
(ITEA 3 � 15017)

open standard APplication Platform

for carS and TrAnsportation vehiCLEs

Deliverable: D 3.1

Speci�cation of Data Management, Cloud Platform Architecture

and Features of the Automotive IoT Cloud Platform

Work Package: 3
Automotive IoT Cloud Platform

Task: 3.1, 3.2
Cloud Platform Architecture Speci�cation, Evaluation of Existing IoT and

Automotive Cloud Platforms

Document Type: Deliverable

Document Version: �nal

Document Preparation Date: 31.01.2018

Classi�cation: Public

Contract Start Date: 01.01.2017

Duration: 31.12.2019

History

Rev. Content Resp. Partner Date

0.1 initial document structure Philipp Heisig 17.05.2017

0.2 added introduction and content for state of
the art, evaluation, and architecture speci�-
cation

Philipp Heisig 12.06.2017

0.3 added content for data storage and manage-
ment, message routing, and data analytic and
visualization

Philipp Heisig 20.07.2017

0.4 added content for device management Philipp Heisig 04.09.2017

0.5 added automotive user stories Philipp Heisig 13.11.2017

0.6 added generic cloud platform architecture
speci�cation

Philipp Heisig 19.12.2017

0.7 added evaluation for data management and
message gateway

Philipp Heisig 15.01.2018

0.8 added evaluation for IoT Cloud Platform and
application and service integration

Ahmad Bani Jamali 18.01.2018

0.9 added evaluation for data analytic and visu-
alization and device management

Tobias Rawald 22.01.2018

1.0 added conclusion Philipp Heisig 29.01.2018

1.1 speci�cation & conclusion review Robert Hoettger 06.02.2018

1.2 added evaluation of multi-model databases Fatih Ayvaz 25.03.2018

ii

Contents

History ii

Summary viii

List of Abbreviations ix

1 Introduction 1
1.1 Document Structure . 3

2 State of the art 4
2.1 Communication Protocol . 4

2.1.1 REST . 4
2.1.2 CoAP . 5
2.1.3 AMQP . 5
2.1.4 LWM2M . 5
2.1.5 MQTT . 6
2.1.6 XMPP . 7

2.2 IoT Cloud Platform . 8
2.2.1 Eclipse Kapua . 11

2.3 Application and Service Integration . 12
2.3.1 Eclipse Ditto . 13
2.3.2 Mihini . 14
2.3.3 Appstore . 14
2.3.4 Eureka . 14
2.3.5 Apache Camel . 15
2.3.6 Spring Integration . 16

2.4 Data Analytic and Visualization . 18
2.4.1 Apache Storm . 18
2.4.2 Apache Flink . 20
2.4.3 Eclipse BIRT . 21
2.4.4 Grafana . 22

2.5 Data Storage and Management . 24
2.5.1 Apache CouchDB . 25
2.5.2 MongoDB . 25
2.5.3 Neo4j . 27
2.5.4 In�uxDB . 28
2.5.5 ArangoDB . 29
2.5.6 OrientDB . 30
2.5.7 Couchbase . 30

2.6 Device Management . 30
2.6.1 Eclipse hawkBit . 31

iii

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.6.2 Eclipse Leshan . 31
2.6.3 Eclipse Wakaama . 32
2.6.4 Eclipse Vorto . 32
2.6.5 OGC SensorThings API . 33

2.7 Message Gateway . 33
2.7.1 Eclipse Hono . 33
2.7.2 Apache Kafka . 35
2.7.3 Eclipse Mosquitto & Paho . 36

2.8 Security . 37
2.8.1 Eclipse Keti . 38
2.8.2 Keycloak . 39

3 Automotive User Stories 40
3.1 User Story 01: Roadside Assistance . 41
3.2 User Story 02: Vehicle Tracking . 41
3.3 User Story 03: Wrong Way Driver Warning . 42
3.4 User Story 04: Augment vehicle functionality 43
3.5 User Story 05: Data Collection Fleet Learning 43
3.6 User Story 06: IoT Data concentration . 44
3.7 User Story 07: Driver Seat Con�guration . 45
3.8 User Story 08: Parking Space Finder . 45
3.9 User Story 09: Improved Carpooling System . 46
3.10 User Story 10: Car Accident Registration by Video 46
3.11 User Story 11: Car Theft Registration & Car Vandalism Registration 47
3.12 User Story 12: Tra�c Jam Warning & Tra�c Jam Avoidance 47
3.13 User Story 13: Chat Service for Car Drivers . 48
3.14 User Story 14: Tra�c Enforcement Camera Warning 48
3.15 User Story 15: Advertising Services for Drivers 49
3.16 User Story 16: Social Media . 49
3.17 User Story 17: Ambulance Assist . 50
3.18 User Story 18: System Surveillance and Maintenance 50
3.19 User Story 19: Pool car management . 51
3.20 User Story 20: In-vehicle behavior learning . 52
3.21 User Story 21: Secure Car2X data exchange . 52
3.22 User Story 22: Emergency Braking & Evading Assistance System (EBEAS) . . 53

4 Architecture Speci�cation 55

5 Architecture Evaluation 58
5.1 Evaluation criteria . 58
5.2 Technology Evaluation . 59

5.2.1 IoT Cloud Platform . 59
5.2.2 Application and Service Integration . 59
5.2.3 Data Analytic and Visualization . 63
5.2.4 Data Storage and Management . 67
5.2.5 Device Management . 71
5.2.6 Message Gateway . 74

iv

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.3 Technology Selection . 76
5.3.1 IoT Cloud Platform . 76
5.3.2 Application and Service Integration . 77
5.3.3 Data Analytics and Visualization . 77
5.3.4 Data Storage and Management . 78
5.3.5 Device Management . 79
5.3.6 Message Gateway . 80

6 Conclusion 81
6.1 Subsequent activities . 82

v

List of Figures

1.1 Software stack for an IoT Cloud Platform [12] 1
1.2 Internet of Things (IoT) Platform reference architecture according to Gartner Inc. 2
1.3 End-to-end IoT architecture accroding to Intel 2
1.4 Microsoft Azure IoT reference architecture . 3

2.1 Publish/subscribe pattern for Message Queue Telemetry Transport (MQTT) [] 6
2.2 Architecture of Eclipse Kapua [55] . 11
2.3 Web-based administration console for all device and data management operations

[55] . 12
2.4 Eclipse Ditto in the overall Eclipse IoT landscape [52] 13
2.5 Mihini Architecture . 14
2.6 Exemplary Eureka architecture including di�erent cluster [61] 15
2.7 Coordination between master and slave nodes via Apache Zookeeper [2] 19
2.8 Topology in Apache Storm [2] . 19
2.9 The Apache Flink . 20
2.10 The architecture of Eclipse BIRT [51] . 21
2.11 The BIRT viewer [51] . 22
2.12 Example Grafana dashboard with di�erent panels [18] 23
2.13 MVCC concept in CouchDB [49] . 25
2.14 Data representation in a MongoDB database [38] 26
2.15 Architecture of MongoDB [37] . 26
2.16 Monitoring facilities of MongoDB [38] . 27
2.17 Example for a graph database . 28
2.18 Example schema for a In�uxDB . 29
2.19 Architecture of hawkBit . 32
2.20 Sensing Entities of the OGC SensorThings API 34
2.21 Kafka Architecture [63] . 36
2.22 IoT Reference Model [48] . 38

4.1 The cloud platform architecture with generic building blocks 57

6.1 The cloud platform architecture with speci�c technology 82
6.2 Proposed architecture of Eclipse Kuksa . 83

vi

List of Tables

2.1 An overview of some existing IoT platforms . 8

5.1 Eclipse Kapua (cf. Sec. 2.2.1). 59
5.2 Eclipse Ditto (cf. Sec. 2.3.1). 60
5.3 Eclipse Mihini (cf. Sec. 2.3.2). 60
5.4 Eureka (cf. Sec. 2.3.4). 61
5.5 Apache Camel (cf. Sec. 2.3.5). 61
5.6 Spring Integration (cf. Sec. 2.3.6). 62
5.7 Apache Storm (cf. Sec. 2.4.1). 63
5.8 Apache Flink (cf. Sec. 2.4.2). 64
5.9 Eclipse BIRT (cf. Sec. 2.4.3). 65
5.10 Grafana (cf. Sec. 2.4.4). 66
5.11 Apache CouchDB (cf. Sec. 2.5.1). 67
5.12 MongoDB (cf. Sec. 2.5.2). 68
5.13 Neo4j (cf. Sec. 2.5.3). 68
5.14 In�uxDB (cf. Sec. 2.5.4). 69
5.15 ArangoDB (cf. Sec. 2.5.5). 69
5.16 OrientDB (cf. Sec. 2.5.6). 70
5.17 Couchbase (cf. Sec. 2.5.7). 70
5.18 Eclipse hawkBit (cf. Sec. 2.6.1). 71
5.19 Eclipse Leshan (cf. Sec. 2.6.2). 72
5.20 Eclipse Wakaama (cf. Sec. 2.6.3). 72
5.21 Eclipse Vorto (cf. Sec. 2.6.4). 73
5.22 OGC SensorThings API (cf. Sec. 2.6.5). 73
5.23 Eclipse Hono (cf. Sec. 2.7.1). 74
5.24 Apache Kafka (cf. Sec. 2.7.2). 75
5.25 Eclipse Mosquito (cf. Sec. 2.7.3). 75
5.26 Evaluation criteria scores . 76
5.27 The evaluation of IoT Cloud Platform technologies 76
5.28 The evaluation of Service Integration technologies 77
5.29 Application of evaluation criteria to the data analytics and visualization tech-

nologies. 78
5.30 Application of the evaluation criteria on Database Management System (DBMS)

technologies . 79
5.31 Application of the evaluation criteria on multi-model databases 79
5.32 The evaluation of technologies for device management. 79
5.33 Application of the evaluation criteria on message gateway technologies 80

vii

Summary

viii

List of Abbreviations

ACID atomicity, consistency, isolation und durability
AMQP Advanced Message Queuing Protocol
ANSI American National Standards Institute
API Application Programming Interface
BSON Binary JSON
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
CRUD Create, Read, Update, and Delete
DBMS Database Management System
DMF Device Management Federation
DPWS Devices Pro�le for Web Services
DSL Domain-Speci�c Language
DTLS Datagram Transport Layer Security
ECU Electronic Control Unit
EPL Eclipse Public License
EXI E�cient XML Interchange
HMI Human-Machine Interface
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IoT Internet of Things
IIRA Industrial Internet Reference Architecture
ISO International Organization for Standardization
JDBC Java Database Connectivity
JMS Java Messaging Service
JSON JavaScript Object Notation
JVM Java Virtual Machine
LWM2M Lightweight M2M
M2M Machine-to-Machine
MQTT Message Queue Telemetry Transport
MQTT-SN MQTT-Sensors Network
MSA Microservice Architecture
MVCC Multi-Version Concurrency Control
NFC Near Field Communication
OEM Original Equipment Manufacturer
OGC Open Geospatial Consortium
OMA-DM Open Mobile Alliance-Device Management
OMA Open Mobile Alliance
OTA over-the-air
P2P Peer-to-Peer

ix

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

PaaS Platform as a Service
POSIX Portable Operating System Interface
QoS Quality of Service
RPC Remote Procedure Call
REST Representational State Transfer
SASL Simple Authentication and Security Layer
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TSDB Time Series Database
UDP User Datagram Protocol
URI Uniform Resource Identi�er
WSAN Wireless Sensor and Actuator Network
WSN Wireless Sensor Network
WWW World Wide Web
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

x

1 Introduction

The purpose of this document is the speci�cation of the IoT Cloud Platform architecture includ-
ing a secured management and distribution of vehicle data as well as the integration of external
services and applications. Such an IoT Cloud Platform is expected to scale both horizontally
to support the large number of devices connected and vertically to address the variety of IoT
solutions [12]. Due to the heterogeneity of application domains, also the requirements that
IoT systems should comply with di�er among each other [27]. However, an IoT architecture
comprises core building blocks that are applied across di�erent domains and regardless of the
use case or connected Things. Depending on the according reference architecture, such building
blocks di�er in its naming and granularity level. For example, Figure 1.1 shows typically core
features for the Eclipse open source software stack for an IoT Cloud Platform, while Figure 1.2
depict the reference architecture according to [14] with facilities for device management, data
storage and management, visualization, analytics, marketplace, and stream processing. Similar
to them, the IoT reference architecture by Intel [21] includes building blocks for data storage, se-
curity, analytics, management, or application integration (cf. Figure 1.3). The Microsoft Azure
IoT reference architecture in Figure 1.4 comprises multiple components for device registration
and discovery, data collection, transformation, analytics, business logic, and visualizations [34].
Among other things, the Industrial Internet Reference Architecture (IIRA) [31] exhibit the fol-
lowing key system characteristics: security, integrability, connectivity, data management, and
analytics. In [19], the authors present a taxonomy of required IoT components from a high
level perspective including components for device management, data storage and analytics, and
visualization.

Figure 1.1: Software stack for an IoT Cloud Platform [12]

1

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 1.2: IoT Platform reference architecture according to Gartner Inc. [14]

Figure 1.3: End-to-end IoT architecture according to Intel [21]

In general, an IoT architecture consists of the following building blocks according to the
di�erent reference architectures:

• Message gateway: A component for sending and receiving data to and from an arbitrary
amount of (constrained) devices via di�erent kind of protocols. As this component is the
central point of interaction with the cloud back-end, the message gateway transforms data
after ingress to events and act as broker by redirecting the events to other components
for further processing.

• Data storage and management: A component for persisting data within di�erent types
of databases.

• Data analytic and visualization: Components for analyzing existing data including big
data analyses and visualizing data in a suitable and valuable way.

• Device management: A component for device management allows to authenticate, con-
�gure and control, monitor, maintain, and update devices.

2

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 1.4: Microsoft Azure IoT reference architecture [34]

• Application and service integration: Components that support the development and pro-
vision of applications and services within the cloud back-end. For example, the digital
representation of a physical asset allows to apply data analysis, machine learning, or
monitoring.

• Security: Components that realize authentication, authorization, privacy, and a secured
communication.

As the resulting architecture speci�cation will be the foundation for the subsequent devel-
opment activities, the architecture has to be well de�ned with respect to (i) compatibility to
the In-Car platform of WP1 as well as the connectivity solution and network middleware of
WP2; (ii) storing, processing, and analyzing a large amount of heterogeneous vehicle data via
appropriate big data concepts [14]; (iii) a holistic security approach for the reception, stor-
age, management, and distribution of vehicle data; (iv) adaptability to the end user needs like
di�erent storage mechanisms or security levels.

1.1 Document Structure

The rest of this document is structured as follows: Chapter 2 investigates existing IoT building
blocks by means of protocols, components, platforms, and ecosystem approaches in the form of
a state of the art analysis. Chapter 3 then introduces di�erent user stories from the automotive
domain which depict the usage of the APPSTACLE ecosystem from di�erent points of view.
Based on the state of the art analysis and the automotive user stories, Chapter 4 speci�es the
main building blocks of the IoT Cloud Platform and their data �ow among each other. After-
ward, Chapter 5 evaluates the results from the previous chapters regarding their applicability to
the APPSTACLE infrastructure and proposes concrete technologies for the according building
blocks of the cloud architecture. Finally, Chapter 6 concludes this document with a discussion
on the resulting architecture speci�cation and their compatibility with the other work packages
as well as an outlook on future work within APPSTACLE.

3

2 State of the art

As already stated in Chapter 1, IoT architectures are applied across various domains with
di�erent domain-speci�c requirements. However, regardless of the according domain, an IoT
architecture comprises common building blocks. Thus, this chapter presents a state of the art
analysis for the di�erent common building blocks of the cloud ecosystem like communication,
data management, big data analyses, data visualization, and device management. For each
aspect, we provide a general description on the purpose, requirements, and challenges. In
particular, we investigate di�erent existing technologies for the implementation of the speci�c
aspects. Due to the large variety of cloud-related technologies, it is not feasible to review
each existing solution. Thus, our state of the art analysis only regard established projects and
further relies on the following inclusion criteria:

• Documentation: The application of the respective technology should be documented and,
if necessary, demonstrated via appropriate examples.

• Java-based: The technology should be based on Java to ensure a seamless integration
with the other work packages and third parties.

• Open-source: According to [13], open source software is a dominant provider of critical
infrastructure technology for the general software industry as the open model of develop-
ment and royalty-free distribution has proven to be an e�ective way to build production
quality software. Furthermore, open-source projects maintained by a community typi-
cally exhibit a better quality as well as security and allows for more customizability and
�exibility. Also technology maintenance and updates is given for a rather long life cycle.
Thus, the architecture should rely on open-source technology.

2.1 Communication Protocol

As communication protocols have been described in numerous existing studies, e. g. in [1, 25],
we merely summarize the most important protocols for the understanding of this chapter.

2.1.1 REST

Representational State Transfer (REST) [16] denotes an architectural style for distributed hy-
permedia and web service systems. It introduces resources as time dependent mappings to a set
of information entities. A resource may be referenced by an Uniform Resource Identi�er (URI)
like http://www.example.com/resource. Additionally, REST de�nes a generic interface to re-
sources, consisting of methods like GET for requesting and POST for creating resource representa-
tions. Within the World Wide Web (WWW), client applications, like browsers or mobile apps,
may invoke these methods, typically via the Hypertext Transfer Protocol (HTTP). Extensible
Markup Language (XML) or JavaScript Object Notation (JSON) [8] are widely used to encode
the transmitted representation.

4

http://www.example.com/resource

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.1.2 CoAP

With the advent of the IoT vision, and Machine-to-Machine (M2M) communication being one
of its main drivers [4], specialized communication techniques, which consider possible resource
limitations of M2M devices, e. g. less available energy and lower network connectivity [66],
are needed. Hence, the Constrained Application Protocol (CoAP) was designed for M2M
applications involving constrained networks and nodes like microcontrollers [46]. It supports
the realization of Constrained RESTful Environments (CoRE), i. e. the communication between
M2M nodes via a subset of REST. CoAP thus provides an URI addressing scheme for M2M
resources and methods like GET and POST to interact with them. However, in contrast to
REST, CoAP doesn't rely on HTTP but de�nes its own User Datagram Protocol (UDP)-based
protocol to achieve reduction of communication overhead by a compact transmission format
[5]. In particular, CoAP provide more compact binary headers and reduces the set of methods
that can be used (GET, POST, PUT, DELETE) [64]. Additionally, CoAP payloads might be
encoded with the E�cient XML Interchange (EXI) to further lower packet fragmentation rates
in constrained networks as well as the use of computational resources for payload parsing [45].
Several open source implementations of CoAP exist. For Java the Eclipse Californium

project1 provides libraries for client- and server-implementations under the Eclipse Public Li-
cense (EPL).

2.1.3 AMQP

Advanced Message Queuing Protocol (AMQP) is a standardized, binary communication pro-
tocol for message oriented middleware, i.e. it supports the application layer communication
between clients and message brokers. The standard originated from the �nancial industry but
is designed to cover a broad range of middleware-related problems. It is currently hosted at
OASIS [40] and also approved as o�cial International Organization for Standardization (ISO)
standard.
Overall, the standard consists of six parts (core, types, transport, messaging, transactions,

and security), which de�ne a type system for encoding messages as well as a linking protocol
that de�nes communication patterns.
Some open source messaging middleware exists that understands AMQP. One is the Apache

2.0 licensed message broker Apache QpidTM[43], another is the Apache 2.0 licensed Apache
ActiveMQTM[50] message broker.

2.1.4 LWM2M

Lightweight M2M (LWM2M) [41] is a protocol for device management in the IoT. It provides
capabilities to monitor devices, change device parameters as well as updating the �rmware of a
device. The protocol has been de�ned by the Open Mobile Alliance (OMA) and is the successor
of Open Mobile Alliance-Device Management (OMA-DM). LWM2M de�nes interfaces for [41,
p. 15]

1. Bootstrap (initialize objects on a LWM2M client in order to communicate with a LWM2M
server)

2. Client Registration (registering a client at a server)

1https://www.eclipse.org/californium/

5

https://www.eclipse.org/californium/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.1: Publish/subscribe pattern for MQTT []

3. Device Management and Service Enablement (reading and manipulating parameters of a
device and activating services of a device)

4. Information Reporting (registering to get noti�ed about parameter changes at a device)

Several Open Source implementations exists of which Eclipse Leshan is implemented in Java
and released under the EPL [56] (cf. Section 2.6.2). A corresponding implementation for
embedded systems in C is provided by the Eclipse Wakaama project [60] (cf. Section 2.6.3).

2.1.5 MQTT

MQTT is a publish-subscribe messaging protocol submitted to the OASIS by IBM and now
standardized by the ISO [22]. The protocol is based on TCP/IP and is designed for small
devices with limited network connection. As shown in Figure 2.1, the publish subscribe nature
of the protocol requires that devices and clients communicate with a broker, which is responsible
for receiving messages and sending them to interested parties. This implies that the protocol
provides means to connect and disconnect to a broker, subscribe and unsubscribe to certain
topics, and to publish messages to a certain topic.
MQTT comprises three types of actors for the publish/subscribe pattern [64]:

• Publisher: The role of the publisher is to connect to the message broker and publish
content

• Subscriber: They connect to the same message broker and subscribe to content that they
are interested in

6

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

• Message broker: This makes sure that the published content is relayed to interested
subscribers

The content is identi�ed by a topic. When publishing content, the publisher can choose
whether the content should be retained by the server or not. If retained, each subscriber
will receive the latest published value directly when subscribing [64]. To build applications
on top of MQTT several implementations for clients as well as for message broker exists (cf.
Section 2.7.3). A Java and other client-implementations are provided by the Eclipse Paho
project [58] under the EPL. A message broker especially dedicated to MQTT and available
under the EPL is Mosquitto from the Eclipse Mosquitto project [57].
According to [64], the MQTT protocol itself does not consider security. For example, the

support for user authentication in MQTT relies on plain text and is thus weak. However, MQTT
can also be used over an encrypted connection using Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) to circumvent the security problems. In general, the developers have to
consider security for MQTT themselves.
MQTT-Sensors Network (MQTT-SN) denotes a more lightweight version of MQTT and thus

has some advantages, especially for embedded devices. Among other things, MQTT-SN does
not require TCP/IP stack. Instead of this, UDP or simple link protocols can be used, which
are more resource-e�cient.

2.1.6 XMPP

While the MQTT is limited to the publish/subscribe pattern, Extensible Messaging and Pres-
ence Protocol (XMPP)2 supports, apart from the publish/subscribe pattern, other communica-
tion patterns such as point-to-point request/response or asynchronous messaging [64]. Initially
designed for instant messaging applications and thus capable of multi-party chats as well as voice
and video calls, XMPP has been extended to a communications protocol for message-oriented
middleware based on XML and standardized by the Internet Engineering Task Force (IETF).
It enables the near-real-time exchange of structured yet extensible data between any two or
more network entities. All of the existing XMPP servers, clients, and programming libraries
support the key features of an IM system, such as one-to-one and multi-party messaging, pres-
ence subscriptions and noti�cations, and contact lists. This wealth of code enables developers
to easily build new applications in a secure and scalable way.
XMPP was originally developed in the Jabber open-source community and thus o�ers several

key advantages over such services:

• Open: The XMPP protocols are free, open, public, and easily understandable

• Standard: The XMPP speci�cations were published as RFC 3920 and RFC 3921, RFC
6120, RFC 6121, and RFC 7622.

• Proven: Hundreds of developers are working on these technologies

• Decentralized: The architecture of the XMPP network is similar to email; as a result,
anyone can run their own XMPP server

• Secure: Any XMPP server may be isolated from the public network (e. g. on a company
intranet) and robust security using Simple Authentication and Security Layer (SASL)
and TLS, which have been built into the core XMPP speci�cations.

2https://xmpp.org/

7

https://xmpp.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.2 IoT Cloud Platform

IoT Cloud platform is a paradigm to integrate two concepts of Internet of Things and Cloud
computing. An IoT Cloud platform provides features of ubiquitous IoT applications and ser-
vices that are applicable in a wide range of domains. It enables us to access anything, any-
where at any time, without concerning about issues such as storage capacities, operational
performance, processing capacity etc.
IoT and Cloud Computing can be integrated by either (1) bringing the Cloud to IoT to

improve the IoT technological issues such as limited storage, small processing capabilities, and
energy capacities; or (2) moving IoT to the Cloud to leverage IoT capabilities and o�ers as
pay-per-use services on the Cloud called "Cloud of Things".
As a part of an IoT Cloud platform, an IoT middleware is a software layer or a set of

layers between applications and underlying technological layer (communication, processing,
and sensing) [15, 47]. It is an important software building block for hiding the complexity
related to the diversities and speci�ties of distributed smart devices as well as the networking
environment.
By establishing an automotive IoT Cloud platform, we confront several challenges. For

example, Cloud service systems in the vehicle may be subjected to real-time requirements, while
sensor data or controlling actuators have to be accessible via the web from devices outside the
vehicle.
In addition, it is necessary to redesign the software engineering process as the traditional

automotive software development is di�erent from Cloud-based software development in the
sense of the lifecycle, release duration etc. Finally, assuring safety, security and reliability is a
major concern in this domain.
Since each domain exhibit di�erent requirements towards the functionality of an IoT Cloud

platform, platforms are tailored to the needs of distinct user and application groups such as
government, healthcare, communication, transportation, or manufacturing. This results in con-
siderable number of platforms which are available. While there is no standardized architecture
for such IoT Cloud platforms, platforms exhibit di�erent aspects at di�erent level of granular-
ity. According to [44], device management, data management, and application management
are covered by most platforms, whereas heterogeneity management, analytic, and visualization
lack of support.
Table 2.1 provides a list of major IoT Cloud platforms and middleware along with a short

description of them. An more detailed overview on existing platforms is given in [9, 36, 44].

Table 2.1: An overview of some existing IoT platforms

Name Description

AFME A middleware solution designed for wireless pervasive systems to tackle
the performance and code management issues associated with executing
agents only on mobile devices

ASPIRE An open source and scalable IoT middleware along with tools to devel-
opment and deployment of RFID-based applications

AWS IoT Amazon Web Services IoT (AWS IoT) is a managed cloud platform for
the IoT

8

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

CarrIoTs A middleware especially for M2M communication that focuses on cost
e�ectiveness, scalability, and ease of use

CHOReOS A Quality of Service (QoS)-aware middleware for enabling large-scale
choreographies and heterogeneous services in IoT

DIMMER A service IoT platform aiming at involving di�erent stakeholders to in-
crease the energy e�ciency of a city

EMMA An adaptation of Java message service (JMS) for mobile ad hoc environ-
ments that is used for multiparty video communication systems

Echelon An IoT platform with a full suite of chips, stacks, modules, interfaces,
and management software for developing devices and Peer-to-Peer (P2P)
communities

FIWARE A platform for the future internet that provide a novel service infrastruc-
ture built of reusable components

GREEN A run-time and con�gurable event-based middleware to support perva-
sive computing applications

GSN It uses virtual sensors to control processing priority, management of re-
sources, and stored data. Using declarative speci�cations, virtual sensors
can be deployed and recon�gured in GSN containers at runtime

Hermes A middleware created for large-scale distributed applications that uses
a scalable routing algorithm and fault-tolerance mechanisms that can
tolerate di�erent failures

HyCache An application-level caching middleware for distributed �le systems. Dis-
tributed �le systems are deployed on top of HyCache on all data node

IoTCloud A platform that controls and manages the sensors and messages over the
cloud online with the di�erent modules, i. e. controller, message broker,
and sensors

KASOM A knowledge-aware middleware for pervasive embedded networks, espe-
cially for Wireless Sensor and Actuator Networks (WSANs)

LinkSmart
(Hydra)

A middleware for ambient intelligence services and systems to provide
syntactical and semantic level interoperability

Mires A message-oriented middleware for Wireless Sensor Networks (WSNs)
using the publish/subscribe pattern

MobIoT A thing-based service-oriented middleware that o�ers discovery, compo-
sition, and access functionalities for IoT applications

MUSIC A middleware to provide a self-adaptive component-based architecture
to support the building of systems in ubiquitous environment, where
dynamic changes may occur in service providers and service consumers
contexts

Octopus An open source and extensible system to support data management and
programming models for IoT

OM2M The Eclipse project OM2M denotes an implementation of the oneM2M
and SmartM2M standard. As such, it provides a horizontal M2M service
platform for developing applications and services independently of the
underlying network in terms of heterogeneous devices

9

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

OpenIoT An open-source middleware for IoT applications by means of a service
model, which is available at a cloud environment that can be transpar-
ently accessed and con�gured by users

Paraimpu A tool that allows users to compose and mash-up things to react with
events, sensors, or social activities

PRISMA A middleware with a high-level and standardized interface for data access
to support interoperability of the heterogeneous network technologies

PSWare A real-time middleware to support composite events

RUNES A middleware for large-scale distributed heterogeneous network of em-
bedded systems

SENSEI A middleware to develop an architecture including a context model, con-
text services, actuation tasks, and dynamic service composition of both
primitive and advanced services for the real-world internet

SenseWrap A middleware that combines the zeroconf protocols with hardware ab-
straction using virtual sensors to discover sensor-hosted services

Sensation A middleware developed for WSN applications, and designed to provide
support for di�erent sensors, network infrastructures, and middleware
technologies

SensorBus A message-oriented middleware that allows exchange of more than one
communication mechanism among sensor nodes

SiteWhere An open source IoT platform that provides a system that facilitates the
ingestion, storage, processing, and integration of device data

SOCRADES A middleware that abstracts physical things as services using devices
pro�le for Devices Pro�le for Web Services (DPWS). Its architecture
consists of a layer for application services and a layer for device services

Steam A middleware service, designed for the mobile computing domain to
address dynamic recon�guration problem of the network, scalability of a
system, and the real-time delivery of events

TinyDDS A middleware enables interoperability between WSNs as well as access
networks and provides programming language and protocol interoper-
ability

UBiROAD A semantic middleware for context-aware smart road environments that
deals with interoperability between in-car and roadside heterogeneous
devices

UBiWARE A middleware for the creation of autonomous, complex, �exible, and
extendible industrial systems to support automatic resource discovery,
monitoring, composition, invocation, and execution of di�erent applica-
tions

Xively
(Cosm)

A Platform as a Service (PaaS) that provides middleware services to
create products and solutions for IoT

Kaa A PaaS that provides middleware services to create products and solu-
tions for IoT (https://www.kaaproject.org/)

10

https://www.kaaproject.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.2: Architecture of Eclipse Kapua [55]

2.2.1 Eclipse Kapua

The Eclipse project Kapua3 is a modular designed IoT platform for the comprehensive man-
agement of edge IoT nodes including their connectivity, con�guration, and application life cycle
[55]. Further features of Kapua are a web-based administration console for device and data
management operations (cf. Figure 2.3), a REST Application Programming Interface (API)
for application integration, and aggregated real-time data streams [55]. Kapua does not focus
on a speci�c domain and thus can be seen as a generic IoT Cloud platform. Figure 2.2 depict
the functional architecture of Eclipse Kapua [55]:

• Device Connectivity: Within Kapua, the device connectivity realize the authentication
and authorization of connections and further maintain a device registry. Therefore, a
multi-protocol message broker manages the connection to the devices via MQTT as well
as AMQP and Websockets for application integration.

• Message Routing: The component for the message routing (cf. Section 2.7) allows for
�exible handling of message streams.

• Device Management: Kapua supports device management via the MQTT protocol. In
particular, Kapua allows to manage (i) the device con�guration; (ii) the device service
including start and stop operations; (iii) device applications by means of installing, up-
dating, and removing applications; (iv) the execution of remote OS commands; and (v)
device attributes and resources.

• Data Management: For a persistent storage of the telemetry data, Kapua make use of
a NoSQL data storage and index sent data by timestamp, topic, and originating asset.

3http://projects.eclipse.org/projects/iot.kapua

11

http://projects.eclipse.org/projects/iot.kapua

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.3: Web-based administration console for all device and data management operations
[55]

Furthermore, data management in Kapua is also responsible for the data registry which
maintains topics and metrics.

• Security: The security module in Kapua includes a hierarchical access control structure
for the secured authentication of users through provided credentials or SSL. A Role Based
Access Control further realize a authorization concept.

• Application Integration: The integration of application in Kapua is enabled via a REST-
based web service API. While the API exposes all the platform functionality such as
device and data management, it also provide the option to bypass the message broker
and directly route commands from applications to devices.

The latest available version of Kapua is 0.2 under the EPL. Currently, the developers mi-
grating the platform towards a Microservice Architecture (MSA) and plan to reuse existing
Eclipse projects for the appropriate functionalities like Eclipse Hono for the message routing
(cf. Section 2.7).

2.3 Application and Service Integration

This section aims to provide an overview on existing solutions for supporting the development
and provision of applications or services from the cloud to the vehicle. Such an application
store and service provision has to consider di�erent kinds of vehicles, personalized settings, and
other context-speci�c data. Thus, application and service should be provided in a variable way,
depending on the certain context. To realize distinct functionality via domain-speci�c services,
also a digital representation of certain devices is important.

12

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.4: Eclipse Ditto in the overall Eclipse IoT landscape [52]

2.3.1 Eclipse Ditto

The IoT is an amalgamation of two worlds of software development: classical embedded software
development and web development. Both worlds have a very di�erent culture. In embedded
software development often the focus is on reliability and safety whereas in web application
the development speed and feature richness is key. Integrating both worlds introduces several
problems. In order to cope with them, the digital twin metaphor is proposed, which means
that for each physical device that is to be connected to the internet a corresponding digital
representation exists. The digital twin o�ers the possibility to access and alter the state of a
device in a controlled manner.
Eclipse Ditto provides a platform to realize the digital twin metaphor. It provides function-

ality to realize

• Device as a Service: higher level API to access devices

• State management of digital twins including noti�cation of state changes

• Digital Twin Management: provides meta-data based support to search and select digital
twins

The API of Eclipse Ditto is realized as REST-API. By that a backend-less realization of
IoT applications is possible. IoT application developers can concentrate on the business logic
and user experience without the hassle to integrate di�erent protocols and device types. The
architectural setting of Eclipse Ditto looks like in Figure 2.4.

13

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.3.2 Mihini

The Mihini project4 provides an application environment for the Things in the IoT. It is
based on the Lua API5 which is a lightweight scripting language for developing portable M2M
applications. It implements e. g. functionalities like I/O management, data management, device
management, application management and application settings management. It runs on top of
Linux systems like the Raspberry Pi. Figure 2.5 depicts the Mihini architecture.

Figure 2.5: Mihini Architecture

2.3.3 Appstore

Eclipse Marketplace

The Eclipse Foundation operates a website �called Eclipse Marketplace� that provides Eclipse-
based solutions. It allows solution providers to specify a P2 repository for their solution.
P2 repositories combine the artefacts (bundles), the meta data and eclipse features. Within
Eclipse marketplace, Eclipse users have a central catalogue to �nd Eclipse solutions but the
install process is still not tightly integrated with the Eclipse workspace.
Marketplace Client is a rich client solution for installing solutions listed on Eclipse Market-

place directly from an Eclipse Installation. It provides the tight install integration between the
Eclipse workspace and Eclipse Marketplace, plus other third party solution listings.

2.3.4 Eureka

The service registry and middle-tier load-balancer framework Eureka6 is available at the Net-
�ix Open Source Software Center7 under Apache License 2.0. It represents a REST-based
services discovery with consideration for load balancing and fail-over of middle-tier servers (in-
stance/server/host level) [61]. In particular, Eureka allows microservices to register with an
unique name and an appropriate URL, which can be afterward used to identify the service to

4https://eclipse.org/proposals/technology.mihini/
5https://www.lua.org/
6https://github.com/Net�ix/eureka
7https://netflix.github.io/

14

https://www.lua.org/
https://netflix.github.io/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

make remote calls although the services may be deployed on di�erent instances (cf. Figure 2.6).
Thereby, Eureka follows a client/server approach:
The Eureka server runs as independent service within a MSA and act as central communica-

tion point for the Eureka clients. It manages the service dynamically, i. e. services that don't
send a heartbeat within a certain interval are considered as unavailable and thus are removed
from registry. Furthermore, the Eureka servers have a built-in resiliency to prevent a large scale
outage [61]. As per convention each Eureka server is also a client, several Eureka server can be
merged to a cluster.
An Eureka client is further divided into an Application Client and Application Service as

shown in Figure 2.6. The former one represents services which rely on the communication with
other services, while the latter one o�ers their functionality to other services and is responsible
to register at the Eureka Server via REST. However, an Eureka client can be also both an
Application Client and an Application Service. To handle failure of one or more Eureka servers,
Eureka clients have the registry cache information in them, which is frequently updated via a
poll mechanism. Servo, an interface for exposing and publishing application metrics in Java, is
used within Eureka for performance monitoring and alerting.

Figure 2.6: Exemplary Eureka architecture including di�erent cluster [61]

2.3.5 Apache Camel

Apache Camel is an open source framework for system integration that aims at simplifying
the integration process8. Its source code, which is written in Java, is available at GitHub and

8http://camel.apache.org

15

http://camel.apache.org

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

released under version 2.0 of the Apache License9.
Apache Camel enables the integration of various systems by passing messages10. In this

regard, it is agnostic regarding the data that is transferred within a message. The framework
does not require that data is converted in any form. Apache Camel's core is a routing and

mediation engine that transfers messages on routes between the systems to integrate. The
routes are con�gured based on enterprise integration patterns and de�ned using one of multiple
Domain-Speci�c Languages (DSLs). The concept of enterprise integration patterns has been
introduced by Gregor Hohpe and Bobby Woolf in the similarly titled book in 2003. While
investigating existing integrated systems, they derived a set of 65 messaging patterns that are
grouped into the following classes11:

Messaging endpoints: Connecting a system to a message channel.

Message construction: Wrapping the data to exchange within a message.

Messaging channels: Writing information such that in can be read by a consumer.

Message routing: Routing a message to its destination based on �lters.

System management: Operating a messaging system.

Message transformation: Transforming the content of a message between data formats.

These patterns represent proven solutions to existing problems regarding system integration.
Apache Camel uses DSLs based on Java, Scala, Groovy, and XML to specify rules for message
routing. Using existing programming languages allows to leverage existing development envi-
ronments, such as the Eclipse IDE. The framework provides support for more than 80 protocols
and data types as well as more than 150 data type converters.
Apache Camel claims to have a modular and extensible architecture, which should allow to

easily add missing functionality, such as data type converters. In addition, it aims at reducing
the e�ort for testing a self-build Apache Camel application. The so-called TestKit, which for
example allows to mock endpoints, supports application development.

2.3.6 Spring Integration

Spring Integration is a framework for integration Spring-based applications that relies on mes-
sage passing12. It heavily relies on the Enterprise Integration Patterns described in Sect. 2.3.5.
For this purpose, Spring Integration extends the Spring programming model. It allows to inte-
grate Spring applications providing diverse functionality, while maintaing the business logic in
an isolated fashion. The source code of project is hosted on GitHub13.
Spring Integration follows the concepts of pipes, responsible for transporting messages, and

�lters, producing and consuming messages. It comprises the following general components14:

9https://github.com/apache/camel
10https://manning-content.s3.amazonaws.com/download/f/737b721-0f60-4ba9-bb1f-7a27c4a4532b/

chapter1sample.pdf
11http://www.enterpriseintegrationpatterns.com/patterns/messaging/index.html
12http://projects.spring.io/spring-integration/
13https://github.com/spring-projects/spring-integration
14https://docs.spring.io/spring-integration/docs/4.3.12.RELEASE/reference/html/overview.html

16

https://github.com/apache/camel
https://manning-content.s3.amazonaws.com/download/f/737b721-0f60-4ba9-bb1f-7a27c4a4532b/chapter1sample.pdf
https://manning-content.s3.amazonaws.com/download/f/737b721-0f60-4ba9-bb1f-7a27c4a4532b/chapter1sample.pdf
http://www.enterpriseintegrationpatterns.com/patterns/messaging/index.html
http://projects.spring.io/spring-integration/
https://github.com/spring-projects/spring-integration
https://docs.spring.io/spring-integration/docs/4.3.12.RELEASE/reference/html/overview.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Message: It is composed of a header and the payload. The header contains meta information
related to the payload, such as time-of-creation.

Message Channel: It refers to the concept of a pipe, as mentioned above. Messages, which
have been produced, are send via a channel to the corresponding consumers.

Message Endpoint: It refers to the concept of a �lter, as mentioned above. Endpoints connect
the individual applications to the message channels.

A message may contain any kind of information, provided as arbitrary objects. The frame-
work comprises a set of message channel implementations, including the following Java classes:

PublishSubscribeChannel: It broadcasts a message that has been sent by one provider to all
of its subscribers. This channel type is often used for event propagation.

QueueChannel: It considers only a single provider as well as single consumer. Unless its capacity
is not exceeded, messages are stored within a channel queue. Messages are send to the
consumer according to the �rst in, �rst out (FIFO) principle.

PriorityChannel: It orders messages according to a priority, in contrast to QueueChannel.
This information is provided as an additional header attribute.

RendezvousChannel: It refers to a synchronous implementation of QueueChannel. Hence, the
execution of the sender is blocked, until the message has been received.

DirectChannel: It corresponds to the PublishSubcribeChannel, while sending messages of a
publisher only to a single subscriber.

Note that the list above is not complete. Spring Integration distinguishes several types of
message endpoints. These types overlap with concepts from the enterprise integration patterns:

Transformer: It transforms a given message, e.g., converting the format of the payload.

Filter: It decides, whether a message is accepted by an output channel or not.

Router: It decides, to which message channel a message is sent next.

Splitter: It splits a given message, usually equipped with a composed payload, into multiple
messages and sends them to a set of output channels.

Service Activator: It connects a service entity to the messaging system, given an input channel
and zero or more output channels.

Channel Adapter: It connects a message channel to a speci�c inbound or outbound transport
or system.

Note that Spring Integration may provide multiple implementations of the di�erent message
endpoint types. Each message endpoint implementation has di�erent semantics and exposes
di�erent behavior.

17

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.4 Data Analytic and Visualization

The advancing digitalization in the automotive domain, driven by more and more connected
devices and an increasing number of sensors [33], leads to a large amount of heterogeneous data
from various stakeholder [14]. For example, already in 2013, an average about 480 TB data
from more than 26 million cars has been collected by the automotive manufacturers [10]. Beside
the large data volume, the data exhibit a high variety [3] in terms of the used data format as
well as the sources they come from, e. g. di�erent types of sensors. Depending on the use case,
it may be further necessary to process data in real-time or nearly real-time. These requirements
in terms of volume, variety, and velocity [28], commonly characterized as big data, makes the
processing and analysis of vehicle data a challenge [65]. However, as big data provides the basis
for optimized product and after-sale service as well as personalized online service, e. g. smart
services like a car insurance adaptation based on driving analysis or a smart tra�c navigation
based on aggregated tra�c information, this section reviews appropriate data processing and
analytic technologies. In particular, we focus on big data processing software approaches that
allows to deal with large data sets in real-time, while supporting various data scheme.

2.4.1 Apache Storm

Apache Storm15 denotes an open source distributed stream processing computation framework
available under the Apache License, Version 2.0. In contrast to Apache Hadoop16, Apache
Storm focus on real-time processing rather than batch processing [2]. Therefore, Apache Storm
o�ers two types of nodes to realize a cluster: The master node (run by a daemon called Nimbus)
distributes code around the cluster, assign tasks to machines, and monitor for failures. On the
other hand, worker nodes (run by a daemon called Supervisor) are responsible to start and stop
worker processes, which contain the processing logic. Although both node types are stateless, a
fault-tolerant, stable, and parallel manipulation of data is realized in conjunction with Apache
Zookeeper17 [2]. Figure 2.7 depict the coordination between master and slave nodes via Apache
Zookeeper.
Within Apache Storm, the real-time manipulation of big data is established through a topol-

ogy. In particular, a topology act as data transformation pipeline by providing a graph of
computation (directed acyclic graph) where each node contains processing logic, while links be-
tween nodes represent streams and indicate how data should be passed around between nodes
[2]. The vertices in such a topology can be either a spout or a bolt (cf. Figure 2.8). While
a spout represents a data source, a bolt consumes any number of input streams, does some
processing, and possibly emits new streams [2]. Apache Storm supports di�erent kinds of data
source like various Java Messaging Service (JMS) provider or Apache Kafka18.
Vertical scalability is realized through the addition of worker nodes. Furthermore, Apache

Storm also provides a load-balancing between similar nodes. As shown in [6], Apache Storm
performs quite well and at a low latency with real-world big data benchmarks. Further features
of Apache Storm are:

• Continuous Computation: Allows to distribute results whilst processing other data.

15http://storm.apache.org/
16http://hadoop.apache.org/
17https://zookeeper.apache.org/
18https://kafka.apache.org/

18

http://storm.apache.org/
http://hadoop.apache.org/
https://zookeeper.apache.org/
https://kafka.apache.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.7: Coordination between master and slave nodes via Apache Zookeeper [2]

Figure 2.8: Topology in Apache Storm [2]

19

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

• Integration: Apache Storm allows to use any type of programming and seamless integrate
with existing database technologies [29].

• Parallelization: Remote Procedure Calls (RPCs) allows to parallelize computation-intensive
requests.

2.4.2 Apache Flink

Apache Flink19 is an open source stream processing framework. The core is a distributed
streaming data�ow engine written in Java and Scala. Flink executes arbitrary data�ow pro-
grams in a data-parallel and pipelined manner. Flink's pipelined runtime system enables the
execution of bulk/batch and stream processing programs.

Figure 2.9: The Apache Flink

Apache Flink can:

• provide results that are accurate, even in the case of out-of-order or late-arriving data

• be stateful and fault-tolerant and can seamlessly recover from failures while maintaining
exactly-once application state

• perform at large scale, running on thousands of nodes with very good throughput and
latency characteristics

Apache Flink focusses explicitly on stream processing by introducing a streaming execution
model20. The processing of bulk data is considered as a special case of stream processing,
internally treating corresponding data sets as �nite streams. This is a major di�erence to
alternative solutions. Apache Flink provides the DataStream API21 for stream processing and
the DataSet API22 for batch processing. While applications that process streaming data can
only be written in Java or Scala, applications processing batch data can also be written in
Python23.

19https://flink.apache.org
20https://flink.apache.org/introduction.html
21https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/datastream_api.html
22https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/batch/index.html
23https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/batch/python.html

20

https://flink.apache.org
https://flink.apache.org/introduction.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/batch/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/batch/python.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Apache Flink applications de�ne transformations on data that originates from data sources
and is returned to data sinks. In addition to de�ning custom transformations, Apache Flink does
provide libraries regarding complex event processing, machine learning and graph processing. It
furthermore provides compatbility to Apache Storm. Applications are executed on a distributed
streaming data�ow engine, which processes data streams in an event-at-a-time fashion.
Apache Flink claims to have a superior performance regarding latency and throughput in

comparison to Apache Storm24 and Apache Spark25. One aspect that supports this assertion
is a custom memory management that stores data in pre-allocated memory segments using a
binary representation instead of storing Java objects on the heap26. Maintaining these o�-heap
memory segments idependently allows Apache Flink to reduce the load on the garbage collector.
Furthermore, the memory overhead for storing Java objects is reduced considerably.

2.4.3 Eclipse BIRT

Eclipse BIRT27 is an open source platform (available under the Eclipse Public License (EPL))
for the visualization of data and generation of reports. It is designed for the usage in rich client
or web applications and therefore consist of two main components as shown in Figure 2.10:

Figure 2.10: The architecture of Eclipse BIRT [51]

The visual report designer is based on Eclipse and allows to create BIRT Designs. Thus, such
designs are created in a speci�c Eclipse perspective and stored in an open XML format. Among
other things, the BIRT designer o�ers a component-based model for reusing design elements,
integrates di�erent types of reports and layouts, e. g. various chart types such as a bar or a
pie chart, and supports a wide range of data sources like Java Database Connectivity (JDBC),
Web Services, XML, MongoDB, or Excel [11]. The expression builder in BIRT further enables
conditional report processing, i. e. �exible representation of information depending on the
available data.
The runtime component (Report Engine) can be deployed to any Java environment and

allows to generate reports, for example HTML, PDF, XLS, DOC, etc., based on the XML
Report Design �le [51]. The Charting Engine further provides facilities to generate charts,
which can be used either standalone or embedded within BIRT reports. An additional viewer

24https://flink.apache.org/introduction.html#features-why-flink
25https://jobs.zalando.com/tech/blog/apache-showdown-flink-vs.-spark/?gh_src=4n3gxh1
26https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
27https://eclipse.org/birt/

21

https://flink.apache.org/introduction.html#features-why-flink
https://jobs.zalando.com/tech/blog/apache-showdown-flink-vs.-spark/?gh_src=4n3gxh1
https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
https://eclipse.org/birt/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.11: The BIRT viewer [51]

Plug-in enables the preview of reports (cf. Figure 2.11) within Eclipse and is also available as
standalone Java EE application [11].

2.4.4 Grafana

Grafana28 is an open source metric analytics & visualization platform published under the
Apache License, Version 2.0. The main purpose of Grafana is the visualization of time series
data via customized dashboards [18]. Grafana o�ers a speci�c query editor for each supported
data source, e. g. In�uxDB or Graphite. In this way, features and capabilities of the according
data source can be exposed. Di�erent data sources can also be combined within a single
dashboard.
Panels are the main building block of a dashboard as they allow to explore the existing data by

processing the extracted data into a suitable visualization via several con�guration parameters.
They are comprised within the di�erent rows of a dashboard as shown in Figure 2.12. The
following panel types are currently available in Grafana:29

• Graph: The graph-based visualization is the main panel type in Grafana. It provides
various options for customizing the visualization for the sake of the user. For example,
the x-axis can either group the data by time, by series, or by history ranges, while data
can be plotted as bar charts, line graphs, or points. In addition, graph panels allows
to display tooltips, legends, or thresholds and panels can be customized regarding the

28https://grafana.com/
29The following website demonstrate the respective panels and their application: http://play.grafana.org/

dashboard/db/grafana-play-home?orgId=1

22

https://grafana.com/
http://play.grafana.org/dashboard/db/grafana-play-home?orgId=1
http://play.grafana.org/dashboard/db/grafana-play-home?orgId=1

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.12: Example Grafana dashboard with di�erent panels [18]

time range (the dashboard time range is used by default), axis label, data units, scale,
rendering etc.

• Singlestat: Via a singlestat panel, the main summary stat of a single series, e. g. the
maximum, minimum, average, or sum of values, can be displayed. Thresholds can be
used to color the panel background according to the actual number. The representation
of a single stat can be a simple number with pre- and post�x text, but also a coloring,
spark lines, gauges, or a value to text mapping.

• Table: As the name suggest, the table panel allows one to display values by means of
columns and rows in a very �exible way. In its simplest form, time series are displayed
per column. However, it is also possible to aggregate values within rows by time series or
to display annotations.

• Heatmap: A heatmap panels is similar to a histogram, but it features value distributions
over speci�c time ranges to detect trends etc. Therefore, the frequency how often a value
occurs for a speci�c point in time is colored proportional to the overall numbers of values.

• Text: The text panel allows to provide information and descriptions in markdown, HTML,
or plain text.

In general, Grafana provides a great �exibility for the customization of dashboards and nav-
igation. Through snapshots, panels can also be shared among stakeholder with no access to
the dashboard. A snapshot denotes a static and interactive JSON document with all cur-
rently viewed data encoded [18]. Additional features of Grafana are templating for dynamic
dashboards, annotations, export/import via JSON, or an alerting engine.
Authentication is realized in Grafana on di�erent levels of privileges and in variety ways

including its own integrated database, from an external Structured Query Language (SQL)
server, or from an external LDAP server [18]. The access to dashboards can be tailored to
users and organizations.

23

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.5 Data Storage and Management

One of the most important aspect for the realization of the cloud infrastructure is the storage
and management of vehicle data by an appropriate DBMS. Although persisting and managing
data is a central point in every software architecture, especially the various stakeholder and large
amount of heterogeneous data in the automotive domain requires a well-de�ned data storage
and management concept. Thus, the DBMS has to consider, among others, the following
requirements and challenges:

• Big Data: The DBMS has to be Big Data compatible, i. e. the DBMS needs to be aware
of large, complex, and unstructured data sets.

• Data Management : The DBMS has to provide data access to di�erent user groups and on
di�erent levels of granularity. This requires a holistic access management and the ability
to aggregate data of di�erent hierarchies.

• Performance: The DBMS should process data in appropriate velocity by supporting
certain approaches like in-memory storage.

• Scalability : The DBMS should provide mechanisms for horizontal scalability, i. e. increas-
ing capacity of the database on demand.

• Security : As the exchanged vehicle may contain sensitive data, the DBMS should include
di�erent levels of security.

Over the last decades, di�erent types of DBMSs, each following a speci�c approach for storing
and managing data, have been evolved. Relational databases, for example MySQL, are matured
and provide good protection for transactions as well as �exible mechanism for accessing data.
With the advent of Web 2.0, NoSQL databases have become more and more popular as they

are suitable to handle large data sets in an e�cient way and allow the storage of heterogeneous
data, e. g. in terms of di�erent JSON structures, in a generic manner [42]. Therefore, NoSQL
databases rely on a non-relational model for data storage. Examples for such models are key-
store, column-oriented, or document-based [3]. Various surveys and evaluations for NoSQL
databases are available in literature. For example, Han et al. [20] conducted a survey on
NoSQL databases and their advantages and limitations for the application in the cloud, while
Lourenço et al. present in [32] quality attributes for choosing a suitable NoSQL database.
Document-oriented databases like MongoDB are suitable for storing unstructured data. Graph
databases, for example Neo4j, focus on the performant linkage of data to realize an e�cient
querying on large data sets. A Time Series Database (TSDB) like In�uxDB again is designed
for the massive storage of time series data such as data collected at regular intervals from
sensors etc.
As relational DBMSs already exists for a long time and thus have been often described

and evaluated in literature [24], we focus in the following on the most popular and matured
implementations for the other types of DBMSs.
A multi-model database [26], such as ArangoDB, OrientDB, or Couchbase, comprises di�erent

types of DBMSs within a single incorporated database engine.

24

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.13: MVCC concept in CouchDB [49]

2.5.1 Apache CouchDB

The document-oriented NoSQL database CouchDB30 is an open source project hosted by
Apache and available via Apache License, Version 2.0. Each CouchDB database comprises
a set of uniquely named, semi-structured, and independent documents (indexed by their name
and a Sequence ID). Documents can accessed via HTTP-based REST31 for reading and up-
dating (add, edit, delete) [49]. Each document de�nes its own schema and basically consists
of both metadata like revision information and JSON objects for storing the data. JSON32

objects represents �eld/value pairs of di�erent data types like String, Date or even structures
like an ordered list.
Due to its realization as peer-based distributed database system, CouchDB allows a bi-

direction replication and synchronization of documents [49]. In this way, clients can perform
o�ine operations on replicated documents and sync the changes later back to the database
in a e�cient way. Thus, CouchDB is also suitable for applications that have no guaranteed
network connection. Another feature of CouchDB is the view model, which supports di�erent
views, i. e. aggregation and �ltering of data, for a document. By default, querying is done via
JavaScript, but there is also support for other languages like PHP or Phyton. Furthermore,
views provide the basis for applying MapReduce Dean2008 operations.
As a DBMS, CouchDB provides all atomicity, consistency, isolation und durability (ACID)

semantic. Thus, the database never contains partially saved or edited documents as updates on
documents are either successful or fail completely [49]. When conducting an update operation,
documents are �rst loaded, then the changes are applied, and �nally saved to the database.
A Multi-Version Concurrency Control (MVCC) model realizes the concurrent access to the
database (cf. Figure 2.13). Thereby, the CouchDB document update model allows clients to
resolve update con�icts, e. g. when two clients updating the same document at the same time.
As the data access and manipulation can be extended by custom security models, CouchDB
supports individualized security and validation [49].

2.5.2 MongoDB

The open source DBMS MongoDB33 is available under GNU AGPL v3.0 License and denotes
another type of NoSQL database. As such, it is designed for building and running data-driven

30http://couchdb.apache.org
31http://www.json.org/json-de.html
32http://www.json.org/json-de.html
33https://www.mongodb.org

25

http://couchdb.apache.org
http://www.json.org/json-de.html
http://www.json.org/json-de.html
https://www.mongodb.org

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.14: Data representation in a MongoDB database [38]

Figure 2.15: Architecture of MongoDB [37]

applications delivered as services that must be always-on, accessible from many di�erent devices
on any channel, and scaled globally to millions of users [37]. Similiar to CouchDB, MongoDB
stores data in a �exible way via �eld/value pairs in domain-speci�c structured documents. Such
dynamic schema allows further the validation of the document structure, value ranges, data
types etc. Related documents are again aggregated in collections (collections are analogous to
tables in relational databases [7]). As shown in Figure 2.14, a MongoDB database represents
a set of document collections. Each document of a collection is identi�able through a 12-byte
ObjectID, which can be either manually managed or generated by MongoDB (in case the _id
�eld is empty). In contrast to CouchDB, MongoDB stores data in a binary representation
called Binary JSON (BSON)34, which is more lightweight and has a broader support for data
types (e. g. date or �oating point) than JSON [38].
MongoDb's architecture Nexus, shown in Figure 2.15, combines the critical capabilities of

relational databases, i. e. expressive query languages, strong consistency, and enterprise man-
agement and integrations [37], with the innovations of NoSQL technologies like a �exible data
model, scalability and performance, and availability [7].
MongoDB o�ers a rich query language for applying Create, Read, Update, and Delete

(CRUD) operations in documents as well as data aggregation, text search, or geospatial queries
[38]. Also graph traversals and complex data processing via MapReduce queries is enabled by
MongoDB. Thereby, the access and manipulation of data is supported on various levels and

34http://bsonspec.org/

26

http://bsonspec.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.16: Monitoring facilities of MongoDB [38]

ways by di�erent native drivers for programming languages and frameworks like Java, Phyton,
or Apache Spark [38].
Data availability, i. e. increased data durability and protection against database downtime,

is realized in MongoDB by replications. In particular, a replica set comprises multiple replica
where one replica denotes the primary member and the others secondary member. If the
primary one fails, one of the secondary replicas is automatically elected. To o�er a �exible
storage architecture, MongoDB allows multiple storage engines within a single deployment.
For example, the current version 3.4 of MongoDB ships with the default WiredTiger storage
engine as well as engines for the protection of highly sensitive data via encryption or In-Memory
storage for high performance [37].
The interaction with the database is further supported by additional tools like MongoDB

Compass35 for schema exploration and management or MongoDB Cloud Manager36 with fa-
cilities for comprehensive monitoring as shown in Figure 2.16. However, such tools and APIs
may require a di�erent license model, e. g. Apache License.
More features of MongoDB include Auto-Sharding for horizontal scale-out databases, a query

router, ACID compliance at document level, and various security features such as authentica-
tion, access control, or encryption (TLS cf. Section 2.8).

2.5.3 Neo4j

The Java-based and open-source graph database Neo4j37 is designed for fast management,
storage, and traversal of nodes and relationships [39]. The Neo4j Community Edition is licensed
under GPL v3, while the Neo4j Enterprise Edition is dual licensed under Neo4j commercial
license as well as under AGPL v3. According to DB-Engines38, Neo4j denotes one of the most
popular graph database. Such database types are characterized through the generic storage of
data in a graph.

35https://www.mongodb.com/products/compass
36https://www.mongodb.com/cloud/cloud-manager
37https://neo4j.com
38https://db-engines.com/de/ranking/graph+dbms

27

https://www.mongodb.com/products/compass
https://www.mongodb.com/cloud/cloud-manager
https://neo4j.com
https://db-engines.com/de/ranking/graph+dbms

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.17: Example for a graph database

More precisely, Neo4j uses Cypher39, a graph query language which operates on a property
graph. In such a property graph, a node denotes a vertex, while a relationship denotes an
edge. As shown in Figure 2.17, uniquely identi�able nodes likely represent entities along with
their properties. A property is a �eld/value pair where the value is typed by either a String,
integer, �oat, or Boolean. A relationship connects exactly two nodes, the source and the target
node, to organize them in a speci�c structure like a list, a tree, a map, or a compound entity
[39]. Relationships are directed, typed, and may be further described by a property. Although
relationships are directed, they are equally well traversable in either direction and thus there
is no need for duplicate relationships for performance reasons. Such semantically enriched
relationships between nodes allows to �nd related data in a e�cient way, which is the main
distinction towards other database types [35]. To enhance the data query facilities and speed
up the processing, labels can be attached to nodes in order to group them into sets. Labels
also provide the basis for the de�nition of constraints, e. g. to ensure that property values are
unique for all nodes with a speci�c label [39].
Neo4j provides database access via language-speci�c drivers. In particular, APIs for C#,

Java, JavaScript, Python are shipped with Neo4j. Further features of Neo4j are ACID compli-
ance, export of query data to JSON and XLS format, a REST API, and database indexing.

2.5.4 In�uxDB

The open source In�uxDB40, available under MIT License, is a Time Series Database (TSDB)
written in Go with the focus on high write and query loads. A TSDB is particular suitable for
data which are more useful when they are aggregated, e. g. for a smart navigation application,
but also tasks like monitoring, sensor data measurements, or real-time analytics bene�t from
time series data sets. Those tasks allows to visualize trends over time which typically require
fast, high-availability storage and retrieval of time series data.
Since the root of TSDB is time, each In�uxDB database consists of a column for storing

RFC3339-based41 timestamps including the date and time. Additional columns allows to store
non-time data, whereby each data value is always associated with a timestamp [62]. Figure 2.18

39https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc
40https://www.influxdata.com/
41https://www.ietf.org/rfc/rfc3339.txt

28

https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc
https://www.influxdata.com/
https://www.ietf.org/rfc/rfc3339.txt

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.18: Example schema for a In�uxDB [62]

depicts an example for a In�uxDB database. Field columns are used to store the actual data.
Therefore, such a column consists of a Field key (butterflies, honeybees) as well as the
according Field values, which denote concrete data of type String, �oat, integer, or boolean.
Fields are not indexed and thus not suitable for queries. In contrast to Fields, Tags such
as location and scientist are indexed and thus are more performant for querying. Tags

denote a key-value pair of type String with a Tag key and Tag values. A Measurement acts
as container for both Fields and Tags and is conceptually similar to a table in SQL. Via a
Retention Policy, the duration for keeping data as well as the amount of Measurement copies
for a cluster can be de�ned. By default, In�uxDB uses the autogen Retention Policy, which
has an in�nite duration and a replication factor set to one [62]. Finally, data which share the
same Measurement, Tag sets, and Retention Policy belong to a distinct Series.
In�uxDB is a schemaless database and thus it is easy to add new measurements, tags, and

�elds at any time. With In�uxQL, In�uxDB provides an SQL-like query language to interact
with the data stored in a In�uxDB database. Among other things, In�uxQL supports time-
centric functions, regular expressions, arithmetic in expressions etc.42 In general, time series
data are written once and rarely updated. For this reason, In�uxDB is not a full CRUD database
as it prevents some update and destroy behaviors to make the create and read operations
more performant [62]. Data can be written to In�uxDB via HTTP, Transmission Control
Protocol (TCP), and UDP. It has to be noted that the component for enabling horizontal
scalability is not open source.

2.5.5 ArangoDB

ArangoDB is a native multi-model database system. It supports three data models which
are key/value, documents and graphs with one database core. ArangoDB has its own query
language - ArangoDB Query Language (AQL). AQL can be used to retrieve and modify data
which are stored in ArangoDB and allows the combination of di�erent data access patterns in a
single query. ArangoDB is a NoSQL database system and syntax of AQL is di�erent from SQL,
but similar to many ways to SQL. Complex queries can be done with AQL from di�erent data
models. ArangoDB allows you to use existing or run your own data-centric microservices with
Foxx. Foxx is a javascript framework. In this way, it can be de�ned user speci�c routes that

42cf. https://docs.influxdata.com/influxdb/v1.3/query_language/functions/

29

https://docs.influxdata.com/influxdb/v1.3/query_language/functions/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

actual data doesn't have to be sent to the client. By this method, it improves security when the
amount of data sent is reduced. ArangoDB is a distributed database supporting multiple data
models. In horizontal distribution model, it provides many replication and automatic fail-over.
An ArangoDB cluster consists of a number of ArangoDB instances which talk to each other
over the network. These instances can be one of di�erent roles (Agents, Coordinators, Primary,
etc.).

2.5.6 OrientDB

OrientdDB has NoSQL database management system written in Java. OrientDB Community
Edition is open-source and supports multi-model database. It is supporting graph, document,
key-value, and object modules, but the relationship is managed as in graph databases with direct
connections between records which are document, recordbytes, vertex and edge. Document is
the most �exible record type in database. It can be imported or exported such as JSON
format. BLOB record type was called recordbytes before OrientDB v2.2. BLOB can be loaded
and stored as binary data. Vertex and edge types are used by graph database. Edge connects
one vertex to another. OrientDB's Query language is similar to SQL so it can be transformed
without more e�ort. OrientDB uses three algorithms SB-tree, Hash index, Lucene for indexing.
OrientDB uses the Hazelcast Open Source project for auto-discovering of nodes, con�guring
the runtime cluster and synchronizing certain operations between nodes. Hazelcast provides
many speci�c features such as queues for request and responses, storing metadata in distributed
maps, distributed locks, etc. OrientDB Enterprise Edition provides Query pro�ler, Distributed
Clustering con�guration, Metrics Recording, Live Monitoring, etc. in addition to OrientDB
Community Edition.

2.5.7 Couchbase

Couchbase Server is a multi-model database which natively manipulates data in key-value
form or in JSON documents. Couchbase Server is a distributed and open source NoSQL
database engine. Couchbase Server supports di�erent platforms which are server and mobile.
Using the SDKs, it can be written applications in the language such as Java, node.js,.NET,
or others. Couchbase Server has its own query language - N1QL. N1QL syntax is similar to
SQL Syntax and, when it is used, it operates JSON documents. There are many security
capabilities in Couchbase Server, but Couchbase Community Edition (Open Source) not has
most capabilities. It has only one capability that is built-in account managenment. Built-in
account management provides password protection administration and data access. Couchbase
is a distributed system and performs read/write operations, and performs queries with low
latencies and high throughput with cluster structure. However, Couchbase Community Edition
does not have many capabilities related to distributed system.

2.6 Device Management

According to a recently published Gartner forecast [17], 8.4 billion connected things will be
in use worldwide in 2017 and it is expected that the number of devices reach 20.4 billion
by 2020. Device management allows to handle the resulting heterogeneity and diversity of
connected and remote devices within the IoT by exposing an open contract towards the devices
with no assumption on the software stack of the device [12]. In general, device management is

30

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

responsible for several tasks like the authentication and provisioning, con�guration and control,
or monitoring and diagnostics. Another important aspect for the device management are
software updates and maintenance. Although the amount of software in a vehicle is increasing
more and more to realize complex functions like a parking assist system or a lane departure
warning system, updating or maintaining the vehicle software has still to be done o�ine in a
car service station. Such recalls typically a�ect a broad range of vehicles and leads to high
costs for the company. For example, Daimler recently had to recall 3 million vehicles in Europe
due to problems with the emissions performance, which will cost the company about 220me.43

However, one approach to overcome the current situation is to roll out updates over-the-air
(OTA) to increase vehicle reliability and facilitate cost savings. OTA updates thus bypass the
need of driving to car service stations or mass car recalls caused by defective software.
In the following, this section reviews technologies for device management with a particular

focus on the establishment of OTA updates.

2.6.1 Eclipse hawkBit

Eclipse hawkBit44 [53] is a backend framework released under the EPL to roll out software
updates to constrained edge devices. With the challenge of a safe and reliable remote software
update process in mind, the project aims to provide an uniform update process. This allows
to avoid duplicate work for implementing mechanisms separately in each software component.
Therefore, hawkBit provides a backend server that can be deployed in any cloud infrastructure
(cf. Figure 2.19). It helps managing roll out campaigns, e.g. by de�ning deployment groups,
cascading deployments, emergency stop of rollouts, and progress monitoring. Further, it of-
fers several device management interfaces on which management messages and updates can
be exchanged. However, hawkBit does not provide a client for edge devices by default. To
connect certain devices, an adapter implementation that understands the protocols is needed.
Those protocols in the Device Management Federation (DMF) API are AMQP, ODA-DM,
and LWM2M. Also software can be delivered to edge devices through a REST API. At the
cloud side, hawkBit ships a web-based UI for management purposes. Within the UI, all man-
agement functionalities are ready to use with a few clicks. In regard of the rising IoT cloud
service infrastructure also interfaces for integrating hawkBit into other applications are acces-
sible. Currently, a REST API exposes the functionality of the backend server towards other
applications. For a more convenient use, hawkBit also helps managing roll out campaigns,
e. g. by de�ning deployment groups, cascading deployments, emergency stop of rollouts, and
progress monitoring. The source code for the spring based application is hosted at Github
45 and released in version 0.2.0M3. One of the features on the roadmap is the integration of
Eclipse Hono as DMF provider.

2.6.2 Eclipse Leshan

Eclipse Leshan [56] is an implementation of the LWM2M protocol in Java released under
the EPL. It provides implementations for the client as well as for the server side. Leshan
uses Eclipse Californium to do communication via CoAP and relies on Eclipse Scandium for

43https://www.theguardian.com/world/2017/jul/19/mercedes-recalls-3m-diesel-cars-emissions-concerns
44https://eclipse.org/hawkbit
45https://github.com/eclipse/hawkbit

31

https://www.theguardian.com/world/2017/jul/19/mercedes-recalls-3m-diesel-cars-emissions-concerns
https://eclipse.org/hawkbit
 https://github.com/eclipse/hawkbit

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.19: Architecture of hawkBit

Datagram Transport Layer Security (DTLS). Furthermore, there are libraries available that
help people to implement their own LWM2M server and client side [56].

2.6.3 Eclipse Wakaama

Eclipse Wakaama [60] is released under the EPL and denotes another LWM2M implementation
from the Eclipse IoT Working Group. In contrast to Eclipse Leshan, Wakaama is not a Java
implementation for clients and servers but purely C-based and designed to be portable on
Portable Operating System Interface (POSIX) compliant systems. This helps implementing
systems for constrained devices which usually do not have a Java runtime environment. From
the server perspective, Wakaama provides APIs to send commands to registered LWM2M
Clients. On the client side, Wakaama checks received commands for syntax and access rights
and then dispatches them to the relevant objects [60].

2.6.4 Eclipse Vorto

Eclipse Vorto46 is an Eclipse IDE plugin and accompanying tools that allow to specify device
capabilities in a technology agnostic way [59]. It provides a generic meta model that speci�es a
device as a set of function blocks � a set of status properties and action elements � comprised
in a concise information model.
Besides the Vorto plugin, the project also provides a repository to share information models.

This fosters collaboration between device vendors and solution providers by providing a central
place to share information about devices in a machine readable way.
Having a consistent description of devices is good for communication between di�erent par-

ties. However, in order to actually use a device within an application real source code to connect
to this device is required. Vorto provides this with a set of code generators, which can generate
code for device access for various platforms such as Eclipse Smart Home, Kura etc.

46https://www.eclipse.org/vorto/

32

https://www.eclipse.org/vorto/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

2.6.5 OGC SensorThings API

The OGC SensorThings API47 denotes an open, uni�ed, and geospatial-enabled standard to
interconnect IoT devices, data, and applications over the web [48]. It is speci�ed by the Open
Geospatial Consortium (OGC) and is available as a non-proprietary, platform-independent, and
perpetual royalty-free framework. From a technical perspective, the SensorThings API follows
the REST principles and make use of, among other things, an e�cient JSON encoding and the
MQTT protocol.
In general, the OGC SensorThings API comprises two main functionalities: (i) the Sensing

part and (ii) the Tasking part [48]:

• (i) The Sensing part describes a standard way to manage and retrieve observations and
metadata from heterogeneous IoT sensor systems

• (ii) The Tasking part provides a standard way for parametrization of task-able IoT de-
vices, such as sensors or actuators.

However, the Tasking part has not been speci�ed yet and thus only the Sensing part will be in
the following. The Sensing part and its underlying data model (cf. Figure 2.20) comprises dif-
ferent entities, whereby each entity has a unique identi�er. By relying on REST, SensorThings
entities can be added, updated, and deleted. While a Thing represents an object of the physical
world or the information world, the Location entity allows to locate Things. Depending on
the context, Things can be geo-referenced in di�erent ways via di�erent protocols. Currently,
only GeoJSON is supported by SensorThings API, but there are attempts to provide multiple
encoding types like IndoorGML for the future. Observations are responsible to measure or
otherwise determine the value of a property. A Datastream allows to groups a collection of
Observations that measure the same ObservedProperty produced by the same Sensor [48].

2.7 Message Gateway

Within an IoT-context, an IoT platform receives and sends di�erent kinds of messages from
and to various sources. In general, telemetry messages depict data that stem from devices,
e. g. from its sensors, and �ow from devices to the according components within the cloud.
Telemetry data are meant to be further stored and processed in the IoT cloud platform. Events
in this context depict telemetry messages that absolutely must be delivered. In contrast to
telemetry messages, command and control refers to data that �ow from the IoT cloud platform
to distinct devices, for example, to control actors. Accordingly, command and control messages
are dedicated to the device management component. Furthermore, some messages may have to
be processed immediately, whereas other messages should be stored long term. Thus, messages
have to be automatically routed to the appropriate consumer via a customer-de�ned routing
logic. This section investigate suitable technologies for establishing a real-time message routing
in the context of IoT.

2.7.1 Eclipse Hono

The Eclipse Hono project provides a platform for the scalable messaging in the IoT. It is
realizing that by introducing a middleware layer between backend services and devices. Com-

47https://github.com/opengeospatial/sensorthings

33

https://github.com/opengeospatial/sensorthings

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.20: Sensing Entities of the OGC SensorThings API

34

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

munication to backend services takes place via the AMQP protocol. If devices can speak this
protocol directly, they can transparently connect to the middleware. Otherwise Hono provides
so called protocol adapters, which translate messages from the device protocol to AMQP. In
this way, Hono's core services are decoupled from the protocols that certain applications are
using.
Via AMQP 1.0 endpoints, Hono provides APIs that represent four common communication

scenarios of devices in the IoT:

• Registration

• Telemetry

• Event

• Command & Control

Eclipse Hono consists of di�erent building blocks. The �rst are the protocol adapters.
Adapters are required to connect devices that do not speak AMQP natively. Currently, Hono
comes with two protocol adapters: One for MQTT and the other for HTTP-based REST
messages. Custom protocol adapters can be provided by using Hono's API.
The Hono server is the central piece to which devices can either connect directly via AMQP

or via protocol adapters. Dispatch router handles the proper routing of AMQP messages within
Hono between producing and consuming endpoints. The dispatch router in Hono is based on the
Apache Qpid project48 and designed with scalability in mind so that it can handle potentially
connections from millions of devices. As such it do not takes ownership of messages, but rather
passes AMQP packets between di�erent endpoints. This allows a horizontal scaling to achieve
reliability and responsiveness. Event and commands messages, which need a delivery guarantee,
can be routed through a broker queue. The broker dispatches messages that need some delivery
guarantees. Typically, such messages are mainly from the command & control API. The broker
is based on the Apache ActiveMQ Artemis project49. While devices are connecting to the Hono
server component, backend services connecting via subscribing to speci�c topics at the Qpid
server [54].
Among the routing of messages, Hono consists of a device registry for the registration and

activation of devices and the provision of credentials as well as an Auth Server to handle
authentication and authorization of devices. By using an In�uxDB and a Grafana dashboard,
Hono comes also along with some monitoring infrastructure. Due to its modular design, also
other AMQP 1.0-compatible message broker than the Apache ActiveMQ Artemis can be used.

2.7.2 Apache Kafka

Apache Kafka50 is a distributed platform that used for building real-time data pipelines and
streaming apps. It is an open source, distributed, scalable, Pub/Sub messaging system that
often is used as a kernel for architectures that deal with data streams. It has been designed
with features such as persistent messaging, high performance, easy distribution, the ability to
support multiple customers and perform real-time processing. It comprises three main elements:

48https://qpid.apache.org/
49https://activemq.apache.org/artemis/
50https://kafka.apache.org/

35

https://qpid.apache.org/
https://activemq.apache.org/artemis/
https://kafka.apache.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

topics, producers and consumers. A topic is an abstract place where the messages are published;
producers are processes that publish or create messages for a topic and �nally consumers access
a topic and process the messages posted in.
Kafka integrates information of producers and consumers without blocking the producers of

the information and without letting producers know who the �nal consumers are. It provides
an API similar to a messaging system and allows applications to consume log events in real
time [63]. Figure 2.21 shows the Kafka architecture.

Figure 2.21: Kafka Architecture [63]

2.7.3 Eclipse Mosquitto & Paho

Eclipse Mosquitto

Eclipse Mosquitto51 is a lightweight server implementation of the MQTT protocol available
under EPL. As such an MQTT broker, it relies on the publish/subscribe model and realize the
messages distribution between the client applications. Due to its e�cient and simple imple-
mentation in C and the low network overhead [30], Eclipse Mosquitto is suitable for constrained
devices with limited resources such as Sensors and actuators. According to [57], the current
implementation of Mosquitto has an executable in the order of 120kB that consumes around
3MB RAM with 1000 clients connected.
In general, the Eclipse Mosquitto project consists of three parts [30]:

• The main mosquitto server

• The mosquitto_pub and mosquitto_sub client utilities that are one method to commu-
nicate with an MQTT server

• An MQTT client library written in C, with a C++ wrapper

51https://projects.eclipse.org/projects/technology.mosquitto

36

https://projects.eclipse.org/projects/technology.mosquitto

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

In addition to the MQTT speci�cation, Mosquitto provides (i) an MQTT bridge to connect
several MQTT server including other Mosquitto instances; (ii) a secured communication based
on SSL/TLS; and (iii) an user authorization to restrict the access to certain MQTT topics [57].

Eclipse Paho

Eclipse Paho52 provides another open-source client implementations of MQTT and MQTT-SN.
Paho supports clients for various languages [58]:

• C: The fully �edged Paho MQTT C client is implemented in American National Stan-
dards Institute (ANSI) standard C and comprises two APIs for either synchronous or
asynchronous calls.

• C++: The Paho MQTT C++ client realize an additional layer on top of the Paho C
client.

• Java: For applications that run on the Java Virtual Machine (JVM), the Paho MQTT
Java client can be used. Similarly to C, there is also support for synchronous as well as
asynchronous

• Embedded C/C++: The Paho MQTT embedded C/C++ client is more resource-e�cient
than its C counterpart due to the fact that it uses very limited resources and do not rely on
any particular libraries for networking, threading, or memory management. It is primarily
intended for environments such as mbed53, Arduino54, or FreeRTOS55.

• JavaScript: The browser-based client library for JavaScript relies on websockets for con-
necting to an MQTT broker.

Further supported clients are Phyton, C#, Go, and Android. Among other features, all of
the previously mentioned Paho clients support SSL/TLS as well as MQTT 3.1.1.

2.8 Security

Ensuring security and data privacy protection is a signi�cant concerns when processing data
in the cloud. According to the IoT reference model in Figure 2.22 [23], security must be
considered for all layers in the IoT Cloud Platform architecture. However, as security is a
cross-cutting concern which a�ects various aspects of the APPSATCLE ecosystem on di�erent
level of granularity and thus should not be treated in isolation for each work package, a separate
document will be provided that gives a holistic view on security aspects in a work package
spanning manner. The work on this security document is currently in progress.
Nevertheless, as Eclipse Keti and Keycloak may be highly relevant for the architecture spec-

i�cation, they are described in more detail in the following.

52https://www.eclipse.org/paho/
53https://www.mbed.com
54https://www.arduino.cc/
55http://www.freertos.org

37

https://www.eclipse.org/paho/
https://www.mbed.com
https://www.arduino.cc/
http://www.freertos.org

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Figure 2.22: IoT Reference Model [48]

2.8.1 Eclipse Keti

Eclipse Keti is an application that allows to authorize the access of users to resources by
applying the Attribute Based Access Control (ABAC) principle56. It is used to secure the
communication of RESTful APIs. The project has its root in the component ACS that was
originally a part of Predix, an industrial IoT platform developed by GE Digital. It has been
made publicly available as open source in March 201657. The Eclipse Keti project started
in April 2017. Until now, the source code of ACS has not been moved to the new Eclipse
repository58. Meanwhile, the development seems to continue in the old repository. The source
code of ACS is released under version 2.0 of the Apache License. Eclipse Keti is also released
under version 1.0 of the Eclipse Distribution License (EDL).
Whether a user can access a resource is decided based on evaluating rules that require

attribute values as input. An attribute either refers to a user, resource or environment variable.
Multiple rules can be combined into a policy. A policy comprises59:

• Target: Matches a given request to corresponding policy.

• Condition: Contains the speci�c authorization logic.

• E�ect: Speci�es the impact an authorization decision.

Eclipse Keti is a Spring Boot application. It consists of three major components:

• Policy evaluation: Conducts the evaluation of every authorization request.

• Policy management: Allows to update and maintain the set of policies.

56https://projects.eclipse.org/proposals/eclipse-keti
57https://github.com/predix/acs
58https://github.com/eclipse/keti
59https://www.youtube.com/watch?v=BJPN7W65c4U

38

https://projects.eclipse.org/proposals/eclipse-keti
https://github.com/predix/acs
https://github.com/eclipse/keti
https://www.youtube.com/watch?v=BJPN7W65c4U

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

• Attribute store: Maintains the user and resource permissions captured using attributes.

In addition, Eclipse Keti relies on spring-security-oauth to secure its own endpoints.

2.8.2 Keycloak

Keycloak is an application that allows to manage the identity of users (authentication) and
their access to resources (authorization)60. Its source code is hosted at GitHub and released
under version 2.0 of the Apache License61. The project has its roots in the JBoss ecosystem
and its development is driven by RedHat.
Building an application, Keycloak allows to delegate the user authentication process. This

substantially reduces the related implementation overhead for the application. It provides a
user with single sign on to access all applications registered at a particular Keycloak instance.
In addition to serving as an identity provider, Keycloak is also capable of incorporating existing
providers, e.g., social networks. It supports authentication processes that rely on the proto-
cols OpenID Connect and version 2.0 of the Security Assertion Markup Language (SAML).
Authorization is conducted using version 2.0 of the Open Authorization (OAuth) protocol.
Keycloak furthermore allows to link user information from other identity managment systems
using Keberos, such as Lightweight Directory Access Protocol (LDAP) or Active Directory
servers.
Keycloak organizes authentication and authorization within so-called realms. A realm com-

prises a set of registered users as well as applications. The authentication within a realm is
either realized by supplying a seperate identity service or enabling the access to a set of ex-
isiting identity providers. Users that are part of the realm may be federated with other data
by attaching additional identity management systems. The access to resources is steered by
de�ning roles and assigning them to users. An admin console provides means to modify the
realm settings. Users can manage their accounts using a separate interface.
There are a set of Keycloak client adapters, which enable the communication employing

the protocols mentioned above62. Depending on the protocol there exist implementations in
various programming languages, such as Java and JavaScript 63. Some of them provide tight
integration with speci�c platforms, for example Spring Boot and WildFly.

60http://www.keycloak.org/
61https://github.com/keycloak/keycloak
62http://www.keycloak.org/docs/latest/securing_apps/index.html
63http://www.keycloak.org/docs/latest/securing_apps/index.html

39

http://www.keycloak.org/
https://github.com/keycloak/keycloak
http://www.keycloak.org/docs/latest/securing_apps/index.html
http://www.keycloak.org/docs/latest/securing_apps/index.html

3 Automotive User Stories

This chapter introduces some relevant automotive user stories with regard to cloud connectivity,
security, OTA upgrade methods, functional tooling, and smart move components. The various
user stories describe the usage of the APPSTACLE ecosystem from di�erent points of view
and give further details on the technical requirements for the APPSTACLE platform and in
particular for the architecture of the IoT cloud platform.
Due to the amount and heterogeneity of the following user stories, it is later on necessary to

�lter the user stories to obtain a subset of user stories that (i) are most relevant to WP3; (ii)
go into di�erent aspects of the cloud architecture; and (iii) are appropriate for evaluation and
the implementation in distinct demonstrators.

Stakeholders

The envisioned APPSTACLE ecosystem consists of di�erent stakeholders with di�erent require-
ments. This section lists the basic stakeholders considered for the user stories.

Car driver/owner: This stakeholder represent the end-customer who eventually paid the cost
of the system. He or she wants to select apps that run on the in-vehicle platform. The vehicle
owner also has a strong interest in controlling access to data from his vehicle.

Application developer: The application developer creates apps and solutions for the in-car
platform and/or the cloud back-end. The apps may be o�ered to the end customer via an
open platform (app store) or can be part of a speci�c service functionality from the Original
Equipment Manufacturer (OEM), suppliers, or third parties. Consequently, the user of an app
might be the end-customer, an OEM, or service provider. The app developer requires an open,
powerful development environment that gives easy access to vehicle data, the car, and related
cloud services. An app developer further expects good integration with existing ecosystems.

Car manufacturer/In-vehicle platform vendor: This entity is responsible for developing or
customizing the in-vehicle platform and install it into a vehicle. This can either be an OEM
o�ering the platform in his cars or an after-market product. It is expected that this stakeholder
also operates or manages operation of some additional infrastructure like an app store or a billing
system. The main goal of this stakeholder is generating revenue by operating and controlling
the ecosystem.

Service provider: This stakeholder operates connected services that may include in-vehicle
platform apps or cloud-based apps and o�ers them to the car driver/owner. The service provider
may be identical to the car manufacturer/in-vehicle platform vendor or just use the infrastruc-
ture provided by them.

40

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.1 User Story 01: Roadside Assistance

The technology developed in APPSTACLE allows to support drivers in case the vehicle breaks
down. The basic idea is to have a roadside assistance app installed on the vehicle that allows
a roadside assistance provider to diagnose and potentially repair the vehicle remotely.

Development phase: The app developer engineers a Roadside Assistance application most
likely in cooperation with the car manufacturer/in-vehicle platform vendor and the service
provider. Additionally, a cloud instance for the roadside assistance provider is set up and
appropriate cloud services for controlling the app remotely and analyzing the retrieved vehicle
data are developed by the application developer.

Setup phase: The app might already be installed by the OEM. Alternatively the car driver/owner
downloads and installs a Roadside Assistance application to its in-vehicle platform by using
the corresponding app store. This may or may not be part of a contract between the car
driver/owner and a service provider (e.g. roadside assistance provider such as ADAC, RAC,
AAA, or as part of an insurance policy).

Usage phase: The driver of a vehicle detects a problem with his or her car (e.g. indicated
by warning lights) and pulls over or otherwise the car brakes down. The driver contacts his
roadside assistance service provider (e.g. by a smart phone app or by phone call, or through a
head unit in the car) to request support. During this interaction the service provider is able to
remote control the installed Roadside Assistance app in order to:

• ...retrieve data from the vehicle

• ...execute diagnostic work�ows and retrieve the results

• ...control actuators within the vehicle

As a result, the service provider may be able to assist the driver by giving accurate information
on the problem occurred, provide instructions for next steps (e.g. drive to the closest workshop
or wait for help), solve the issue remotely (e.g. by re-setting fault memories), or dispatching a
roadside assistance associate (e.g. by sending the right expert with the needed spare parts).

Technical requirements:

• Runtime environment for Apps on the in-vehicle platform

• APPSTACLE API which grants access to the data and procedures needed

• APPSTACLE API which can be enriched by OEM speci�c extensions

• Roles and rights management controlled by the car driver/owner

3.2 User Story 02: Vehicle Tracking

The owner of a vehicle or a third party needs to track the position of a speci�c vehicle. Such
scenario may occur for several reasons, e.g. for �eet management, stolen vehicle tracking,
pay-per-drive insurance tari�s, car sharing, or social networks: Let friends track your vehicle.

41

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Development phase: The application developer implements tracking services for the cloud
instance of the service provider and further provides a Vehicle Tracking app for the in-vehicle
platform to forward time and position information.

Setup phase: The car driver/owner downloads the Vehicle Tracking app from the app store
to install it on the in-vehicle gateway and allows the service provider to activate the forwarding
of the relevant information to its cloud server.

Usage phase: The Vehicle Tracking app forwards position information alongside with a time
stamp periodically to the cloud server of the service provider. Within the cloud, this information
is used for enhanced services.

Technical requirements:

• Runtime environment for Apps on the in-vehicle platform

• APPSTACLE API granting access to location

• Roles and rights management controlled by the car driver/owner to protect security and
privacy of such sensitive information

3.3 User Story 03: Wrong Way Driver Warning

A vehicle takes part in a wrong way driver warning system in order to increase its own and
other vehicle's safety. This is done by enabling numerous cars to forward position and direction
data to a central server instance which matches them to a map and detects wrong way drivers.
In this case, all vehicles that might be at risk are warned by the service.

Development phase: The app developer implements the wrong way driver warning service
for the cloud. Additionally, an in-vehicle application is created to forward time, position, and
speed vector information.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on his in-vehicle platform and allows access to position information, while the app registers
with the server instance.

Usage phase: The app forwards position and speed vector information alongside with a times-
tamp periodically to the cloud server of the service provider. Within the cloud, this information
is used for map matching and risk analysis. In the case a wrong way driver is detected, the
originator of the warning and the vehicles at risk are warned about the situation through the
APPSTACLE Human-Machine Interface (HMI) connector.

Technical requirements:

• Runtime environment for Apps on the in-vehicle platform

• APPSTACLE API granting access to location and speed vector

42

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

• Roles and rights management controlled by the car driver/owner to protect security and
privacy of such sensitive information

• Interface to HMI (in-car or BYOD) to display warnings

3.4 User Story 04: Augment vehicle functionality

This user story describes a scenario where a vehicle will be enhanced by a speci�c functionality
in order to adjust to special equipment. For example, adding a roof rack or a trailer to a vehicle
might come with some software modifying brake booster, suspension, and ESP settings. For
commercial vehicles such as semi-trailers, di�erent trailer variants might want to extend and
adapt functionalities of the tractor unit: When transporting livestock, the capability of having
a live camera feed from the trailer might be added. When using a cooling trailer, temperature
and state of refrigeration system can be communicated to the driver and additionally stored
and analyzed in the cloud back-end.

Development phase: The app developer implements some in-vehicle application that pro-
vides additional functionality or makes functionalities from added components available. Ad-
ditionally, cloud service for analyzing distinct parameters, e.g. temperature values, may be
implemented.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform.

Usage phase: The app is provided in the cloud ecosystem and the owner can download or
use the functionality based on the business model (rent or buy). The speci�c software will be
downloaded and installed in the in-vehicle platform.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API granting access to data and functions from in-car Electronic Control
Units (ECUs) and externally connected equipment

3.5 User Story 05: Data Collection Fleet Learning

A lot of data is available at a �eet of vehicles that can be used to enhance performance of au-
tonomous driving systems, improve understanding of component aging, and enabling predictive
maintenance algorithms. As a single car cannot provide all generated data, the cloud back-end
needs to orchestrate which individual cars deliver what information.

Development phase: The application developer implements a con�gurable data acquisition
app for the car that delivers data to the cloud according to the current connectivity situation
and requirements from the back-end. Furthermore, cloud-based services needs to be developed
to collect and access the data. This enables applications such as predictive maintenance or
machine learning.

43

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Setup phase: Most likely such an application is pre-installed by an OEM. However, installing
an app from a third party via the app store is possible if the car driver/owner grants the required
access.

Usage phase: The app collects data and sends it to the cloud. It can be used to improve
the cars software, keeping unplanned maintenance down, and improving future revisions of the
same car. In the predictive maintenance use case, the driver can be noti�ed in case of expected
problems.

Technical requirements:

• Runtime environment for Apps on the in-vehicle platform

• APPSTACLE API granting access

• Security and privacy of the data

3.6 User Story 06: IoT Data concentration

This user story describes a scenario where the technology developed in APPSTACLE could
help to reduce bandwidth usage on the mobile internet connection. Many experts expect that
cloud-related data generated by future vehicles exceeds the bandwidth being available by far (or
would cause signi�cant costs respectively). The APPSTACLE in-vehicle platform could support
in such cases by hosting domain speci�c apps that reduce the amount of data forwarded to the
cloud (e.g. by preprocessing, detection of irrelevant data, data compression).

Development phase: The App developer engineers a speci�c data concentration application
most likely in cooperation with the service provider. Furthermore, speci�c service within the
cloud for unpacking the data have to be established.

Setup phase: The car driver/owner downloads and installs a data concentration application
for a speci�c domain/use case to the in-vehicle platform by using the corresponding app store.
This may or may not be part of a contract between the car driver/owner and a service provider.

Usage phase: During the usage of the vehicle, the data concentration app constantly reads the
relevant data using the in-vehicle connectivity of the APPSTACLE platform. This data is then
concentrated in any of the forms explained earlier and the result of this procedure is forwarded
to a connected cloud instance that unpack the transmitted data for further processing.

Technical requirements:

• Runtime environment for Apps on the in-vehicle platform

• APPSTACLE API including the data and procedures needed

• Roles and rights management controlled by the car driver/owner

44

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.7 User Story 07: Driver Seat Con�guration

Vehicles, which are used by several drivers, can store the seat con�guration of each driver. Car
�eets (e.g. bus or truck companies) may use a cloud service to store the con�guration for each
driver, independent of the current car (truck, bus).

Development phase: The application developer implements the seat con�guration by using
the access to the driver seat ECU. He or she also implements the corresponding cloud service
to exchange driver con�guration data with the cloud.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the driver seat. The app registers with the
server instance.

Usage phase: The car driver identi�es himself by an Near Field Communication (NFC) tag
or �ngerprint reader. Afterward, the app downloads the appropriate driver con�guration from
the cloud.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API granting access to driver seat and personal identi�cation system

3.8 User Story 08: Parking Space Finder

The driver of a car needs to �nd a nearby parking space - as quick as possible and as close
as possible. Tra�c or street surveillance systems may help to solve this frequent problem and
thereby also minimizing the parking search tra�c.

Development phase: The app developer implements the Parking Space Finder app, while the
appropriate cloud service, probably realized by a second party, provides the Intelligent Street
system data and cloud services to �nd free parking spaces.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the HMI and navigation system. The app
registers with the server instance.

Usage phase: The car driver enters a "�nd parking space" command to the app using the
HMI. The Parking Space Finder app provides location information to the cloud instance and
receives data of available parking spaces. The app will display this information on the HMI.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to car location (GPS data) and HMI

45

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.9 User Story 09: Improved Carpooling System

Current carpooling systems require medium term registration (at least one day ahead usually)
and much administrative e�ort. Automated data service may minimize the time necessary to
�nd a driver or passenger. As security risks are involved, it may be necessary to provide a
secure authentication for both driver and passenger.

Development phase: The app developer implements the Carpooling app. The carpooling
provider implements the cloud service, which �nds out appropriate passenger/driver pairings.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the HMI. The app registers with the server
instance. The driver proves his or her identity by password, �ngerprint reader, or iris scan.

Usage phase: The car driver enters a "�nd passenger" command to the app using the HMI.
Afterward, the Carpooling app provides location information to the cloud instance to receive
data of possible passengers. The app will then display this information on the HMI. This app
may well be augmented by a chat service.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to car location (GPS) and HMI as well as to the
authentication system (�ngerprint reader, iris scanner) of the car

3.10 User Story 10: Car Accident Registration by Video

"Dash Cam (Crash Cam)" videos may upload the most current seconds preceding an accident
to the appropriate cloud service.

Development phase: The application developer implements the Accident Registration app as
well as the cloud service receiving the video data.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's camera(s). The app registers with
the server instance.

Usage phase: This app does not usually need an HMI, but runs in the background, invisible
to the driver. However, it may need con�guration and test functions requiring access to the
HMI.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to car camera

46

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.11 User Story 11: Car Theft Registration & Car Vandalism
Registration

"Dash Cam" videos may upload the current seconds preceding and during a car theft to the
cloud. Microphone and other sensor data may provide further valuable information to identify
thieves and vandals.

Development phase: The app developer implements the Theft Registration app as well as
the cloud service receiving the video and sensor data.

Setup phase: The car driver/owner downloads the speci�c app from the app store to in-
stall it on the in-vehicle platform and allows access to the car's camera(s), microphones, and
shock/vibration sensors. The app registers with the server instance.

Usage phase: This app does not usually need an HMI, but runs in the background, invisible
to the driver. However, it may need con�guration and test functions requiring access to the
HMI.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to car camera and microphone

3.12 User Story 12: Tra�c Jam Warning & Tra�c Jam
Avoidance

Tra�c surveillance systems provide information on current tra�c jams and calculate routes to
minimize the travel time by considering the current tra�c situation.

Development phase: The application developer implements the Tra�c Jam Warning app.
The tra�c jam warning system relies on a global system and will be realized as a cloud service
provided by a second party.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's GPS and navigation system. The
app registers with the cloud service.

Usage phase: The app downloads current tra�c information from the appropriate cloud
service and displays warnings on the HMI if necessary. It may also connect to the navigation
system to calculate alternative routes in order to avoid tra�c jams.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to the HMI and navigation system

47

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.13 User Story 13: Chat Service for Car Drivers

The idea behind this user story is to provide a chat service with nearby car drivers in order to
get acquainted, share tra�c information (e.g. tra�c jams, construction sites, speed cameras),
or admonish car drivers.

Development phase: The application developer implements the Car Chat app, which must
be able to spot nearby cars. A cloud service will be implemented for interconnection of car
drivers.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's GPS system, HMI, microphone and
speaker. The app registers with the cloud service.

Usage phase: The app provides information about nearby drivers who are prepared to com-
municate. A visual inquiry may be sent to the HMI of a nearby car, thus providing the chance
to start communication.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to HMI, microphone, and speaker

3.14 User Story 14: Tra�c Enforcement Camera Warning

A cloud service providing information on the position of speed cameras or red light cameras
may increase tra�c security by reminding car drivers to follow tra�c rules.

Development phase: The application developer implements the Speed Camera Warning app.
An appropriate cloud service will be provided by a second party.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's GPS system and HMI. The app
registers with the cloud service.

Usage phase: The app uses the cloud service to get information about nearby speed cameras
and the like. If such tra�c control is detected, a warning message will be displayed on the
HMI. An useful extension may provide a method to share information about recently spotted
cameras via a cloud service.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to HMI and speaker

48

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.15 User Story 15: Advertising Services for Drivers

Providing information to travelers about points of interest such as local shopping facilities,
restaurants, public events etc.

Development phase: The app developer implements the Advertising Service app. An appro-
priate cloud service will be provided by a second party.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's GPS system and HMI. The app
registers with the cloud service.

Usage phase: The app uses the cloud service to get information about nearby advertising
partners. Additionally, the app may also �lter these information according to the wishes of the
driver.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to GPS, HMI, and speaker

3.16 User Story 16: Social Media

Everybody wants to stay connected all the time. The integration of social media within the
vehicle o�ers new ways to share your life with others and let others follow you on your way
of life. The idea is going to a wide spread of interpreting due to the possibilities Twitter,
Facebook, Blogs, YouTube (live streaming) and other kinds of social media o�er.

Development phase: The application developer implements the Social Media app.

Setup phase: The car driver/owner downloads the speci�c app from the app store to install
it on the in-vehicle platform and allows access to the car's GPS system, Cameras and HMI.
The app registers with the cloud service.

Usage phase: The app uses the cloud service to get information about nearby social media
partners or "friends". For example, the driver will be informed about Facebook friends on the
same road or nearby, while another idea would be to share beautiful landscapes with one click
while driving. The app may also �lter these information according to the wishes of the driver.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API providing access to GPS, Camera, mic, HMI and speaker

49

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.17 User Story 17: Ambulance Assist

Normally, a path is made for the ambulance when vehicle drivers hear the ambulance's siren
and move away to the next lane or so. This is easier when the path of the ambulance has fewer
vehicles traveling in its direction or when the ambulance is not at a tra�c signal. But if there
is a tra�c jam or there is a red signal at a busy junction, making way for the ambulance is
di�cult and time consuming. In order to avoid this, it would be better if the ambulance could
communicate with the tra�c signals well in advance so as to have a clear path.

Development phase: The application developer either develops a cloud speci�c app that
communicates with the cloud and in turn communicates with the tra�c system or develops an
in-vehicle app that communicates directly with tra�c signals in the vicinity.

Setup phase: This will be a pre-installed app which could be a part of the contract between the
platform provider (OEM/supplier/3rd party), the organization(s) that provide the ambulance
service, and the tra�c authority of the region/state/country.

Usage phase: Once the app is switched on, it communicates the GPS information of the
vehicle to the cloud along with the source and destination locations. A speci�c cloud services
track the ambulance and communicates with the next immediate 1-2 tra�c signals to make
a clear path for the ambulance. Additionally, the cloud instance could also receive the tra�c
information in this path to communicate, perhaps, with tra�c signals that are much ahead in
the ambulance's path to ensure a continuous free path for the ambulance.
Additional use case 1: The cloud instance also communicates with the vehicles in the region

of the ambulance informing them to make way in advance.
Additional use case 2: The app also provides a means to communicate the patient's conditions

to the hospital authorities so that the hospital has the necessary environment ready to treat
the patient with no delays.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• The platform has necessary APIs and protocols to communicate with a system outside
its ecosystem

• APPSTACLE API providing access to GPS etc.

3.18 User Story 18: System Surveillance and Maintenance

Diagnosis services (in form of either internal or external components) need to get access to
sensor, actuator, status, state, or further parameters of diverse ECUs and components. New
technology allows collecting such properties remotely. The need of this may occur when the
system has issues in performing its tasks. Diagnosis services could even have the possibility
to perform sophisticated analysis of problems via collected information over time and live
data. This information includes QoS relevant data as the correctness or timeliness of data and
transmissions. The range of tracked information may be extended.

50

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Development phase: An application developer implements an independent app for collecting
and sending this information to the cloud, while the cloud has to provide services for aggregated
views of the information.

Setup phase: The related monitoring app can be installed by an authorized user (may also
be the OEM).

Usage phase: While the vehicle is in usage, the monitoring app collects and sends information
about the systems functionality to the cloud. The maintainer of the car reacts to performance
issues. Based on the collected monitoring data, reports generated by the cloud's services gives
an outline on the circumstances and possible areas of con�ict.

Technical requirements:

• In-vehicle app runtime environment

• Roles and Rights management

• De�nition of interfaces for monitoring

• QoS mechanisms and QoS-monitoring

3.19 User Story 19: Pool car management

An organization has a pool of cars to be used by employees. These employees can make
reservations for pool cars and then unlock and start the car via an app on his or her mobile
phone.

Development phase: The app developer develops an app for the car, a mobile phone app for
the user, and appropriate cloud services that allows those apps to work together. The vehicle
app needs to be able to unlock the car and start the engine.

Setup phase: Initially, the in-vehicle app is installed on the vehicle and the car is added to
a pool. The user installs the mobile phone app so that the pool owner can grant access to
vehicles in the pool.

Usage phase: The user makes a reservation for a vehicle, walks to the vehicle, and requests
the car to be unlocked. Afterward, the authorization for the user is veri�ed and the vehicle is
unlocked.

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• APPSTACLE API allowing to unlock vehicle and start engine

• Roles and rights management controlled by the car driver/owner to protect security

51

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

3.20 User Story 20: In-vehicle behavior learning

Due to the complex architecture of the in-vehicle system, car manufacturers may �nd it quite
challenging to con�gure the communication between ECUs and calibrate each ECU individually
in an optimal manner. Additionally, technicians as well as car manufacturers often require
network analytics to perform in-vehicle diagnostics.

Development phase: A web interface will be developed to provide a network/asset inventory
map to the technician/car manufacturer which may give real-time information about miscon-
�guration or potential threats to the vehicle.

Setup phase: A network monitoring device is connected on the gateway or the OBDII port
of the vehicle and the car driver/owner can access the web application from any device that is
present inside the car, such as a smart phone or tablet.

Usage phase: The car driver authenticates in the web application to observe the real-time
communication between ECUs in the form of an in-vehicle network map as well as the detailed
messages that are sent. The web application noti�es the user when it detects:

• Miscon�guration in the in-vehicle architecture

• Potential threats from abnormal behavior in the in-vehicle network

Technical requirements:

• Network monitoring device, e. g. Intrusion Detection System (IDS), connected to the
vehicle gateway or diagnostic port

3.21 User Story 21: Secure Car2X data exchange

Data from the vehicle's physical environment are often received or transmitted from/to nearby
stations (Car2Infrastructure) or vehicles (Car2Car) to enhance awareness about road conditions
(e.g. tra�c jams). As the exchanged data may contain sensitive information, security aspects
should be considered to avoid that they are spoofed or malformed.

Development phase: A web interface application will be developed to provide access to the
messages exchanged in the Car2X network as well as information about potential threats that
will impose message leakage.

Setup phase: A network monitoring (IDS) device is connected on the gateway of a target
vehicle and the car driver/owner can access the web application from any device smart phone
or tablet device that is present inside the car, but also from remotely.

52

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Usage phase: The car driver identi�es himself/herself in the app to observe the communica-
tion between the target vehicle and the nearby stations or vehicles in real-time. A real-time
network map can also be shown with the current connected devices in the wireless network.
The app noti�es the user when it detects:

• Addition or withdrawal of devices in the network

• Potential threats during Car2X data exchange

Additionally, the app can perform detailed logging and reproduction of the secured data
received by the target vehicle, derive only the required data for analysis, and transmit them
further to the car manufacturer or the nearest station for inferring information about road
conditions.

Technical requirements:

• Network monitoring device (IDS) connected remotely or directly to the vehicle gateway

3.22 User Story 22: Emergency Braking & Evading Assistance
System (EBEAS)

The basic idea of the EBEAS app is to automate reactions in the case of detected obstacles in
front of a vehicle. For this purpose, EBEAS coordinates di�erent in-car subsystems.

Development phase: The application developer engineers an EBEAS application, most likely
in cooperation with the car manufacturer/in-vehicle platform vendor, service provider, and
suppliers that developed the participating automotive subsystems. As an EBEAS encompasses
highly safety-critical functionality, app developers have to be trusted, e.g. by utilizing certi�-
cation etc.

Setup phase: The app might already be installed by the OEM. Alternatively the car owner
downloads the EBEAS app from the app store to install it on the in-vehicle platform.

Usage phase: The basic version of EBEAS has three functions. The radar sensors of the
vehicle are used to detect obstacles in front of the vehicle, while the EBEAS logic component
decides whether to evade the obstacle or to brake and performs according actions, e.g. by
using the adaptive cruise control functionality. Furthermore, the detected obstacle is reported
to a service deployed in the automotive IoT cloud to inform other vehicles about the detected
obstacle.
An extended versions of EBEAS could include

• ...a pre-crash system to prevent serious damage from the driver and other passengers in
cases an accident is not avoidable

• ...a car-to-car communication system to negotiate on the reaction to a dangerous situation
with other vehicles in range

53

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Technical requirements:

• Runtime environment for apps on the in-vehicle platform

• Real-time scheduling

• In-vehicle connectivity and coordination of participating ECUs

54

4 Architecture Speci�cation

This chapter speci�es the initial draft of the cloud platform architecture that shall be established
within the APPSTACLE project including the message �ow as well as the generic building block
such as data management, device management, and possible big data concepts. In particular,
the mutual interactions between the various building blocks are described. Note that there
are important interdependencies regarding components that are part of the in-vehicle platform.
Therefore, the particular vehicle-to-cloud interactions are addressed as well.
In general, the cloud platform is distinguished into three layers (cf. Fig. 4.1):

1. the Core Layer,

2. the Data Analytics & Visualization Layer,

3. and the Application Layer.

Core Layer The Core Layer captures the foundations of the cloud platform. In this regard,
the Message Gateway represents a core functionality to enable the communication between
a large number of vehicles and the cloud back-end. Therefore, the corresponding component
has to ful�ll a set of requirements. For example, the infrastructure has to scale with the
number of vehicles that send and receive messages. Furthermore, it is assumed that the vehicles
communicate by using di�erent protocols, e.g. MQTT. The Message Gateway component
converts each message into a common format to provide a consistent interface to the cloud
back-end applications. It also maintains a separate device registry to manage the individual
vehicles. To enable authentication and authorization, the delivery of messages to entities within
the cloud platform as well as the set of vehicles is controlled by a separate component. Messages
may be forwarded to di�erent components within the Core Layer.
Firstly, messages may be stored within a Data Management component that persists infor-

mation, e.g. telemetry data provided by the vehicles. This allows to create a historical view on
each vehicle connected to the cloud platform. The information is provided by Apps that run
within the in-vehicle App Runtime.
Secondly, messages may be forwarded to a Device Representation component that maps the

state of physical entities (i.e. vehicles) to a digital representation allowing to programmatically
interact with the physical entity as it is a digital one. This provides a consistent programming
model to App developers.
Thirdly, messages can be further transferred to a Core Services component that realizes some

generic functionality and is further responsible to send and receive information from domain-
speci�c services.
Furthermore, the Message Gateway is connected to a Device Management component, which

is responsible for the provisioning and modi�cation of in-vehicle functionality. Via the Message

Gateway, this component interacts with the In-Vehicle Gateway that is part of the host system
provided by the in-vehicle platform. In addition to transferring in-vehicle Apps, the Device

55

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Management component also allows to deliver updates of the host system. The communication
with the in-vehicle platform may rely on di�erent protocols, e.g. LWM2M or OMA-DM.
Via the component for Identity Management, access to distinct functionality can be granted

for eligible devices and users.

Data Analytics & Visualization Layer The Data Analytics & Visualization Layer provides
services that are built on top of the collected vehicle data stored within the Data Management

component of the Core Layer. This includes the analysis of the presumably large amounts of
persisted data by using Big Data technologies. Such analyses may refer to individual as well as
groups of vehicles. The time series data may also be accessible via a Visualization component,
e.g. for depicting the development of telemetry variables. Depending on the use case, a Report
Generator allows to generate appropriate business reports.

Application Layer The Application Layer exposes services that are speci�c to certain use
cases. Thus, they access the functionality provided by the underlying layers. This includes
consuming the messages that are routed via the Device Representation component or accessing
data generated using Big Data Analysis, but also the component for Identity Management and
the functionality provided by the Core Services. A majority of those services is assumed to
provide functionality to Apps that are running on the in-vehicle platform. In addition, the
Application Layer comprises the Web User Interface that allows to obtain Apps and transfer
the corresponding packages to the in-vehicle platform.

56

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

LWM2M
Client

OMA-DM
Client

RTSP
Client

Future
Protocols

MQTT
Client

App-Runtime
In-vehicle
Gateway

O
S

La
y

er

A
p

p
li

ca
ti

o
n

 L
ay

er

V
e

h
ic

le

Marketplace

C
lo

u
d

 B
a

ck
-e

n
d

Domain-specific
Services

Visualization
Big Data
Analysis

Report
Generation

Data
Management

Device
Representation

Core
Services

Message
Gateway

Device
Management

Identity
Management

A
p

p
li

ca
ti

o
n

 L
ay

er

D
at

a
 A

n
al

yt
ic

 &
 V

is
u

a
liz

at
io

n
 L

a
ye

r

C
o

re
 L

a
ye

r

Generic
Building Block

Data
Flow

Figure 4.1: The cloud platform architecture with generic building blocks

57

5 Architecture Evaluation

Based on the state of the art analysis from Chapter 2 and the insights from Chapter 3, this
chapter evaluates technology for each generic building block of the architecture speci�cation in
Chapter 4. In particular, the evaluation is based on the evaluation criteria from the following
section as well as additional literature like surveys or secondary studies, e. g. literature review
or systematic mapping study.

5.1 Evaluation criteria

In the following, the evaluation criteria (C) used to assess speci�c technologies regarding their
suitability in the context of the cloud platform architecture are presented. The criteria are
determined based on work presented in deliverable D1.1. There, a thorough investigation
regarding the requirements of the technologies employed is conducted within the state-of-the-art
chapter. A subset of criteria has been selected for this deliverable, based on their applicability
to the cloud platform architecture. Note that speci�c criteria are added for individual sub
topics, if required. Each of the following base criteria is attached with an explanation that
de�nes its scope:

• C1 Adaptability : Is it possible to adapt the technology to speci�c needs like customer-
speci�c requirements?

• C2 Community : Is there a living community? (Activity in Gits, mailing lists, discussion
boards etc.).

• C3 Compatibility : Does the technology exhibit any standardized interfaces or does it
rely on common exchange format or speci�cations to foster a compatibility with other
technology from related aspects?

• C4 Documentation: Is there a well-maintained documentation? Is help available in terms
of tutorials, videos etc.?

• C5 Scalability : Does the technology exhibit any mechanisms to scale with the number of
devices or the amount of data transferred?

• C6 Software License: What is the license? What other components are integrated (e.g.
Linux kernel). Copyleft yes or no, strong or weak? In case of non-FOSS software: Costs.

• C7 Up-to-dateness: Is the technology well maintained and does it incorporate novel
features?

58

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.2 Technology Evaluation

For each component of the cloud architecture, the set of available technologies are compared
regarding their suitability according to the de�ned criteria. The structure of this section is
aligned to Chap. 2.

5.2.1 IoT Cloud Platform

This section evaluates Eclipse Kapua that are used as an IoT Cloud platform (cf. Sec. 2.2.1)

Table 5.1: Eclipse Kapua (cf. Sec. 2.2.1).

Criterion Value(s)

C1 Generic IoT Cloud platform that can be changed for di�erent circumstances.

C2

Project website: https://www.eclipse.org/kapua/
GitHub: https://github.com/eclipse/kapua, 3020 commits (till 1.2.2018),
18 contributors
Forum: https://www.eclipse.org/forums/index.php/f/340/, 28 discussed
topics
Reporting Issues: https://github.com/eclipse/kapua/issues, 250 open and
552 closed issues
Mailing list (developer): https://accounts.eclipse.org/mailing-list/

kapua-dev

C3 Kapua connects to IoT devices via MQTT and other protocols. Its services
integrate with IT applications through �exible message routing and REST API.

C4

General Documentation: https://www.eclipse.org/kapua/documentation.

php

Getting Started: https://www.eclipse.org/kapua/getting-started.php
Developer Guide: https://www.eclipse.org/kapua/docs/0.3.0/

developer-guide/en/index.html

C5 strong relationship with scalable projects such as Hono; however, they have not
been integrated yet.

C6 Eclipse Public License (EPL)

C7 Latest Releases: 0.3.2 (22.12.2017), few releases (6)

5.2.2 Application and Service Integration

This section covers the following technologies that are used regarding application and service
integration (cf. Sec. 2.3):

• Eclipse Ditto (cf. Tab. 5.2),

• Mihini (cf. Tab. 5.3),

• Eureka (cf. Tab. 5.4),

• Apache Camel (cf. Tab. 5.5), and

• Spring Integration (cf. Tab. 5.6).

59

https://www.eclipse.org/kapua/
https://github.com/eclipse/kapua
https://www.eclipse.org/forums/index.php/f/340/
https://github.com/eclipse/kapua/issues
https://accounts.eclipse.org/mailing-list/kapua-dev
https://accounts.eclipse.org/mailing-list/kapua-dev
https://www.eclipse.org/kapua/documentation.php
https://www.eclipse.org/kapua/documentation.php
https://www.eclipse.org/kapua/getting-started.php
https://www.eclipse.org/kapua/docs/0.3.0/developer-guide/en/index.html
https://www.eclipse.org/kapua/docs/0.3.0/developer-guide/en/index.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.2: Eclipse Ditto (cf. Sec. 2.3.1).

Criterion Value(s)

C1 The services use an externally provided MongoDB as database which is a must
for users. It uses Eclipse Hono for the message exchange with devices.

C2

Project website: https://www.eclipse.org/ditto/
GitHub: https://github.com/eclipse/ditto, 612 commits (till 1.2.2018)
Forum: https://www.eclipse.org/forums/index.php/f/364/, no topics!
blog: https://www.eclipse.org/ditto/blog.html, 4 posts
Mailing list (developer): https://accounts.eclipse.org/mailing-list/

ditto-dev

C3 consumes AMQP 1.0 interface and provides REST-like HTTP API for CRUD
and search operations on Things.

C4

General Documentation: https://www.eclipse.org/ditto/

intro-overview.html

Sandbox: https://ditto.eclipse.org/
Architecture: https://www.eclipse.org/ditto/architecture-overview.

html

Installation: https://www.eclipse.org/ditto/installation-building.

html

C5 On increasing load still provide a scalable, robust and high-performance imple-
mentation; however, the technology is not still matured.

C6 Eclipse Public License (EPL)

C7 Latest Releases: 0.1.0-M3 (12.01.2018), 0.1.0-M1 (18.12.2017), small numbers
of releases (2)

Table 5.3: Eclipse Mihini (cf. Sec. 2.3.2).

Criterion Value(s)

C1 developing portable M2M applications easily

C2

Project website: Archived https://www.eclipse.org/projects/archives.

php

GitHub: https://github.com/nim65s/mihini-repo
Forum: no active forum
Mailing list (developer): No subscriber

C3 LUA and REST API

C4

General Documentation: https://wiki.eclipse.org/Mihini
Development documentations: https://wiki.eclipse.org/Mihini/

Development

Installation: https://wiki.eclipse.org/Mihini/mihinifeatures

C5 �

C6 Eclipse Public License (EPL), one LGPL library

C7 Latest Releases: 0.9 (June 2013)

60

https://www.eclipse.org/ditto/
https://github.com/eclipse/ditto
https://www.eclipse.org/forums/index.php/f/364/
https://www.eclipse.org/ditto/blog.html
https://accounts.eclipse.org/mailing-list/ditto-dev
https://accounts.eclipse.org/mailing-list/ditto-dev
https://www.eclipse.org/ditto/intro-overview.html
https://www.eclipse.org/ditto/intro-overview.html
https://ditto.eclipse.org/
https://www.eclipse.org/ditto/architecture-overview.html
https://www.eclipse.org/ditto/architecture-overview.html
https://www.eclipse.org/ditto/installation-building.html
https://www.eclipse.org/ditto/installation-building.html
https://www.eclipse.org/projects/archives.php
https://www.eclipse.org/projects/archives.php
https://github.com/nim65s/mihini-repo
https://wiki.eclipse.org/Mihini
https://wiki.eclipse.org/Mihini/Development
https://wiki.eclipse.org/Mihini/Development
https://wiki.eclipse.org/Mihini/mihinifeatures

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.4: Eureka (cf. Sec. 2.3.4).

Criterion Value(s)

C1 Eureka �lls the need for mid-tier load balancing. Used for speci�c purposes
such as aiding Net�ix Asgard and cassandra deployments.

C2

Introduction: https://github.com/Netflix/eureka/wiki/

Eureka-at-a-glance

GitHub: https://github.com/Netflix/eureka, 1495 commits (till 1.2.2018),
57 contributors
wiki: https://github.com/Netflix/eureka/wiki
Mailing list (developer): no subscriber

C3 REST API

C4

General Documentation: https://github.com/Netflix/eureka/wiki
Con�guring: https://github.com/Netflix/eureka/wiki/

Configuring-Eureka

Building Client and Server: https://github.com/Netflix/eureka/wiki/

Building-Eureka-Client-and-Server

Running the Demo APP: https://github.com/Netflix/eureka/wiki/

Running-the-Demo-Application

C5 It addresses services to be stateless (non-sticky).

C6 Apache License 2.0

C7 Latest Releases: 1.8.6 (15.11.2017), large number of releases (223)

Table 5.5: Apache Camel (cf. Sec. 2.3.5).

Criterion Value(s)

C1 supports most of the Enterprise Integration Patterns

C2

Project website: http://camel.apache.org/
GitHub: https://github.com/apache/camel, 31187 commits (till 1.2.2018),
374 contributors
Issue tracker: https://issues.apache.org/jira/projects/CAMEL/issues,
12184 reported issues, 11716 closed
Contributing: https://github.com/apache/camel/blob/master/

CONTRIBUTING.md

mailing lists: http://camel.apache.org/mailing-lists.html

C3 MQTT and some other interfaces

C4

General Documentation: http://camel.apache.org/documentation.html
Developer Documentation: http://camel.apache.org/developers.html
Building Documentation: http://camel.apache.org/building.html

C5 o�ers scalability, transaction support, concurrency and monitoring

C6 Apache License 2.0

C7 Latest Releases: 2.20.2 (26.01.2018), 2.19.4 (05.11.2017), good number of re-
leases (120)

61

https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://github.com/Netflix/eureka
https://github.com/Netflix/eureka/wiki
https://github.com/Netflix/eureka/wiki
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Configuring-Eureka
https://github.com/Netflix/eureka/wiki/Building-Eureka-Client-and-Server
https://github.com/Netflix/eureka/wiki/Building-Eureka-Client-and-Server
https://github.com/Netflix/eureka/wiki/Running-the-Demo-Application
https://github.com/Netflix/eureka/wiki/Running-the-Demo-Application
http://camel.apache.org/
https://github.com/apache/camel
https://issues.apache.org/jira/projects/CAMEL/issues
https://github.com/apache/camel/blob/master/CONTRIBUTING.md
https://github.com/apache/camel/blob/master/CONTRIBUTING.md
http://camel.apache.org/mailing-lists.html
http://camel.apache.org/documentation.html
http://camel.apache.org/developers.html
http://camel.apache.org/building.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.6: Spring Integration (cf. Sec. 2.3.6).

Criterion Value(s)

C1 No hard coded process �ows and capability to easily change and expend these
�ows according to application requirement.

C2

Project website: http://projects.spring.io/spring-integration/
GitHub: https://github.com/spring-projects/spring-integration, 9046
commits (till 1.2.2018), 101 contributors
Issue tracker: https://jira.spring.io/browse/INT/?selectedTab=com.

atlassian.jira.jira-projects-plugin:summary-panel, 4314 reported is-
sues, 3654 closed
Contributing: https://github.com/spring-projects/

spring-integration/blob/master/CONTRIBUTING.adoc

Communication: https://gitter.im/spring-projects/

spring-integration

C3 MQTT, AMQP

C4

General Documentation: https://docs.spring.io/spring-integration/

docs/4.3.12.RELEASE/reference/html/overview.html

Contributor Documentation: https://github.com/spring-projects/

spring-integration/blob/master/CONTRIBUTING.adoc

Sample Projects: https://github.com/spring-projects/

spring-integration-samples

C5 possible but via technology con�guration

C6 Apache License 2.0

C7 Latest Releases: 5.0.1 (29.01.2018), good number of releases (150)

62

http://projects.spring.io/spring-integration/
https://github.com/spring-projects/spring-integration
https://jira.spring.io/browse/INT/?selectedTab=com.atlassian.jira.jira-projects-plugin:summary-panel
https://jira.spring.io/browse/INT/?selectedTab=com.atlassian.jira.jira-projects-plugin:summary-panel
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.adoc
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.adoc
https://gitter.im/spring-projects/spring-integration
https://gitter.im/spring-projects/spring-integration
https://docs.spring.io/spring-integration/docs/4.3.12.RELEASE/reference/html/overview.html
https://docs.spring.io/spring-integration/docs/4.3.12.RELEASE/reference/html/overview.html
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.adoc
https://github.com/spring-projects/spring-integration/blob/master/CONTRIBUTING.adoc
https://github.com/spring-projects/spring-integration-samples
https://github.com/spring-projects/spring-integration-samples

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.2.3 Data Analytic and Visualization

This section covers the following technologies that are used regarding data analytics and visu-
alization (cf. Sec. 2.4):

• Apache Storm (cf. Tab. 5.7),

• Apache Flink (cf. Tab. 5.8),

• Eclipse BIRT (cf. Tab. 5.9), and

• Grafana (cf. Tab. 5.10).

Table 5.7: Apache Storm (cf. Sec. 2.4.1).

Criterion Value(s)

C1
- Supports only stream processing
- Fine-grained API for composing computations

C2

Project website: https://storm.apache.org/
GitHub: https://github.com/apache/storm
Issue tracker: https://issues.apache.org/jira/projects/STORM/issues/

STORM-2904?filter=allopenissues

Project Management and Contributors: https://storm.apache.org/

contribute/People.html)
Project By-laws: https://storm.apache.org/contribute/BYLAWS.html

C3 - Since version 1.0.3, Apache Storm is capable of consuming data
from Apache Kafka 0.8.x (http://storm.apache.org/releases/1.0.3/
storm-kafka.html)

C4

General Documentation: https://storm.apache.org/releases/<RELEASE>
Developer Documentation: https://github.com/apache/storm/blob/

master/DEVELOPER.md

Implementation Documentation: http://storm.apache.org/releases/

current/Implementation-docs.html

Additional Information: https://storm.apache.org/talksAndVideos.html

C5 Apache Storm has been developed as a scalable system to process large amounts
of streaming data.

C6 Apache License 2.0

C7 Latest Releases: 1.1.1 (01.08.2017), 1.0.5 (15.09.2017)

63

https://storm.apache.org/
https://github.com/apache/storm
https://issues.apache.org/jira/projects/STORM/issues/STORM-2904?filter=allopenissues
https://issues.apache.org/jira/projects/STORM/issues/STORM-2904?filter=allopenissues
https://storm.apache.org/contribute/People.html
https://storm.apache.org/contribute/People.html
https://storm.apache.org/contribute/BYLAWS.html
http://storm.apache.org/releases/1.0.3/storm-kafka.html
http://storm.apache.org/releases/1.0.3/storm-kafka.html
https://storm.apache.org/releases/<RELEASE>
https://github.com/apache/storm/blob/master/DEVELOPER.md
https://github.com/apache/storm/blob/master/DEVELOPER.md
http://storm.apache.org/releases/current/Implementation-docs.html
http://storm.apache.org/releases/current/Implementation-docs.html
https://storm.apache.org/talksAndVideos.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.8: Apache Flink (cf. Sec. 2.4.2).

Criterion Value(s)

C1

- Supports stream as well as batch processing
- Provides corresponding DataStream and DataSet APIs
- High-level contructs for composing computations

C2

Project website: https://flink.apache.org/
GitHub: https://github.com/apache/flink
Mailing lists: https://flink.apache.org/community.html#mailing-lists
Issue tracker: https://issues.apache.org/jira/projects/FLINK/issues
Meetups: https://www.meetup.com/de-DE/topics/apache-flink/
Conference (Flink Forward): https://flink-forward.org/
Company backing: https://data-artisans.com/

C3
- It is possible to execute Apache Storm Topologies on Apache Flink (https:
//flink.apache.org/news/2015/12/11/storm-compatibility.html)
- BETA: Apache Flink is compatible to Hadoop Map Reduce inter-
faces (https://ci.apache.org/projects/flink/flink-docs-release-1.4/
dev/batch/hadoop_compatibility.html)

C4
General Documentation (comprehensive): https://ci.apache.org/

projects/flink/flink-docs-release-<RELEASE>/

Apache Flink Training: http://training.data-artisans.com/

C5 Apache F link is a system for the distributed processing of large amounts of
data.

C6 Apache License 2.0

C7 Latest Stable Release: 1.4 (12.12.2017)

64

https://flink.apache.org/
https://github.com/apache/flink
https://flink.apache.org/community.html#mailing-lists
https://issues.apache.org/jira/projects/FLINK/issues
https://www.meetup.com/de-DE/topics/apache-flink/
https://flink-forward.org/
https://data-artisans.com/
https://flink.apache.org/news/2015/12/11/storm-compatibility.html
https://flink.apache.org/news/2015/12/11/storm-compatibility.html
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/batch/hadoop_compatibility.html
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/batch/hadoop_compatibility.html
https://ci.apache.org/projects/flink/flink-docs-release-<RELEASE>/
https://ci.apache.org/projects/flink/flink-docs-release-<RELEASE>/
http://training.data-artisans.com/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.9: Eclipse BIRT (cf. Sec. 2.4.3).

Criterion Value(s)

C1

- Reports can be customized
- Report Item Extension API allows to de�ne additional report items
- Open Data Access (ODA) Extension API allows to create custom data source
drivers

C2

Project website: https://www.eclipse.org/birt/
GitHub: https://github.com/eclipse/birt
Forum: http://www.eclipse.org/forums/?group=eclipse.birt
Mailing list (news): http://dev.eclipse.org/mhonarc/lists/birt-news/

maillist.html

Mailing list (developer): https://accounts.eclipse.org/mailing-list/

birt-dev

OpenText Analytics Developer Community: https://www.opentext.com/

what-we-do/products/analytics/analytics-developer-community

C3

- Integration of the report designer within the Eclipse IDE
- Reports are stored as XML �les
- Reports can access a variety of data sources, including SQL databases, Web
Services and XML �les

C4

General Documentation: https://www.eclipse.org/birt/documentation/
Demos: https://www.eclipse.org/birt/demos/
Open Text Documentation: https://www.opentext.com/what-we-do/

products/analytics/analytics-resources/documentation

C5 �

C6 Eclipse Public License (EPL)

C7 Latest Stable Release: 4.7.0 (22.06.2017)

65

https://www.eclipse.org/birt/
https://github.com/eclipse/birt
http://www.eclipse.org/forums/?group=eclipse.birt
http://dev.eclipse.org/mhonarc/lists/birt-news/maillist.html
http://dev.eclipse.org/mhonarc/lists/birt-news/maillist.html
https://accounts.eclipse.org/mailing-list/birt-dev
https://accounts.eclipse.org/mailing-list/birt-dev
https://www.opentext.com/what-we-do/products/analytics/analytics-developer-community
https://www.opentext.com/what-we-do/products/analytics/analytics-developer-community
https://www.eclipse.org/birt/documentation/
https://www.eclipse.org/birt/demos/
https://www.opentext.com/what-we-do/products/analytics/analytics-resources/documentation
https://www.opentext.com/what-we-do/products/analytics/analytics-resources/documentation

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.10: Grafana (cf. Sec. 2.4.4).

Criterion Value(s)

C1
- Dashboards can be customized
- Plugins allow to augment the functionality (https://grafana.com/plugins)

C2

Project website: https://grafana.com/
GitHub: https://github.com/grafana/grafana
Twitter: https://twitter.com/grafana
Conference (GrafanaCon): http://grafanacon.org/

C3
- Connectivity to a variety of data sources is provided
- Additional data sources can be added via plugins

C4

General Documentation: http://docs.grafana.org/
FAQ: https://community.grafana.com/c/howto/faq
Tutorials: docs.grafana.org/tutorials/
YouTube Channel: https://www.youtube.com/channel/

UCYCwgQAMm9sTJv0rgwQLCxw

C5 - Grafana is designed to visualize data that is stored in scalable data storage
deployment

C6 Apache License 2.0

C7 Latest Stable Release: 4.6.3 (14.12.2017)

66

https://grafana.com/plugins
https://grafana.com/
https://github.com/grafana/grafana
https://twitter.com/grafana
http://grafanacon.org/
http://docs.grafana.org/
https://community.grafana.com/c/howto/faq
docs.grafana.org/tutorials/
https://www.youtube.com/channel/UCYCwgQAMm9sTJv0rgwQLCxw
https://www.youtube.com/channel/UCYCwgQAMm9sTJv0rgwQLCxw

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.2.4 Data Storage and Management

In the following, the given criteria are applied to the technologies from Section 2.5) for realizing
a data storage and management:

• Apache CouchDB (cf. Tab. 5.11),

• MongoDB (cf. Tab. 5.12),

• Neo4j (cf. Tab. 5.13),

• In�uxDB (cf. Tab. 5.14)

• ArangoDB (cf. Tab. 5.15)

• OrientDB (cf. Tab. 5.16)

• and Couchbase (cf. Tab. 5.17)

Table 5.11: Apache CouchDB (cf. Sec. 2.5.1).

Criterion Value(s)

C1 Security & validation via custom security models

C2

Project website: http://couchdb.apache.org/
GitHub: 129 contributors, 10.962 commits https://github.com/apache/

couchdb

Issue Tracker: 67 open, 253 closed issues https://github.com/apache/

couchdb/issues

Mailing list (https://couchdb.apache.org/#mailing-list), Chat (IRC),
Slack (5,128 tagged questions)

C3 HTTP-based REST interface; data stored as JSON objects

C4
Apache CouchDB 2.1 Documentation: http://docs.couchdb.org/en/2.1.1/
Wiki, blog (https://blog.couchdb.org/)

C5 Replications, read requests (load balancing), write requests (clustering), and
data (clustering) (http://guide.couchdb.org/draft/scaling.html)

C6 Apache License Version 2.0

C7 Latest Stable Release: 2.1.0 (04.08.2017); frequent releases (47)

67

http://couchdb.apache.org/
https://github.com/apache/couchdb
https://github.com/apache/couchdb
https://github.com/apache/couchdb/issues
https://github.com/apache/couchdb/issues
https://couchdb.apache.org/#mailing-list
http://docs.couchdb.org/en/2.1.1/
https://blog.couchdb.org/
http://guide.couchdb.org/draft/scaling.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.12: MongoDB (cf. Sec. 2.5.2).

Criterion Value(s)

C1 Querying, data model

C2

Project website: https://www.mongodb.com
GitHub: 327 contributors, 40.377 commits https://github.com/mongodb/

mongo

Issue Tracker: 70.501 reported issues https://jira.mongodb.org
Google groups (32.458 threads), frequent user events

C3 HTTP-based REST interfaces (Python, Java, Ruby, Node.jS); data stored as
Binary JSON (BSON) objects

C4
MongoDB Manual 3.6: https://docs.mongodb.com
White papers, datasheets, webinars, presentations, blog (https://www.
mongodb.com/blog)

C5
Replications, Auto-Sharing for horizontal scale-out databases
Cluster, performance, and data scale proven in industrial settings (https://
www.mongodb.com/mongodb-scale)

C6
Database Server and Tools: GNU AGPL v3.0
Drivers: Apache License v2.0. for mongodb.org; Varying licenses for third party
drivers

C7 Latest Stable Release: 3.6.2 (10.01.2018); frequent releases (496)

Table 5.13: Neo4j (cf. Sec. 2.5.3).

Criterion Value(s)

C1 �

C2

Project website: https://neo4j.com/
GitHub: 151 contributors, 52.992 commits https://github.com/neo4j
Issue Tracker: 308 open, 1873 closed issues https://github.com/neo4j/

neo4j/issues

Slack (14.897 tagged questions), user events, meetups, training days, online
training, social media

C3 REST API, language-speci�c drivers (C#, Java, JavaScript, Python), export
of query data to JSON and XLS format

C4

Neo4j documentation 3.3: https://neo4j.com/docs/
API documentation for Java, JavaScript, Python, and .NET
Blog (https://neo4j.com/blog/)

C5 Cluster management component with full replication for each instance, In-
Memory Sharing

C6
Community edition: GPL v3 license
Di�erent licensing models for enterprise edition (commercial, developer, evalu-
ation, and educational license)

C7 Latest Stable Release: 3.3.2 (22.01.2018); frequent releases (220)

68

https://www.mongodb.com
https://github.com/mongodb/mongo
https://github.com/mongodb/mongo
https://jira.mongodb.org
https://docs.mongodb.com
https://www.mongodb.com/blog
https://www.mongodb.com/blog
https://www.mongodb.com/mongodb-scale
https://www.mongodb.com/mongodb-scale
https://neo4j.com/
https://github.com/neo4j
https://github.com/neo4j/neo4j/issues
https://github.com/neo4j/neo4j/issues
https://neo4j.com/docs/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.14: In�uxDB (cf. Sec. 2.5.4).

Criterion Value(s)

C1 Support for custom dashboards and reporting interfaces

C2

Project website: https://www.influxdata.com/
GitHub: 288 contributors, 13.176 commits https://github.com/influxdata/
influxdb

Issue Tracker: 636 open, 4741 closed issues https://github.com/influxdata/
influxdb/issues

Active forum (https://community.influxdata.com/), Google groups (3.057
threads)

C3 Write and query via HTTP APIs

C4
In�uxDB 1.4 documentation https://docs.influxdata.com/influxdb/v1.

4/

Blog (https://www.in�uxdata.com/blog/), technical papers, videos, webinars

C5 Scalability through clustering (not open source and only supported in In�ux-
Enterprise)

C6 MIT License

C7 Latest Stable Release: 1.4.2 (15.11.2017); frequent releases (206)

Table 5.15: ArangoDB (cf. Sec. 2.5.5).

Criterion Value(s)

C1 Support for custom data structures as well as security and performance

C2

Project website: https://www.arango.com/
GitHub: 76 contributors, 41.880 commits https://github.com/arangodb/

arangodb

Issue Tracker: 330 open, 2.359 closed issues https://github.com/arangodb/
arangodb/issues

Active forum (https://www.arangodb.com/community/)

C3 HTTP-based REST interface (Python, Java, Ruby, Node.js, etc.); VelocyPack:
data stored in JSON and Binary format

C4

ArangoDB manual 3.3 https://docs.arangodb.com/3.3/Manual/index.html
Documentation (https://www.arangodb.com/documentation/)
Blog (https://www.arangodb.com/blog/), technical papers, videos, webinars

C5 Distributed database supporting multiple data model
Replication and automatic fail-over
Capacity dynamically up and down
ArangoDB cluster with distinct roles: Agents, coordinators, primary and sec-
ondary servers

C6 Apache License Version 2.0

C7 Latest Stable Release: 3.3.3 (20.12.2017)

69

https://www.influxdata.com/
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb/issues
https://github.com/influxdata/influxdb/issues
https://community.influxdata.com/
https://docs.influxdata.com/influxdb/v1.4/
https://docs.influxdata.com/influxdb/v1.4/
https://www.arango.com/
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb
https://github.com/arangodb/arangodb/issues
https://github.com/arangodb/arangodb/issues
https://www.arangodb.com/community/
https://docs.arangodb.com/3.3/Manual/index.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.16: OrientDB (cf. Sec. 2.5.6).

Criterion Value(s)

C1 Support for custom data structures (Java API)

C2

Project website: https://orientdb.com/
GitHub: 114 contributors, 16.513 commits https://github.com/

orientechnologies/orientdb

Issue Tracker: 1073 open, 6.399 closed issues https://github.com/

orientechnologies/orientdb/issues

Active community (https://orientdb.com/community/)

C3 Three kinds of drivers: Native binary remote, HTTP-based REST/JSON, and
Java-wrapped
Support for Java, Node.js, PHP, Python, C, etc.
Data stored as JSON, BLOB, Vertex, Edge

C4
OrientDB 2.2 manual https://orientdb.com/docs/2.2.x/
Blog (https://orientdb.com/blog/), technical papers, videos, webinars

C5 Distributed database supporting multiple data model
Replication and automatic fail-over
Clustering via the Hazelcat open source project: Auto-discovery (Multicast,
TCP-IP, Amazon), queues for request and responses, storage of metadata in
distributed maps, distributed locks

C6 Apache License Version 2.0

C7 Latest Stable Release: 2.2.22 (05.02.2018)

Table 5.17: Couchbase (cf. Sec. 2.5.7).

Criterion Value(s)

C1 Support for custom data structures as well as security and performance

C2

Project website: https://www.couchbase.com
GitHub: 137 repositories https://github.com/couchbase
Active community (https://forums.couchbase.com/)

C3 General access via N1QL queries
Support for Java, .NET Node.js, PHP, Python, Ruby, Go, C, etc.
Data stored as JSON and binary

C4
Couchbase documentation https://developer.couchbase.com/

documentation-archive

Blog (https://blog.couchbase.com/), technical papers, videos, webinars

C5 Distributed database supporting multiple data model
Replication and automatic fail-over
Load balancing
Granularity of write locks
Scalable request processing architecture

C6 Apache License Version 2.0

C7 Latest Stable Release: 5.1 (February 2018)

70

https://orientdb.com/
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/orientdb
https://github.com/orientechnologies/orientdb/issues
https://github.com/orientechnologies/orientdb/issues
https://orientdb.com/community/
https://orientdb.com/docs/2.2.x/
https://www.couchbase.com
https://github.com/couchbase
https://forums.couchbase.com/
https://developer.couchbase.com/documentation-archive
https://developer.couchbase.com/documentation-archive

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.2.5 Device Management

This section covers the following technologies that are used regarding device management (cf.
Sec. 2.6):

• Eclipse hawkBit (cf. Tab. 5.18),

• Eclipse Leshan (cf. Tab. 5.19),

• Eclipse Wakaama (cf. Tab. 5.20),

• Eclipse Vorto (cf. Tab. 5.21), and

• OGC SensorThings API (cf. Tab. 5.22).

Table 5.18: Eclipse hawkBit (cf. Sec. 2.6.1).

Criterion Value(s)

C1 - Adaptation by adjusting the source code cotained in the GitHub repository

C2

Project website: https://eclipse.org/hawkbit/
GitHub: https://github.com/eclipse/hawkbit
Gitter: https://gitter.im/eclipse/hawkbit
Hudson build: https://hudson.eclipse.org/hawkbit/
Issue tracker: https://github.com/eclipse/hawkbit/issues
Mailing list: https://accounts.eclipse.org/mailing-list/hawkbit-dev

C3

- The Direct Device Integration API is based on HTTP and JSON
- Integration with Eclipse Hono is planned for the future
- Usage of the existing clients SWupdate and rauc-hawkbit

C4
General Documentation: https://eclipse.org/hawkbit/documentation/

overview/introduction.html

YouTube Tutorial: https://www.youtube.com/watch?v=g-dhKMaaanE

C5
- Allows to update a large number of devices in paralell (Technical scalability)
- Enhances the feature set of the set of devices (Functional scalability)

C6 Eclipse Public License 1.0

C7 Latest Stable Release: 0.2.0M3 (03.04.2017)

71

https://eclipse.org/hawkbit/
https://github.com/eclipse/hawkbit
https://gitter.im/eclipse/hawkbit
https://hudson.eclipse.org/hawkbit/
https://github.com/eclipse/hawkbit/issues
https://accounts.eclipse.org/mailing-list/hawkbit-dev
https://eclipse.org/hawkbit/documentation/overview/introduction.html
https://eclipse.org/hawkbit/documentation/overview/introduction.html
https://www.youtube.com/watch?v=g-dhKMaaanE

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.19: Eclipse Leshan (cf. Sec. 2.6.2).

Criterion Value(s)

C1 - Adaptation by adjusting the source code cotained in the GitHub repository

C2

Project website: https://www.eclipse.org/leshan/
GitHub: https://github.com/eclipse/leshan
Issue tracker: https://github.com/eclipse/leshan/issues
Mailing list: https://accounts.eclipse.org/mailing-list/leshan-dev

C3
- Client and server implementation of the OMA Lightweight M2M protocol in
Java
- Based on Eclipse Californium and Eclipse Scandium

C4
General Documentation: https://github.com/eclipse/leshan/wiki
Getting Started: https://github.com/eclipse/leshan/wiki/

Getting-started

C5
- LWM2M is desgined for the usage by devices equipped with limited resources
- It is expected that thousands of devices can be connected to a single Leshan
instance

C6
Eclipse Distribution License 1.0 (BSD)
Eclipse Public License 1.0

C7 Latest Stable Release: 1.0.0-M5 (19.01.2018)

Table 5.20: Eclipse Wakaama (cf. Sec. 2.6.3).

Criterion Value(s)

C1 - Adaptation by adjusting the source code cotained in the GitHub repository

C2

Project website: https://eclipse.org/wakaama/
GitHub: https://github.com/eclipse/wakaama
Issue tracker: https://github.com/eclipse/wakaama/issues
Mailing list: https://accounts.eclipse.org/mailing-list/wakaama-dev

C3 - Client and server implementation of the OMA Lightweight M2M protocol in
C

C4 Getting Started: https://eclipse.org/wakaama/index.html#

getting-started

C5 - LWM2M is desgined for the usage by devices equipped with limited resources

C6
Eclipse Distribution License 1.0 (BSD)
Eclipse Public License 1.0

C7 Latest Release: Initial Commit (08.07.2014)

72

https://www.eclipse.org/leshan/
https://github.com/eclipse/leshan
https://github.com/eclipse/leshan/issues
https://accounts.eclipse.org/mailing-list/leshan-dev
https://github.com/eclipse/leshan/wiki
https://github.com/eclipse/leshan/wiki/Getting-started
https://github.com/eclipse/leshan/wiki/Getting-started
https://eclipse.org/wakaama/
https://github.com/eclipse/wakaama
https://github.com/eclipse/wakaama/issues
https://accounts.eclipse.org/mailing-list/wakaama-dev
https://eclipse.org/wakaama/index.html#getting-started
https://eclipse.org/wakaama/index.html#getting-started

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.21: Eclipse Vorto (cf. Sec. 2.6.4).

Criterion Value(s)

C1
- Adaptation by adjusting the source code cotained in the GitHub repository
- New IoT device descriptions can be added to the Vorto Repository (http:
//vorto.eclipse.org/#/)

C2

Project website: https://www.eclipse.org/vorto/
GitHub: https://github.com/eclipse/vorto
Issue tracker: https://github.com/eclipse/vorto/issues/
Blog: https://www.eclipse.org/vorto/blog/index.html
Twitter: https://twitter.com/VortoIoT
Mailing list: https://accounts.eclipse.org/mailing-list/vorto-dev
Forum: http://www.eclipse.org/forums/index.php?t=thread&frm_id=303
Wiki: https://wiki.eclipse.org/Vorto

C3
- Integration into the Eclipse IDE
- Information models are de�ned using a domain-speci�c language

C4 General documentation (comprehensive): https://www.eclipse.org/vorto/

documentation/

C5 - An information model can be applied to every IoT device of the same type.

C6 Eclipse Public License 1.0

C7 Latest Release: 0.10.0.M1 (05.07.2017)

Table 5.22: OGC SensorThings API (cf. Sec. 2.6.5).

Criterion Value(s)

C1
- It targets the semantics of messages transmitted using exisiting IoT protocols
- Up to this point, no o�cial implementation has been released

C2

Project website: https://ogc-iot.github.io/ogc-iot-api/
GitHub: https://github.com/opengeospatial/sensorthings
Issue tracker: https://github.com/opengeospatial/sensorthings/issues

C3 - It complements exisiting IoT data transfer protocols

C4
General documentation: http://www.opengeospatial.org/standards/

sensorthings

OGC SensorThings API Part 1 (Sensing): http://docs.opengeospatial.

org/is/15-078C6/15-078C6.html

C5 - Up to this point, only the �rst part of the corresponding standard that targets
the sensing has been relseased

C6
License agreement: see http://docs.opengeospatial.org/is/15-078C6/

15-078C6.html

C7 Latest Release: 1.0 (26.07.2016)

73

http://vorto.eclipse.org/#/
http://vorto.eclipse.org/#/
https://www.eclipse.org/vorto/
https://github.com/eclipse/vorto
https://github.com/eclipse/vorto/issues/
https://www.eclipse.org/vorto/blog/index.html
https://twitter.com/VortoIoT
https://accounts.eclipse.org/mailing-list/vorto-dev
http://www.eclipse.org/forums/index.php?t=thread&frm_id=303
https://wiki.eclipse.org/Vorto
https://www.eclipse.org/vorto/documentation/
https://www.eclipse.org/vorto/documentation/
https://ogc-iot.github.io/ogc-iot-api/
https://github.com/opengeospatial/sensorthings
https://github.com/opengeospatial/sensorthings/issues
http://www.opengeospatial.org/standards/sensorthings
http://www.opengeospatial.org/standards/sensorthings
http://docs.opengeospatial.org/is/15-078C6/15-078C6.html
http://docs.opengeospatial.org/is/15-078C6/15-078C6.html
http://docs.opengeospatial.org/is/15-078C6/15-078C6.html
http://docs.opengeospatial.org/is/15-078C6/15-078C6.html

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.2.6 Message Gateway

In the following, the given criteria are applied to the technologies from Section 2.7 for realizing
a message gateway. An additional criteria for the message gateway is the real-time capability
(C8), which is relevant for distinct use cases, such as the User Story 03 "`Wrong Way Driver

Warning"' (cf. Section 3.3) or User Story 22 "`Emergency Braking & Evading Assistance System

(EBEAS)"' (cf. Section 3.22). For such use cases, a real-time processing of forwarded data
from multiple vehicles may be necessary.

• Eclipse Hono (cf. Tab. 5.23),

• Apache Kafka (cf. Tab. 5.24),

• and Eclipse Mosquitto (cf. Tab. 5.25)

Table 5.23: Eclipse Hono (cf. Sec. 2.7.1).

Criterion Value(s)

C1 Custom protocol adapters, seamless integration of any AMQP 1.0-compatible
message broker

C2

Project website: https://www.eclipse.org/hono
GitHub: 18 contributors, 1.308 commits https://github.com/eclipse/hono
Issue Tracker: 34 open, 214 closed issues https://github.com/eclipse/hono/
issues

Mailing list (https://accounts.eclipse.org/mailing-list/hono-dev),
Chat (IRC), Forum (0 threads)

C3 Built upon AMQP, protocol adapters for MQTT and REST and custom pro-
tocol adapters via Hono's API

C4
User and developer guide (https://www.eclipse.org/hono/user-guide/)
and API documentation
Presentations

C5 Horizontally scalable microservice architecture, EnMasse1 for horizontal scala-
bility of dispatch routers and brokers

C6 Eclipse Public License 1.0

C7 Latest stable release: 0.5-M10 (24.10.2017); some releases (10)

C8 �

74

https://www.eclipse.org/hono
https://github.com/eclipse/hono
https://github.com/eclipse/hono/issues
https://github.com/eclipse/hono/issues
https://accounts.eclipse.org/mailing-list/hono-dev
https://www.eclipse.org/hono/user-guide/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.24: Apache Kafka (cf. Sec. 2.7.2).

Criterion Value(s)

C1 Capabilities to con�gure broker, topics, producer, consumer, and connection-
s/streams

C2

Project website: https://kafka.apache.org/
GitHub: 374 contributors, 4.584 commits https://github.com/apache/kafka
Issue Tracker: 6476 issues at all https://issues.apache.org/jira/

projects/KAFKA/issues

Di�erent mailing lists (https://kafka.apache.org/contact), Google groups
(92 threads), IRC, use cases, meetups, summits

C3 Binary protocol over TCP with Java and Scala API implementation

C4 Kafka 1.0 documentation (https://kafka.apache.org/documentation/)

C5 Designed for high volume publish-subscribe messages and streams: scaling
writes and reads by sharing topic logs into partitions

C6 Apache License v2

C7 Latest stable release: 0.11.0.2 (16.11.2017); frequent releases (64)

C8 Capabilities for real-time stream processing in mind

Table 5.25: Eclipse Mosquito (cf. Sec. 2.7.3).

Criterion Value(s)

C1 Broker con�guration: custom authentication and access control, options to
con�gure bridges

C2

Project website: https://projects.eclipse.org/projects/technology.

mosquitto

GitHub: 25 contributors, 646 commits https://github.com/eclipse/

mosquitto

Issue Tracker: 179 open, 328 closed issues https://github.com/eclipse/

mosquitto/issues

Mailing list (https://accounts.eclipse.org/mailing-list/mosquitto-dev), forum
(85 threads)

C3 C-based API (libmosquitto) for MQTT

C4
Mosquitto documentation (https://mosquitto.org/documentation/)
Blog (https://mosquitto.org/)

C5 E�cient C implementation (1000 clients == 3MB RAM), support for horizontal
scalability through a MQTT bridge

C6 Eclipse Public License 1.0

C7 Latest stable release: 1.4.14 (29.05.2017); some releases (19)

C8 �

75

https://kafka.apache.org/
https://github.com/apache/kafka
https://issues.apache.org/jira/projects/KAFKA/issues
https://issues.apache.org/jira/projects/KAFKA/issues
https://kafka.apache.org/contact
https://kafka.apache.org/documentation/
https://projects.eclipse.org/projects/technology.mosquitto
https://projects.eclipse.org/projects/technology.mosquitto
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto/issues
https://github.com/eclipse/mosquitto/issues
https://mosquitto.org/documentation/
https://mosquitto.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.3 Technology Selection

In order to rate the suitability of the respective technology for the generic building blocks of
Figure 4.1, the following scores depicted in Table 5.26 are applied to each criterion, if possible.

Table 5.26: Evaluation criteria scores

Value Qualitative

-1 Strongly contradicts the criterion

0 Partly ful�lls the criterion

1 Strongly ful�lls the criterion

Each technology is assigned with an aggregated score based on the individual scores v, which
re�ects its suitability in the context of the cloud platform architecture. For this purpose, a
speci�c aggregation function s is applied to cumulate the scores for the individual criteria (cf.
Equ. 5.1).

s = vC1 + vC2 + vC3 + vC4 + vC5 + vC7 + vCx (5.1)

Note that the criterion C6 Software License is assigned with a binary scale, re�ecting that
the license applied to a technology either can be used by third party code redistributed by
Eclipse Foundation Projects or not. As a result, this criterion is represented by a separate
function f , that may override the value of s (cf. Equ. 5.2).

f(vC6, s) =

{
s, if vC6 = 0, 1

−∞, if vC6 = −1
(5.2)

Note that the value −∞ will prevent that a corresponding technology is selected.

5.3.1 IoT Cloud Platform

Table 5.27 represents the evaluation of the only technology for managing IoT Cloud platforms.
It considers results from 5.1. In this section, we have variety of other existing IoT Cloud
platforms that have been used partially in designing our reference architecture.

Table 5.27: The evaluation of IoT Cloud Platform technologies

Eclipse Kapua

vC1 1

vC2 0

vC3 1

vC4 1

vC5 0

vC7 -1

s 2

vC6 1

f(vC6, s) 2

76

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

5.3.2 Application and Service Integration

Table 5.27 represents the evaluation of the existing technologies for the Application and Ser-

vice Integration. It considers results from Table 5.2 to 5.6. In this section, we have variety of
technologies from matured technologies such as Apache Camel to an archived technology such
as Eclipse Mihini. Apache Camel and Spring Integration technologies can support most of the
user speci�c needs and are can be adopted to the context. All technologies (except Mihini)
support standardized and common interfaces ranging from MQTT, AMQP to the REST API.
Our analysis shows that Apache Camel and Spring Integration have a good and reliable com-
munity in support containing large number of contributors and commits in GitHub; however,
the contribution towards Eclipse Ditto and Eureka is increasing. In addition, Apache Camel
and Eureka provide mechanisms of scalability on increasing load of data or amount of con-
nected devices. Spring Integration needs adoption of other technologies to scale. Most of the
technologies tried to establish basic documentations including general description, developers
and users' guides, as well as installation, demo and deployment. Technologies are based on two
major open source licenses as Eclipse Public License (EPL) and Apache License 2.0. Eclipse
Mihini has one LGPL library that should be considered in future development. Considering
the interval of the releases Apache Camel, Spring Integration and Eureka have been maintained
regularly and are stable considering the number of releases. According to our evaluation, we
propose that Apache Camel is an appropriate technology for APPSTACLE as it meets all
evaluation criteria; however, other matured solutions can be adopted with vital consideration
regarding their shortages.

Table 5.28: The evaluation of Service Integration technologies

Eclipse Ditto Mihini Eureka Apache Camel Spring Integration

vC1 -1 0 -1 1 1

vC2 0 -1 0 1 1

vC3 1 0 1 1 1

vC4 1 -1 1 1 1

vC5 0 -1 1 1 0

vC7 -1 -1 1 1 1

s 0 -4 3 6 5

vC6 1 1 1 1 1

f(vC6, s) 0 -4 3 6 5

5.3.3 Data Analytics and Visualization

Based on the assessment in Tab. 5.29, Apache Flink and Grafana are the preferable choices
regarding the analysis of large amounts of data as well as the corresponding visualization.
Apache Storm is only assessed with the value 0 regarding adaptibility, because it does not
allow the analysis of batch data sets. This drawback is mitigated by Apache Flink, which
allows to analyse streaming as well as batch data sets. The community around Eclipse BIRT
appears to be limited, which leads to an assignment of 0 of the corresponding criterion.

77

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.29: Application of evaluation criteria to the data analytics and visualization
technologies.

Apache Storm Apache Flink Eclipse BIRT Grafana

vC1 0 1 1 1

vC2 0 1 0 1

vC3 1 1 1 1

vC4 1 1 1 1

vC5 1 1 0 1

vC7 1 1 1 1

s 4 6 4 6

vC6 1 1 1 1

f(vC6, s) 4 6 4 6

5.3.4 Data Storage and Management

Table 5.30 depict the assessment of the according DBMS technologies based on the results
from Table 5.11 to 5.14. In general, all of the considered technologies are matured, well docu-
mented, and maintained by an existing community. Furthermore, they are accessible through
standardized and common interfaces as well as partly exhibit capabilities for adaptability. In
the nature of NoSQL databases, they further features horizontal scaling. This features make
them appropriate for the usage in an IoT cloud platform. However, the usage of a distinct
NoSQL databases heavily depends on the according use case. For example, document-oriented
databases focus on the storage of heterogeneous data in a generic manner, which make them
suitable for use cases that produces unstructured data and require some �exibility, e. g. User
Story 04 "`Augment vehicle functionality"' (cf. Section 3.4) may a�ect various con�guration
parameters and require access to di�erent sensors etc. By contrast, a graph database like Neo4j
allows for an e�cient querying of related data in large data sets, e. g. User Story 16 "`Social
Media"'(cf. Section 3.16). A TSDB focus on massive storage of time series data and is therefore
suitable for use cases like vehicle tracking (cf. User Story 02 in Section 3.2).
Thus, we propose to use a multi-model database and select the database based on the accord-

ing use case instead of relying on a speci�c DBMS solution. All of the considered multi-model
databases in Table 5.31 support one or more data model, but using only one data model for
the main database structure. Thereby, the most commonly used data model is a document-
oriented data model, which allow to stores di�erent data in a generic manner. This enables
applications to store di�erent data and query the data with one method. In general, the query
method should not be completely di�erent conventional methods. All considered multi-model
databases have their own query languages, but all query languages are not very di�erent from
SQL. In this way, very �exible structure is provided in the queries. One of the most impor-
tant features is scalability in the storage of very large data. Scalability should be focused on
consistency, availability and partition tolerance for distributed systems.

78

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

Table 5.30: Application of the evaluation criteria on DBMS technologies

CouchDB MongoDB Neo4j In�uxDB

vC1 0 0 -1 0

vC2 1 1 1 1

vC3 1 0 1 1

vC4 1 1 1 1

vC5 1 1 0 -1

vC7 0 1 1 1

s 4 4 3 3

vC6 1 1 0 1

f(vC6, s) 4 4 3 3

Table 5.31: Application of the evaluation criteria on multi-model databases

AnrangoDB MongoDB Neo4j

vC1 0 0 0

vC2 1 1 0

vC3 0 1 1

vC4 0 1 1

vC5 0 1 0

vC7 0 1 1

s 2 5 3

vC6 1 1 1

f(vC6, s) 2 5 3

5.3.5 Device Management

Table 5.32: The evaluation of technologies for device management.

hawkBit Leshan Wakaama Vorto SensorThings API

vC1 1 1 1 1 0

vC2 1 1 0 1 0

vC3 1 1 1 1 1

vC4 1 1 0 1 1

vC5 1 1 1 1 0

vC7 1 1 -1 1 0

s 6 6 2 6 2

vC6 1 1 1 1 -1

f(vC6, s) 6 6 2 6 −∞

The development e�orts within the Eclipse Wakaama project seem to be limited. There has
no o�cial release been made yet and the number of commits to the repository declined in the
recent past. Furthermore, the amount of documentation available is rather small. This results

79

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

in a low assessment of the project. OGC SensorThings API is a standard that has not yet been
implemented. The community around this standard appears to be limited. The documentation
regarding OGC SensorThings API is represented by an formal standard description. Up to this
point, only version 1.0 of the standard has been released. Due to its custom license agreement,
the OGC SensorThings API may cause legal issues. For this reason the usage of this standard
with respect to this research project is discarded. The remaining technologies, Eclipse hawkBit,
Eclise Leshan, and Eclipse Vorto have a total score of 6, which implies their suitability.

5.3.6 Message Gateway

The message gateway is one of the central components in an IoT architecture and requires
a thorough investigation regarding the applicability in the APPSTACLE cloud backend. Ta-
ble 5.33 show the evaluation results for each technology. Apache Kafka is a platform for stream
processing with particular focus on realtime capabilities. The project is matured and used
in a lot of industry platforms, e. g. Net�ix or eBay. Mosquitto depict a MQTT broker and is
realized as Eclipse project with a small, but active community. In contrast to Kafka, Mosquitto
is realized in C and do not exhibit any capabilities for real-time processing and has minor sup-
port for horizontal scalability and adaptability. The messaging infrastructure in Hono supports
MQTT and HTTP out of the box and various protocols through custom adapters. Through its
microservice architecture, Hono is designed with horizontal scalability in mind and allows also
to integrate any AMQP 1.0-compatible message broker. To provide and manage identities of
connected devices, Hono has also capabilities for device registration and authentication, while
the telemetry and command & control API covers di�erent aspects of device registry. This
additional features in contrast to Kafka and Mosquitto makes Hono suitable for the application
in the automotive domain. Although there is no support for real-time processing by default,
a suitable message broker could be used to realize such a behavior. Thus, we propose to use
Hono as message gateway as it is more than a pure messaging component, is maintained by an
active community, and consists of an appropriate software license.

Table 5.33: Application of the evaluation criteria on message gateway technologies

Eclipse Hono Apacha Kafka Eclipse Mosquitto

vC1 1 0 0

vC2 0 1 -1

vC3 1 0 0

vC4 1 1 0

vC5 1 1 0

vC7 0 1 0

vC8 -1 1 -1

s 3 5 -2

vC6 1 1 1

f(vC6, s) 3 5 -2

80

6 Conclusion

Figure 6.1 shows the mapping of the evaluation results to the generic building blocks of ar-
chitecture speci�cation in Figure 4.1 and therewith the selection of speci�c tools. In general,
the applied technologies are open source with an according software license, maintained by a
community, include documentation, and are regularly updated.
The Core Layer basically consists of a message gateway, core services, a data management

tool, and technologies for identifying, representing, and managing devices. As the message
gateway is the single point of interaction with the environment, it has to support at least the
protocols used by the in-vehicle gateway. Nevertheless, the message gateway should also be
able to adapt future protocols, which may emerge due to the availability of new technologies.
By using Eclipse Hono, not only a �exible and scalable message gateway is provided, but also
capabilities for device registration and authentication. Thereby, the seamless interaction with
the in-vehicle gateway is achieved through the protocol adapter concept of Eclipse Hono, which
allows to map any messaging protocol to the underlying AMQP protocol via existing or custom
protocol adapters. An important requirement within the automotive domain is the roll out of
software updates to constrained edge devices OTA. The evaluation in Section 5.3.5 shows that
Eclipse hawkBit is a suitable technology for realizing such a device management. Furthermore,
hawkBit supports di�erent protocols, e. g. REST and AMQP, and is thus compatible with
Eclipse Hono as message gateway. Although Eclipse Ditto is a relatively new project that is
subject to ongoing major development activities, it provides valuable information of devices for
the realization of domain-speci�c services and thus is also incorporated into the APPSTACLE
core layer. As depicted in Section 5.3.4, the data management should not rely on a single
DBMS technology, but rather make use of SQL and di�erent types of NoSQL databases that
are integrated into a single backend. Multi-model databases are one way to achieve that. For
example, OrientDB1 represents an open source multi-model database written in Java with
support for SQL as well as graph, document, key/value, and object models. Another promising
option is to use Eclipse JNoSQL2, which de�nes a set of APIss to interact with various NoSQL
databases, such as mongoDB, neo4j, and even multi-model databases like OrientDB. However,
a sophisticated integration requires more extensive investigations and evaluations.
The technologies for realizing an identity management will be de�ned within the security

document. Nevertheless, Hono is already shipped with some functionality for device authen-
tication whereas Keycloak (cf. Section 2.8.2) implements authentication and authorization
mechanisms.
The Data Analytic & Visualization Layer mainly rely on the data stored in the data manage-

ment and either focus on representing data in a valuable way or to process big data for further
analysis. The evaluation in Chapter 5 has shown that Eclipse BIRT can be used to generate
business reports, while Grafana allows to visualize data within �exible dashboards. In contrast,
big data analysis are challenging and need holistic investigations. Apache Flink is a suitable

1http://orientdb.com/
2http://www.jnosql.org/

81

http://orientdb.com/
http://www.jnosql.org/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

<<Marketplace>>

C
lo

u
d

 B
a

ck
-e

n
d

Domain-specific
Services

<<Visualization>>

Grafana

<<Big Data

Analysis>>

Apache Flink

<<Report

Generation>>

Eclipse BIRT

<<Data Management>>

Multi-model database

<<Device
Representation>>

Eclipse Ditto

Core
Services

<<Message Gateway>>

Eclipse Hono
<<Device Management>>

Eclipse hawkBit

A
p

p
li

ca
ti

o
n

 L
ay

er

D
at

a
 A

n
al

yt
ic

 &
 V

is
u

a
liz

at
io

n
 L

a
ye

r

C
o

re
 L

a
ye

r

 Building Block
Data
Flow

<<Identity

Management>>

Figure 6.1: The cloud platform architecture with speci�c technology

technology for such tasks as it is scalable and allows to analyze data streams as well as batch
sets.
The uppermost layer, i.e., Application Layer, includes domain-speci�c services that are de-

veloped according to the use case and a market place that o�ers applications to users. Due to
the fact that no existing and open source technology for realizing such a market place could be
found, this component will probably be a major custom implementation within APPSTACLE.

6.1 Subsequent activities

Based on this initial architecture speci�cation, the next steps are the integration and imple-
mentation of the according technologies within a platform prototype to evaluate the chosen
technologies, identify required extensions and additional components, and �nally form a plat-
form applicable to the various use cases de�ned in Section 3. Eclipse projects have been proven
to be a successful and e�ective means to develop, maintain, and disseminate de-facto standard
development tools. This includes not only the hosting of open source projects, but also best
practices for continuous integration, as well as build and test environments to enable long term

82

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

C
lo

ud

Pl
at

fo
rm

App Store

Ethernet

Central Gateway / Backbone

CAN

ADAS
Control

Motion
Control Head Unit Body

Control

In
-V

eh
ic

le
Pl

at
fo

rmLayers &
Bindings

Ap
p

ID
EPlug-Ins, WS,

Deployment

Ecosystem

Eclipse

Figure 6.2: Proposed architecture of Eclipse Kuksa

support and maintenance. Accordingly, the Eclipse Kuksa3 is already proposed as new Eclipse
project for the results of APPSTACLE.
Figure 6.2 depicts the Eclipse Kuksa ecosystem including the in-vehicle platform from work

package 1, the cloud platform speci�ed in this deliverable document (D3.1), and the App
development IDE, which allows to develop in-vehicle applications on top of Automotive Grade
Linux as well as domain-speci�c cloud services in form of spring boot applications. Having the
di�erent aspects of APPSTACLE within a common platform allows to steer the development
activities and fosters the interoperability.

3https://projects.eclipse.org/proposals/eclipse-kuksa

83

https://projects.eclipse.org/proposals/eclipse-kuksa

Bibliography

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of
things: A survey on enabling technologies, protocols, and applications. IEEE Communi-

cations Surveys Tutorials, 17(4):2347�2376, 2015.

[2] Apache. Apache Storm documentation v1.1.1. http://storm.apache.org/releases/1.

1.1/index.html, 2017. Accessed: 2017-08-22.

[3] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R. Buyya. Big data
computing and clouds: Trends and future directions. Journal of Parallel and Distributed

Computing, 79:3�15, 2015.

[4] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Comput. Netw.,
54(15):2787�2805, Oct. 2010.

[5] C. Bormann, A. P. Castellani, and Z. Shelby. Coap: An application protocol for billions
of tiny internet nodes. IEEE Internet Computing, 16(2):62�67, Mar. 2012.

[6] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-
baum, K. Patil, B. J. Peng, and P. Poulosky. Benchmarking streaming computation en-
gines: Storm, �ink and spark streaming. In 2016 IEEE International Parallel and Dis-

tributed Processing Symposium Workshops (IPDPSW), pages 1789�1792, May 2016.

[7] K. Chodorow. MongoDB: The De�nitive Guide. O'Reilly Media, Inc., 2013.

[8] D. Crockford. The application/json media type for javascript object notation (json). RFC
4627, IETF, 7 2006.

[9] M. Díaz, C. Martín, and B. Rubio. State-of-the-art, challenges, and open issues in the
integration of internet of things and cloud computing. Journal of Network and Computer

Applications, 67:99�117, 2016.

[10] J. Dorsey. Big data in the driver's seat of connected car technological advances.
http://news.ihsmarkit.com/press-release/country-industry-forecasting/

big-data-drivers-seat-connected-car-technological-advance, nov 2013. Ac-
cessed: 2017-06-11.

[11] Eclipse. Beginning BIRT: A Practical Introduction. https://www.eclipse.org/

community/eclipse_newsletter/2015/september/article3.php, 2015. Accessed: 2017-
08-26.

[12] Eclipse. Open source stack for IoT Cloud Platforms. https://iot.eclipse.org/cloud/,
2017. Accessed: 2017-07-18.

84

http://storm.apache.org/releases/1.1.1/index.html
http://storm.apache.org/releases/1.1.1/index.html
http://news.ihsmarkit.com/press-release/country-industry-forecasting/big-data-drivers-seat-connected-car-technological-advance
http://news.ihsmarkit.com/press-release/country-industry-forecasting/big-data-drivers-seat-connected-car-technological-advance
https://www.eclipse.org/community/eclipse_newsletter/2015/september/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2015/september/article3.php
https://iot.eclipse.org/cloud/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

[13] Eclipse Foundation. Open Source Software for Industry 4.0. https://iot.eclipse.org/
resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%

20Software%20for%20Industry%204.0.pdf, 2017. Accessed: 2017-09-15.

[14] Erik T. Heidt. Gartner: 2017 Planning Guide for the Internet of Things.
https://www.gartner.com/binaries//content/assets/events/keywords/catalyst/

catus8/2017_planning_guide_for_the__iot.pdf, 2016. Accessed: 2017-09-01.

[15] G. Fersi. Middleware for internet of things: A study. In Distributed Computing in Sensor

Systems (DCOSS), 2015 International Conference on, pages 230�235. IEEE, 2015.

[16] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, UNIVERSITY OF CALIFORNIA, IRVINE, 2000. AAI9980887.

[17] Gartner, Inc. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31
Percent From 2016. http://www.gartner.com/newsroom/id/3598917, 2017. Accessed:
2017-10-01.

[18] GrafanaLabs. Grafana documentation, OCtober 2017.

[19] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (iot): A vi-
sion, architectural elements, and future directions. Future generation computer systems,
29(7):1645�1660, 2013.

[20] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database. In Pervasive computing

and applications (ICPCA), 2011 6th international conference on, pages 363�366. IEEE,
2011.

[21] Intel. The Intel IoT Platform: Architecture Speci�cation White Paper.
https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/

iot-platform-reference-architecture-paper.pdf, 2016. Accessed: 2017-09-12.

[22] ISO. Iso/iec 20922:2016 mqtt v3.1.1, 06 2016.

[23] ITU-T. Itu-t y.2060: Overview of the internet of things, June 2012.

[24] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain. A survey and comparison of
relational and non-relational database. International Journal of Engineering Research &

Technology, 1(6):1�5, 2012.

[25] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate. A survey
on application layer protocols for the internet of things. Transaction on IoT and Cloud

Computing, 3(1):11�17, 2015.

[26] S. Kozielski, D. Mrozek, P. Kasprowski, B. Malysiak-Mrozek, and D. Kostrzewa, edi-
tors. Beyond Databases, Architectures and Structures. Towards E�cient Solutions for Data

Analysis and Knowledge Representation - 13th International Conference, BDAS 2017, Us-

tro«, Poland, May 30 - June 2, 2017, Proceedings, volume 716 of Communications in

Computer and Information Science, 2017.

[27] S. Kr£o, B. Pokri¢, and F. Carrez. Designing iot architecture(s): A european perspective.
In 2014 IEEE World Forum on Internet of Things (WF-IoT), pages 79�84, March 2014.

85

https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20Open%20Source%20Software%20for%20Industry%204.0.pdf
https://www.gartner.com/binaries//content/assets/events/keywords/catalyst/catus8/2017_planning_guide_for_the__iot.pdf
https://www.gartner.com/binaries//content/assets/events/keywords/catalyst/catus8/2017_planning_guide_for_the__iot.pdf
http://www.gartner.com/newsroom/id/3598917
https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/iot-platform-reference-architecture-paper.pdf
https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/iot-platform-reference-architecture-paper.pdf

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

[28] D. Laney. 3D data management: Controlling data volume, velocity, and variety. Technical
report, META Group, February 2001. Accessed: 2017-06-26.

[29] J. Leibiusky, G. Eisbruch, and D. Simonassi. Getting Started with Storm. O'Reilly Media,
Inc., 2012.

[30] R. A. Light. Mosquitto: server and client implementation of the mqtt protocol. Journal
of Open Source Software, 2(13), 2017.

[31] S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin, B. Murphy, and
M. Crawford. The Industrial Internet of Things Volume G1: Reference Architecture
V 1.8. http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf, 2017. Ac-
cessed: 2017-09-11.

[32] J. a. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino. Choosing the right
nosql database for the job: a quality attribute evaluation. Journal of Big Data, 2(1):18,
2015.

[33] A. Luckow, K. Kennedy, F. Manhardt, E. Djerekarov, B. Vorster, and A. Apon. Automo-
tive big data: Applications, workloads and infrastructures. In 2015 IEEE International

Conference on Big Data (Big Data), pages 1201�1210, Oct 2015.

[34] Microsoft Corporation. Microsoft Azure IoT Reference Architecture. http://download.

microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/

Microsoft_Azure_IoT_Reference_Architecture.pdf, 2016. Accessed: 2017-09-14.

[35] J. J. Miller. Graph database applications and concepts with neo4j. In Proceedings of

the Southern Association for Information Systems Conference, Atlanta, GA, USA, volume
2324, page 36, 2013.

[36] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. Contemporary internet of things
platforms. arXiv preprint arXiv:1501.07438, 2015.

[37] MongoDB. Mongodb architecture guide. Technical Report MongoDB 3.4, MongoDB Inc.,
June 2017. Accessed: 2017-07-04.

[38] MongoDB. The MongoDB 3.4 Manual. https://docs.mongodb.com/manual/, 2017. Ac-
cessed: 2017-07-16.

[39] Neo4j. The Neo4j Developer Manual v3.2. https://neo4j.com/docs/

developer-manual/, 2017. Accessed: 2017-07-17.

[40] OASIS. Oasis advanced message queuing protocol (amqp) tc.

[41] OMA. Lightweight machine to machine technical speci�cation approved version 1.0.1 � 04
july 2017, 2017.

[42] J. Pokorny. Nosql databases: A step to database scalability in web environment. In
Proceedings of the 13th International Conference on Information Integration and Web-

based Applications and Services, iiWAS '11, pages 278�283, New York, NY, USA, 2011.
ACM.

86

http://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_Azure_IoT_Reference_Architecture.pdf
https://docs.mongodb.com/manual/
https://neo4j.com/docs/developer-manual/
https://neo4j.com/docs/developer-manual/

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

[43] Qpid project. The apache qpid project, 2017.

[44] P. P. Ray. A survey of iot cloud platforms. Future Computing and Informatics Journal,
1(1):35 � 46, 2016.

[45] Z. Shelby. Embedded web services. IEEE Wireless Communications, 17(6):52�57, Decem-
ber 2010.

[46] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP).
RFC 7252, June 2014.

[47] A. M. C. Souza and J. R. A. Amazonas. A novel smart home application using an internet
of things middleware. In Smart SysTech 2013; European Conference on Smart Objects,

Systems and Technologies, pages 1�7, June 2013.

[48] Steve H. L. Liang and Chih-Yuan Huang and Tania Khalafbeigi. Ogc sensorthings api
part i:sensing. OGC R© Implementation Standard (http://docs.opengeospatial.org/
is/15-078r6/15-078r6.html), 2016.

[49] C. Team. CouchDB 2.0 Reference Manual. Samurai Media Limited, United Kingdom,
2015.

[50] The ActiveMQ Project. The apacha activemq project, 2017.

[51] The Eclipse BIRT Team. Eclipse BIRT documentation. https://www.eclipse.org/birt/
documentation/, 2017. Accessed: 2017-08-25.

[52] The Eclipse Ditto Team. Eclipse ditto project proposal. https://projects.eclipse.

org/proposals/eclipse-ditto, 2017. Accessed: 2017-07-03.

[53] The Eclipse Hawkbit Team. Eclipse hawkbit documentation, August 2017.

[54] The Eclipse Hono Team. Eclipse hono documentation. https://www.eclipse.org/hono/,
2017. Accessed: 2017-07-03.

[55] The Eclipse Kapua Team. Eclipse Kapua documentation. https://www.eclipse.org/

kapua/documentation.php, 2017. Accessed: 2017-10-08.

[56] The Eclipse Leshan Team. Leshan project page, 2017.

[57] The Eclipse Mosquitto Team. The eclipse mosquitto project page, 2017.

[58] The Eclipse Paho Team. The eclipse paho project page, 2017.

[59] The Eclipse Vorto Team. Vorto project documentation. http://www.eclipse.org/

vorto/, July 2017. Accessed: 2017-07-17.

[60] The Eclipse Wakaama Team. Eclipse wakaama project page, 2017.

[61] The Eureka Team. Eureka 1.0 documentation. https://github.com/Netflix/eureka/

wiki, August 2017. Accessed: 2017-09-5.

[62] The In�uxdata Team. In�uxdb version 1.3 documentation, August 2017.

87

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://www.eclipse.org/birt/documentation/
https://www.eclipse.org/birt/documentation/
https://projects.eclipse.org/proposals/eclipse-ditto
https://projects.eclipse.org/proposals/eclipse-ditto
https://www.eclipse.org/hono/
https://www.eclipse.org/kapua/documentation.php
https://www.eclipse.org/kapua/documentation.php
http://www.eclipse.org/vorto/
http://www.eclipse.org/vorto/
https://github.com/Netflix/eureka/wiki
https://github.com/Netflix/eureka/wiki

D3.1 � �nal IoT Cloud Platform Speci�cation ITEA 3 � 15017

[63] K. M. M. Thein. Apache kafka: Next generation distributed messaging system. Interna-
tional Journal of Scienti�c Engineering and Technology Research, 3(47):9478�9483, 2014.

[64] P. Waher. Learning Internet of Things. Packt Publishing, 2015.

[65] J. Wang, H. Xiong, Y. Ishikawa, J. Xu, and J. Zhou. Web-age information management -
14th international conference, WAIM, 2013.

[66] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2m: From mobile to
embedded internet. IEEE Communications Magazine, 49(4):36�43, April 2011.

88

	History
	Summary
	List of Abbreviations
	Introduction
	Document Structure

	State of the art
	Communication Protocol
	REST
	CoAP
	AMQP
	LWM2M
	MQTT
	XMPP

	IoT Cloud Platform
	Eclipse Kapua

	Application and Service Integration
	Eclipse Ditto
	Mihini
	Appstore
	Eureka
	Apache Camel
	Spring Integration

	Data Analytic and Visualization
	Apache Storm
	Apache Flink
	Eclipse BIRT
	Grafana

	Data Storage and Management
	Apache CouchDB
	MongoDB
	Neo4j
	InfluxDB
	ArangoDB
	OrientDB
	Couchbase

	Device Management
	Eclipse hawkBit
	Eclipse Leshan
	Eclipse Wakaama
	Eclipse Vorto
	OGC SensorThings API

	Message Gateway
	Eclipse Hono
	Apache Kafka
	Eclipse Mosquitto & Paho

	Security
	Eclipse Keti
	Keycloak

	Automotive User Stories
	User Story 01: Roadside Assistance
	User Story 02: Vehicle Tracking
	User Story 03: Wrong Way Driver Warning
	User Story 04: Augment vehicle functionality
	User Story 05: Data Collection Fleet Learning
	User Story 06: IoT Data concentration
	User Story 07: Driver Seat Configuration
	User Story 08: Parking Space Finder
	User Story 09: Improved Carpooling System
	User Story 10: Car Accident Registration by Video
	User Story 11: Car Theft Registration & Car Vandalism Registration
	User Story 12: Traffic Jam Warning & Traffic Jam Avoidance
	User Story 13: Chat Service for Car Drivers
	User Story 14: Traffic Enforcement Camera Warning
	User Story 15: Advertising Services for Drivers
	User Story 16: Social Media
	User Story 17: Ambulance Assist
	User Story 18: System Surveillance and Maintenance
	User Story 19: Pool car management
	User Story 20: In-vehicle behavior learning
	User Story 21: Secure Car2X data exchange
	User Story 22: Emergency Braking & Evading Assistance System (EBEAS)

	Architecture Specification
	Architecture Evaluation
	Evaluation criteria
	Technology Evaluation
	IoT Cloud Platform
	Application and Service Integration
	Data Analytic and Visualization
	Data Storage and Management
	Device Management
	Message Gateway

	Technology Selection
	IoT Cloud Platform
	Application and Service Integration
	Data Analytics and Visualization
	Data Storage and Management
	Device Management
	Message Gateway

	Conclusion
	Subsequent activities

