of 1000 activations per hour. The 

NMF equations for the continuous version were: 

 
E := IF Mode < 0.5 THEN 
              (SetPoint - Measure) 
        ELSE 
              (Measure - SetPoint) 
        END_IF; 
 
OutSignalTemp := k * (E + Integ); 
  
OutSignal = IF OutSignalTemp > hilimit THEN 
                         hilimit 
                       ELSE_IF OutSignalTemp < lolimit THEN 
                         lolimit 
                       ELSE 
                         OutSignalTemp 
                       END_IF; 
 
Integ' = E/ti + (OutSignal - OutSignalTemp)/tt;  
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where 

 
SetPoint Reference signal 
Measure Input signal 
E Control error 
Integ Integrator term 
OutSignal Control signal 
OutSignalTemp Control signal (temp) 
k Gain parameter 
ti Integration time in seconds 
tt Tracking time in seconds 
mode Control mode: 

 0= heating type control, 

 1= cooling type control 
hilimit High limit for OutSignal 
lolimit Low limit for OutSignal 

 

In the discrete version, the differential equation for the Integ term was instead solved locally: 

 
IntegPrim := E/ti + (OutSignal - OutSignalTemp)/tt ; 
Integ := Integ + h*IntegPrim; 
 

where 

 
IntegPrim Integrator derivative 
h Sampling interval 

 

In the discrete version, the Integ variable is declared as an NMF assigned state, which means 

that it is memorized between evaluations. 

 

The cases with the sampling controllers were run once with the global time step equal to that 

of the controller, and once with multi-rate integration. The outcome is summarized in Table 1 

for the three cases: 
 

A. Continuous controller (function block) 

B. Sampling controller with multi-rate integration (new method) 

C. Ditto, solve global system each sampling step (conventional discrete method) 

 

Table 1. Performance tests, PI-controller 

 

   A B C 
Number of variables 2 187 2 193 2 193 
 
Number of steps    
 global successful 6 946 10 540 2 209 400 
 global total tried 28 035 42 546 2 216 402 
 sampling successful 0 2 208 000 2 208 000 
 sampling total tried 0 2 688 241 2 209 543 
      
Integration time [s] 11 21 1 704 

 

The results show that the sampled controller implementation is a factor of two less efficient 

than a continuous ditto, but the time reduction of the new method with respect to Case C still 

exceeds 98%. 
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Figures 3 and 4 show the zone air temperatures for Cases A and B during the last week of 

simulation. The cooling setpoint, 25C˚, is not always met due to limited cooling power. A slight 

ripple, reflecting the selected tolerance, can be seen in the discrete case. Results for Case C are 

identical to Case A and are not shown. 

 

Similar tests have also been done with on-off controllers, to investigate the performance for 

discrete state control signals. These results are equally satisfactory, actually showing even 

smaller penalties for the discrete-time implementation (case B vs. A). 

 
 

 
Figure 3. Air temperature for Case A 

 

 
Figure 4. Air temperature for Case B 
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3 GENERATION OF CONTROLLER C CODE BY THE MATIEC 

COMPILER 

3.1 Usage scenario 

Two basic usage modes are envisioned for the combined Beremiz-IDA Simulation 

Environment system: 

 

• Simulation (SIL) mode 

• HIL mode 

 

Figure 5 shows the intended usage scenario in Simulation mode. A control expert uses the 

Beremiz system to define basic function blocks, such as PID-controllers, filters etc. The pre-

compiled function blocks are presented to the modelling engineer (the normal application end-

user) on the modelling palette. A new model category of discrete-time components has been 

defined. The user may construct discrete-time subsystems (mostly controllers) by associating 

components with a clock. Discrete-time components are automatically arranged in “firing 

order” according to signal causality when IDA Solver is invoked. Simulation is carried out 

using the numerical method described in Section 2. 

 

An advanced user may of course use the Beremiz system directly to build more complex 

specialized controllers in a similar manner and import these directly to the model schema. 

 

 

 
 

Figure 5. Simulation mode. 

 

 

In HIL mode, depicted in Figure 6, the discrete-time (IEC 61131-3 components) are 

automatically collected in the simulator and a PLCopen XML description of the resulting 

controllers are generated and opened in Beremiz (or other IEC 61131-3 Integrated Development 

Environment, IDE).  
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In the IDE, a control engineer completes the final controllers. Often many functions that are 

irrelevant for the simulation model will have to be added, e.g., alarms, safety systems, back-up 

control scenarios, manual intervention scenarios etc. Resulting code is loaded to a physical 

PLC. 

 

In the simulator, in HIL mode, the discrete-time components have been replaced by import and 

export objects. Communication with the physical PLC is established based on signal identities 

from the simulation model (that have also been reflected in the PLCOpen XML file). 

 

 
 

Figure 6. HIL mode. 

3.2 Prototype implementation 

The C code that is generated by the open source MATIEC compiler has been equipped with 

functions for saving and restoring state. This is not a standard operation for PLC-systems, but 

fortunately the structure of MATIEC enabled this change which is crucial for the numerical 

method as described in section  2.1.2.  A wrapper function for using generated code from the 

MATIEC compiler with the IDA solver has been developed and tested on complex examples 

in the SIL mode. The wrapper is configurable and can be reused for different projects by 

adjusting the configuration to match the set of states of the controller.  

 

The same generated code has also been compiled and transferred to a physical PLC which was 

then connected with the IDA simulation environment in HIL mode utilizing the OPC UA 

communication capabilities developed for this purpose.  

 

The MATIEC compiler has also been used to generate code for a library of basic Function 

Blocks from the IEC 61131-3 standard. In the IDA simulation environment, corresponding GUI 

representations of the individual Function Blocks have been implemented. This collection of 

new discrete control components allows users of the IDA simulation environment to design and 

simulate control systems using standard Function Blocks. It is then possible to make a direct 

translation of the Function Block composition in the IDA simulation environment back to the 

IEC 61131-3 languages via a corresponding PLCOpen XML description that can be imported 

into the Beremiz programming system (or into any other IDE). 
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4 EVALUATION OF THE PROTOTYPE SYSTEM 

The prototype system has been used to demonstrate the feasibility and illustrate the benefits of 

SIL testing for tunnel as well as building control systems. Testing the actual control code in a 

simulated environment allows thorough validation of the performance in extreme situations like 

when there are accidents and fires in a tunnel, and the prototype has allowed exploration of this 

scenario both in HIL and SIL mode. 

 

Control system performance can be evaluated for purposes of optimization of energy 

consumption or what if analysis for different scenarios, and SIL testing allows the control 

designer to deliver solutions with efficient normal operation as well as safer systems in extreme 

situations thanks to the ability to evaluate many scenarios in short time. A valuable lesson learnt 

when using the prototype is that apart from models of the physical system and the control 

system, there is also a need for simulation models capable of replacing the human in the loop 

to fully exploit the potential of the SIL mode in some scenarios where the impact of non-

deterministic human behavior is significant. 

 

In addition, some potential improvements of the prototype system have been identified as a part 

of the evaluation. Implementation of automatic generation of wrapping functions for IDA 

Solver memory management of controllers’ states and automatic generation of PLCOpen XML 

descriptions of assembled discrete function blocks could make the process more efficient and 

less error prone. Functionality similar to what is described in D2.6 could have been useful in 

this demonstrator. The setup of the HIL PLC connection could then have been simplified by 

automatic configuration of the connection to the OPC UA server and ultimately result in 

functionality for straightforward switching between SIL and HIL mode from within the IDA 

simulation environment.  

 

5 CONCLUSIONS 

A prototype simulation system for efficient simulation of physical systems controlled by 

discrete-time controllers that are described using the standard PLC programming set of 

languages: IEC 61131-3 has been developed. The prototype system makes it easy to use the 

same actual control code for simulation as for physical deployment enabling efficient 

optimization, analysis and validation. Realization of the prototype required a combination of 

open source development, specialized numerical methods and new functionality in the IDA 

simulation environment. The prototype system comprises the key components of a commercial 

solution a provides solid foundation for further development and commercialization of the 

technology, which is expected to simplify the design of efficient and well tested control systems 

for tunnels as well as buildings with EQUA tools. 
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