
(ITEA 3 � 15017)

open standard APplication Platform

for carS and TrAnsportation vehiCLEs

Deliverable: D 1.1

Speci�cation of In-car Software Architecture for Car2X

Applications

Work Package: 1
In-Vehicle Platform

Task: 1.1, 1.2
Cloud Platform Architecture Speci�cation, Evaluation of Existing IoT- and

Automotive Cloud Platforms

Document Type: Deliverable

Document Version: �nal

Document Preparation Date: 29.01.2018

Classi�cation: Public

Contract Start Date: 01.01.2017

Duration: 31.12.2019

History

Rev. Content Resp. Partner Date

0.01 Initial creation of the document Robert Hoettger 07.04.2017

1.0 First structure added Marco Wagner 27.04.2017

1.01 SotA structure added Marco Wagner 05.05.2017

1.02 Permission Chapter removed (will
be taken care in WP2)

Sebastian Schildt 08.05.2017

1.03 Use Case Chapter added Sebastian Schildt 04.07.2017

1.04 Added the �rst group of require-
ments for the Platform Study

Marco Wagner 17.07.2017

1.05 Added an additional use case Philipp Tendyra 20.07.2017

1.06 Added the use cases proposed by
SecurityMatters

Marco Wagner 20.07.2017

1.07 Added the use case proposed by
Fraunhofer

Marco Wagner 21.07.2017

1.08 Removed the Communication Ser-
vices Chapter

Marco Wagner 22.09.2017

2.0 Structured the document into two
parts

Marco Wagner 22.09.2017

2.01 Added the input of Alexios Lekidis
regarding in-vehicle connectivity

Marco Wagner 28.09.2017

2.02 Restructured IDS sections David Schubert 05.10.2017

2.03 Updated references for the state-
of-the-art for QoS

Robert Hoettger 05.10.2017

2.04 Added content on state-of-the-art
for IDS

Alexios Ledikis 05.10.2017

2.05 Update on state-of-the-art for in-
vehicle connectivity based on the
input from Harald Weiler

Marco Wagner 19.10.2017

ii

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Rev. Content Resp. Partner Date

3.0 Created the initial structure for the
speci�cation chapters

Marco Wagner 19.10.2017

3.01 Added some initial content for the
APPSTACLE API speci�cation

Marco Wagner 20.10.2017

3.02 Added content on the state-of-the-
art regarding testing from Peter
Kruse

Marco Wagner 24.10.2017

3.03 Added content on the state-of-the-
art regarding App IDS

David Schubert 02.11.2017

3.04 Switched order of state-of-the-art
chapters

Sebastian Schildt 02.11.2017

3.05 Added content on the state-of-
the-art regarding Automotive APIs
from M. Wagner and P. Adelt

Marco Wagner 02.11.2017

3.06 Added content on the state-of-the-
art regarding Network-based IDS

Alexios Lekidis 14.11.2017

3.07 Finished QoS SotA and speci�ca-
tion sections

Robert Hoettger 14.11.2017

3.08 Finished App IDS SotA Hendrik Eikerling 16.11.2017

3.09 Removed Testing Chapters Marco Wagner 21.11.2017

3.10 Removed all Chapters relevant to
End-to-End Security

Marco Wagner 30.11.2017

3.11 Finished draft for Platform and
App Runtime Spec

Marco Wagner 30.11.2017

3.12 Finished draft for OTA Spec Peer Adelt 05.12.2017

3.13 First draft for ex-vehicle conectivity
spec from Joost van Doorn

Marco Wagner 09.12.2017

3.14 Added Network IDS spec and addi-
tional ex-vehicle conectivity spec

Alexios Lekidis 10.01.2018

4.00 First complete draft ready Marco Wagner 09.12.2017

4.01 Added Network IDS spec and addi-
tional ex-vehicle conectivity spec

Alexios Lekidis 10.01.2018

4.02 Added remarks by Pedro Cuadra Marco Wagner 12.12.2017

4.03 Integrated the feedback by Rene
Stallen

Marco Wagner 16.01.2018

4.04 Update SotA and Speci�cation
NetIDS

Alexios Lekidis 19.01.2018

4.05 Update SotA Ex-Vehicle Commu-
nication

Alexios Lekidis 24.01.2018

5.00 Final Version Marco Wagner 29.01.2018

iii

Contents

History ii

Summary ix

1. Introduction 1

I. State-of-the-Art 3

2. APPSTACLE Use Cases 4
2.1. Stakeholders . 4
2.2. User Story: Roadside Assistance . 5
2.3. User Story: Vehicle Tracking . 5
2.4. User Story: Wrong Way Driver Warning . 6
2.5. User Story: Augment vehicle functionality . 7
2.6. User Story: Data Collection Fleet Learning . 7
2.7. User Story: IoT Data concentration . 8
2.8. User Story: Driver Seat Con�guration . 9
2.9. User Story: Parking Space Finder . 9
2.10. User Story: Improved Carpooling System . 10
2.11. User Story: Car Accident Registration by Video . 10
2.12. User Story: Car Theft Registration, Car Vandalism Registration 11
2.13. User Story: Tra�c Jam Warning and Tra�c Jam Avoidance 11
2.14. User Story: Chat Service for Car Drivers . 12
2.15. User Story: Tra�c Enforcement Camera Warning 12
2.16. User Story: Advertising Services for Drivers . 13
2.17. User Story: Social Media . 13
2.18. User Story: Ambulance Assist . 14
2.19. User Story: System Surveillance and Maintenance 15
2.20. User Story: Pool car management . 16
2.21. User Story: In-vehicle behavior learning . 16
2.22. User Story: Secure Car2X data exchange . 17
2.23. User Story: Emergency Braking & Evading Assistance System (EBEAS) 18

3. State of the Art 19
3.1. Platforms and App Runtimes . 20

3.1.1. Scope . 20
3.1.2. Overview . 26
3.1.3. Discussion . 33

3.2. Automotive APIs . 53
3.2.1. Scope . 53
3.2.2. Overview . 53
3.2.3. Discussion . 57

3.3. In-vehicle Connectivity . 59
3.3.1. Scope . 59

iv

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.3.2. Overview . 59
3.4. Ex-vehicle Connectivity . 67

3.4.1. 802.11p / cellular communication scenarios 69
3.4.2. 802.11p . 74
3.4.3. 5G . 78

3.5. Intrusion Detection Systems . 82
3.5.1. Application Intrusion Detection Systems . 84
3.5.2. Network IDS . 101

3.6. QoS Monitoring . 111
3.6.1. Scope . 111
3.6.2. Overview . 112
3.6.3. Discussion . 113

3.7. Over the Air updates . 114
3.7.1. Scope . 114
3.7.2. Overview . 114
3.7.3. Discussion . 119

II. Speci�cation 121

4. Introduction 122
4.1. Scope . 122
4.2. Terminology . 122
4.3. De�nitions and Glossary . 122

5. APPSTACLE in-vehicle platform speci�cation 124
5.1. Platform and App Runtime . 125

5.1.1. Scope . 125
5.1.2. Requirements . 125

5.2. APPSTACLE API . 127
5.2.1. Scope . 127
5.2.2. Requirements . 127

5.3. Application IDS . 129
5.3.1. Scope . 129
5.3.2. Requirements . 129

5.4. Network IDS . 131
5.4.1. Scope . 131
5.4.2. Requirements . 132

5.5. Ex-vehicle Connectivity . 134
5.5.1. Scope . 134
5.5.2. Requirements . 134

5.6. QoS Monitoring . 136
5.6.1. Scope . 136
5.6.2. Requirements . 136

5.7. Over the Air updates . 137
5.7.1. Scope . 137
5.7.2. Requirements . 137

5.8. Hardware . 139
5.8.1. Scope . 139
5.8.2. Requirements . 139

v

List of Figures

1. APPSTACLE Work Packages Structure and Technical Deliverables. ix

1.1. The logical architecture of the APPSTACLE in-vehicle platform 1

3.1. AGL Software Architecture [9] . 30
3.2. Legato Software Architecture [135] . 30
3.3. Ubuntu Core Software Architecture [160] . 31
3.4. The results of the di�erent requirements groups . 52
3.5. The overall results of the platform study . 52
3.6. The AUTOSAR Layer Model [11] . 53
3.7. An excerpt of the Vehicle Signal Speci�cation [77] 55
3.8. Overview of the W3C information API structure [158] 56
3.9. Automotive network . 60
3.10. LIN system example . 61
3.11. CAN system example . 61
3.12. CAN arbitration mechanism . 62
3.13. CAN standard frame . 62
3.14. CAN FD standard frame . 63
3.15. FlexRay Static Segment . 63
3.16. FlexRay Dynamic Segment . 64
3.17. MOST ring . 64
3.18. Automotive Ethernet . 65
3.19. Interface to the ECUs (for MC-Application) [5] . 66
3.20. V2X communication types . 67
3.21. ETSI safety message communication through 802.11p 69
3.22. ETSI service message communication through 802.11p 70
3.23. IP message communication through 802.11p . 71
3.24. Message communication through cellular . 71
3.25. Message communication through Cellular-V2X Mode 3 72
3.26. Message communication through Cellular-V2X Mode 4 73
3.27. 802.11p functional blocks . 74
3.28. Overview ETSI standards . 74
3.29. Deployment of software on the 11p hardware . 76
3.30. Overview of channel types allocated for the 5 GHz frequency range 77
3.31. Details of channel types allocated for the 5 GHz frequency range 77
3.32. Maximum mean spectral power per channel . 77
3.33. 5G use case categories [74] . 78
3.34. Key capabilities per use case category [74] . 79
3.35. 3GPP roadmap towards 5G . 79
3.36. V2X Cellular communication for the communication types of Figure 3.20 80
3.37. Elements of feature models that we use for our taxonomy 85
3.38. Feature model showing the �rst hierarchy of our taxonomy 86
3.39. Approach sub-tree of feature diagram . 86
3.40. Context sub-tree of feature diagram . 87
3.41. Architecture sub-tree of feature diagram . 88

vi

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.42. Monitored Data sub-tree of feature diagram . 90
3.43. Analysis Technique sub-tree of feature diagram 91
3.44. Evaluation sub-tree of feature diagram . 93
3.45. Vehicle attack surfaces (source [23]) . 101
3.46. In-vehicle NIDS taxonomy . 104
3.47. Volvo's download app [154] . 116
3.48. FOTA Environment Overview . 117
3.49. Overview of ECU network in high-end vehicles [43] 117
3.50. Priciple sketch of distribution [114] . 118
3.51. Overview of software update [114] . 119

5.1. Interactions of NIDS with the APPSTACLE in-vehicle platform 131
5.2. Conceptual architecture of V2X communication channels in ITS 134

vii

List of Tables

3.1. Platform Feature Requirements . 22
3.2. Platform Runtime Requirements . 23
3.3. App Runtime Requirements . 24
3.4. App Development and SDK Requirements . 25
3.5. App Store Requirements . 26
3.6. Licensing Requirements . 27
3.7. Developer Community . 28
3.8. The voting scale used to benchmark the candidates 29
3.9. The scaling factors of the requirements . 29
3.10. Results for the Platform Features group (* see note) 33
3.11. Results for the Platform Runtime group (* see note) 36
3.12. Results for the App Runtime group (* see note) . 38
3.13. Results for the App Development and SDK group 43
3.14. Results for the App Store group . 44
3.15. Results for the Licensing group . 46
3.16. Results for the Development Community group . 48
3.17. Characteristics of the communication protocols . 60
3.18. Attack detection terminology . 103
3.19. Existing attacks and their detection by existing IDS 109

viii

Summary

This deliverable is the �rst deliverable of the APPSTACLE Work Package 1 "In-Car Platform". It
contains the results of two tasks: "State-of-the-Art analysis for In-Car Software with regard to In-
ternet Connectivity" (T1.1) as well as "Speci�cation of In-Car Software Architectures for Car2X
Environments" (T1.2). Hence, this document is split into two parts. While part one summarizes
the results of the state-of-the-art analysis, part two contains the speci�cation of the di�erent parts
of the system. Figure 1 illustrates the relationship of Deliverable 1.1 with the other deliverables in
APPSTACLE.

Figure 1.: APPSTACLE Work Packages Structure and Technical Deliverables.

Part one starts with a collection of use-cases brought in by the di�erent APPSTACLE partners.
These 22 di�erent use-cases are used in two di�erent ways: in the early stages of the APPSTACLE
project, they acted as an exchange platform to visualize, discuss and align the di�erent views, ap-
proaches and goals of the project partners. In the later course, they were used as a basis for deriving
requirements or setting the focus of research in this broad technological �eld.

In the further course of part one, the state-of-the-art of the relevant �elds of research and technol-
ogy is presented. This includes a discussion of existing software platforms and app runtimes as well
as automotive APIs and connectivity technologies (both in- and ex-vehicle connectivity). Addition-
ally, the state-of-the-art for important parts of the APPSTACLE project are given namely Intrusion
Detection Systems. QoS Monitoring and Over the Air updates. The second part of this deliverable
speci�es the in-vehicle platform to be developed in the course of the project in the form of a list of
requirements. Regarding its structure, this part begins with some important de�nitions before iter-
ating through the di�erent building blocks of the platform. This includes namely the basic software
platform and app runtime environment, the APPSTACLE API as well as the two planned intrusion
detection systems (application-based IDS and network-based IDS). Furthermore, it de�nes the re-
quirements of the ex-vehicle connectivity system, the QoS monitoring module as well as the over the
air update functionality. The document is closed by a speci�cation of the hardware for the in-vehicle
platform.

Please note that this complemented by the APPSTACLE Security Architecture document which
will describe the cross Work Package security issues.

ix

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

x

1. Introduction

The purpose of this document is to describe the APPSTACLE in-vehicle platform. As such it also
documents the work that has been done in Task 1.1 (State-of-the-Art Analysis for In-Car Software
with regard to Internet Connectivity) and Task 1.2 (Speci�cation of In-Car Software Architectures
for Car2X Environments) of the APPSTACLE project.

The APPSTACLE in-vehicle platform is composed of both software and hardware, that is integrated
into a vehicle. The goals of this platform are to (i) allow to install and operate Apps, (ii) access
in-vehicle resources using the in-vehicle communication networks and (iii) exchange data with a cloud-
based infrastructure. The fundamental system structure of the APPSTACLE in-vehicle platform has
been jointly developed by all APPSTACLE partners during the initial architecture workshop. This
structure, illustrated in Figure 1.1, comprises several software and conceptual elements that together
realize the full APPSTACLE in-vehicle platform. These elements include security related blocks
such as Authentication and Encryption1, (Secure) Boot Loader1, as well as an Application-level and
Network-level Intrusion Detection System. Additionally, components to facilitate updates of both,
the APPSTACLE in-vehicle platform itself as well supporting functionality for other electronic control
units update procedures are integrated.
Furthermore, the in-vehicle platform has components that enable it to communicate both within

the vehicle and with external devices. In order to allow the platform to host and execute Apps, an App
Runtime block is integrated alongside with an APPSTACLE API block. The App Runtime sandboxes
Apps and provides a standardized runtime environment, which abstracts the vehicle's resources as
well as provides access to in- and ex-vehicle connectivity and APPSTACLE speci�c functionalities
via the APPSTACLE API. Finally, the APPSTACLE in-vehicle platform and ecosystem will provide
services such as Quality of Service Monitoring.

App Runtime

Appstacle API

Network IDS

Ex-vehicle
Connectivity

In-vehicle
Connectivity

Q
O

S
M

on
ito

rin
g

Au
th

en
tic

at
io

n/
En

cr
yp

tio
n

Apps Application
IDS

Over-the-
air Update
Manager

(Secure) Boot Loader
Platform
Update

Manager

Figure 1.1.: The logical architecture of the APPSTACLE in-vehicle platform

1Will be described in a separate document called APPSTACLE Security Architecture

1

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

This document is divided into two parts: Part 1 presents the state-of-the-art with regard to the
integral components and concepts of the APPSTACLE in-vehicle platform. Part 2 outlines the
speci�cation of the APPSTACLE in-vehicle platform. Within these two parts, the sub-chapters are
largely aligned to the structure described here.

2

Part I.

State-of-the-Art

3

2. APPSTACLE Use Cases

This chapter gives a rough idea about the use cases envisioned for the overall APPSTACLE system.
This is not meant as a detailed analysis, ready to be implemented (as the project will not implement
all use cases, but rather some exemplary demos), but rather to guide the discussion of existing State
of the Art solutions within the context of APPSTACLE and motivate the choices for the proposed
APPSTACLE architecture.

2.1. Stakeholders

The envisioned APPSTACLE ecosystem consists of di�erent stakeholders, with di�erent requirements.
These section lists the basic stakeholders considered.

Car Driver/Owner

This is the end-customer who eventually will have paid the cost of the system. He wants to select
Apps and to run them on the in-vehicle platform. The vehicle owner also has a strong interest in
controlling access to data from his vehicle.

Application Developer

The application developer develops Apps and solutions for the in-car platform and/or the cloud
backend. They Apps may be o�ered to the end customer using an open platform (App Store), or can
be part of a speci�c service functionality from the OEM, Suppliers, or third parties. Consequently
the customer of an App might be the end-customer, or an OEM or service provider.
The App developer expects an open powerful development environment giving easy access to

data the car and related cloud services. An App developer expects good integration with existing
ecosystems.

Car Manufacturer / In-vehicle Platform Vendor

This persona developed or customized the in-vehicle platform and installed it into a car. This can
either be an OEM o�ering the platform in his cars or an aftermarket product. It is expected that this
persona also operates or manages operation of some additional infrastructure like an App store or a
billing system. It is the goal of this stakeholder to generate revenue by operating and controlling the
ecosystem.

Services Provider

Operates connected services that may include in-vehicle platform Apps or cloud-based Apps and o�ers
them to the Car Driver / Owner. The Service Provider may be identical to the Car Manufacturer /
In-vehicle Platform Vendor or just use the infrastructure provided by them.

4

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

2.2. User Story: Roadside Assistance

Idea

The technology developed in APPSTACLE helps a driver in the case his car breaks down. The basic
idea is to have a Roadside Assistance app installed on the vehicle that allows a Roadside Assistance
provider to diagnose and potentially repair the vehicle remotely.

Development phase

The App developer engineers a Roadside Assistance application most likely in cooperation with the
Car Manufacturer / In-vehicle Platform Vendor and the Service Provider.

Setup phase

The App might already be installed by the OEM. Alternatively the Car driver / Owner downloads
and installs a �Roadside Assistance� application to its in-vehicle platform using the corresponding
app store. This may or may not be part of a contract between the Car Driver/Owner and a Service
Provider (e.g. Roadside Assistance provider such as ADAC, RAC, AAA, or as part of an insurance
policy).

Usage phase

The driver of a vehicle detects a problem with his car (e.g. indicated by warning lights) and pulls
over or the car breaks down. The driver contacts his Roadside Assistance service provider (e.g. by
a smartphone app or by phonecall, or through Headunit in the car) to request support. During this
interaction the Service Provider is able to remote control the Roadside Assistance Apps installed in
order to:
• Retrieve data from the car
• Execute diagnostic work�ows and retrieve the results
• Control actuators within the vehicle

As a result, the Service Provider may be able to assist the driver by giving accurate information on
the problem occurred, provide instructions for next steps (e.g. drive to the closest workshop, wait for
help), solve the issue remotely (e.g. by re-setting fault memories) or dispatching a roadside assistance
associate (e.g. by sending the right expert with the needed spare parts).

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access the data and procedures needed
• APPSTACLE API able to be enriched by OEM speci�c extensions
• Roles and Rights management controlled by the Car driver /owner

2.3. User Story: Vehicle Tracking

Idea

The owner of a car or a third party need to track the position of a speci�c vehicle. Such scenario may
occur for several reasons (e.g. for �eet management, stolen vehicle tracking, pay-per-drive insurance
tari�s, car sharing, social networks: Let friends track your vehicle).

5

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Development phase

The App developer implements a tracking application for the cloud. Additionally, an App in the
in-vehicle platform needs to enable forwarding of time and position information.

Setup phase

The Car driver / Owner installs the App and allows the Service Provider to activate the forwarding
of the relevant information to its cloud server.

Usage phase

The App forwards position information alongside with a timestamp periodically to the cloud server
of the Service Provider. Within the cloud, this information is used for enhanced services.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access to location
• Roles and Rights management controlled by the Car driver /owner to protect security and
privacy of such sensitive information

2.4. User Story: Wrong Way Driver Warning

Idea

A vehicle takes part in a wrong way driver warning system in order to increase its own and other
vehicle's safety. This is done by enabling numerous cars to forward position and direction data to a
central server instance which matches them to a map and detects wrong way drivers. In this case,
all vehicles that might be at risk are warned by the service.

Development phase

The App developer implements the wrong way driver warning service for the cloud. Additionally, an
in-vehicle application is created, forwarding time, position and speed vector information.

Setup phase

The Car driver / Owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to position information. The app registers with the server instance.

Usage phase

The app forwards position and speed vector information alongside with a timestamp periodically to
the cloud server of the Service Provider. Within the cloud, this information is used for map matching
and risk analysis. In the case a wrong way driver is detected, the originator of the warning and the
vehicles at risk are warned about the situation which is presented to the driver using the APPSTACLE
HMI connector.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access to location and speed vector

6

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• Roles and Rights management controlled by the Car driver /owner to protect security and
privacy of such sensitive information
• Interface to HMI (in-car or BYOD) to display warnings

2.5. User Story: Augment vehicle functionality

Idea

This user story describes a scenario where a vehicle will be enhanced by a speci�c functionality in
order to adjust to special equipment. For example, adding a roof rack or a trailer to a vehicle might
come with some software modifying brakebooster, suspension and ESP settings. For commercial
vehicles such as semi-trailers, di�erent trailer variants might want to extend and adapt functionalities
of the tractor unit: When transporting livestock, the capability of having a live camera feed from the
trailer might be added. When using a cooling trailer, temperature and state of refrigeration system
can be communicated to the driver.

Development phase

The App developer implements some in-vehicle application that provides additional functionality or
makes functionalities from added components available.

Setup phase

The Car driver / owner downloads and installs the speci�c app from an App Store on his in-vehicle
platform.

Usage phase

The app is provided in the app ecosystem and the owner can download or use the functionality based
on the business model (rent or buy). The SW will be downloaded and installed in the in-vehicle
platform.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access to data and functions from in-car ECUs and externally
connected equipment

2.6. User Story: Data Collection Fleet Learning

Idea

A lot of data is available at a �eet of vehicles that can be used to enhance performance of autonomous
driving systems, enhance understanding of component aging and enabling predictive maintenance al-
gorithms. As a single car cannot provide all generated data, a backend needs to be able to orchestrate
which individual cars deliver what information.

Development phase

The App developer implements a con�gurable data acquisition app for the car, that delivers data
to the cloud according to the current connectivity situation and requirements from the backend. A
backend system collecting the data is developed (enabling applications such as predictive maintenance
or machine learning) to access the data.

7

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Setup phase

Most likely such an application is pre-installed by an OEM. However, installing such an application
from a third party is possible if the Car Driver/Owner installs it and grants the required access.

Usage phase

The app collects data and sends it to the cloud. It can be used to improve the cars software, keeping
unplanned maintenance down, and improving future revisions of the same car. In the predictive
maintenance use case the driver can be noti�ed in case of expected problems.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access to data from in-car ECUs
• Security and Privacy of the Data

2.7. User Story: IoT Data concentration

Idea

This user story describes a scenario where the technology developed in APPSTACLE could help to
reduce bandwidth usage on the mobile internet connection. Many experts expect that the data that
will be generated by future vehicles and is of interest for cloud-based services exceeds the bandwidth
being available by far (or would cause signi�cant costs respectively). The APPSTACLE in-vehicle
platform could support in such cases by hosting domain speci�c apps that reduce the amount of data
forwarded to the cloud (e.g. by preprocessing, detection of irrelevant data, data compression).

Development phase

The App developer engineers a speci�c data concentration application most likely in cooperation with
the Service Provider.

Setup phase

The Car driver / owner downloads and installs a data concentration application for a speci�c domain
/ use case to its in-vehicle platform using the corresponding app store. This may or may not be part
of a contract between the Car Driver/Owner and a Service Provider.

Usage phase

During the usage of the vehicle, the data concentration app constantly reads the relevant data using
the in-vehicle connectivity of the APPSTACLE platform. This data is then concentrated in any of the
forms explained earlier and the result of this procedure is forwarded to a connected cloud instance.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API including the data and procedures needed
• Roles and Rights management controlled by the Car driver /owner

8

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

2.8. User Story: Driver Seat Con�guration

Idea

Cars used by several drivers can store the con�guration of each driver. Car �eets (e.g. bus or truck
companies) may use a cloud service to store the con�guration for each driver, independent of the
current car (truck, bus).

Development phase

The app developer implements the seat con�guration by using the access to the driver seat ECU.
He also implements the corresponding cloud service to exchange driver con�guration data with the
cloud.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the driver seat. The app registers with the server instance.

Usage phase

The car driver identi�es himself by an NFC tag or �ngerprint reader. Afterwards the app downloads
the appropriate driver con�guration from the cloud.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API granting access to driver seat and personal identi�cation system

2.9. User Story: Parking Space Finder

Idea

The driver of a car needs to �nd a nearby parking space - as quick as possible, and as close as
possible. Tra�c or street surveillance systems may help to solve this frequent problem, thereby also
minimizing the parking search tra�c.

Development phase

The app developer implements the "�nder app". The appropriate cloud service is probably provided
by a second party which provides the "intelligent street" system data to �nd free parking spaces.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the HMI and navigation system. The app registers with the server instance.

Usage phase

The car driver enters a "�nd parking space" command to the app using the HMI. The �nder app
provides location information to the cloud instance and receives data of available parking spaces. The
app will display this information on the HMI.

9

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to car location (GPS data) and HMI

2.10. User Story: Improved Carpooling System

Idea

Current carpooling systems require medium term registration (at least one day ahead usually) and
much administrative e�ort. Automated data service may minimize the time necessary to �nd a driver
or passenger. As security risks are involved, it may be necessary to provide a secure authentication
for both driver and passenger.

Development phase

The app developer implements the "Carpooling App". The carpooling provider implements the cloud
service which �nds out appropriate passenger/driver pairings.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the HMI. The app registers with the server instance. The driver proves his identity by
password, �ngerprint reader, or iris scan.

Usage phase

The car driver enters a "�nd passenger" command to the app using the HMI. The app provides
location information to the cloud instance and receives data of possible passengers. The app will
display this information on the HMI. This app may well be augmented by a chat service.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to car location (GPS) and HMI, as well as to the authenti-
cation system (�ngerprint reader, iris scanner) of the car

2.11. User Story: Car Accident Registration by Video

Idea

"Dash Cam (Crash Cam)" videos may upload the most current seconds preceding an accident to the
appropriate cloud service.

Development phase

The app developer implements the "Accident Registration App" as well as the cloud service receiving
the video data.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's camera(s). The app registers with the server instance.

10

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Usage phase

This app does not usually need a HMI, but runs in the background, invisible to the driver. However,
ist may need con�guration and test functions requiring access to the HMI.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to car camera

2.12. User Story: Car Theft Registration, Car Vandalism
Registration

Idea

"Dash Cam" videos may upload the current seconds preceding and during a car theft to the cloud.
Microphone and other sensor data may provide further valuable information to identify thieves and
vandals.

Development phase

The app developer implements the "Theft Registration App" as well as the cloud service receiving
the video and sensor data.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's camera(s), microphones, and shock/vibration sensors. The app registers with the
server instance.

Usage phase

This app does not usually need a HMI, but runs in the background, invisible to the driver. However,
it may need con�guration and test functions requiring access to the HMI.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to car camera and microphone as well as shock/vibration
sensors. Con�guration and test may require access to the HMI.

2.13. User Story: Tra�c Jam Warning and Tra�c Jam
Avoidance

Idea

Tra�c surveillance systems provide information on current tra�c jams and calculate routes to mini-
mize the travel time by considering the current tra�c situation.

Development phase

The app developer implements the "Tra�c Jam Warning App". The tra�c jam warning system relies
on a global system and will be provided by a second party.

11

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's GPS and navigation system. The app registers with the cloud service.

Usage phase

The app downloads current tra�c information from the appropriate cloud service and displays warn-
ings on the HMI if necessary. It may also connect to the navigation system to calculate alternative
routes in order to avoid tra�c jams.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to HMI and navigation system

2.14. User Story: Chat Service for Car Drivers

Idea

Providing a chat service with nearby car drivers, in order to get acquainted, share tra�c information
(e.g. tra�c jams, construction sites, speed cameras), or admonish car drivers.

Development phase

The app developer implements the "Car Chat App". This must be able to spot nearby cars. A cloud
service will be implemented for interconnection of car drivers.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's GPS system, HMI, microphone and speaker. The app registers with the cloud
service.

Usage phase

The app provides information about nearby drivers who are prepared to communicate. A visual inquiry
may be sent to the HMI of a nearby car, thus providing the chance to start communication.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to HMI, microphone, and speaker

2.15. User Story: Tra�c Enforcement Camera Warning

Idea

Cloud service providing information on the position of "speed cameras" or "red light cameras" may
increase tra�c security by reminding car drivers to follow tra�c rules.

12

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Development phase

The app developer implements the "Speed Camera Warning App". An appropriate cloud service will
be provided by second party.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's GPS system and HMI. The app registers with the cloud service.

Usage phase

The app uses the cloud service to get information about nearby "speed cameras" and the like. A
warning message will be displayed on the HMI. A useful extension may provide a method to share
informations about recently spotted cameras to the cloud service.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to HMI and speaker

2.16. User Story: Advertising Services for Drivers

Idea

Providing information to travelers about local shopping facilities, restaurants, public events, points
of interest.

Development phase

The app developer implements the "Advertising Service App". An appropriate cloud service will be
provided by second party.

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's GPS system and HMI. The app registers with the cloud service.

Usage phase

The app uses the cloud service to get information about nearby advertising partners. The app may
also �lter this information according to the wishes of the driver.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to GPS, HMI and speaker

2.17. User Story: Social Media

Idea

Everybody wants to stay connected all the time. The idea is going for a wide spread of interpreting.
The driver will be informed about Facebook friends on the same road or near by. Sharing beautiful

13

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

landscapes while driving with one click. Using all the possibilities of Twitter, Facebook, Blogs,
Youtube (livestreaming) and every kind of social web. The core is to share your life with others and
let others follow you on your way of life.

Development phase

The app developer implements the "Social Media App".

Setup phase

The car driver / owner downloads and installs the speci�c app on his in-vehicle platform and allows
access to the car's GPS system, Cameras and HMI. The app registers with the cloud service.

Usage phase

The app uses the cloud service to get information about nearby social media partners or "friends".
The app may also �lter these information according to the wishes of the driver. Live stream of camera
data will be very important.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API providing access to GPS, Camera, mic, HMI and speaker

2.18. User Story: Ambulance Assist

Idea

Normally, a path is made for the Ambulance when vehicle drivers hear the Ambulance's siren and
move away to the next lane or so. This is easier when the path of the ambulance has fewer vehicles
traveling in its direction or when the ambulance is not at a tra�c signal. But if there is a tra�c
jam or there is a red signal at a busy junction, making way for the ambulance is di�cult and time
consuming. In order to avoid this, it would be better if the ambulance could communicate with the
tra�c signals well in advance so as to have a clear path. This user story describes the technical
requirements for the APPSTACLE Platform to enable such a system.

Development phase

The app developer develops a cloud speci�c app that communicates with the cloud which in turn
communicates with the tra�c system or, alternately develops an in vehicle app that communicates
directly with tra�c signals in the vicinity.

Setup phase

This will be a pre-installed app. This could be a part of the contract between the platform provider
(OEM/Supplier/3rd party), the organization(s) that provide the ambulance service and the Tra�c
authority of the region/state/country.

Usage phase

Once the app is switched on it communicates to the cloud the GPS information of the vehicle along
with the source and destination locations. The cloud tracks the Ambulance and communicates with
the next immediate 1-2 tra�c signals so as to make a clear path for the ambulance. Additionally,

14

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the cloud could also receive the tra�c information in this path so as to communicate perhaps with
tra�c signals that are much ahead in the ambulance's path so that it could ensure a continuous free
path for the ambulance.

Additional Use-case 1: The cloud also communicates with the vehicles in the region of the ambu-
lance informing them to make way in advance.

Additional Use-case 2: The app also provides a means to communicate the patient's conditions to
the hospital authorities so that the hospital has the necessary environment ready to treat the patient
with no delays.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• The platform has necessary APIs, protocols to communicate with a system outside its eco-
system
• APPSTACLE API providing access to GPS etc.

2.19. User Story: System Surveillance and Maintenance

Idea

Diagnosis services (in form of either internal or external components) need to get access to sensor
data, actuator status, application state or further parameters of diverse ECUs and components. New
technologies allow collecting such properties remotely. The need of this may occur when the system
has issues in performing its tasks. Diagnosis services could even have the possibility to perform
sophisticated analysis of problems via collected information over time and live data. This information
includes QoS relevant data as the correctness or timeliness of data and transmissions. The range of
tracked information may be extended.

Development phase

In-vehicle systems run through this phase in development and implement monitoring interfaces for
gathering information. An independent App for collecting and sending this information to the cloud
is developed. At the Cloud, Apps for aggregated views of the information are developed.

Setup phase

The related monitoring App can be installed by an authorized user (may also be the OEM).

Usage phase

While in use the monitoring App collects and sends information to the cloud. The maintainer of the
car reacts to performance issues. A view at the Cloud App with the collected monitoring data gives
an outline on the circumstances and possible areas of con�ict.

Technical requirements

• in-vehicle App-runtime
• Roles and Rights management
• De�nition of interfaces for monitoring
• QoS mechanisms and QoS-monitoring

15

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

2.20. User Story: Pool car management

Idea

An organization has a pool of cars to be used by employees. These employees can make reservations
for pool cars and then unlock and start the car via an app on his mobile phone.

Development phase

The App developer develops an app for the car, a mobile phone app for the user and a backend that
allows those apps to work together. The vehicle app needs to be able to unlock the car and start the
engine.

Setup phase

The vehicle app is installed on the vehicle and the car is added to a pool. The user installs the mobile
phone app. The pool owner allows the user to use vehicles in the pool.

Usage phase

The user makes a reservation for a vehicle. He walks to the vehicle and requests the car to be
unlocked. The authorization for the user is veri�ed and the vehicle is unlocked.

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• APPSTACLE API allowing to unlock vehicle and start engine
• Roles and Rights management controlled by the Car driver/owner to protect security

2.21. User Story: In-vehicle behavior learning

Idea

In the complex architecture of the in-vehicle system car manufacturers may �nd it quite challenging
to con�gure the communication between ECUs and calibrate each ECU individually in an optimal
manner. Additionally, technicians as well as car manufacturers often require network analytics to
perform in-vehicle diagnostics.

Development phase

A web interface application will be developed to provide a network / asset inventory map to the
technician / car manufacturer, in order to provide real-time information about miscon�gurations or
potential threats to the vehicle.

Setup phase

A network monitoring device is connected on the gateway or the OBDII port of the vehicle and the
car driver / owner can access the web application from any device smartphone or tablet device that
is present inside the car.

16

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Usage phase

The car driver identi�es himself / herself in the web application and can observe in real-time the
communication by ECUs in the form of an in-vehicle network map as well as the detailed messages
that are sent. The web application noti�es the user when it detects:
• Miscon�gurations in the in-vehicle architecture
• Potential threats from abnormal behavior in the in-vehicle network

Additionally, the app can perform detailed data logging and reproduction to be transmitted to the
car manufacturer for generating in-vehicle network performance reports or for deriving information
about the state or misbehavior of the vehicle's ECUs (e.g. components requiring replacement, faults
that need repairing).

Technical requirements

• Network monitoring device (IDS) connected to the vehicle gateway or diagnostic port

2.22. User Story: Secure Car2X data exchange

Idea

Data from the vehicle's physical environment are often received or transmitted from / to nearby
stations (Car to Infrastructure) or vehicles (Car to Car) to enhance awareness about road conditions
(e.g. tra�c jams). As the exchanged data may contain sensitive information, security aspects should
be considered to avoid that they are spoofed or malformed.

Development phase

A web interface application will be developed to provide access to the messages exchanged in the
Car2X network as well as information about potential threats that will impose message leakage.

Setup phase

A network monitoring (IDS) device is connected on the gateway of a target vehicle and the car driver
/ owner can access the web application from any device smartphone or tablet device that is present
inside the car, but also remotely.

Usage phase

The car driver identi�es himself / herself in the app and can observe in real-time the communication
between the target vehicle and the nearby stations or vehicles. A real-time network map can also be
shown with the current connected devices in the wireless network. The app noti�es the user when it
detects:
• Addition or withdrawal of devices in the network
• Potential threats during C2X data exchange

Additionally, the app can perform detailed logging and reproduction of the secured data received by
the target vehicle, derive only the required data for analysis and transmit them further to the car
manufacturer or the nearest station for inferring information about road conditions.

Technical requirements

• Network monitoring device (IDS) connected remotely or directly to the vehicle gateway

17

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

2.23. User Story: Emergency Braking & Evading Assistance
System (EBEAS)

Idea

The basic idea of the EBEAS app is to automate reactions in the case of detected obstacles in front
of a vehicle. For this purpose EBEAS coordinates di�erent in-car subsystems.

Development phase

The app developer engineers a EBEAS application most likely in cooperation with the Car Manufac-
turer / In-vehicle Platform Vendor, Service Provider, and suppliers that developed the participating
automotive subsystems. As EBEAS encompasses highly safety-critical functionality, app developers
have to be trusted, e.g. utilizing certi�cation etc.

Setup phase

The app might already be installed by the OEM. Alternatively the car owner downloads and installs
EBEAS from an app store.

Usage phase

The basic version of EBEAS has three functions. The radar sensors of the vehicle are used to
detect obstacles in front of the vehicle. The EBEAS logic component decides whether to evade the
obstacle or to brake and performs these actions using, e.g., the adaptive cruise controls functionality.
Furthermore, the detected obstacle is reported to a service deployed in the automotive IoT cloud.
This service informs other vehicles about the detected obstacle.
Extended versions of EBEAS could include:
• a pre-crash system is used to prevent serious damage from the driver and other passengers in
cases in which an accident is not avoidable
• a car-to-car communication system used to negotiate on the reaction to a dangerous situation
with other vehicles in range

Technical requirements

• Runtime environment for Apps on the in-vehicle platform
• Real-time scheduling
• In-vehicle connectivity and coordination of participating ECUs

18

3. State of the Art

19

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.1. Platforms and App Runtimes

3.1.1. Scope

This chapters lists, describes, examines and compares several available platform technologies that
could be potentially used as a basis for the APPSTACLE in-vehicle platform. The idea is to in-
vestigate existing platforms to get an idea of the state-of-the-art and to compare these candidate
platforms and select the most suitable one to be used as a basis for the APPSTACLE in-vehicle
platform.

The modus operandi used was as follows: In a �rst step, user stories were collected from all APP-
STACLE partners. This has been done to get an idea of the planned utilization of the APPSTACLE
in-vehicle platform by the partners. The collected user stories are documented in Chapter 2 of this
document. These user stories have on a next step been used to derive requirements regarding the
in-vehicle platform. Overall, 57 di�erent requirements have been de�ned and grouped into seven
blocks in order enhance the readability and allow to set focus points during the study. A description
of these requirements along with the full listing of the seven groups are documented in Section 3.1.1.

Candidates

In parallel with the derivation of the requirements, the APPSTACLE partners were asked to suggest
potential candidates that should be analyzed during this study. This query lead to an extensive list
of 30 candidates. This so called long list contains the following candidates:

• Android Auto
• Android Automotive
• Android Things
• Apertis
• ARM - mBed OS
• Automotive Grade Linux
• C3 IoT Platform
• CORBA
• DDS
• Eclipse Agail
• Eclipse ioFog
• Eclipse Kapua
• Eclipse Kura
• GE Predix platform
• Google Fuchsia
• GENIVI SW Architecture
• IBM Watson
• IoTivity
• Kaa
• Legato
• LineageOS / Android
• Macchina.io
• Contiki
• QNX
• Qt Over-The-Air Update
• SiteWhere
• Suse embedded

20

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• ThingSpeak
• Thingworx
• Ubuntu Core

In order to be able to conduct a deep examination and apply all 57 requirements, a short list has
been created that reduces to the number of candidates to eight potential platforms. This has been
done by requesting votes from all APPSTACLE partners. The voting executed created the following
short list of candidates:

• Legato
• QNX
• GENIVI SW Architecture
• Android Automotive
• Automotive Grade Linux
• Apertis
• Ubuntu Core
• SuSE embedded

During the course of the execution of the platform study, the GENIVI SW Architecture has been
scratched from the list of candidates due to two major reasons: (I) due to the heavy workload of the
participants of the study and (II) due to the fact that GENIVI does only o�er a reference architecture
and a demo image but not a fully managed, administrated and maintained distribution.

Requirements of the APPSTACLE in-vehicle platform

In order to analyze and compare available platforms the APPSTACLE project team de�ned a struc-
tured list of requirements. These requirements were derived from the future usage scenarios that are
described in Chapter 2. The requirements were organized in several groups in order to enhance the
readability of the study. In the remainder of this section these groups as well as the actual require-
ments are introduced and described.

The �rst group of this requirements list contains all items that are connected to the overall features
of the platforms under examination. The �rst element of this group is the request for an update func-
tionality of the overall platform in order to ensure to have the possibility to integrate new features,
bug �xes or security patches to the platform while in use. This is accompanied by the request for
some kind of platform diagnostics to be able to detect malfunctioning of the software. Furthermore,
the platform to be chosen should be well documented in order to decrease the training period for
new developers. The next three requirements ask for speci�c features that are bene�cial in order to
implement the user stories given in Chapter 2. This includes mechanisms for in-vehicle connectivity
(to be able to gather data from the car), ex-vehicle connectivity (to be able to communicate with
the outside world) and an HMI support (to allow those user stories that require direct customer
interaction). Finally, the platform features group also asks for the minimal system requirements of
each candidate and the in-built security features. Table 3.1 summarizes the requirements building
the platform features group.

The second group of requirements contains items that directly correspond to the runtime behavior
of the candidate platforms. This includes the need for a stable platform as well as the booting times.
For the latter one, the reference board chosen is the Raspberry Pi 3 as most candidates are deployable
on this platform. Another requirement to be examined is the responsiveness of the platform when
executing as well as the openness of the candidates for adaptations or changes. Table 3.2 summarizes

21

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 1: Platform features

R1.1 Platform Updateability

Is there an update functionality available? Is it
secured (authenticity and integrity)?

e.g. OS updater

R1.2 Platform Diagnostics

Is there any kind of diagnostics tooling avail-
able? Are interfaces available to collect system
properties? Is there a secure logging or secure
audit tool available?

e.g. error reporting, detection of manipulation

R1.3 Platform Documentation

Is there adequate documentation available e.g. platform overview, quick start guides

R1.4 In-vehicle Connectivity included

Are there any modules available that allow to
connect to typical vehicular networks? What
level of abstraction is available? Are security
features available?

e.g. CAN; raw sockets / drivers only, complete
network stack; support for AUTOSAR Secure
Onboard Comm.

R1.5 Ex-vehicle Connectivity included

Are there any modules available that allow to
connect to to typical car-2-cloud networking
technologies? What level of abstraction is avail-
able? How is the connection secured?

e.g. LTE; raw sockets / drivers only, complete
network stack; TLS

R1.6 HMI support available

Is there any kind of HMI support available? e.g. X Window System

R1.7 Minimal System Requirements

What are the minimal system requirements to
deploy the platform?

• Min. RAM needed
• Min. Storage needed
• Architecture �exibility (x86, ARM, ...)
• Min. Computing Power needed

R1.8 Security features

Is the a secure store for crypto keys? Is there
support for crypto operations or security hard-
ware? Is there support for secure boot?

Table 3.1.: Platform Feature Requirements

the four requirements building the platform runtime group.

The third group of requirements examines the application runtime environments of the candidates.
This includes the request for permission transparency (is the user able to see which permissions have

22

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 2: Platform runtime

R2.1 Stability of the Platform

Did the platform run stable during our tests? e.g. any blue screens

R2.2 Booting Times

How long does it take to boot the platform on
a Raspberry Pi 3 or comparable?

[s]

R2.3 Platform Responsiveness

Are there any noticeable delays when actuating
on the platform?

R2.4 Adaptability

Are system / OS services adaptable?

Table 3.2.: Platform Runtime Requirements

been granted) and the level on which such authorization takes place (e.g. whether it is possible to
grant permissions on an app level). Additionally, the isolation of applications within the runtime
is examined as well as features that allow to manage resources or the installation of apps. Other
requirements within this group focus on error handling and reporting functionality, as well as abstract
access to vehicular data and functions or the features of the platform itself. Moreover, the support
of a human machine interface and for multi-user concepts is also examined in this group. Table 3.3
lists the ten requirements of the app runtime group.

The fourth group of requirements tackles issues important to the developers of applications running
on the platform. This includes the extent (e.g. including an IDE), the accessibility (e.g. costs for
usage) and the support of di�erent programming languages. Additionally, testing issues are examined
by inspecting the availability of both testing hardware and virtual testing environments. Furthermore,
the documentation given to potential developers as well as the existence of coding guidelines is tested.
Other issues examined are the speed a new app can be developed as well as the support given by the
infrastructure and the support of know-how protection. Table 3.4 summarizes the requirements of
the app development and SDK group.

The �fth group of requirements contains all relevant issues regarding an app store connected to
the platform candidate. This includes the actual availability of such a store as well as its accessibility.
Furthermore, technical features are examined such as the existence of a management interface,
the ability to create device-based pro�les or a billing system. Additionally, the app authorization
management is analyzed. Table 3.5 summarizes the requirements of the app store group.

23

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 3: App Runtime

R3.1 Permission Transparency

Is it possible for the owner or driver to detect which permissions an App has?

R3.2 Permission Management per App

Is it possible to de�ne the permissions on an App level?

R3.3 Isolation

Is there an isolation mechanism to protect the system and other Apps from harmful / misbe-
having Apps? What access control and sandboxing features are available?

R3.4 Resource Management

Does the platform o�er mechanisms to manage its resources (e.g. free memory, available
runtime) and start or stop Apps? Is it possible to de�ne resource limits for Apps?

R3.5 Installation Management

Does the platform o�er a system to install / uninstall Apps? How are Apps authenticated?
Who decides on the App installation?

R3.6 Error handling and reporting

Is there any kind of diagnostics tooling available?

R3.7 Abstract access to vehicle data and functions

Is there an API available that allows access to vehicular data or functions (independent of car
model etc.)? How are the access rights managed?

R3.8 Abstract access to platform features

Is there an API available that allows access to platform features (e.g. memory)? How are the
access rights managed?

R3.9 GUI support available

Is there a GUI framework available for the Apps?

R3.10 Multi-user concept

Is there multi-user support? How are the users identi�ed?

Table 3.3.: App Runtime Requirements

The sixth group of requirements analysis the platform candidates regarding license issues. This
includes issues such as the strength of the copyleft rules. Furthermore, the licenses used by the
candidates are examined regarding the approval by the Open Source Initiative (OSI) or its compatibility
to other licenses. Additionally, the obligations for using and contributing respectively restrictions for
commercial use or licensing costs are analyzed. Tabel 3.6 summarizes this group.

24

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 4: App Development and SDK

R4.1 App SDK available

Is there a SW development kit available? What is included (e.g. with / without an IDE)?

R4.2 App SDK accessibility

Is the SDK available for free? Is it OSS?

R4.3 SDK language support

Which programming languages are supported?

R4.4 Testing hardware accessibility

Which HW test environments are available (e.g. Raspberry Images)? Are they accessible and
a�ordable?

R4.5 Virtual test environment availability

Is there a virtual test environment available and accessible (e.g. VM Image)?

R4.6 SDK and App development documentation availability

Is the SDK and the App development procedure well documented?

R4.7 Platform Architecture and Guidelines

Does the architecture a�ect the design/implementation of applications? How? Does the
architecture consider performance, security and safety capabilities? Does the architecture
include guidelines and standards?

R4.8 Customizable SDK

Can the SDK be extended? What kind of interfaces are provided by the SDK? Is the SDK fully
open source? Is the SDK full featured? Does it have all that the actual development/testing
needs? Is the SDK �exible enough to comply with goals in APPSTACLE and does it include
usual development features like debugging?

R4.9 New App deployment speed

How fast is it to deploy a new App to the platform for testing? Is support required for deploying
apps to the platform? Is it intuitive? What's the fastest time I can get results from a test?
What kind of skills are needed for the development? Are those covered in APPSTACLE?

R4.10 Infrastructure Support

Is speci�c infrastructure required to support the development for this platform? Can there be
infrastructure within APPSTACLE to speed-up development or testing?

R4.11 Support for Know-How protection

Is there support for protecting intellectual property in Apps?

Table 3.4.: App Development and SDK Requirements

The seventh and last group of requirements brings together issues regarding the developer commu-
nity behind each candidate. This includes requirements regarding the size, liveliness or responsiveness

25

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 5: App Store

R5.1 App Store available

Is there an App Store framework available?

R5.2 App Store accessibility

Is the App Store available for free? Is it OSS?

R5.3 App Store management interface availability

Is there functionality available to manage the App Store (e.g. to select which Apps are pre-
sented)?

R5.4 Pro�le availability

Is it possible to create pro�les for di�erent devices in order to only present Apps �tting to the
device connected?

R5.5 Billing system availability

Is there a billing system available?

R5.6 App authorization

Does the App Store support an authorization scheme for Apps to de�ne which are legitimate?

Table 3.5.: App Store Requirements

of the community, as well as management issues and the number and strength of the members behind
the candidate. Furthermore, key �gures such lines of code, the existence of a project roadmap, the
re-usability of the code as well as the state of the project. Lastly, related projects are examined to
determine the relevance of the candidate. Table 3.7 summarizes the requirements of this group.

Voting scale and weighting factors

In order to execute an objective examination, a voting scale as well as weighting factors have been
de�ned. The voting scale reaches from -2, which equals to "strongly contradicts the requirements"
or "highly negative behavior" respectively, to +2, which equals to "strongly ful�lls the requirement"
or "highly positive behavior" respectively. Please note that the actual meaning is de�ned separately
for each requirement. This information is included in the tables 3.1 - 3.7. Table 3.8 summarizes
the voting scale used to analyze the candidates. Additionally, in order to be able to underline the
importance of some requirements compared to others, weighting factors have been de�ned. These
reach from 0, which equals to "not important at all", to 3, which underlines that it is extremely
important. While Table 3.9 summarizes these weighting factors, the determination of the values are
documented in the tables 3.1 - 3.7.

3.1.2. Overview

Automotive Grade Linux

Automotive Grade Linux is a Linux Foundation workgroup that is dedicated to developing open source
software solutions for the Automotive Industry. AGL started o� as an IVI system, but is now also

26

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 6: Licensing

R6.1 Copyleft rules

Is it strong / weak / non copyleft?

R6.2 License approval

Is the license used approved by the OSI?

R6.3 License interoperability

To which licenses is the license used compatible?

R6.4 Usage obligations

What are the obligations that have to be ful�lled when using or further developing the software?

R6.5 Contribution obligations

Is there a Committer Agreement that one has to sign? What are the obligations that come
with that?

R6.6 Restrictions for commercial use

Are there any restrictions regarding commercial use of the software?

R6.7 License costs

Are there license costs that have to be paid when using the software commercially?

Table 3.6.: Licensing Requirements

being developed to support telematics systems. AGL has partners from the OEM, Suppliers the
semiconductors industry and other automotive software providers.
The goals of AGL are to provide [9]:
1. An automotive speci�c Linux operating system with a broad developer community comprising

individuals, academic institutions and private organizations.
2. A collaborative, transparent and open environment to all the tiers that are involved in the

automotive ecosystem.
3. An embedded Linux distribution that enables rapid prototyping for developers new to Linux but

with a background of open source.
4. A collective voice for working with other open source projects and developing open source

solutions.

AGL Software Architecture AGL has a well-de�ned layered architecture as shown in Figure 3.1.
The App/HMI layer consists the pre-installed app together with its business logic and the HMI.

1. The Application Framework layer provides APIs for managing the application lifecycle on the
AGL system.

2. The Services Layer contains the user space services that all applications can access. These
services provide either an inter-process communication type interface or a subroutine/function
type interface.

3. The Operating System layer provides the Linux kernel, the necessary drivers and additional
utilities.

27

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 7: Developer Community

R7.1 Community size

How big is the community contributing to and using the software?

R7.2 Community liveliness

How lively is this community? (age of the last commit, release frequency, forums. . .)

R7.3 Community responsiveness

How good is the support of the community when facing problems?

R7.4 Community management

How is the community organized? Is it organized at all?

R7.5 Community members

What kind of developers are contributing to this project? (hobbyists / maker only, industrial
members, . . .)

R7.6 Project lines of code

How many lines of code are part of this project?

R7.7 Project Road-Map

Is there any? Is it clear? Are APPSTACLE goals applicable / compliant to the platform
expected developments?

R7.8 Code re-usability

How much of the code will potentially be used in APPSTACLE? How much is missing and how
much must be adapted?

R7.9 State of the Project

What's the state of the project? Is it already �nished? Just starting? Stable? Does the project
have a QA plan? Does the project have a good testing framework and CI infrastructure?

R7.10 Relevant related projects

Are other automotive or relevant projects also related/linked/co-developed with the given
platform?

Table 3.7.: Developer Community

Legato

The Legato project is an initiative started by Sierra Wireless to provide an open, secure and easy to
use application framework to the Internet of Things. The goal is to provide an open source, Linux
based embedded platform to simplify the IoT application development.

Legato Software architecture The Legato platform is an open source embedded platform built on
Linux. As shown in Figure 3.2, it includes an Application framework built on a fully tested, long term
support version of a Linux kernel and tightly integrated to eclipse based development environment.
• Application framework comes with a C-based runtime library to maximize processing power and

28

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Value Meaning

-2 Strongly contradicts the requirement Highly negative behavior

-1 Contradicts requirement Negative behavior

0 Doesn't ful�ll the requirement Neither positive nor negative behavior

1 Ful�lls the requirement Positive behavior

2 Strongly ful�lls the requirement Highly positive behavior

Table 3.8.: The voting scale used to benchmark the candidates

Value Meaning

0 not important at all

1 �default� importance

2 quite important

3 very, very important

Table 3.9.: The scaling factors of the requirements

multi-language support thus enabling application written using di�erent languages to run on
Legato.
• The Linux distribution uses free open source packages validated by the Linux Foundation's
Yocto Project and a long term version of the Linux kernel.
• The development environment is an Eclipse IDE with feature rich tools based on Sierra Wireless'
developer studio.

Apertis

Apertis is a FOSS platform for infotainment for automotive vehicles. It was started by Robert Bosch
GmbH and is now made an open source platform maintained and developed by Collabora. It is
derived from Ubuntu/Debian distributions and geared towards ARM and Intel x86 architectures.
Apertis comes with a range of built-in features that can be used and/or extended upon to build
custom applications. It also provides an app store for the custom applications [30].
However, it is important to note that Apertis is not tailored for mission critical operations such as
engine control, etc., but is centered around an extendable infotainment system.
�The goal of Apertis is to maximize the sharing across products, with the aim to improve time to
market and reduce the e�orts on long-term maintenance, in particular to enable quick and consistent
response times for security issues in internet-enabled products.� [39]

29

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.1.: AGL Software Architecture [9]

Figure 3.2.: Legato Software Architecture [135]

Ubuntu Core

Ubuntu Core is a light weight, minimalistic version of the Ubuntu OS. It is designed for the secure
deployment of IoT applications on embedded devices, cloud, autonomous machines and other internet
connected devices [160].

30

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

The Ubuntu Core o�ers the following important features [160]:
1. Secure, reliable and faster upgrades.
2. These upgrades are atomic and can be rolled back. The OS is also considered as an application

and can thus be rolled back.
3. Provides a app stores that can be customized.
4. Provides signature based authentication for greater user end security.
5. Clear distinction between OS and the applications.

Ubuntu Core architecture
The Ubuntu core architecture is split into distinct layers. Every module in the diagram including the
OS are applications called snaps. Each snap is a contained application. The security of the platform
is ensured by the fact that the OS snap is provided by Canonical and the Kernel snap and gadget
snap (containing all the necessary BSPs) are provided by the device manufacturer. As a developer,
one needs to be concerned with the application security. Snappy core provides tools for this as well.
The architecture is designed in such a way that the any security issues pertaining to a particular
snap is curtailed only to that snap and the remaining snaps can function independently without any
hindrance.

Figure 3.3.: Ubuntu Core Software Architecture [160]

SUSE Embedded

SUSE Embedded Linux version from SUSE that requires a paid subscription. SUSE Embedded works
as a �Just Enough Operating System� and is then tailored to meet the needs of individual customers
(e.g., there is no single release or a speci�c point to evaluate SUSE Embedded).
SUSE Embedded is based on the SUSE Enterprise Linux desktop version of the SUSE Enterprise

Linux Server these of which are based on the openSUSE and numerous other products. Therefore,
the study considers all SUSE platforms to get a complete picture of all the possibilities of SUSE
Embedded.

Android Automotive

Android is an open source mobile operating system based on the Linux kernel developed by Google.
Android gives us the freedom to implement our own device speci�cations and drivers by means of
Hardware Abstraction Layers (HAL). These HALs provide a standard method for creating software
hooks between the Android platform and the hardware [53]. Android Automotive is a subset of the
above mentioned HALs. Currently, this subset provides a set of vehicle HALs and properties which
can be de�ned and implemented by the OEMs to render the Android platform into an automotive IVI
system. Although the platform supports no in-vehicle protocols such as CAN, LIN, etc., the Android
platform claims that the HALs provides a consistent interface to the Android framework regardless

31

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

of physical transport layer [52]. At the moment OEMs such as Honda and Hyundai have IVI systems
based on Android but on older versions. However, more organizations are partnering with Android to
develop IVI systems based on Android Automotive standard [145].

QNX

The QNX CAR platform for infotainment is a set of pre-integrated technologies from QNX Software
Systems and its partners. Currently more than 40 OEMs use QNX on about 50 million cars [82].
The usage of the QNX requires separate and paid subscriptions for the IVI platform and the SDK.
QNX boasts of a complete system � the QNX Neutrino Operating System, in-vehicle telematics, HMI
with a support for a variety of UI frameworks, multi-media engine, mobile connectivity framework,
an app store, eclipse based SDK, Secure OTA platform, certi�ed security modules, etc., all of which
are claimed to be customizable as per the OEMs' needs. The QNX platform can also be deployed on
a number of di�erent hardware architectures [121], [122].

32

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.1.3. Discussion

This chapter discusses the seven candidates in detail. This is done by outlining and justifying the
results of the analysis regarding the requirements introduced in section 3.1.1.

Group 1: Platform Features

R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E
e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R1.1 Plat-
form Update-
ability

1 1 1 2 2 1 -1 2
• -2 - Technically impossible to support it
• -1 - No implemented means to support it or 3rd party license (Ex:

QNX)
• 0 - No support, but can be implemented
• 1 - OTA mechanism already supported
• 2 - Secured OTA mechanism already supported

R1.2 Plat-
form Diag-
nostics

1 2 2 1* 1* 2 1 2
• -2 - Technically impossible to support diagnosis capabilities
• -1 - No means to support diagnosis capabilities
• 0 - No diagnosis means are supported
• 1 - Partial software stack diagnosis capabilities. Some layers have a

Built-in API for diagnosis (e.g. Logging or tracing). An issue can't
be fully tracked through the entire software stack.

• 2 - Full software stack diagnosis capabilities. Each abstraction layer
has a Built-in API for diagnosis (e.g. Logging or tracing). An issue
can be tracked through the entire software stack.

R1.3 Plat-
form Docu-
mentation

2
(Im-
por-
tant
for
the
start)

1 1 1 0 2 2 0
• -2 - No documentation available and no means to get information
• -1 - No documentation but support is provided
• 0 - Poor, misleading or unclear documentation
• 1 - Documentation available
• 2 - Clearly organized and structured documentation

R1.4 In-
vehicle
Connectivity
included

3
(Highly
Im-
por-
tant
for
the
Start)

2 0 1 1 1 2 0
• -2 - Impossible to support any protocol
• -1 - No implemented means to support any protocol
• 0 - No protocol support
• 1 - Supports (Socket)CAN at least
• 2 - Supports multiple protocols

R1.5 Ex-
vehicle
Connectivity
included

1 1 1 2 1 1 1 1
• -2 - Doesn't provide means to support more than one of the points,

see below.
• -1 - Doesn't provide means to support one of the points, see below.
• 0 - Provides none of the points, see below
• 1 - Provides one or two points, see below.
• 2 - Provides all three points, see below.
• Points are

� Cellular connectivity
� WiFi, WiFi-APi or Bluetooth
� APIs/Protocol support for cloud connectivity

R1.6 HMI
support
available

1 2 2 0 1 0 2 2
• -2 - Impossible to support desktop environment
• -1 - No implemented means to support desktop environment
• 0 - Nothing but command line but could be supported
• 1 - At least desktop environment
• 2 - HomeScreen like env or means to create home screen like envi-

ronment

R1.7 Minimal
System Re-
quirements

0 1 1 1 0 2 1 1 Best score for the least system's requirements

R1.8 Security
Features

2
(Im-
por-
tant
for
the
start)

-1* -1 1* 2 1 -2 1* Security features were graded inside the interval [SL,SH], where SL denotes
lowest security features and SH highest security features between the plat-
forms studied. Reference platform for SL was QNX and for SH was SuSe
embedded.

• -2 - Approximately equal to SL
• -1 - Closer to SL
• 0 - In the middle of SL and SH
• 1 - Closer to SH
• 2 - Approximately equal to SH

Table 3.10.: Results for the Platform Features group (* see note)

33

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Notes
• Why a requirements doesn't apply for a platform
• There is missing information about the requirement for a platform
• The requirement analysis was splitted and multiple scores were obtained. How the �nal score
was calculated?
• R1.2 - Ubuntu Core:No speci�c or central entity to track end-user application logs
• R1.2 - SuSE embedded:No speci�c or central entity to track end-user application logs
• R1.8 - AGL:security considerations are in place but there is no implementation for most of
them and for the ones in place are performance demanding.
• R1.8 - Ubuntu Core: security is outstanding but seems that it's performance demanding and
it's not optimized for Automotive usage, whereas for other platforms AGL, Apertis, QNX and
Android Automotive it is.
• R1.8:Android Automotive: Implements a lot of security measures, but the mechanisms are
considered less advanced than SuSE embedded

Justi�cation for the scoring
• R1.1 - AGL: Score is 1 because we do have OTA using OSTree, but the secure part of it is
still a work in progress.
• R1.1 - Apertis: Does support OTA update using BTRFS. But every update happens as an
entire �le-system backup -> For either Platform or an app. Autonomous roll-back possible for
Platform but app, it's users choice if he wants to roll-back.
• R1.1 - Ubuntu Core:support OTA update. Autonomous roll back possible. Additionally,
update secured by the use of a controlled app-store.
• R1.1 - SuSE Embedded: Update based on RPM packages. Security ensured by means of
package signing, repository meta-data signing and repository identi�cation.
• R1.1 - Legato: (Can be between 1 and 2) Update-ability ensured. Autonomous roll-back
possible. hooks available for digitally signing the packages. To use this feature, we must build
your own signing/encryption tool and replace it with the default one.
• R1.1 - QNX: Uses a third party - Red Bend's OTA update tooling. Secure update possible.
• R1.1 - Android Automotive: OTA update possible. Secure update possible. No information
on roll-back possibility.
• R1.3 - AGL: (Between 1-2) Has vast documentation on the Application framework, AGL im-
age and SDK building for di�erent HW platforms, SDK servers, CAN signalling, installation
management, security, has examples for binding references. However it lacks comprehensive
documentation on the binding library (this is very important considering that AGL doesn't have
a built-in library to access platform features), SDK integration with IDEs, testing and debug-
ging. Additionally, there is no single repository for the documentation that covers everything
completely -> Split into parts at multiple locations.
• R1.3 - Apertis: Has a vast requirement speci�cation document, but no documentation that
details the extent to which these have been implemented. Has a good developer (application
developer) documentation -> Has coding guidelines, documentation on memory management,
process handling, Apertis API de�nitions (but no documentation on usage). But some of the
documentation is old and is sometimes plagued with broken links.
• R1.3 - Ubuntu Core: Has documentation on building custom images, building simple snaps,
lists the various interfaces (but no documentation on the usage), stores and its usage. Doc-
umentation split as snapcraft (application packaging tool), ubuntu core. Documentation also
available on help forum too.
• R1.3 - SuSE Embedded: (Between 0-1) Tons of documentation available, but very little
speci�c to SuSE Embedded.
• R1.3 - Legato: Legato has extensive documentation on the platform, runtime library (together
with de�nitions of the APIs and its usages), building the platforms, usage of the IDE, developing
apps. The IDE has additional documentation on testing and debugging the application on the

34

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Hardware as well.
• R1.3 - Android Automotive: (Between 0-1) Tons of documentation available on Android,
but very little speci�c to Automotive.
• R1.3 - QNX: (Between 1 and 2). Has extensive documentation but hard to �nd what we need
as the documentation is split into multiple sources.
• R1.4 - AGL: Supports CAN and LIN. Microchip a partner of AGL is currently developing Linux
drivers for MOST (but licensed as GPLv2).
• R1.4 - Apertis, Core, SuSE: Do not have any support for In-Vehicle connectivity.
• R1.4 - Legato: (Between 0-1). Possible to integrate SockectCAN. CAN drivers for mangOH
board available.
• R1.4 - QNX: CAN,MOST, Ethernet / IP and implementation of AUTOSAR architecture
(without MCAL drivers)
• R1.4 - Android Automotive: (Between 0-1) Provides Hardware Abstraction Layers to imple-
ment the necessary network interfaces. Provides CAN support (through vehicle HAL library)
• R1.5 - AGL: Supports WiFi, Bluetooth, oFono for telephony based on Bluetooth and has a
network manager. Possible to support LTE but not tested. AGL provides no Cloud infrastructure
-> therefore 1
• R1.5 - Apertis: Connman provides cellular and WiFi connectivity. Bluetooth based on BlueZ.
No documentation on Cloud Infrastructure. -> therefore 1
• R1.5 - Ubuntu Core: Has modem-manager and network-manager that provide 2G, 3G, 4G,
WiFi, WWAN and Ethernet connectivity, Bluetooth based on BlueZ. Provides cloud infrastruc-
ture.
• R1.5 - SuSE Embedded: Has complete network stack but no documentation on Cloud
infrastructure -> therefore 1
• R1.5 - Legato: (Between 1-2): Supports 2G, 3G, 4G, WiFi, WiFi access point, telephony
services and cloud infrastructure but no Bluetooth and also since a single HW for WiFi is used,
both WiFi client service and WiFi access point service cannot be used at the same time. Also
supports AirVantage
• R1.5 - QNX: Has complete IP stack, IEEE 802.11a/ b/ g/ p, Bluetooth, USB
• R1.5 - Android Automotive: IEEE 802.11, Bluetooth / Bluetooth LE, Cellular radio, USB
• R1.6:AGL, Apertis, QNX, Android Automotive have a Home-screen based environment.
SuSE has a desktop based environment and Ubuntu Core and Legato supports neither a
home-screen/desktop based environment
• R1.7: The scores decided as the system with least requirement gets 2 and highest requirements
gets 0. AGL and Apertis work on minnow board (1.33GHz, 2GB, 1GB), Snappy core is between
1-2 (900MHz, 1GB, 256MB), SuSE and QNX (1.5GHz, 2.2GB, 512MB), Legato (550MHz,
256MB, 128MB), No info on Android Automotive
• R1.8: AGL: Recommendations for secure boot, Certi�cate and Key Management but no actual
implementation
• R1.8: Apertis: No secure boot, SSL, Net�lter �rewall mechanism
• R1.8:Ubuntu Core: UEFI Secure Boot, SHA (256-512) / DES / MD5 crypt, Net�lter �rewall
mechanism
• R1.8:SuSe embedded: UEFI Secure Boot, SCAP, TLS, SHA (256-512) / DES / MD5 crypt,
Net�lter �rewall mechanism (Firewall con�guration with custom rulede�nition and logging with
VNC /web browser - protected by �rewall)
• R1.8:Legato: Secure boot only for Sierra Wireless platforms (e.g. AR / WP Series), crypto-
graphic pseudo-random number generator (CPRNG), TLS, SSL
• R1.8:QNX: Elliptic Curve and Public key Cryptography (Certicom's Asset Management Sys-
tem), SSL
• R1.8:Android Automotive: Secure boot (hash table), Watchdog against DoSattacks, AES -
RSA - DSA and SHA cryptography, AFWall+ (Android Firewall)

35

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 2: Platform Runtime

Table 3.11.: Results for the Platform Runtime group (* see note)

R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E
e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R2.1 Stability
of the Plat-
form

1 1* 1 1 1 1 1 1
• -2 - Doesn't even boot
• -1 - OS Boots but the interface isn't responsive
• 0 - OS Boots and interface is responsive
• 1 - OS Boots and demo applications can run
• 2 - OS Boots and demo applications run without hanging

R2.2 Booting
Times

0 1* 0* -1 -2 1 1 1* • -2 >120s
• -1 - 60s to 120s
• 0 - 30s to 60s
• 1 - 15s to 30s
• 2 - <15s

R2.3 Plat-
form Respon-
siveness

1 1* 1 2 0 1 1 1
• -2 - Doesn't even boot
• -1 - OS Boots but the interface isn't responsive
• 0 - Responsive, but huge delay is experienced
• 1 - Responsive, but some delay is experienced
• 2 - Fully responsive and no delays is experienced

R2.4 Adapt-
ability

0 2 2 1 2 1 2* 2
• -2 - Technically impossible to add adaptability
• -1 - No implemented means to add adaptability
• 0 - No support for adaptablity to the user
• 1 - Possible to add interfaces to the User
• 2 - Already available
• e.g. Setting Screen resoultion, WiFi settings, Bluetooth pairing

Notes
• R2.1 - AGL:There's a known issue about AGL not booting in the �rst trial. After �rst trial it
boots normally.
• R2.1 - QNX: Sample applications were tested on QNX 6.5/6.6 and QNX 7.0. All demo
applications are low-level (C/C++ with pthreads) but still can be compiled and executed
• R2.1 - Legato:Legato is stable on the older version of the Raspbian OS. On this it is also
possible to run the demo apps.
• R2.2 - AGL:~20s booting on Raspberry Pi 3 and ~30s booting on MinnowBoard Turbo (2 -
cores). The latest uses UEFI and the �rst legacy.
• R2.2 - Legato: ~21s with Raspberry Pi 3. However, Sierra Wireless suggests MangOH board
is most suitable and perhaps takes less time..

• R2.3 - AGL:Resposiveness was tested on Raspberry Pi 3 and ~30s and MinnowBoard Turbo
(2 - cores). The second was way more responsive than the �rst.
• R2.2 - Apertis:~45s booting on MinnowBoard Turbo (2 - cores).

• R2.1 to R2.3-Legato:not possible to test because only supported in manOH and the Hardware
wasn't avaialbel for testing.
• R2.4 -Legato: based only on documentation
• R2.4 - QNX: QNX CAR platform allows Bluetooth pairing / adjusting Wi� settings / screen
resolution as described by documentation. Was tested only for QNX 6.5 / 6.6 / 7.0 and not
for QNX CAR platform extension due to licensing problems
• R2.1 to R2.4 - QNX: Not possible to test with the actual QNX platform for Automotive nor

36

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the graphical interface because of licensing issues
• R2.2 - QNX:~6s booting on VMWare virtual machine. This information can't be actually
compared with others because others were boot on actual Hardware.
• R2.2 - Android Automotive:~25s booting on Raspberry Pi 3.

37

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 3: App Runtime
R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E

e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R3.1 Per-
mission
Transparency

1 0 0 0 0 0 0 1
• -2 - No permissions transparency can be supported
• -1 - No permissions transparency exist
• 0 - No permisions transparency exposed to the user
• 1 - Permissions are exposed to the user
• 2 - User can manage permissions for applications

R3.2 Permis-
sion Manage-
ment per App

1 2 2 2 2 2 2 2
• -2 - Technically impossible to support it
• -1 - No implemented means to support it
• 0 - No permissions management per app available
• 1 - Coarse grained permissions management per app available
• 2 - Fined grainde permissions management per app available

R3.3 Isolation 1 2 2 2 2 2 1 2
• -2 - Technically impossible to support isolation
• -1 - No implemented means to support isolation
• 0 - No Isolation mechanisms supported
• 1 - Basic isolation mechanisms supported (e.g. chroot, user/group,

cgroups)
• 2 - On top of 1, also security speci�c mechanisms supported.

R3.4 Re-
source Man-
agement

1 1 1 1 1 1 1 1
• Every platform de�ned resources di�erently and provides mecha-

nisms to manage them.
• That's why all al considered as ful�lled but no meaningful compar-

ison could be made between them.

R3.5 Installa-
tion Manage-
ment

1 1 1 2 2 1 0 2
• -2 - Technically impossible to support an installation management

system
• -1 - No implemented means to support an installation management

system
• 0 - No installation management supported
• 1 - Application life-cycle operations supported (e.g. install, remove,

start, stop)
• 2 - On top of 1 applications authentication is done during installa-

tion.

R3.6 Error
handling and
reporting

1 1 1 1 1 1 1 1
• -2 - Technically impossible to support reporting or handling
• -1 - No means to support reporting nor error handling
• 0 - No error handling nor reporting mechanisms available
• 1 - Reporting mechanisms available
• 2 - Error handling and reporting mechanisms available

R3.7 Ab-
stract access
to vehicle
data and
functions

2 1 -1 -1 -1 -1 -1 -1
• -2 - Technically impossible to provide APIs to access the vehicle

data and functions
• -1 - Doesn't provide means to provide APIs to access the vehicle

data and functions
• 0 - Doesn't provide APIs to access the vehicle data and functions
• 1 - Provide some APIs to access the vehicle data and functions
• 2 - Provide APIs to acess most of the vehicle data and functions

R3.8 Ab-
stract access
to platform
features

2 1 1 1 1 2 0 1
• -2 - Technically impossible to imposible to create APIs
• -1 - No implemeted means to create APIs
• 0 - No special APIs
• 1 - At least means to create APIs
• 2 - Already available APIs

R3.9 GUI
support
available

1 2* 1 1 2* -1 2* 1
• -2 - Impossible to support a windows server nor GUI framework
• -1 - Don't have any windows server
• 0 - Windows server available
• 1 - Single GUI Framework
• 2 - Multiple GUI framework is available

R3.10 Multi-
user support

1 0 0 0 1* 0 0 2
• -2 - Technically impossible to add multi-user support
• -1 - No implemented means to add multi-user support
• 0 - No multi-user support available
• 1 - Partial multi-user support available
• 2 - Full multi-user support available

Table 3.12.: Results for the App Runtime group (* see note)

Notes
• Why a requirements doesn't apply for a platform
• There is missing information about the requirement for a platform

38

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• The requirement analysis was split and multiple scores were obtained. How the �nal score was
calculated?
• R3.7 - QNX: CAR platform has applications to control features of the dashboard (e.g. velocity,
engine RPM)
• R3.9 - AGL:Qt and HTML5/js based GUI frameworks supported.
• R3.9 - SuSE Embedded: At least Qt but other frameworks could be added on demand.
• R3.9 - QNX: Qt, HTML5/js, Photon supported.
• R3.10 - SuSE embedded: Could be provided through linux users although is not the best
practice.
• R3.3 -AGL (user/group + cgroups + SMACK(Linux security Module) + Cynara (privilege
enforcement system) + AppFW (Application Firewall)), Apertis (user/group + cgroups + Ap-
pArmor(Linux security Module) + polkit (privilege controlling system)),Ubuntu Core(user/group
+ cgroups +AppArmor(Linux security Module) and Seccomp), SuSE Embedded (user/group
+ cgroups + AppArmor(Linux security Module), SELinux), Legato (user/group + cgroups +
chroot + SMACK + ulimit), QNX (sandboxing feature available but no documentation found
on the technology used),Automotive Android (Android generates a UUID for each app, only
processes with this ID can access resources meant for this application)
• R3.8 - QNX: No concluding information was available
Justi�cation for the scoring
• R3.1 - Automotive Android: Permission transparency is possible. Although not sure if this
is also relevant for Automotive Android.
• R3.3 -AGL (SMACK), Apertis (AppArmor), Ubuntu Core (AppArmor and Seccomp), SuSE
Embedded (AppArmor, SELinux), Legato (chroot), QNX (sandboxing feature available but
no documentation found on the technology used), Automotive Android (Android generates a
UUID �or each app, only processes with this ID can access resources meant for this application)
• R3.4 - AGL: The score is 1 because AGL does have a resource manager but AGL doesn't give
the app developer freedom to control resources for his app.
• R3.4 - Apertis: The score is 1 (should be between 0 and 1). Does not have a built-in manager
but does have functions speci�cally meant for managing memory and handling processes and
also provides guidelines for the same.
• R3.4 - QNX:The score is 1. Similar to Apertis. Provides a huge library for handing resources
and guidelines with examples for using them.
• R3.4 - Legato: The score is 2 because the user can explicitly control the resource usage and
these resources limits are interpreted by the platform automatically.
• R3.4 - Android Automotive: The score is 1 (tentative) because the result is based on Android
O. Not sure if the same for Android Automotive.
• R3.4 - Ubuntu Core and SuSE Embedded: 0 because both do not have anything speci�cally
for resource management.
• R3.7.-1 because no candidate focusses on this. All can get GPS (Apertis wraps it in some
navigation lib). The studies do not agree on AGL one says a "through well de�ned interfaces"
(but mentions no speci�cs)the other only mentions GPS. QNXis similar to the Linux although
CAN/OBD is mentioned more (but CAN is easy on vanilla Linux to), but also no abstraction
• R3.8. -SuSe embedded: Intrusion detection using AIDE, Security-Enhanced Linux (kernel
security module), NIS,SSSD, Samba
• R3.8. -Android Automotive: Security-Enhanced Linux (SELinux), Data access policies (i.e.
System only, accessible from the applications with permission / without permission)
• R3.10 - AGL: But it's under development.
• R3.9 - Ubuntu Core: Qt, Deepin-UI.
• R3.9 - AGL: 2 because it supports Qt and Web technologies like HTML5 and JS also using a
handful of Frameworks like Angular.js

39

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 4: App Development and SDK

Notes
• R4.1 - Apertis: IDE is eclipse Juno based
• R4.1 - Ubuntu Core: No SDK available. Applications to be built with the standard SDKs
meant for the HW and can be packaged using snapcraft.
• R4.1 - SuSE Embedded: SDK withour IDE available. Although provides and IDE for GNOME
development.
• R4.2 - SuSE Embedded: The SDK is available for free, but updates require a paid subscription
(See also comment on R4.1)
• R4.2 - QNX: SDK needs paid license (academic licenses and evaluation versions can be
provided after registration with no cost)
• R4.3 - Apertis: Only C Programming is supported
• R4.3 - QNX: C and C++; Cordova based HTML 5 Apps
• R4.4 - Apertis: A lot of supported hardware but set-up instructions only available for Min-
nowboard
• R4.4 - SuSE Embedded: An image is available for Raspberry Pi 3, but requires a subscription
that must be renewed (for free) yearly. Additional images can be built with SUSE Studio and/or
Open Build Service. Image con�gurations need to be created and a hardware adaptation, which
probably requires support from SUSE
• R4.4 - Legato: Currently works only with Sierrawireless HW. Thus 1.
• R4.4 - QNX: List of BSPs
• R4.5 - AGL: (Between 1-2) Server based development environment available. They can also
be used locally on the development host using docker. But no emulator to test the graphical
parts)
• R4.5 - Apertis: SDK available as a VM, possible to test graphical parts using an emulator.
But the emulator seems to be buggy as the app seems to persist on screen even after the app
is closed
• R4.5 - SuSE Embedded:Virtual test environments can be built with SUSE Studio and/or
Open Build Service, or locally using the KIWI Image System. And multiple image formats
available.
• R4.5 - Legato: Has a VM for only mangOH board.
• R4.5 - QNX: Has a VM based development environment, but no emulator to test the graphical
parts.4.7
• R4.5 - Android Automotive: Scored as 1 because we are not sure if Android's emulator can
be used for Android Automotive as well.
• R4.6 - AGL: Contains documentation on generating the SDK, Installing it. Additionally has
documentation on downloading/building and installing the Server based development environ-
ment but no documentation on integrating it with an IDE (but there is a video on its usage
after integration), The Application framework binding library has a documentation on usage,
but it can be better. App structure documentation available. Additionally, documentation not
available in a single location (Actual score between 1-2).
• R4.6 - Apertis: Has good documentation. Although some parts of the documentation is
outdated (setting up a workspace). Has good documentation on the Apertis speci�c APIs, and
also contains functional descriptions of the APIs. All of this available in the SDK VM.
• R4.6 - Ubuntu core: There is no SDK available. But does have documentation on the
Interfaces and it's usage. Documentation also on introducing new APIs, but no functional
descriptions available for any of the APIs. (Actual score 0-1)
• R4.6 - Legato: Legato has vast and updated documentation (Complete documentation avail-
able for every release) all in one place with a search engine available for it. Documentation
available on setting up the development environment, the runtime library (usage with exam-
ples), testing and debugging. Documentation also available for Legato speci�c APIs and app

40

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

structure. Everything available on-line, on Eclipse IDE and as PDF.
• R4.6 - QNX: Tons of documentation available. but split as multiple documents some of which
are available only to a registered user. (Actual score 1-2)
• R4.6 - Android Automotive: Again 1 because, although there is lots of documentation, there
is nothing speci�c to Android Automotive.
• R4.7 - AGL: Has detailed documentation on the security concepts, application framework.
Provides templates that can be used for writing an application and guidelines for using them.
No mention of the system's performance and no speci�c coding guidelines.
• R4.7 - Apertis:Has guidelines of coding, resource management, security. Platform considers
impact of security on performance. Documentation on Application framework is limited though.
• R4.7 - Ubuntu Core: Has documentation on security, interfaces and all the stacks of Ubuntu
core. But no mention of performance considerations and no speci�c programming guidelines.
• R4.7 - SuSE Embedded:The platform architecture has less e�ect on the design and imple-
mentation of apps. No guidelines or standard speci�c to SuSE, No special performance or
security guidelines.
• R4.7 - Legato:Uses a C-based runtime library to enhance performance, but no mention of
it's impact on app development. Has guidelines for usage of Interfaces. But no speci�c
programming guidelines.
• R4.7 - QNX: HTML5, QT 5.3, JavaScript, C/C++
• R4.7 - Android Automotive: Has vast documentation. But not sure if this is applicable to
Android Automotive.
• R4.8 - AGL: AGL makes use of a building system based on Yocto. This enables us to extend
the SDK and add additional tools. Thus 2
• R4.8 - Apertis:The SDK is available as a VM. Not sure if it can be extended. Although it is
important to note that the SDK is integrated with Eclipse inside the VM. Thus -1.
• R4.8 - Ubuntu core: There is no SDK available for Ubuntu core. I.e we use an SDK meant
for a speci�c hardware (say raspberry pi) and then package it for ubuntu core using snapcraft.
Thus 0.
• R4.8 - SuSE Embedded: Limited customization. Gives the possibility to add Independent
Software/Hardware Vendor packages to port applications from one platform to another, sup-
ported by SuSE.
• R4.8 - Legato & QNX: SDK is integrated into eclipse. Which perhaps gives us an option to
extend.
• R4.8 - Android Automotive: Android studio does provide these options, but not sure if it is
the same for Android Automotive.
• R4.9 - AGL: Requires Knowledge of QML/HTML5 and C++. If writing an HTML5 app or a
native app that needs to access system resources, one needs to know how to write AGL speci�c
bindings. Added to this one needs to set up the development environment.
• R4.9 - Apertis: For the development of applications one needs to know the following tech-
nologies: C, GLib, GIO, gSTREAM; Clutter, Automake. From the development environment,
one needs to download the sdk vm and load it.
• R4.9 - Ubuntu Core: Development speed depends on the platform it is being built for. From
the development environment, one needs to use the dev-kit meant for the platform he/she
intends to develop the application and additionally needs to know how to make use of the
snapcraft tool for packaging.
• R4.9 - Legato: Since legato is developed to be language independent, there are many legato
speci�c APIs. One needs knowledge on this and also the runtime library. From the development
environment, one needs to download the dev-kit and install it.
• R4.9 - QNX: Requires knowledge of QML/HTML5 and C++. Knowledge of QNX APIs is a
must. Although knowledge level required is similar to AGL and additionally considering that
the SDK is provided as an eclipse environment, it should be easier and faster to develop but

41

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

because of the unavailability of the SDK -> scored to 0!
• R4.9 - Android Automotive: Easy to work with Android Studio. Knowledge of HAL abstrac-
tion necessary.
• R4.10 - AGL: Currently, there is no integrated development environment that host all the
necessary features. Also no single emulator for the graphical parts. Thus needs a better
infrastructure.
• R4.10 - Apertis, SuSE Embedded & Legato:Apertis SDK comes in a VM with an eclipse
based development environment and an emulator and thus not possible to extend it further.
SuSE requires no special support but using some additional tools provided by SuSE would be
bene�cial. Legato also has an eclipse based development environment but has no emulator.
but this is not in the scope of Legato.
• R4.11 - AGL: Possible to license applications. Applications based on C/C++ deployed as a
shared library.
• R4.11 - Apertis: Possible to license applications. Applications deployed as compiled code
bundles.
• R4.11 - Ubuntu Core: Possible to digitally sign the application and Possible to license
applications.
• R4.11 - Legato: Applications can be licensed and deployed as binaries. Additionally possible
to digitally sign the packages but needs an unpack tool to be implement on legato hooks and
deployed on the platform.
• R4.11 - QNX: Pseudonumber generation when signing and uploading the packages
• R4.11 - Android Automotive: Possible to license and also possible to digitally sign the
applications. But requires the developer to share 30% of the transaction to be paid to Google
play store

42

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E

e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R4.1 App
SDK avail-
able

2 (Important for the
start)

2 2 0 1 2 2 2
• 2 - SDK available with IDE or possible to inte-

grate with IDE
• 1 - SDK available without IDE
• 0 - No SDK available

R4.2 App
SDK accessi-
bility

3 (Quite important for
commercial usage)

2 2 0 -1 2 -1 2
• 2 - SDK is available and is OSS.
• 0 - No SDK available
• -1 - SDK available but needs a paid license.

R4.3 SDK
language
support

1 2 1 2 2 2 2 2
• 2 - Wide number of languages supported 3-4
• 1 - Supports limited number of languages.
• 0, -1, -2 - Irrelevant for this requirement.

R4.4 Testing
hardware ac-
cessibility

2 (Important for the
start)

2 1 2 1 1 2 2
• 2 - Supports multiple architectures and also a

number of boards and are cost e�ective
• 1 - Limited number of HW support.
• 0, -1, -2 - Irrelevant for this requirement.

R4.5 Vir-
tual test
environment
availability

2 (Important for the
start)

1 1 0 2 1 1 2
• 2 - VM/development host independent with

complete infrastructure and ability to test apps
on an emulated environment.

• 1 - VM with limited capabilities or dedicated
to only speci�c HW, or a development environ-
ment that can be hosted on a server.

• 0 - No such above mentioned capabilities.

R4.6 SDK
and App
develop-
ment doc-
umentation
availability

3 (Highly important for
the start: ensures par-
allel development of
apps and platform)

1 1 0 0 2 2 1
• 2 - Clearly organized and structured documen-

tation.
• 1 - Documentation available, but needs more

with better structuring.
• 0 - Documentation available, but not speci�c

to platform and/or is misleading with outdated
data or is insu�cient for the start. and/or bro-
ken links.

• -1 - No documentation, but support available.
• -2 - Useless.

R4.7 Plat-
form Archi-
tecture and
Guidelines

2 (Similar to require-
ment R4.6)

2 2 1 0 2 2 0
• 2 - Clearly organized and structured documen-

tation.
• 1 - Documentation available, but needs more

with better structuring.
• 0 - Documentation available, but not speci�c

to platform and/or is misleading with outdated
data and/or broken links.

• -1 - No documentation, but support available.
• -2 - Useless.

R4.8 Cus-
tomizable
SDK

1 2 -1 0 1 2 2 2
• 2 - Highly customizable (Yocto SDK or Eclipse

based SDK)
• 1 - Not customizable but possible to add addi-

tional libraries or add-on
• 0 - No SDK available.
• -1 - Not possible to customize the SDK
• -2 - Irrelevant as -1 serves the purpose already.

R4.9 New
App de-
ployment
speed

1 1 1 0 1 1 0
(see
note)

1
• 2 - Intuitive, easy to develop and test, additional

knowledge required is not so much.
• 1 - Knowledge on platform must.
• 0 - Knowledge on platform must, might needs

additional libraries to be written.
• -1 - time consuming due to lack of documenta-

tion or support.
• -2 - Redundant. -1 pretty much serves the pur-

pose.

R4.10 Infras-
tructure Sup-
port

1 1 0 0 1 1 1 1
• 2 - Good infrastructure available and accessible.

Does not necessarily need additional support.
• 1 - Infrastructure available. Needs additional

set-up to speed up development and testing
process.

• 0 - Infrastructure available. Needs additional
set-up to speed up development and testing
process. But means to set-up not available.

• -1 - No infrastructure available.

R4.11 Sup-
port for
Know-How
protection

3 (Highly important for
commercial usage)

2 2 2 0 2 1 -2
• 2 - Licensed and digitally signed.
• 1 - Licensed
• 0 - No support in this direction.
• -1 - Apps cannot be licensed.
• -2 - Apps can be licensed but at the cost of a

share in pro�t.

Table 3.13.: Results for the App Development and SDK group

43

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 5: App Store
R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E
e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R5.1 App
store avail-
ability

1 0 1 2 0
(see
note)

0 1 1
• 2 - App store available and so is the framework
• 1 - only App store available
• 0 - No App store

R5.2 App
store accessi-
bility

1 0 0 2 0 0 0 -1
• 2 - OSS
• 0 - No App store
• -1 - Needs license

R5.3 App
store man-
agement
interface
availability

1 0 1 2 0 0 0 0
• 2 - Interface available and can be customized (source code is avail-

able)
• 1 - Interface available but cannot be extended
• 0 - No App store

R5.4 Pro�le
availability

1 0 0 2 0
(see
note)

0 0 1
• 2 - Pro�ling based on Hardware
• 1 - Limited pro�ling available
• 0 - No App store

R5.5 Billing
system avail-
ability

1 0 1 0
(see
note)

0 0 0 2
• 2 - Complete billing system available
• 1 - Supports a billing system (But no documentation about how it

is supported)
• 0 - No App store

R5.6 App au-
thorization

1 0 1 2 0 0 0 1
• 2 - Infrastructure to authorize who upload apps and provide control

over authorizers
• 1 - Infrastructure to authorize who upload apps but no control over

curators
• 0 - No App store

Table 3.14.: Results for the App Store group

Notes
• R5.1 - Apertis: App store exists, but is currently down and no documentation available on it.
• R5.1 - SuSE Embedded: If platform has container support, then SuSE Gallery can be used.
• R5.1 - Ubuntu Core: App store available. Possible to create a Brand store for hosting a
private store too. It is also possible for an OEM to host multiple stores.
• R5.1 -QNX: App World exists in QNX CAR 2
• R5.1 - Android Automotive: Android's play store is licensed.
• R5.2 - Ubuntu Core: The git repository of the brand store available. This makes it possible
for us to extend the store with additional features.
• R5.2, R5.4 and R5.5 - Apertis: No documentation available in this direction.
• R5.2 - QNX: App store is integrated with the platform and is not free (requires platform
license). The App store is OS-speci�c
• R5.2 - Android Automotive: Involves licenses to be dealt with. -> Thus -1.
• R5.3 - Apertis: There exists an App store curator who decides whether or not an application
can be published. But there is no documentation on how this is achieved or regarding the
guidelines.
• R5.3 - Android Automotive: Android's playstore does provide tools to fetch statistics, but
in comparison to ubuntu core and apertis, there is no concept of a curator who controls the
publication of an app and thus 0.
• R5.2 & R5.4 - Ubuntu Core: Each device is connected to only one store (But also possible
to share apps between stores if necessary), this way it is possible to present apps meant for a
particular car. Additionally the roles management enables us to control who publishes an app
on a store.
• R5.4 - SuSE Embedded: Packages intended for di�erent devices can be separated by, for

44

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

example, platform target con�guration or repository.
• R5.4 - Android Automotive: Possible to �lter applications based on device features, platform
version and screen con�guration.
• R5.5 - Ubuntu core: There is no billing systems, but it will be available soon (information
from ubuntu forum).
• R5.5 - Apertis: Has a billing portal, but no documentation on how it works and no documen-
tation on the the payment methods.
• R5.6 - Ubuntu Core: The roles management of the app store enable only authorized devel-
opers to publish apps which before publishing are reviewed by developers speci�ed as reviewers
using built-in tools or manually.
• R5.6 - Apertis: The developer registers the app and uploads it. The app curator reviews
it checks for any violation and then publishes the app if everything is okay. But there is no
documentation on the guidelines and thus 1.
• R5.6 - Android Automotive: Developer program policies must be taken into account before
publishing an app. But no documentation about a review mechanism for the app and thus 1.

45

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 6: Licensing
R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E
e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R6.1 Copyleft
rules

1 1 1 -2 1 1 2 1
• -2 - Strong copyleft
• -1 - Mostly strong copyleft
• 1- Mostly weak copyleft
• 2 - Weak or no copyleft

R6.2 License
approval

1 2 2 2 2 -1 0 2
• -2 - All used licenses are not approved by OSI
• -1 - Some used licenses are not approved by OSI
• 0 - n/a
• 1 - Some minor parts are under a non-approved license
• 2 - All used licenses are approved by OSI

R6.4 Usage
obligations

3 1 1 1 1 1 2 1
• -2 - Unreasonable obligations
• -1 - Some obligations
• 1 - No obligations but no support granted
• 2 - No obligations and support granted

R6.5 Con-
tribution
obligations

1 2 -1 1 1 -1 0 0
• -2 - Unreasonable high hurdles
• -1 - High hurdles
• 0 - n/a
• 1 - Low hurdles
• 2 - Highly supportive structure

R6.6 Restric-
tions for com-
mercial use

3 2 2 2 1 2 2 1
• -2 - Not allowed to be used for commercial products
• -1 - High hurdles for commercial usage
• 0 - n/a
• 1 - Some minor restrictions
• 2 - No restrictions

R6.7 License
costs

3 2 2 2 -1 2 -2 -1 Three potential sources of costs:
• Costs for customization/services/trademarks
• Costs per device sold
• Costs for the Development Environment
• -2 - All three sources apply,
• -1 - Two sources apply
• 0 - One source applies
• 2 - No costs

Table 3.15.: Results for the Licensing group

Notes
• R6.3 License Interoperability has been left out of the comparison due to a team decision
Justi�cation for the scoring
• R6.2 - AGL di�erent licenses for di�erent modules, mainly Apache 2.0 and MPL 2.0
• R6.2 - Apertis Mozilla Public License Version 2.0
• R6.2 - Ubuntu Core Strong copyleft, Mostly GPL
• R6.2 - SuSE Embedded SUSE provides tools for managing the licenses in the platform making
it possible to tailor, for example, a non-copyleft only platform.
• R6.2 - Legato The framework as such is licensed under MPLv2. But there are exceptions
where some packages are licensed under LGPL v2+, Apache-2.0, BSD License, MIT License,
RSA License, Paul Hsieh exposition license and a lot more.
• R6.2 - QNX Commercial License, no copyleft
• R6.2 - AGL, Apertis, Ubuntu Core, SuSE Embedded, Android Automotive All used
licenses are approved by OSI
• R6.2 - Legato Paul Hsieh exposition license is not approved by OSI
• R6.2 - QNX Not applicable since commercial license
• R6.4 - AGL, Apertis, Ubuntu Core, SuSE Embedded, Legato, Android Automotive No
usage obligations but also no support granted
• R6.4 - QNX No usage obligations, support is part of the contract

46

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• R6.5 - AGL Well organized and structured contribution procedure
• R6.5 - Apertis Several accounts needed, account support not very responsive
• R6.5 - Ubuntu Core Well organized and structured but quite demanding contribution agree-
ment needs to be signed
• R6.5 - SuSE embedded Quite structured and supportive contribution procedure
• R6.5 - Legato Accounts needed, quite demanding contribution agreement needs to be signed
• R6.5 - QNX Not applicable since not open source
• R6.5 - Android Automotive Not clear how to contribute
• R6.6 - AGL, Apertis, Ubuntu Core, Legato, QNX No restrictions for commercial usage
• R6.6 - SuSE Embedded The restrictions for commercial use depend on the components
chosen for the platform
• R6.6 - Android Automotive Some restrictions regarding the google-owned parts and the
Android trademark
• R6.7 - AGL, Apertis, Ubuntu Core, Legato No costs
• R6.7 - SuSE Embedded Pay per device and Pay for a support contract
• R6.7 - QNX Pay per device and pay for additional contracts and pay for the IDE
• R6.7 - Android Automotive Pay per device if using the google-owned modules (such as Play
store), potentially pas for the trademark

47

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Group 6: Developer Community
R
e
q
u
ir
e
m
e
n
t

W A
G
L

A
p
e
rt
is

U
b
u
n
tu

C
o
re

S
u
S
E
e
m
b
e
d
d
e
d

L
e
g
a
to

Q
N
X

A
n
d
ro
id

A
u
to
m
o
ti
v
e

Comment

R7.1 Com-
munity size

3 2 -2 0 1 0 1 1
• -2 - Small Community with only very few supporters
• 0 - Decent Community size with some industry support
• 1 - Big Community, but potentially no focus on automotive
• 2 - Huge, major support by the industry

R7.2 Com-
munity
liveliness

2 2 -2 2 1 0 1 0
• -2 - Almost dead
• 0 - Medium activity
• 1 - Quite lively
• 2 - Really active

R7.3 Com-
munity
responsive-
ness

2 1 -2 1 2 -1 2 0
• -2 - Slow (days, sometimes weeks)
• -1 Rather slow (hours, sometimes days)
• 0 - Not measurable
• 1 - Fast (within minutes)
• 2 - Dedicated support available

R7.4 Com-
munity
management

1 2 0 0 1 0 0 1
• 0 - Well structures
• 1 - Well structured and somehow managed
• 2 - Well structured and transparent management

R7.5 Com-
munity
members

3 2 -2 1 1 -1 -2 1
• -2 - Run by a single institution
• -1 - Mainly run by a single institution, only minor contributions

from others
• 1 - Decent mixture of institutions with only a few big players
• 2 - Good mixture of institutions with a lot of big players

R7.7 Project
Road-Map

1 2 -1 -2 1 -2 1 1
• -2 - No roadmap available
• -1 - Rough or short-term roadmap available
• 1 - Roadmap available
• 2 - Roadmap available and mapped to the development tools

R7.8 Code re-
usability

2 2 0 1 1 1 1 1
• 0 - Provides a basis only
• 1 - Some features could be used
• 2 - Most features could be used

R7.9 State of
the Project

1 2 -1 2 2 0 2 0
• -1 - Projects future seems to be questionable
• 0 - Stable but future unclear
• 2 - Stable and promising future

R7.10 Rele-
vant related
projects

1 2 -2 1 -2 0 2 0 • -2 - none
• 0 - Plans only
• 1 - Some use in commercial projects
• 2 - Heavy usage in commercial projects

Table 3.16.: Results for the Development Community group

Notes
• R7.6 Project lines of code has been left out of the comparison due to di�culties in measuring
• For SuSE embedded the Open SuSE Community was inspected
• For QNX, the open source community foundry27 and OpenQNX were examined
Justi�cation for the scoring
• R7.1 - AGL Huge Communtiy, 100+ company members (incl. 10 OEMs), big number of
contributors
• R7.1 - Apertis Only a few number of members, all by one company
• R7.1 - Ubuntu Core While the Ubuntu Community is huge, the Ubuntu Core Community is
rather small (about 1000 users)
• R7.1 - SuSE embedded Well sized Community (about 40000 users)
• R7.1 - Legato Decent sized Community (thousands of users on the forum, but only 21 con-
tributors), strong dependency to SierraWireless
• R7.1 - QNX Well sized Community (more than 25000 users)

48

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• R7.1 - Android Automotive Almost 400000 users on the forums and a huge number of
contributors on Android itself, however only a few seem to actually look on Automotive
• R7.2 - AGL, Ubuntu Core Really active (6.7 posts / day for AGL plus active mailing lists
and very active IRC, 48 posts / day for Ubuntu)
• R7.2 - Apertis Almost dead (only 2-4 mails / month)
• R7.2 - SuSE Embedded, QNX Quite lively (25 mails / day for SuSE embedded, approx. 20
posts / day for QNX)
• R7.2 - Legato, Android Automotive Medium activity for Legato (9 topics / week) High
activity for overall Android (post every 2 minutes) but only very few are for Automotive
• R7.3 - SuSE Embedded, QNX Dedicated support engineer is part of the contract
• R7.3 - AGL, Ubuntu Core Responses often within minutes
• R7.3 - Apertis Responses take days if not weeks
• R7.3 - Legato Most responses came after a couple of hours
• R7.3 - Android Automotive Not measureable due to the lack of a speci�c Automotive
community
• R7.4 - Apertis, Ubuntu Core, Legato, QNX All are quite structured but lack of an active
management (Apertis) or the management is intransparent (Ubuntu Core, Legato, QNX)
• R7.4 - AGL Well structured with dedicated management boards
• R7.4 - SuSE Embedded, Android Automotive Well structured but with some doubts re-
garding management transparency
• R7.5 - AGL More than 100 partners, mainly from industry, big players such as Toyota, Denso
or ARM
• R7.5 - Apertis, QNX Run by a single institution
• R7.5 - Ubuntu Core, SuSE Embedded, Android Automotive Good mixture of companies
• R7.5 - Legato Mainly run by SierraWireless, some contributions from di�erent institutions
• R7.7 - AGL Long-term roadmap available and mirrored to JIRA
• R7.7 - Apertis Rough and outdated roadmap only
• R7.7 - Ubuntu Core, Legato No roadmap available
• R7.7 - SuSE Embedded, QNX, Android Automotive Roadmap available
• R7.8 - AGL Promises to provide 70-80% of the platform
• R7.8 - Apertis Provides a basis only
• R7.8 - Ubuntu Core, SuSE Embedded, Legato, QNX, Android Automotive Provide
many useful features
• R7.9 - AGL, Ubuntu Core, SuSE embedded, QNX All stable and in commercial use
• R7.9 - Apertis Implemented features seem to be quite mature, however there are major doubts
on the further life of the project
• R7.9 - Legato, Android Automotive Stable but rely on a single institution
• R7.10 - AGL, QNX Heavy usage in the automotive industry
• R7.10 - Apertis, SuSE Embedded none
• R7.10 - Ubuntu Core Used in industrial automation projects (e.g. by DELL)
• R7.10 - Legato, Android Automotive Some plans to introduce it into commercial projects
exist (e.g. VW)

49

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Overall Results

The following paragraphs try to summarize the detailed examination results given above.
Automotive Grade Linux is exceptionally strong when looking at the developer community group. It
o�ers a huge and vibrant community alongside with a stable governance process and feature roadmap.
It also o�ers a good amount of features and ran stable throughout all our tests. While o�ering an
app runtime environment with UI support and isolation features as well as an free and open source
deveopment kit for creating apps, it lacks of a binding to an app store implementation. In summary,
the verdict regarding AGL can be formulated as follows:

Automotive Grade Linux is the reference in terms of community and organization with an
extensive automotive feature set but lacking of an app store.

Apertis on the other hand lacks an active development community. Furthermore, the number of
features implemented is for example in comparison to AGL rather low. While it o�ers an application
runtime and a quite well implemented and documented app development environment, the app store
stated as a feature was unavailable at the time of the study execution. Finally, the examined image
for the Minnowboard ran quite stable. As a summary, this leads to the following verdict:

Apertis has virtually no community. While it is aimed at the automotive infotainment
use-cases it does not include much automotive-speci�c functionalities.

Ubuntu Core is developed to be used as a headless operating system within the IoT. This leads
to the fact that the set of features focuses more on things like updatability and security rather than
on automotive speci�c issues. It is a stable and responsive platforms with a well implemented app
runtime environment in form of a snap system that is already connected to an app store environment.
However, regarding the app development the support and documentation is rather limited. The li-
cense situation is quite well �tting to the APPSTACLE requirements. The developer community
highly depends on Canonical but is quite active and responsive. These facts lead to the following
verdict:

Ubuntu Core is a reasonable Linux System geared for embedded usage that put a lot of
thought into updating and deployment of the platform and apps. Small, but active

community, yet no relation to automotive.

Just as Ubuntu Core, SuSE embedded tries to position itself as a base OS for the IoT. In this
regard, it focuses on security and updatability but lacks of speci�c automotive features. During our
examination, the Raspberry PI 3 image ran stable but was not very responsive. SuSE embedded
o�ers an app runtime environment with isolation and UI support. Additionally, the system is one
of the few that inherently comes with multi-user support. However, it does not o�er an app store
and the development environment is under a commercial license by SuSE. This issue in conjunction
with the fact that SuSE charges their customers per device sets a high commercial barrier for being
used within APPSTACLE. In summary, the verdict regarding SuSE embedded is formulated as follows:

SuSE Embedded is a trimmed down desktop/server version. The business model is not a
good �t for APPSTACLE. It is based on customization for a customer by SuSE and

licensing fees.

The outstanding feature of Legato is de�nitely its well maintained and documented app develop-
ment environment. Additionally, it o�ers a well-featured app runtime environment as well as a good

50

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

set of features for ex-vehicle communication. On the other hand it lacks additional automotive fea-
tures especially regarding in-vehicle connectivity and an app store. While the licenses used are a good
�t for APPSTACLE, the development community is rather small. Summarizing all these �ndings the
verdict on Legato is as follows:

Legato has an excellent App Development Kit and platform documentation. Hardware
support is limited and the community is still small.

QNX has turned out to be a average in most of the requirements. This applies for example to
the platform features group or the runtime experience. While it o�ers a well suited app runtime
environment with features like isolation or permission management, the development environment
(which is also well maintained and feature-rich) is subject to a charge. The same applies to the
app store and the OS itself. Surprisingly, the QNX community is rather large and active taking into
account that it is a commercial product. Bringing all these �ndings together, the verdict regarding
QNX is formulated as follows:

QNX is a closed, proven platform that is already used in vehicles from various OEMs.
There are safety certi�ed and real-time capable QNX derivatives. It is a commercial

platform that requires licenses.

Android Automotive pro�ts from many features of its parent project Android OS. This applies
especially to the app runtime, app development and app store groups. Admittedly, these services do
not come for free as selling apps over Google's play store is subject to a 30% revenue share. In other
areas the automotive feature set is rather small and often lacks a good documentation. While all
licenses are OSI approved, there is a charge per device if the more or less unavoidable play services
(e.g. play store) are integrated. Additionally, trademark issues have to be clari�ed when using it
in a commercial product. Finally, while the Android developer community is huge and very active,
it is hard to �lter out the the actual e�ort taken to develop the automotive features as there is no
clear line of demarcation between Android itself and its automotive derivate. In summary, the verdict
regarding Android Automotive can be formulated as follows:

Android Automotive is an automotive focused extension of the Android ecosystem.
Currently it is hard to see what is only in the architecture and what the implemented

scope is. The relation to Android and Android Auto is not quite clear.

Figure 3.4 illustrates the strengths and weaknesses of the di�erent candidates with regard to the
seven requirement groups. Examining the Platform Feature group, although the candidates are quite
di�erent in their feature sets, most of them are quite close together when it comes to the overall
scores (between 9 (QNX and Andorid Automotive) and 13 (Legato) points). Only Apertis is a bit
behind with only 6 points. The Platform Runtime analysis on the other hand shows no big di�er-
ences between the candidates (between 1 point for SuSE Embdedded and 3 points for Ubuntu Core).
Examining the App Runtimes, three candidates stand out: AGL (13 points), Android Automotive
(12 points) and SuSE Embedded (11 points) o�er the richest feature set. On the other end, QNX
has a long list of shortcomings (5 points). Di�erences between the candidates are very apparent
regarding the App Development and SDK group. Here, two candidates do really stand out (Legato
with 36 and AGL with 35 points), followed by Apertis (28 points), QNX (25 points) and Android
Automotive (21 points). At the bottom of the list, Ubuntu Core (14 points) and SuSE Embedded (10
points) do lack a lot of the bells and whistles the other candidates o�er. The App Store evaluation
showed that three of the candidates do not o�er an App Store at all and hence did not receive any
points. The most convenient and advanced solution is o�ered by Ubuntu Core (10 points), followed
by Apertis and Android Automotive (4 points each) and QnX (1 point). Investigating the results

51

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

of the Licensing examination, one can separate between two groups: the ones that are proprietary
or under strong commercial in�uence (Android Automotive (6 points), SuSE Embedded (7 points),
QNX (8 points)) on the one hand, and those that have a more open character (AGL (20 points),
Apertis (17 points), Ubuntu Core (16 points) and Legato (14 points)). The last requirements group
Development Community again showed quite some di�erences between the candidates. On the lower
end, Apertis (-24) and Legato (-5) even received a negative scoring while AGL on the other end of
the scale stood out with 30 points. In the midrange SuSE embedded (16 points), Ubuntu Core and
Android Automotive (12 points each) as well as QNX (10 points) are quite close together.

Figure 3.4.: The results of the di�erent requirements groups

The results of the di�erent requirement groups are summarized and illustrated in Figure 3.5. While
there is one clear leader regarding the overall points (AGL with 112 points) and Apertis clearly ending
up in the last place (41 points), the remaining candidates are quite close together: Ubuntu Core (76
points), Legato (68 points), Android Automotive (66 points), QNX (60 points) and SuSE Embedded
(57 points).

Figure 3.5.: The overall results of the platform study

52

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.2. Automotive APIs

3.2.1. Scope

This chapter introduces and discusses current approaches to create an Application Programming
Interface (API) for vehicles. All of them try to achieve this by (a) merging the potentially very
complex device and network structure of a car into a single virtual device and (b) hiding the di�erences
between manufacturers, models and makes behind a common interface. On the other hand these
interfaces strongly di�er in their scope (data-subset or use-case), technological approach and creators.

3.2.2. Overview

AUTOSAR
AUTomotive Open System ARchitecture (AUTOSAR) is a cooperation between car manufacturers,

OEMs and tool manufacturers and de�nes a software development paradigm for Electronic Control
Units (ECUs) in the automotive domain. In order to separate the development process of application
software from the chosen ECU hardware platform, AUTOSAR is introducing a layer model with the
three layers Application Software, Runtime Environment and Basic Software (illustrated in Figure
3.6).

Figure 3.6.: The AUTOSAR Layer Model [11]

The top layer is formed by the application software. It is divided into software components, each
of which realizes a part of the application and can consume and provide data via so-called ports. Any
communication that does not take place via port connections is forbidden. A port is classi�ed via a
port interface (here referred to as interface). Two ports can only be connected to each other if both
ports use compatible interfaces.
Two important communication paradigms, that are selected by interfaces, are client-server and

sender-receiver communication [11]. For client-server communication, a server component provides
functions (C, C++) which can be called by clients. A 1:n communication is also possible (i. e. a
server can provide its functionality to several clients). In sender-receiver communication, a sender
provides data that can be consumed by receiver components. Both 1:n and m:1 communication is
possible here (i.e. a date can be consumed by several components or several senders provide a date
for one receiver concurrently). Many-to-many communication is not provided.

53

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

The lower layer consists of the basic software and contains the hardware drivers, the operating
system and the communication stack. The communication stack handles communication from and
to other ECUs that are connected via network interfaces like CAN, LIN, Flexray, automotive Ethernet,
etc.
All communication, whether between software components on the upper level or between software

components and basic software on the lower level, is realized via the runtime environment (RTE),
which forms the middle layer. The RTE speci�cation document [12] de�nes a schema for API func-
tions (C, C++), which are usually generated by code generators of the AUTOSAR modeling tools
according to the modeled communication between software components and basic software. All
communication must take place via the (generated) API functions. Other communication is not per-
mitted. Likewise, all communication interfaces must be de�ned at the time of development, which
makes it impossible to dynamically extend the software architecture at runtime.

GENIVI Common API
The CommonAPI is an abstract API that intends to enable service-oriented communication in

distributed systems [49] . It is an open source project within the GENIVI alliance and provides im-
plementations in C and C++. GENIVI makes strong use of an interface description language called
Franca IDL. The basic idea behind the GENIVI CommonAPI is to describe interfaces at development
time using Franca IDL and use the tools provided in order to generate the code of the actual in-
terface. In order to create the Franca IDL descriptions, tooling such as an Eclipse-based editor [40]
is available. The two main communication technologies on which CommonAPI is focussing are the
service-oriented, ethernet-based, automotive protocol SOME/IP and the inter process communication
mechanism D-Bus.

GENIVI Vehicle Signal Speci�cation
The GENIVI Vehicle Signal Specifcation (VSS) is a specifcation of an in-vehicle data interface. It

was created at the GENIVI consortium mainly to overcome the lack of a standardized interface for
vehicular data [45]. In order to create a technically simple, lightweight and easy to change interface,
the VSS follows a tree approach organizing the di�erent signals in branches (illustrated in Figure
3.7). This allows to
• work with subsets of the overall speci�cation (e.g. if some sensors are not present in a speci�c
car)
• extend the speci�cation without versioning overhead (e.g. by adding additional branches or
signals)
• enrich the interface by non-standardized additions (e.g. OEM speci�c interfaces)
• discover the actually available signals and branches online
The VSS hereby adopts elements from other GENIVI standards like for example the set of signal

types from FrancaIDL [77]. The VSS is described using a single YAML �le including all branches and
signals as self-contained list elements.

W3C Vehicle Information Services Speci�cation
The W3C Vehicle Information Services Speci�cation (VISS) is a WebSocket-based interface spec-

i�ed by the World Wide Web Consortium [158]. This speci�cation is the successor of two former
speci�cations by the W3C Automotive Working group, namely the W3C Vehicle Signal Server API
and the Vehicle Information Access API. It is meant to be an abstraction layer between the automo-
tive domain and all of its speci�cs and the web domain. Therefore, it provides the content of the
GENIVI Vehicle Signal Speci�cation (VSS) from the automotive domain behind a WebSocket-based,
service-oriented API. Additionally, the VISS adds features like a discovery mechanism to allow the
detection of available data, a token-based access control mechanism and he introduction of commonly
used access mechanisms such as get and set methods or a publish/subscribe functionality. As an
overall concept, this speci�cation makes use of a so called signal tree approach [142]. This approach

54

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.7.: An excerpt of the Vehicle Signal Speci�cation [77]

does not de�ne a "fat library" containing all interactions and coded functions, but provides a simple
interface with get, set, subscribe and unsubscribe as the only functionality. The data itself is arranged
in a tree style which allows discoverability, di�erent subsets of content and easy extendibility at the
same time. As illustrated in Figure 3.8, the VISS is intended to be used by di�erent types of clients.
On the one hand, it is meant to be used by native applications deployed on the same ECU. On the
other hand, the W3C speci�cation does also envision the deployment of language bindings as clients.
In Figure 3.8, a JavaScript library acts as a client to the VISS and provides the services of the server
via a JavaScript API.

55

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.8.: Overview of the W3C information API structure [158]

On-board diagnosis
While not strictly being an "API", the on-board diagnosis (OBD) interface is one of the most

important interfaces today for accessing vehicular data. The story of the OBD interface started in
1988 when the California Air Resources Board (CARB) launched the �rst stage of its legislation [85].
The very �rst version of the OBD had to monitor emission-related components of the car and to
signal any malfunction using a malfunction indicator lamp. In the second stage (OBD II) introduced
in 1994, the set of functions to be monitored was extended to all of those potentially increasing
toxic exhaust as well as to the monitoring functionality itself. This legislation was adopted by other
administrations as well, e.g. by Europe in 2000. The legislation does not only de�ne the set of data
to be available but also the protocols used to access them (e.g. ISO 14230 (Keyword Protocol 2000)
[139] or ISO 15765 (CAN)) as well as the connector used to access the internal network. While the
legislation itself focuses on data regarding the exhaust system, the OBD II connector slowly became
the most used diagnosis port in the automotive domain. This is due to the fact that the connector,
once integrated into the vehicle, was used by the car manufacturers for additional vehicle diagnos-
tics as well. Due to this development, the data accessible at this connector strongly depends on the
manufacturer and model of the car and only the legislative part is accessible in a standardized way [41].

56

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.2.3. Discussion

As the APPSTACLE project wants to support a manifold list of potential usage scenarios instead of
being restricted to a single use case the shape and extent of the API cannot be tailored but needs to
be open and �exible. Hence, the analysis of the API approaches focuses on the following requirements:

• Flexibility The API should be able to be extended and or tailored.
• Provide Content The API should actually de�ne some content rather than only providing a
technological framework.
• Discovery The API should allow to discover the content actually available at a given instance
of the API.
• High level of abstraction The API should hide the manufacturer, model and make speci�c
characteristics.
• Access Control The API should provide ways to grant or restrict access to speci�c elements.

AUTOSAR is a widely used framework that bene�ts from a high number of software implemen-
tations and tooling solutions. However, AUTOSAR does not de�ne any content available at the
API but restricts itself to creating an API schema instead. Moreover, access control is not directly
integrated and the level of abstraction depends on the actual implementation created on the basis of
the API schema. Finally, there is no discovery mechanism provided by the AUTOSAR RTE.

While the GENIVI CommonAPI provides a widely applicable framework to design and use APIs
alongside with optimal tooling support, it su�ers of several drawbacks, too. First of all it is a quite
static approach that does not allow any changes of the API after development time. Second, Com-
monAPI framework tends to create a signi�cant overhead to the development cycle by requiring
extensive tooling and expecting a high level of understanding from the developer. Finally, Common-
API does not specify any standardized content provided at the API or any additional features such
as access control of data discovery.

The GENIVI Vehicle Signal Specifcation is a very �exible and easy to use interface speci�cation.
Due to being created at GENIVI, it is quite well-known in the automotive industry. Due to its tree
structure, it is very �exible and allows to add discovery functionality. Additionally, it describes the
concrete content behind the interface. However, as VSS is not meant to be used stand-alone but
only as an input for other standards [45], it does not contain actual functions for example to manage
access control.

W3C Vehicle Information Services Speci�cation: The W3C VISS is an interesting approach to com-
bine the automotive world with the web domain. It establishes a bridge between the GENIVI Vehicle
Signal Speci�cation and WebSockets, a commonly used technology in the web. Besides providing
a standardized API, The VISS adds valuable features such as content discovery and access control
mechanisms. Additionally, by making use of the GENIVI Vehicle Signal Speci�cation, it o�ers a set
of available content without creating barriers for OEM speci�c extensions.

While OBD is being heavily used in the automotive industry it does not ful�ll all the requirements
regarding an APPSTACLE API. For example, although it de�nes a rich set of data to be accessed,
it is too much restricted on diagnostic information for combustion engines. Additionally, it is not
�exible in its set of resources nor does it de�ne an access control scheme. Finally, as it is rather
an electrical interface than an API, there is no standardization on how it can be accessed via software.

Besides the in-vehicle API approaches discussed here, some elements of cloud-based APIs could be
considered as well. This includes e.g. scienti�c approaches such as the Common Vehicle Information
Model (CVIM) [119] which de�nes an open and harmonized data model, allowing the aggregation

57

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

of brand independent and generic data sets. Additionally, ISO standards like the Extended Vehicle
(ExVe) [140] which de�ne a complete web interface to exchange vehicular including a rights and roles
concept. Finally, open speci�cations such as the SENSORIS car-to-cloud interface [60] could give
valuable input for the data set actually needed in state-of-the-art applications.

58

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.3. In-vehicle Connectivity

This section provides an overview of the communication protocols that are currently used in the
existing automotive architectures as well as their interconnections in the Electrical / Electronic (E/E)
in-vehicle architecture.

3.3.1. Scope

For the sake of brevity, we restrain the scope only to the protocols that are in use in the network
architecture of modern cars. These protocols also de�ne the in-vehicle communication interfaces for
the APPSTACLE platform (Section 3.1).

3.3.2. Overview

Architecture

Modern automotive embedded systems consist of several subsystems, which are comprised of one
or several Electronic Control Units (ECUs). In turn, the ECUs are made up of a micro-controller
and a set of sensors and actuators. They are able to communicate through the transmission of
electronic or optical signals through a dedicated communication unit. The subsystems that rely on
network communication in automotive systems are divided into �ve main categories: power train,
chassis, body, HMI, and telematics (illustrated in Figure 3.9). Each subsystem uses a di�erent
protocol to communicate, which is selected based on the architectural requirements and the subsystem
functionality. Speci�cally, the powertrain domain is related to the systems that participate in the
longitudinal propulsion of the vehicle, including engine, transmission and all subsidiary components.
This domain is supported by a dedicated subsystem called Drive CAN using the Controller Area
Network (CAN) [18] for data exchange. The chassis domain refers to the four wheels and their relative
position and movement; in this domain the systems are mainly steering and braking. In this subsystem
category we �nd two protocols that are used for high-critical communication, namely CAN and
FlexRay [46], as well as the Local Interconnect Network (LIN) [93] for the lower critical functionalities
(e.g. door locking, window raising / lowering). According to the EAST-EEA 1 project de�nition the
body domain includes the entities that do not belong to the vehicle dynamics (i.e., being those that
support the car's user) such as airbags, wipers, lighting, etc. Today's cars sometimes use two CAN
buses (peripheral CAN and body CAN) which interconnect the ECUs of the comfort domain. The
telematics domain includes the equipment allowing information exchange between electronic systems
and the driver (displays and switches). Such interactions are possible through the infotainment
subsystem that is supported by the MOST protocol [106]. Finally additional peripheral systems (e.g.,
cameras) allow the in-vehicle system to monitor and extract information from its physical environment
through the use of Automotive Ethernet technologies [57]. All the aforementioned systems are
able to exchange data through a central gateway (Figure 3.9) that is able to map (through packet
encapsulation) or forward messages from one subsystem to another.

Protocols

Automotive protocols are classi�ed by the Society of Automotive Engineers (SAE) into four cate-
gories according to the transmission rate and their role in the automotive architecture. Speci�cally,
Class A de�nes the protocols that are used for convenience systems (e.g. lighting, windows, seat
controls) and require inexpensive, low-speed communication. Class B de�nes the protocols support-
ing instrument cluster or vehicle speed communication and require medium-speed communication.

1itea3.org/project/east-eea.html

59

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.9.: Automotive network

Furthermore, Class C is de�ned for real-time control ECUs such as the engine, braking and steer-
by-wire and require high-speed communication. Finally, telematics systems usually require higher
communication speed for multimedia (audio / video) and navigation, and therefore SAE de�ned the
additional Class D communications. All four protocol Class categories are illustrated in Table 3.17
along with the protocols that belong to each category and are used for in-vehicle communication in
terms of their characteristics.

Bus LIN CAN CAN FD FlexRay MOST Automotive Ethernet

Used in Subnets Soft real-time Soft real-time Hard real-time Multimedia Multimedia

Application domains Body Powertrain, Chassis a Chassis, Powertrain Multimedia and Telematics Telematics and active safety

Message transmission Synchronous Asynchronous a Synchronous and Asynchronous Synchronous and Asynchronous Synchronous and Asynchronous

Access control Polling CSMA/CA CSMA/CA TDMA CSMA/CA CSMA/CD

Maximum Data Rate 20 kbps 1 Mbps 10 Mbps 10 Mbps 24Mbps 100Mbps

Protocol Class A BC D D D D

Table 3.17.: Characteristics of the communication protocols

LIN
The most common SAE Class A protocol (transmission speed less than 10Kbit/s) is Local Interconnect
Network (LIN) [93]. LIN is a low-cost serial communication system enabling fast and cost-e�cient
implementation of multiplex systems vehicles networks. It is mainly found in parts of the architecture
where the implementation of higher-bandwidth multiplexing networks is not required. We usually use
it for controlling doors, windows or power seats. LIN has a data transmission rate up to 20Kbit/s
and uses single wire for the connection between the nodes. In addition to using a time-triggered
approach, LIN is a broadcast serial network comprising a maximum of 16 nodes (one master and
typically up to 15 slaves). The scheduling in the LIN bus is done by the system designer during the
development based on the type of message sent by the nodes and is organized in slots based on
message transmission time. The slots are divided into mini-slots in which the master node processes
the schedule for the communication. Figure 3.10 illustrates an example of communication in a LIN
network. In this example the locking system acts as a Master and broadcasts a message to all the ECUs
on the network to request information (as shown in Slot 1), but also to trigger the communication of

60

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

other ECUs between them (e.g. Roof Unit sending a close command to the Window ECU in Slot 2).

Figure 3.10.: LIN system example

CAN
Safety-critical applications on the car such as powertrain require higher bandwidth data transmission
protocols. For this reason SAE de�nes the Class B and Class C protocols where we �nd the commonly
used Controller Area Network (CAN) [18]. CAN was invented by Bosch to resolve the problem of
wiring from point-to-point connections, as the number of ECUs inside the car was growing. To this
end, CAN's purpose was to reduce the number of wires through a serial bus system connecting all
the ECU's. Gradually, its use expanded in the domain of automotive embedded systems, due to the
e�cient, yet simple, Medium Access Control (MAC) mechanism and the ease of deployment it o�ers.
The CAN protocol is de�ned by the communication standards ISO 11898-1 [72] and ISO 11898-2
[73] as CAN 2.0.
Message exchange is handled by the CAN station, which includes all functional units of a Basic CAN

Controller [118], such as the CAN Protocol Controller as well as the hardware acceptance �ltering
mechanism. The CAN Protocol Controller (often referred as CAN Protocol Handler) is responsible
for all messages transferred via the bus.
An example of an automotive system using the CAN protocol is illustrated in Figure 3.11. It

presents a set of automotive control units, such as the engine and traction control systems, that
exchange messages through a serial bus system.

Engine Control!

CAN station 1!

CAN bus!

Airbag Control!

CAN station 2!

Traction
Control!

CAN station 3!

Seat Control!

CAN station 4!

Figure 3.11.: CAN system example

CAN uses the Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) approach in order to
solve bus contentions deterministically. Its protocol stack implements only the physical (PHY) and
the data link (DLL) layers of the OSI reference model, thus reducing the message processing delays
and simplifying the communication software. The physical layer is responsible for data transmission,
the data link layer for managing the access on the bus. CAN is a message-oriented transmission
protocol based on a multi-master access scheme to a shared medium. CAN messages are denoted
as frames and are assigned with a unique identi�er which de�nes both the content and the priority
of the frame. The absence of source or destination addresses facilitates the addition of new devices

61

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

to the network, without stopping its operation. Another advantage is the network multi-casting
capabilities. Additionally CAN also includes an acceptance �ltering mechanism to determine if the
received message on each local reception bu�er are relevant to the speci�c node or not.
The ability to resolve collisions deterministically when more than one CAN station initiate data

transmission simultaneously is one of the protocol's main characteristics. This is accomplished through
the arbitration mechanism, ensuring that only the station with the highest priority frame will transmit
it's data to the bus (Figure 3.12). This process is serial, meaning that the frame's identi�er is trans-
mitted bit-per-bit. The level of the bus will be dominant if at least one CAN station is transmitting
a dominant bit (binary 0). If a station is transmitting a recessive bit (binary 1) and senses the bus at
dominant level, it will immediately halt, since it will understand that it lost the contention. It will only
retry whenever the current frame transmission ends and accordingly senses the bus idle again. An
example of the arbitration mechanism is illustrated in Figure 3.12 where two CAN stations attempt
a transmission on the bus simultaneously, nevertheless Station 1 senses the bus at recessive level and
switches to receiving mode. As Station 2 succeeds, it will continue to transmit its frame.

1 0 0 1 0 0

1 0 0 1 0 0

1 00 1

1 00 1

1 00 1

Arbitration fieldSOF

receiving

0

0

1CAN station 1

CAN station 2

CAN Bus

Figure 3.12.: CAN arbitration mechanism

The identi�er used in the CAN arbitration mechanism is part of the arbitration �eld of CAN
standard frame (Figure 3.13). Additionally, a standard frame CAN allows data transmission of up to
8 bytes.

S

F
O

R

R
T

r
0

field

ACK

field

EOF
11 bit identifier

E
D
I

DLC

Control field

Data field
(0−8 byte)

Arbitration field

(16 bit)

CRC field

Figure 3.13.: CAN standard frame

CAN FD
The growing use of in-vehicle networks and the rising data load are increasing the complexity of CAN
systems nowadays. One of the main reasons behind this is the low bandwidth (1 Mbit/s) and the
limitation in the network length as well as the bus length (e.g., up to 1km with 10kbs bandwidth
and up to 40 meters at 1Mbps bandwidth). CAN FD [19] was introduced in order to ameliorate
the former limitation. Nonetheless, the bandwidth is only increased during the data transmission
period. Depending on the CAN Controller capabilities, transmission speed of CAN FD is much higher
compared to 1Mbit/s in normal CAN high-speed bus. Additionally, the CAN FD data �eld length is
up to 64 bytes long compared to 8 bytes in the normal CAN (Figure 3.14).
FlexRay

To provide communication for safety-critical x-by-wire systems, the FlexRay consortium developed the
FlexRay protocol [46], o�ering higher rates (up to 10 Mbps) as well as bigger frames (up to 254 bytes).
It is mostly found in advanced power train systems, chassis electronics or X-by-wire functionalities
(e.g., steering-by-wire) where communication requirements di�er, especially concerning the latency
of messages or their periodic/sporadic nature.

62

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

S

F
O

E
D
I

r
0

r
1

S
R
B E

I
S

field

ACK

field

EOF
11 bit identifier

Arbitration field

D
E

L

Control field

DLC
(0−64 bytes)
Data field CRC field

(17/21 bit)

Figure 3.14.: CAN FD standard frame

FlexRay has a very �exible architecture with regard to topology and transmission support redun-
dancy since it can be con�gured as a bus, a star or a multistar topology. It allows both asynchronous
transfer mode and real-time data transfer, and operates as a dual-channel system (i.e. to achieve
redundancy), where each channel delivers the maximum data bit rate (10 Mbps). As with CAN, it
operates on the data-link layer and physical layer. FlexRay is based on a time-division multiple access
(TDMA) scheme and organized in communication cycles, which are periodically executed from the
startup of the network until its shutdown. One communication cycle is subdivided into time slots,
in which the information transfer from one sender to one or more receivers takes place. The slots
are allocated at design time. The schedule of a FlexRay cluster determines in which time slots the
FlexRay nodes are allowed to send their frames. FlexRay uses two types of segments to transmit
data, called respectively static and dynamic segment.
The static segment has slots of equal length, where each one (per channel) is exclusively owned by a

speci�c ECU's communication controller for transmission of a frame. In a communication cycle, each
node has exclusive access to transmit the message to the receiver in an assigned time (time-triggered
communication). Figure 3.15 shows an example of FlexRay's static segment with four nodes, where
the ones o�ering critical functionalities are connected to both channels (e.g. Anti-lock braking system
i.e. ABS, Advanced driver-assistance systems i.e. ADAS control) to ensure redundancy and others
with non-critical functionalities are only connected to one of them. Furthermore, according to the
channel they belong to, they are respectively allocated slots to transmit data.

Figure 3.15.: FlexRay Static Segment

The dynamic segment of a communication cycle, a more �exible media access control method, uses
the so-called �exible TDMA (FTDMA) scheme. This scheme is based on byte�ight protocol [BFL]
developed by BMW [15], which is a priority and demand driven protocol. Additionally, the dynamic
segment is used to achieve event-driven (e.g. asynchronous) communication as well as allows the
nodes to transmit data with a variable payload length, sporadic frames, or frames with a period
higher than the communication cycle length. Furthermore, the dynamic segment is subdivided into
minislots, which have only a short duration and allow to distinguish between frames in the dynamic
segment. Similar to the static slots, these minislots can be assigned to frames, but the transmission of
a frame will only be started if at least one node controller has data to send. Otherwise, the dynamic
segment will remain unused. Figure 3.16 provides an example frame sequence that is transmitted
over both channels. As depicted by the �gure the minislot counter in each channel advances only
when there is no frame to be transmitted or a frame transmission has been �nished. This also means
that the minislot number in the two FlexRay channels during the dynamic segment is not the same
in contrast to the static segment.

63

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.16.: FlexRay Dynamic Segment

MOST
To support end-user applications like radio, global positioning system (GPS) navigation, video displays
and entertainment systems, the MOST consortium (involving carmakers and component suppliers)
has de�ned the Media Oriented System Transport (MOST) protocol [106] in 1998. MOST uses
three di�erent bandwidths for data transmission: 25, 50 and 150 Mbit/s. As a multi-point data
�ow system (the streaming data has a source and any desired number of sinks), all devices share
a common system clock pulse derived from the data stream (Figure 3.17). In a vehicle the system
clock is usually located in the head unit of the infotainment system, which is therefore referred to
as TimingMaster. All other nodes are synchronized onto this system clock pulse by means of a
Phase-Locked-Loop (PLL) connection (see Figure 3.17) and are thus referred to as TimingSlaves.

Figure 3.17.: MOST ring

The third revision of MOST 2 has introduced the support of a channel that can transport stan-
dard Ethernet frames and is thus well suited to transmit IP tra�c. Ongoing and future in-vehicle
architectures proceed gradually in the adoption of the automotive Ethernet [57]. The reason behind
this adoption is the need for low-cost and mature technology that o�ers much more bandwidth than
what is available today, which is of interest for infotainment and active safety. Additionally the use
of Ethernet in the communication architecture allows the deployed switches to handle ports having
di�erent speeds.
Automotive Ethernet

Initially in 2008 the �rst version using 100BASE-TX in the physical layer was provided for diagnostics
(using ISO 13400 standard [81]) and code upload. The next and currently used version (from 2015
onwards) supports infotainment and camera-based ADAS using Ethernet Audio Video Bridging (AVB)
[68] and BroadR-Reach physical layer [58]. The third generation of Ethernet (under-development)
from 2020 onwards, gigabit Ethernet, should become the backbone interconnecting most other net-
works, thus replacing today's gateways. Figure 3.18 provides an insight on the interactions between

2http://www.mostcooperation.com/publications/speci�cations-organizational-procedures/

64

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the head unit (i.e. infotainment ECU) and the display or the speaker units through the BroadR-Reach
BCM89200 switch 3.

Figure 3.18.: Automotive Ethernet

In-Vehicle protocols and APIs

Introduction
This chapter shows protocols and APIs, which are in use in the automotive business. For a short
overview only most common APIs and protocols are mentioned here.

CCP
The CAN Calibration Protocol (CCP) is a measurement protocol de�ned by the ASAM (Association
for Standardization of Automation and Measuring Systems). In general the CCP is used for net-
working with the CAN bus. The CCP was developed in the 1990s as a manufacturer-independent
standard for the parameterization of ECUs. At that time, CAN was the only dominant automotive
networking system. The speciality is that the CCP supports �exible access to memory contents.
With the further development of automotive electronics, additional bus systems such as LIN, MOST
and FlexRay have become established in ECU networking. The limitation to the CAN bus pushed
CCP to its limits, which led to the development of a newer protocol. In contrast, the Universal Mea-
surement and Calibration Protocol (XCP) is traded as a follow-up protocol, which can be employed
as well on �eld buses as the CAN bus [24].

XCP
XCP stands for "Universal Measurement and Calibration Protocol" and is a networking protocol de-
veloped by ASAM The primary goal of XCP is connecting calibration systems to electronic control
units (ECUs).
It supports di�erent variety of layers, for example CAN, Ethernet and USB. Therefore it is independent
from which kind of network is used. It is based on the single-master and the multi-slave concept. The
measurement and calibration system becomes the XCP master, while the ECUs become the slaves. For
the con�guration there is an ECU description �le (A2L format) for each slave. Furthermore the XCP
master (for example CANape) is able to communicate with di�erent XCP slaves simultaneously [150].

ASAM MCD MC
In the computer science ASAM MCD MC can be denoted as a middleware. Thus, this describes its
main task. The application areas of this standard are test stand automation, automated calibration

3https://www.broadcom.com/products/ethernet-connectivity/switch-fabric/bcm89200

65

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

and data logging. Typically calibration tools use a MC-server to have a uni�ed access to the data of
an ECU. The ASAM MCD MC set up on the MC-servers. It speci�es the functions of an MC-server.
Furthermore, the MCD provides an API for the client, which is object oriented. The communication
between the MCD and the ECUs is based on CPP or XCP via CAN. The picture below shows how
the MCD sets up on an ECU.
From ASAM MCD's point of view there is the MCD-Device (extern computer), which acts as a mas-
ter. On the other side the ECU acts as a slave. During the development of an ECU there are more
buses that can be used than the CAN. XCP can be used also with the Ethernet, USB or Firewire.
Even though the MCD uses these buses as a �tunnel�, it orients its payload on CAN (8 bytes). The
idea behind the using of di�erent buses during the development relies on reducing the bus load [5].

Figure 3.19.: Interface to the ECUs (for MC-Application) [5]

KWP2000
The KWP stands for �Key Word Protocol 2000�. This protocol is used for on-board vehicle diagnos-
tics. This is used by the OBD. Basically the KWP2000 is used with the K-Line, but nowadays also
with the CAN. It is not depending on the used bus, because it acts on the application layer of the
OSI model. The use cases for KWP are (amongst other things) �ashing, parameterization of ECUs
or read fault memory [156].

UDS
The UDS (Diagnostic Communication Protocol) is an international standard, which is derived from
KWP2000. Basically UDS contacts every ECU in a vehicle, which provides an UDS service. It acts
on the �fth and seventh layers of the OSI model. Therefore UDS is independent from used bus.
Furthermore this protocol enables o�-board diagnostic. For this purpose an extern computer (tester)
connects with the bus system of a vehicle. For example the use cases are to read fault memory or to
update the �rmware via UDS,[157].

66

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.4. Ex-vehicle Connectivity

The technology evolution in automotive vehicles as well as public transportation let to a demand for
smarter mobility solutions. These solutions are focused on several types of V2X communication:
• Vehicle-2-Vehicle (V2V)
• Vehicle-2-Infrastructure/Infrastructure-2-Vehicle (V2I,I2V)
• Vehicle-2-Pedestrian (V2P) / Pedestrian-2-Vehicle (P2V)
• Vehicle-2-Network (V2N) / Network-2-Vehicle (N2V), 5) Infrastructure-2-Network (I2N) /
Network-2-Infrastructure (N2I).

These types along with their interactions are demonstrated in Figure 3.20.

Figure 3.20.: V2X communication types

The units supporting V2X communication are:
• RoadSide unit (RSU): It is connected to road sensors (e.g. induction loops, cameras) and
a local control center, such that it performs actions or exchanges critical information other
vehicles or servers about road or tra�c management.
• OnBoard unit (OBU): The on-board unit (OBU) is a radio built-in vehicle device mounted on
each vehicle that transmits vehicle data (i.e. identi�cation and location) to a transponder. The
OBU itself is a transponder, that is, a data exchange takes place automatically and only on
request of one of the participating devices. It allows Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I, I2V) communications with other OBUs or RSUs.
• Backend server : It is composed by a PKI, tra�c management and roadside unit management
servers, all accessible via the RSU's or cellular base stations.

In order to facilitate this evolution a couple of solutions were de�ned that are split into 3 main
categories:
• 5G radio access technologies: This technology provides wide area, broadband access. The
5G technology is currently in the process of conceptual development and standardization by
the World Radiocommunication Conference (WRC). The 5G technology is expected to have
a speci�c V2X aspect of the 5G technology in a practical scale after 2020. However, in this
document we are leveraging the limited standardization to illustrate conceptually its main scope
and architectural view.
• Pre-5G radio access technologies: Multiple cellular technologies were identi�ed by the ETSI
3rd Generation Partnership Project (3GPP), LoRa Alliance and other organizations, such as
Narrowband IoT [125] , Long Term Evolution for Machines (LTE-M) [124], LoRA are [94]
considered. Even though these technologies are already used in V2P/P2V, the main challenge
when adopting them in other V2X communication types are reliability and safety, which are
currently not addressed in the scope of Low-Power Wide Area Networks (LPWAN). A thorough
view on these technologies as well as their standardization process towards an LTE-V2X concept

67

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

is provided in deliverable D2.1
• Non-cellular technologies providing wireless access: IEEE has de�ned di�erent standards for
wireless communication, such as 802.11ac and 802.11p, however only 802.11p is �exible in
terms of throughput and o�ers higher reliability, even though its maximal throughout is more
limited than 802.11ac (from 3 to 27 Mbps raw data rate). The reason behind this is that
802.11p was designed particularly for for safety-related Vehicular Ad-hoc NETworks (VANET),
including the V2V and V2I/I2V concepts. IEEE 802.11p technology is currently fully speci�ed
and already deployed in di�erent locations.

The following paragraphs start with a description of the scenarios supported by 802.11p communi-
cation and cellular communication. This is followed by a description on both the 802.11p and 5G
technologies. In the scope of this section we focus on these two technologies, because, to the best
of our knowledge, they are considered as the leading candidates for V2X communication. However,
further information about pre-5G radio access technologies is provided in deliverable D2.1.

68

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.4.1. 802.11p / cellular communication scenarios

This paragraph describes the various communication scenarios that are executed through either an
802.11p or a cellular communication channel. These scenarios depend on the type of message that
is communicated. The following sub-paragraphs provide a description per message type.

ETSI safety message communication though 802.11p

Safety messages through 11p (CAM/DENM)

Communication stacks

Test applications

Communication hardware

EU ITS Application IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

BTP

GeoNetworking

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

CAM/DENM

Figure 3.21.: ETSI safety message communication through 802.11p

The set of ETSI safety messages consists of CAM and DENM messages. These messages are
generated by an ITS application targeting the use of the European standard. This application sends
the CAM and DENM messages to the layer with communication stacks. The sent messages already
include the Basic Transport Protocol (BTP) header. The communication stack completes the message
by adding the GeoNetworking header. This header makes sure the message is delivered to the correct
geographical region.
After the message is created completely it is sent to the 802.11p Control Channel. This channel
broadcasts the message to all the vehicles in the vicinity.

ETSI service message communication through 802.11p

The set of ETSI service messages consists of SPAT, MAP and IVI messages. These messages are
generated by an ITS application targeting the use of the European standard. This application sends
the SPAT, MAP and IVI messages to the layer with communication stacks. The sent messages
already include the Basic Transport Protocol (BTP) header. The communication stack completes
the message by adding the GeoNetworking header. This header makes sure the message is delivered
to the correct geographical region.
After the message is created completely it is sent to the 802.11p Service Channel. This channel
broadcasts the message to all the vehicles in the vicinity.

69

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Service messages through 11p (SPAT/MAP/IVI)

Communication stacks

Test applications

Communication hardware

EU ITS Application IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

BTP

GeoNetworking

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

SPAT/MAP/IVI

Figure 3.22.: ETSI service message communication through 802.11p

IP message communication through 802.11p

IP messages are either TCP or UDP messages. These messages are generated by an IP application.
This application sends the TCP and UDP messages to the layer with communication stacks, where
the GeoNetworking header is added. This header makes sure the message is delivered to the correct
geographical region.
After the message is created completely it is sent to the 802.11p Service Channel. This channel
broadcasts the message to all the vehicles in the vicinity.

70

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

IP messages through 11p (UDP/TCP)

Communication stacks

Test applications

Communication hardware

EU ITS Application IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

UDP/TCP message

BTP

GeoNetworking

Figure 3.23.: IP message communication through 802.11p

Message communication through cellular

Messages through Cellular (IP/CAM/DENM/SPAT/MAP/IVI)

Base-station Rx

EU ITS Application

IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

BTP

GeoNetworking

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

Communication stacks

Test applications

Communication hardware

IP message or
CAM/DENM/SPAT/MAP/IVI

message as payload in IP message

Uplink

Cloud servers
Massive processing/

filtering

Base-station Tx

Downlink

Infrastructure

Figure 3.24.: Message communication through cellular

Messages to be sent through the cellular network are IP messages. The message payload can be an
ETSI message (CAM /DENM/SPAT/MAP/IVI) or a custom payload. These messages are generated
by an IP application. This application sends the IP messages to the layer with communication stacks,
where the IP header is added. This header makes sure the message is delivered to the correct cloud
service.
After the message is created completely it is sent to the Cellular stack. This stack sends the message
through the Uplink to a nearby base-station. This base-station is connected to the internet. The
message is sent through the internet to reach the destination could service.
In case the message payload is an ETSI message the ETSI information must be sent to the other
vehicles near the sending vehicle. The cloud service determines the set of vehicles that must receive

71

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the ETSI information and sends an IP message containing the ETSI information to each vehicle.

Message communication through Cellular-V2X Mode 3

Messages through C-V2X Mode 3 (CAM/DENM/SPAT/MAP/IVI)

EU ITS Application

IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

BTP

GeoNetworking

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

Communication stacks

Test applications

Communication hardware

CAM/DENM/SPAT/MAP/IVI message
+ 3GPP type of “GeoNetworking”

dissemination control:
Payload in IP message

Sidelink

Base-station Tx

Transmission mode 3:
Base-station organizes
the communication
slots (less congestions).

Figure 3.25.: Message communication through Cellular-V2X Mode 3

Messages to be sent through cellular-V2X are IP messages containing an ETSI message (CAM/-
DENM/SPAT/MAP/IVI) payload. These messages are generated by an IP application. This appli-
cation sends the IP messages to the layer with communication stacks, where the IP header is added.
A 3GPP type of GeonNetworking dissemination control makes sure the message is delivered to the
vehicles in the vicinity.
After the message is created completely it is sent to the Cellular-V2X stack. This stack sends the
message through the Sidelink directly to the cars in the vicinity.
The Cellular-V2X stacks runs in Mode 3. In this mode, all communication is performed in a syn-
chronous manner. Timing information is provided by the network to determine the timeslots in which
transmission takes place. So, although there is direct communication between vehicles, the connec-
tion to the network is still needed to enable communication.

72

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Message communication through Cellular-V2X Mode 4

Messages through C-V2X Mode 4 (CAM/DENM/SPAT/MAP/IVI)

EU ITS Application

IP Application

802.11p
Control channel

11p
MAC

11p
PHY

802.11p
Service channel

11p
MAC

11p
PHY

Cellular stack

36.xxx
series
MAC

36.xxx
series
PHY

BTP

GeoNetworking

UDP/TCP

IP

C-V2X stack

36.xxx
series
MAC

36.xxx
series
PHY

Communication stacks

Test applications

Communication hardware

CAM/DENM/SPAT/MAP/IVI message
+ 3GPP type of “GeoNetworking”

dissemination control:
Payload in IP message

Sidelink

Transmission mode 4:
Fully distributed communication.
Each node only needs external time source.
Default time source is GNSS.
Backup time source is communication
network.

Figure 3.26.: Message communication through Cellular-V2X Mode 4

Messages to be sent through cellular-V2X are IP messages containing an ETSI message (CAM/-
DENM/SPAT/MAP/IVI) payload. These messages are generated by an IP application. This appli-
cation sends the IP messages to the layer with communication stacks, where the IP header is added.
A 3GPP type of GeoNetworking dissemination control makes sure the message is delivered to the
vehicles in the vicinity.
After the message is created completely it is sent to the Cellular-V2X stack. This stack sends the
message through the Sidelink directly to the cars in the vicinity.
The Cellular-V2X stacks runs in Mode 4. In this mode, all communication is performed in an ad-hoc
manner. As a result, no network connection is required and all communication is directly between
vehicles.

73

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.4.2. 802.11p

Hardware architecture

The hardware of the 802.11p module can be divided into several functional blocks. These blocks are
listed in Figure 3.27. Interfaces between these blocks are indicated using dashed vertical lines. The
horizontal solid line indicates there are two di�erent antenna/modem con�gurations:
• Combination of one antenna (roof antenna) and a modem.
• Combination of two antennas (roof and mirror antenna) and a modem.

Figure 3.27.: 802.11p functional blocks

Interfacing to the Appstacle in-vehicle platform can be done using USB or Ethernet, where Ethernet
is preferred.

Software architecture

A wide variety of ETSI standards are related to the 802.11p communication. Figure 3.28 presents an
overview of these standards.

Figure 3.28.: Overview ETSI standards

74

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

The list below contains short descriptions on the most important standards:
• EN 302 663 ITS G5 Access Layer: This standard describes how the network is accessed. It is
basically a mapping of 802.11p incorporating European speci�c changes.
• EN 302 636-4-1/2 GeoNetworking: This standard describes geographically bound communica-
tion, for example used to exchange information on road conditions.
• EN 302 636-5-1 BTP (Basic Transport Protocol): This standard describes the format of the
low-level packets which are used as containers for the higher-level messages.
• EN 302 637-2 CAM (Cooperative Awareness Messages): This standard describes the format
of the messages that are used to publish vehicle information. These messages contain current
position, speed, direction etc. They are sent at a frequency from 2Hz to 10Hz, using a single-
hop broadcast.
• EN 302 637-3 DENM (Distributed Environmental Noti�cation Message): This standard de-
scribes the format of the messages that are used in case of special occasions, for example
accidents and road condition warnings. These messages are sent based on events, using multi-
hop or GeoNetworking broadcast.
• TR 102 863 LDM (Local Dynamic Map): This technical report describes the conceptual data
store that is located within an ITS station. It contains information that is relevant to the safe
and successful operation of ITS applications. Data can be received from a range of sources
such as vehicles, infrastructure units, tra�c centers and on-board sensors. The data range from
very static to highly dynamic data (road topography, static speed limit, signs and signals, road
works, temporary speed limits, current information on vehicles or infrastructure nearby).
• TS 101 539-1 RHS (Road Hazard Signaling): Road Hazard Signaling is one of the applications
within the de�ned Basic Set of Applications (BSA). This document describes the application
requirements of the application. Goal of the application is to present a warning between 6 and
30 seconds before actual collision.
• TS 101 539-2 ICRW (Intersection Collision Risk Warning): Intersection Collision Risk Warning
is one of the applications within the de�ned Basic Set of Applications (BSA). This document
describes the application requirements of the application. Goal of the application is to present
a warning between 2 and 6 seconds before actual collision.
• TS 101 539-3 LCRW (Longitudinal Collision Risk Warning): Longitudinal Collision Risk Warn-
ing is one of the applications within the de�ned Basic Set of Applications (BSA). This document
describes the application requirements of the application. Goal of the application is to present
a warning between 2 and 6 seconds before actual collision.

Through the NXP/Cohda Wireless MK5 module an implementation of most standards is provided.
No implementation is provided for the applications as well as the LDM (Local Dynamic Map) since
these are customer speci�c.

75

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Software deployment

The deployment of the various parts of the software onto the hardware block is described in Figure
3.29.

Figure 3.29.: Deployment of software on the 11p hardware

76

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

802.11p communication channel

All 802.11p communication evolves around the 5.9 GHz frequency. Several channels are de�ned,
where each channel is allocated to a speci�c type of ITS applications. The types are:

1. ITS-G5A: ITS road tra�c safety applications.
2. ITS-G5B: ITS non-safety road tra�c applications.
3. ITS-G5D: Future road tra�c applications.

An overview of the type of channels allocate in the 5 GHz frequency range is presented in Figure
3.30. Details on the allocated channels types are presented in Figure 3.31. The maximum limit of the
mean spectral power density per channel is presented in Figure 3.32. In this �gure, the name of each
channel re�ects the intended use: A CCH channel is a control channel used to communicate tra�c
control messages. A SCH channel is a service channel used to communicate tra�c service messages.
The service channels are likely to be used to communicate the IP messages. All the channels listed
in Figure 3.32 will use a default data of 6 Mbit/sec, except for SCH2 which has a default data rate
of 12 Mbit/sec. Figure 3.30 to Figure 3.32 are present in the ETSI standard: "Draft ETSI EN 302
663 V1.2.0 (2012-11)".

Figure 3.30.: Overview of channel types allocated for the 5 GHz frequency range

Figure 3.31.: Details of channel types allocated for the 5 GHz frequency range

Figure 3.32.: Maximum mean spectral power per channel

77

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.4.3. 5G

5G is the next generation of mobile communication technology. It is expected to be de�ned by the
end of this decade and to be widely deployed in the early years of the next decade. As opposed to
earlier 3G and 4G technologies, 3GPP conceptualized 5G to be more than another mobile broadband
connectivity, covering a variety of use-cases and industries.
5G was initially based on the conceptual composition as well as evolution of cellular technologies.

This is because the di�erent technologies have communication requirements, that are focused in a
local (LAN) or wide area network (WAN) communication.
In particular, IEEE's 802.11p has been developed to support di�erent types of wireless communi-

cations (e.g. PAN, LAN), but since it is based on CSMA/CA its performance degrades quickly as
network load increases. This happens because a high number of transmitting stations will increase
the number of collisions on the communication medium. Additionally, since it is was designed for
short-range transmissions (transmission range up to 1km), many vendors introduce a multi-hop func-
tionality to increase the transmission range. An example of multi-hop functionality is introduced
in the European Cooperative Intelligent Transport System (C-ITS) protocol stack [44] named as
GeoNetworking. Furthermore, another technology that could not support as standalone broadband
(e.g. WAN) communications is LTE [133]. The main drawback of this technology is that every
transmitted packet must traverse the infrastructure, meaning that each infrastructure failure will
have a strong impact on connectivity of the entire network. Furthermore, even though broadband
connections can be supported in LTE, scenarios where the infrastructure is not available due to out-
of-coverage are also quite probable. Finally, since LTE was designed to use radio resources in order
to allow broadband communication, its extension in V2X connectivity where smaller data packets
and higher bandwidth are required is suboptimal in terms of consumed resources still remains a great
challenge.

Figure 3.33.: 5G use case categories [74]

For these reasons, the radio communications research community investigates currently on several
scenarios to enhance the characteristics cellular technologies by leveraging the 5G standardization, in
order to achieve �ve main objectives: 1) lower power consumption in the individual devices, 2) smaller
end-to-end latency in communication, 3) better performance than wireless technologies [123] 4) in
and out-of coverage communication support and 5) security-by-design in the system. Speci�cally,
a key feature of 5G is that it can use more frequency bands than 3G and 4G, and has a focus
on low latency so that messages can be sent to any other station on the network quickly. Figure
3.33 introduces the 5G technology aspects according to the World Radiocommunication Conference
(WCC). 5G is foreseen to integrate a mix of Radio Access Technologies (RATs) enabling a combination
and cooperation of various RATs, some already existing (e.g., Narrowband IoT, LoRa, LTE-M), others
to be designed (e.g., future releases of LTE).
Even though cellular V2X communication is quite promising in terms of spectrum and energy

78

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.34.: Key capabilities per use case category [74]

e�ciency as well as latency and mobility, the current state of cellular transmissions is still on the
process of V2X deployment in release 14. This is because, only release 13 is being deployed and tested
currently Figure 3.35). Therefore, as the integration in V2X context is not tested yet, a �rst challenge
lies in respecting the technological requirements that we set. On top of that, another challenge is
derived from the 3GPP speci�cation release 15 on 5G (scheduled for September 2018) itself. More
speci�cally, this release is divided into two parts: the 5G part and the second LTE-V2X part, which
incorporates improvements on release 14 LTE-V2X that are however not backwards compatible with
it. This is due to the 5G New Radio technology (NR), which will be introduced by release 15. To this
end, 3GPP has set a goal for the rapid completion of a �rst release of 5G NR, which will be followed
as well by the LTE-V2X release or so called V2X phase 3 (or even eV2X). This hampers the release
14 LTE-V2X adoption by automotive manufacturers. Moreover, a third and less critical challenge lies
in the impact of mapping the new technology into each ITS stack layer of the ETSI ITS reference
architecture.

Figure 3.35.: 3GPP roadmap towards 5G

Given all the aforementioned challenges, in the scope of this document we restrain the focus to
the standard de�nition for release 14 LTE-V2X, which has been already released as of March 2017.
Speci�cally, in its release 14 3GPP denotes that that the new short-range radio interface (PC5)

transport support for V2V services is of highest priority. PC5 is based on 3GPP's Release 12 [92]
proximity services communications (Proximity Service or simply " ProSe") feature for Device-to-
Device (D2D) in/partial and out of coverage communication. The reason behind the high priority is

79

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

that it allows the support of V2V communication, without the need of going through a base-station.
However, it also allows user-to-user (Uu) network communication modes, where the base-station may
assist the communication. Figure 3.36 illustrates all the above modes according to the communication
types that were introduced in Figure 3.20. This Figure illustrates the two modes as described in release
14 and distinguished as a) Mode 3 and b) Mode 4, where:

Figure 3.36.: V2X Cellular communication for the communication types of Figure 3.20

1. Mode 3 is the base-station assisted Uu mode. In this mode each node needs to be connected
through the base-station to the network. Although the link to the network is not used to do the
actual communication the link is used to determine the communication timing and allocation
of communication resources (e.g. which frequencies to use). Mode 3 supports V2P/P2V
communication types, covering LTE-based communication between a vehicle and individual
devices (e.g. smartphones or tablets), as well as V2I/I2V and V2N/N2V communication types
covering LTE-based communication between a vehicle and RSUs / networks. This mode uses
the existing LTE Wide Area Network (WAN) and is suitable for more latency-tolerant use cases
(e.g., situational awareness, mobility services). Furthermore, Mode 3 uses the LTE operator
spectrum.

2. Mode 4 is the standalone V2V mode through direct PC5 interface between the individual
vehicles. In this mode no connection through the base-station to the network is required. This
mode is suitable for proximal direct communications (hundreds of meters) and for V2V safety
applications that require low latency (e.g. ADAS, situational awareness) and can work both in
and out of network coverage. In contrast to Mode 3 which uses the operator spectrum, the
PC5 mode may be deployed in a separate spectrum meant for direct communication for V2X
applications.

It is also important to note that modes 1 and 2 were initially de�ned by 3GPP's release 13 and
included the introduction of the PC5 communication interface for in and out of coverage respectively.
Although the de�nition of both modes is stable deployment details are not speci�ed yet and are speci�c
to the deployment and testing setup of the individual network providers that will start once the LTE-
V2X modules are ready (approximately in the end of 2018). Moreover, deployment and testing setup
may have a potential impact on mode 3.
An important area that should be considered both in mode 3 and mode 4 operations is that devices

that are subscribed with one operator should still be able to communicate and share information with
devices subscribed with another operator. In the case of common spectrum for V2X, this operation
is straightforward. However, it is expected that some agreement between operators with regards to
spectrum usage will be necessary.
Another aspect of the cellular-based V2X system de�ned in 3GPP for LTE and 5G is that is meant

80

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

to reuse the service and application layers already speci�ed by the automotive community, such as
the Society of Automotive Engineers (SAE) International. To this end, LTE V2X is also provisioned
to support the SAE J2735 [59] V2X-speci�c message types. These types de�ne information or
safety-related messages (e.g. alerts), such as the basic safety message (BSM), which broadcasts the
vehicle state to provide by-lane target classi�cation for enhancing advanced driver assistance systems
(ADAS).
Overall, LTE-V2X technology as of 3GPP's release 14 is a pre-mature technology for the adoption

in the automotive industry, as LTE was not designed for safety-critical applications. Instead its focus
was on for cellular and mobile devices that are not meant to last long (maximum time 3 years), as
opposed to the life-cycle of automotive vehicles that is approximately 15 to 30 years and should be
robust, reliable and mature. However, a tremendous amount of e�ort is being made currently by
3GPP to adapt and improve the proposed LTE-V2X concept by December 2018 (release 15 date).
In deliverable D2.1: "SotA Research with regard to Car2X Communication, Cloud and Network

Middleware and corresponding Security Concepts" we focus on providing in-depth information on the
reference architecture as well as network layers of 5G and pre-5G communication technologies up to
3GPP's release 14.

81

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.5. Intrusion Detection Systems

This section provides an overview of the existing techniques and methods to monitor the in-vehicle
systems and detect miscon�gurations and attack/threat scenarios through Intrusion Detection Sys-
tems (IDS). To this end, it �rst presents the scope as well as the role of intrusion detection in the
APPSTACLE project. Then, it continues with an analysis of the previous work in in-vehicle intrusion
detection systems and �nally concludes by discussing the existing gaps and research directions that
will be considered in the project.
Opening automotive systems via Car-to-X connectivity and extending them by application runtime

environments as planned in APPSTACLE raises new threats with respect to targeted attacks on these
systems. Here, security incidents might compromise safety and, thereby, result in enormous �nancial
cost or even danger of death. Thus, automotive security solutions are fundamental to the success of
the APPSTACLE platform. Incidents like the prominent Jeep Hack 4 have shown that this aspect is
only regarded to a limited extend in the automotive domain today.
In particular, one of the vital security-related challenges to solve in in-vehicle systems is the lack

of integrity and authentication, rendering them vulnerable to injection and tampering attacks. Data
authentication usually involves heavy cryptographic computations complicated to perform inside the
car due to the real-time constraints and the limited ECUs' resources. Nilsson et al. proposed an
e�cient delayed data authentication using compound Message Authentication Codes (MAC) [112].
Another idea to guarantee authentication is to look for means to assess the legitimacy of ECUs.
One approach [54] is to identify these units with certi�cates and to create trusted communication
groups, guaranteeing that only authentic controllers are able to be part of these closed communication
groups. In the same fashion, Oguma et al. proposed an attestation based security architecture [115]
for in-vehicle systems. A �master ECU� will act as a veri�cation server, distributing cryptographic
keys to ECUs and ensuring their trustworthiness. Finally some other e�orts have been made towards
hardware-based attestation, which can be leveraged by using trusted computer platform containing
a special hardware component on its chip, called the �Trusted Platform Module� (TPM). Its role is
to �establish a chain of trust through the basic input/output system (BIOS) to the operating system
(OS)� [117].
However, the applicability of these approaches to productive automotive systems is still unclear as

not all of them integrate easily within the vehicle. Furthermore, regarding the safety-critical nature of
automotive systems an additional line of defense is required. Approaches representing such a second
line of defense may cope with attacks that bypass security measures like the ones mentioned above.
A prominent security measure to cope with these challenges are automotive Intrusion Detection

Systems (IDS) [62]. According to the National Institute of Standards and Technology5 (NIST)
Intrusion Detection can be de�ned as �the process of monitoring the events occurring in a computer
system or network and analyzing them for signs of possible incidents� [130]. In our context incidents
relate to any events compromising the con�dentiality, integrity, or availability (CIA) of an automotive
system or any attempts to bypass its security mechanisms [13]. This monitoring process can be
automated by using an intrusion detection system (IDS) which identi�es eventual incidents.
Upon detection the system will generate a response, which can be categorized as passive or active

response [13]. An active response will try to mitigate the incident by, for example, collecting additional
information about the attacks, deterring the intruder by terminating her connection and recon�guring
the other network and security devices (e.g., router and �rewall) to block further packets originating
from the malicious source IP address. An IDS responding in a passive manner will solely report
the o�ense, by simply notifying the system administrator or the incident response team with, for
instance, a pop up on their monitoring screen or an SMS, and leaves the next actions to be taken
up to them. The �Intrusion Detection System� generally implies passive response while the term
�Intrusion Prevention System� has been coined to di�erentiate systems supporting active response.

4https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
5www.nist.gov

82

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Even though there seems to be no clear distinction between these two terms in the literature and on
the market, we can use the term IDS to address these systems in a generic fashion. Further in the
document we will explicitly mention when an IDS possesses prevention capabilities.
In accordance to [13] and many other publications we distinguish between host-based (HIDS)

and network-based IDS (NIDS) approaches. They di�er mainly in the data source they monitor
and analyze. A HIDS collects information and monitors events occurring within a single system.
By analyzing the diverse data gathered such as system logs or �le accesses and modi�cations, it
can identify precisely the ongoing activities on that host and determine the user(s) and process(es)
involved in an attack on the system [13]. A NIDS monitors network packets for a speci�c part of the
network [130]. Moreover, it protects end-points by analyzing the tra�c going to and coming from
them. Generally speaking an IDS architecture contains several sensors deployed at strategic points
on the network where they monitor and analyze tra�c and report attacks to a central management
console [13].
Both IDS approaches complement each other in a collaborative manner. For example, many HIDS

can cope with encrypted tra�c, whereas, this is problematic for NIDS. The underlying reason behind
this is that data is decrypted upon reception at the host, which enables the HIDS to work on this
decrypted data. At the same time, a HIDS is harder to manage (one IDS per host is required). It
lacks the overall context and is blind to network attacks. This is where the NIDS comes in place. A
NIDS can detect network-speci�c attacks and has no impact on the performance of the host [37].
In the following, we elaborate on application-based IDS, which is a subset of HIDS (cf. Sec-

tion 3.5.1). Application-based IDS focus on the execution of applications and the data they gener-
ate. This makes same a promising solution in the context of APPSTACLE, where applications are of
particular interest. Thereafter, we refer to network-based IDS and their application in the automotive
context (cf. Section 3.5.2).

83

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.5.1. Application Intrusion Detection Systems

This section introduces the state-of-the-art of application-based Intrusion Detection Systems. General
purpose host-based IDS do not consider information of applications that are deployed on the host
machine. However, knowledge about these applications can potentially improve the precision and
performance of an IDS. Such an improvement might result from choosing the optimal data to monitor,
choosing a tailored or adjusted analysis technique, or even adapting the architecture of the IDS to
the concrete use case.
Bace and Mell de�ne application-based IDS as a subset of host-based IDS �that analyze the events

transpiring within a software application� [14]. We follow this terminology but broaden their de�nition
slightly to cover the full range of host-based IDS that focus on or adapt to application speci�cs.

De�nition 3.5.1.1 Application-Based Intrusion Detection Systems are host-based Intrusion Detec-
tion Systems that monitor and analyze events within applications or whose monitored and analyzed
data is relatable to applications or processes, respectively.

In the following, we explain the scope and style of our state-of-the-art analysis. Thereafter, we
give an overview of the reviewed approaches and elaborate on their classi�cation. Finally, we discuss
every approach in detail.

Scope

The scope of this state-of-the-art analysis is the discussion and categorization of ten scienti�c publi-
cations. The main reason for excluding commercial or open source products from our analysis is that
there are few examples that can be categorized as application-based IDS.
One of these examples is the QNX anomaly detector (qad)6. It detects anomalies in the runtime

behavior of pre-speci�ed processes. The qad analysis comprises a training phase where the normal
behavior of the processes is learned and a detection phase where the productive system is monitored
for deviations between the actual runtime behavior and the learned normal behavior. Such deviations
can indicate unauthorized accesses to the system and are logged for further investigations by an
administrator.
Unfortunately, qad is also a good example for another problem we encountered when trying to

evaluate corresponding commercial or open source projects. There is typically none or very few
and scattered information about the employed (analysis) techniques. Therefore, we restrict our
elaborations to scienti�c publications and the classi�cation of these as explained in the next section.

Overview

In order to cover a broad range of publications on the topic of application-based intrusion detection
and at the same time limit the number of publication to skim, we restrict the search to the following
publishers: ACM, IEEE, Elsevier, and Springer. To ensure current approaches in our state of the art
analysis, we restrict ourselves to publications published from 2012 onwards. We aim to examine ten
publications in this analysis and choose the publications from our search results to show the variation
among the approaches.
The search results are acquired by using the publishers' respective digital libraries. We base the

search phrases on the terms intrusion detection systems, host-based, and application behavior. After
expanding the search terms by using synonyms and similar meanings, we arrive at the following basic
search phrase:

("Intrusion Detection" OR "Anomaly Detection" OR "Application Intrusion Detection") AND
("Host-Based" OR "Application Based" OR "Application Speci�c") AND
("Program Behavior" OR "Application Behavior" OR "Software Behavior").

6http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.utilities/topic/q/

qad.html

84

http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.utilities/topic/q/qad.html
http://www.qnx.com/developers/docs/7.0.0/index.html#com.qnx.doc.neutrino.utilities/topic/q/qad.html

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Elements of Feature Models

Mandatory Optional Cardinality[x..y]

OR

Feature

XOR

Figure 3.37.: Elements of feature models that we use for our taxonomy

Because not all digital libraries support boolean operators out of the box, the search phrase is
adapted for each search platform. Ten publications are selected from the search terms for review.
Note that we do not limit the reviews to publications focusing on the automotive domain because
not many automotive intrusion detection approaches could be found during our initial searches. The
constraints that the automotive context imposes on an IDS is to be addressed at later stages during
the project.
For the classi�cation of the reviewed approaches we developed the taxonomy depicted in Fig-

ures 3.38 to 3.44 in the form of a feature model. Kang et al. introduced feature models in 1990 to
facilitate the systematic discovery and documentation of domains of related software systems [84].
The formalism allows to visually model features and their relations in tree-like structures. Generally,
features are characteristics of related approaches. Due to this generality, feature models can not only
be used to analyze software systems but for all kinds of domains. In the context of our state-of-
the-art analysis they bring all semantic elements needed for the formalization of our taxonomy (cf.
Figure 3.37). These are (i) features, (ii) mandatory features, (iii) optional features, (iv) cardinalities,
(v) OR feature groups, and (vi) XOR feature groups.
(i) We use features to express characteristics of approaches in the domain of application-based

IDS. Features are hierarchically structured. Thus, a feature can comprise several features and
feature groups.

(ii) Mandatory features are features that are present in all approaches.
(iii) If we found features that are not common across all reviewed approaches we mark them as

being optional.
(iv) We use cardinalities [31] to express whether an approache realizes a feature more than once.

Here, x is the lower bound of instances of the corresponding feature and y its upper bound.
(v) An OR feature group expresses that at least one feature of the group is present in each approach.
(vi) An XOR feature group expresses that exactly one feature of the group is present in each

approach.
We inferred a basic version of our taxonomy from the taxonomies used in [131], [90] and [96]. Both

publications do not focus on application-based IDS, e.g., they also refer to network-based approaches.
Therefore, we tailored our basic version of the taxonomy to the domain of application-based IDS.
Furthermore, we extended it continuously during the reviewing process. Meaning, if we found a
new characteristic while reviewing a publication (e.g. a new analysis technique), we added it to the
taxonomy.
The feature diagram is split across Figures 3.38 to 3.44 to increase its readability. Figure 3.38

depicts the main distinctive features of an application-based IDS that guide through the following
�gures. These are:
• the kind of general Approach its follows (cf. Figure 3.39),
• the Context for which it is developed and evaluated on (cf. Figure 3.40),
• its Architecture (cf. Figure 3.41),
• the data it monitors and analyzes (Monitored Data, cf. Figure 3.42),

85

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Approach

Evaluation

Architecture

Analysis

Technique

Context

Monitored

Data[0..4]

[1..2]

AppIDS

Figure 3.38.: Feature model showing the �rst hierarchy of our taxonomy

• the Analysis Techniques it employs (cf. Figure 3.43),
• and the kind of Evaluation the authors used (cf. Figure 3.44).
Please note that not all publications give an architectural description of their approach. Thus,

the Architecture feature is marked as optional. Furthermore, some publications combine di�erent
analysis techniques. Thus, the corresponding feature has the cardinality [0..4]. Similarly, the
Context feature has a cardinality of [1..2], which enables to distinguish di�erent contexts. In the
following, we describe the feature model in more detail.

Approach

Anomaly

Detection

Misuse

Detection

Figure 3.39.: Approach sub-tree of feature diagram

Main Feature: Approach (cf. Figure 3.39) Following the NIST classi�cation of IDS [14], there
are two basic approaches: Misuse Detection and Anomaly Detection. Misuse Detection (also
known as signature based approach) refers to the detection of intrusions by comparing system in-
formation with �xed, de�ned patterns of known security breaches, e.g., through malware or attacks.
Contrary to de�ning signature for intrusion recognition, Anomaly Detection based approaches com-
pare a representation of normal system behavior with the behavior of the running system. According
to the NIST, the IDS learns the normal system behavior before being deployed on a system. This
learning phase can be realized through a machine learning approach or another method of data
gathering. We interpret any approach as anomaly detection in which normal behavior is compared
with current system behavior (as opposed to comparing signatures of malicious behavior with current
behavior), regardless of the existence of a learning process. In some cases, classi�ers are trained using
a representation of benign and malicious behavior or even random datasets. This is usually referred
to by the authors of said approaches as anomaly detection although it could also fall into the misuses

86

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Linux

Android

C

C++

Server

Utility

iOS

Windows

Application

Operating

System

Language

Programs

EnvironmentContext

Threat

Design

Driver

ROP

JOP

DOP

Malware

Figure 3.40.: Context sub-tree of feature diagram

detection category, since attack information is used to train the model. We refer to such approaches
as anomaly detection since the feature model clearly identi�es approaches where malicious data is
used in the Data feature.
In a later NIST publication [131], a third approach was added called �Stateful Protocol Inspection�,

which is quite rare. We found no publication using such an approach in our state of the art analysis
and, therefore, omitted it from our feature model.

Main Feature: Context (cf. Figure 3.40) The Context feature shows the speci�c Environment
and the Threat an intrusion detection approach is targeted at. The environment consists of di�erent
Program types, Operating System, or a programming Language. The Program feature indicates
if the IDS is targeted at a certain type of program, i.e., an Application, Server program, or a
Utility. Application di�ers from Utility in that an application is targeted at ordinary users
and a speci�c use-case (e.g. the Firefox Webbrowser) and a utility is used for general tasks mainly in
the context of analyzing or maintaining a system (e.g. the SPEC CPU 2006 benchmark). Some IDS
approaches are speci�cally targeted at certain Operating Systems. In our state of the art analysis,
we incorporated examples of IDS on Linux systems, Android, Windows, and iOS. Furthermore,
some IDS also target programs written in a speci�c Language, examples were found for C and C++.

87

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Architecture

Centralized

Agent-

based

Distributed

Hybrid

Figure 3.41.: Architecture sub-tree of feature diagram

Typically, these approaches employ a static analysis on the application's source code that has to
respect language particularities.
The threats an approach is targeted at are attacks using return-, jump-, or data oriented program-

ming (ROP, JOP,or DOP respectively) or generally Malware. More threats or attack techniques may
be added in the future.
The context stated in the classi�cation of the approaches is in most cases speci�c to the prototype

implementation used in the publication. This does not necessarily imply that the approach is exclu-
sively applicable to this context. The cardinality of the context feature allows to di�erentiate between
several contexts. This is used to mark certain contexts as being directly respected in the conceptual
design of an approach. To this end, we utilize the Design Driver feature. We select this feature if
the authors identify a certain characteristic in the context of their approach and concretely argue how
they respect this characteristic. In particular, a characteristic has to be more concretely elaborated
on than general argumentations. For example, it is not su�cient to state that certain attacks alter
the control �ow of an application and use this as a motivation to utilize anomaly detection to identify
these deviations.

Main Feature: Architecture (cf. Figure 3.41) The Architecture feature shows how the IDS
is structured. We re�ne the taxonomy introduced by Lazarevic et al. [90] who de�ned two di�erent
types of architectures: �centralized� and �distributed & heterogeneous�. A Centralized architecture
means that the whole IDS is located on a single system, which it monitors. In this case, all data
collection and decision making is performed on the central system.
An Agent-based system is split into a central part and agents deployed on several hosts. The

agents perform data collection and send data to the central IDS instance, which performs the analysis
and decides on potential reactions to a threat. Please note that we utilize this terminology because
the term �agent� is used predominantly in the host-based IDS domain to refer to (remote) monitoring
components of an IDS. However, it does arguably not comply to the de�nition of an agent in the
domain of agent-based software engineering. There, an agent is de�ned as �an encapsulated computer
system that is situated in some environment and that is capable of �exible, autonomous action in
that environment in order to meet its design objectives.� [80]
In a Distributed application-based IDS, there is no central IDS instance. Autonomous instances

are deployed across several hosts and perform data collection, analysis, and decision making. However,
the IDS instances can communicate amongst each other and cooperate thusly, e.g., by sharing data
or warning other instances of imminent threats.
Hybrid architectures combine the previously described architectures. This means that an ap-

proach featuring a hybrid architecture supports the �exibility to realize each of the architecture styles
mentioned above.
Since most approaches covered in the state of the art analysis evaluate prototypical implementa-

88

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

tions, we could encounter speci�c architectures seldomly. Therefore, the feature is optional in our
feature model.

Main Feature: Monitored Data (cf. Figure 3.42) The data source of an IDS greatly in�uences
its capabilities. An IDS that monitors function calls can give very detailed feedback as to what exactly
caused an intrusion within an application, but is potentially quite intrusive. An IDS monitoring system
calls can give less information on an application speci�c cause for a raised alarm, but is usually able
to use existing kernel instrumentation for monitoring.
Under the Monitored Data feature we list all data items monitored by the IDS found in our

state of the art analysis, as shown in Figure 3.42. The monitored data ranges from System Calls

over Library Calls to Function Calls. Some IDS monitor inter-process communication (IPC),
while others are at a lower level, monitoring Hardware Sensors or Network Events, all the while
providing feedback on the application level. Metadata is also sometimes monitored, as shown by the
Process and Thread Attributes features.

Main feature: Analysis Technique (cf. Figure 3.43) Luh et al. [96] performed a systematic
literature review on semantics-aware attack detection with a focus on intrusion and malware detec-
tion. To this end, they developed a categorization for detection system approaches. They establish
four main categories, �Analysis & Detection�, �Knowledge Generation�, �General Properties�, and
�Data Collection�. The �Analysis & Detection� and �Knowledge Generation� categories specify how
detection works. They comprise the data processing, basic detection method, temporal domain, and
also machine learning, clustering, and visualization techniques. We feel that these two categories
characterize the analysis technique as a whole and de�ne our Analysis Technique with inspiration
from these two categories.
The technique employed by an IDS to process, analyze, and classify data is the most important

and also usually the most complex part of an IDS. Therefore, the part of the feature model detailing
our taxonomy for the Analysis Technique is rather complex as well (see Figure 3.43). The tech-
niques are split into six sub-features: Model Building, Conformance, Frequency Based, Machine
Learning, Pre-Processing, and Classification.
The cardinality of Analysis Technique is [0..3] because three is the highest number of tech-

niques employed by a single approach in our state-of-the-art analysis. Therefore, the sub-features
allow for the characterization of many di�erent phases during the intrusion detection process. An
Analysis Technique can be in the Classification or the Pre-Processing phase. Then, an
Analysis Technique also has sub-features that determine how data is processed. The data analy-
sis can either be used for Model Building, Conformance testing, a Frequency Based analysis, or
a Machine Learning technique. Note that only one of these is possible, they are connected using
a Boolean �XOR�. In the following, we describe the sub-features of Analysis Technique in more
detail.

Model Building Model Building is usually done during pre-processing phases, but could also
occur when a model for result presentation is built during a classi�cation. The model building process
can be either dynamic (when it uses records of an actual system/program execution) or static,
when source code or binaries are processed.
In the publications selected for the state of the art analysis, we encountered four di�erent models

used for intrusion detection (excluding the models used in machine learning, these are found in the
Machine Learning sub-feature). A Control Flow Graph (CFG) is a graph representation of the
control �ow of a program, made up of basic blocks representing single program code lines without
jumps and edges, representing jumps from one block to another.
A Process Tree is a tree representation of all processes running in a system, in which child nodes

are the processes created by the parent node.

89

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

System

Calls

IPC

Library

Calls

Process

Attributes

Thread

Attributes

Network

Events

Registry

Events

File Events

Function

Calls

Hardware

Sensors

API

Calls

Callstack

System

Events

Monitored

Data

Figure 3.42.: Monitored Data sub-tree of feature diagram

90

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Clustering

Analysis

Technique

HMM

SVM

Active

Passive

Continuous

Batch

Segment

Event

Time

Length

Machine

Learning

Frequency

Based

Classifi-

cation

Pre-

processing

Response

Granularity

Nearest

Prototype

Markov

Chain

Bayes

Classifier

Process

Termination

Confor-

mance

Model

Building

CFG

Process

Tree

Static

Dynamic

Event Trace

Call Graph

Hierarchical

Clustering

Agglomerative

Clustering

Data

Benign

Malicious

Random

Figure 3.43.: Analysis Technique sub-tree of feature diagram

91

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

An Event Trace is a representation of events occurring in a system and the causes or originators
of these events. Similar to a Process Tree, an event trace may contain processes and the creation
of more processes, but is more general and can contain other events such as system calls, network
information, or errors thrown by running applications.
The Call Graph Model usually represents application speci�c information. It records which rou-

tines in a program call other routines. The calls can also be represented in a matrix instead of a
graph form.
Markov Chains are stochastic models. One may arguably expect Markov Chains as being a sub-

feature of the Machine Learning feature rather than the Model Building feature. However, in the
only approach employing Markov Chains they are only loosely coupled with the actual classi�cation
task. Therefore, we opted to de�ne Markov Chain as a sub-feature of Model Building.

Conformance The Conformance feature is used to indicate that during the classi�cation step
an artifact is checked for conformance to a �xed speci�cation. For example, a series of system calls
from a monitored system could be checked against a system call sequence that is typically used
by malware or the call graph of a monitored system could be checked against a call graph created
by a static analysis of the applications source code. In particular, Conformance is not based on a
statistical analysis. For example, a trace conforms to a CFG if it constitutes a path in this CFG.

Frequency-Based The Frequency Based analysis technique feature is always invoked when an
analysis uses the frequencies of events or other monitored data fragments to draw conclusions about
them. For example, a call graph may record how often a certain routine typically calls another routine.

Machine Learning Many IDS approaches use Machine Learning techniques, especially in the
anomaly detection sector. Such approaches usually require a training phase, which can be indicated
using the Pre-Processing feature. However, the Classification feature can also be used in
conjunction with Machine Learning, to indicate that a previously trained classi�er is used. The
machine learning methods that are used in an analysis technique depends on the authors' approach.
More detailed descriptions of the machine learning techniques can be found in the detailed discussions
below when applicable.

Pre-Processing The Pre-Processing feature indicates that an analysis technique is used for
processing before the IDS is actively monitoring and classifying system behavior. In the case of
machine learning, the training phase is considered to be a pre-processing step. Model building is
usually also done in pre-processing phases of the IDS operation.
The Pre-Processing phase may use di�erent classes of data. When using machine learning

techniques in anomaly detection systems, the data is usually Benign, meaning that it represents
normal system operation without malicious intent. When Malicious training data is used, the
model learns how attacks or malware manifest in the data. A malicious dataset needs to be clearly
labeled as such. Training with Random data, i.e., data that is to a certain extent randomized, is also
possible. In addition to machine learning, the di�erent types of data can also be used for modeling or
other pre-processing stages. If, for example, a control �ow graph is built from an applications normal,
non-malicious source code is built during a pre-processing step, the source code used is classi�ed as
benign data.

Classi�cation The Classification feature shows how the IDS monitors a system and what
its Response to a threat is. The response to an intrusion can be Active or Passive. In an active
response, the IDS interferes with the program execution on the monitored system, e.g., through
Process Termination of the process accountable for the intrusion. A passive response is more
typical in the approaches evaluated in the state-of-the-art analysis, which usually give an alarm when
an intrusion is detected.

92

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Another part of the classi�cation feature is the Granularity with which data is processed by the
IDS. In the case of Batch processing, data is collected over a certain, relatively long, period of time
and then analyzed by the IDS as a whole. This is usually the case if the goal is post mortem analysis
because live system monitoring is not possible this way. The alert can only be thrown after a whole
batch of data has been collected.
In the case of Continuous classi�cation, the IDS monitors and analyzes a system continuously

during its execution. The IDS either monitors every Event of the type it is designed to monitor and
classi�es the event as malicious or benign, or collects several events in Segments to be classi�ed.
The size of the segments can be determined in di�erent ways: the feature Length indicates that a
segment is a number of events long (though it does not have to be a �xed number) and the Time

feature indicates that a segment contains all the events occurring in a time frame, no matter how
many events occurred within that time frame.

Evaluation

Discussion

Case

Study
Own

Data

Common

Data
Manual

Interaction

Random

Fuzzing

Productive

System

Documented

Attack

Figure 3.44.: Evaluation sub-tree of feature diagram

Main feature: Evaluation (cf. Figure 3.44) The Evaluation feature indicates how the authors
of the examined papers evaluate their IDS approach. The evaluation can be a Discussion, in
which the approach is reviewed informally, or a Case Study, in which an implementation (usually
prototypical) of the approach is tested using test data. The data used for the case study can be
Common Data, which are datasets available to the public speci�cally for the testing of IDS, like the
datasets of system calls supplied by the University of New Mexico. The Own Data feature indicates
that the data was collected or generated by the authors themselves. The way in which the data
was acquired is also indicated in the feature model. The data can be generated manually through
executing Documented Attacks or Manual Interaction with the system. Fuzzing indicates that
the data was acquired through automated testing of the system, with unusual or randomized inputs.
Typically, existing testing tools are employed for this kind of data generation. If data is collected
from a system in active use, the Productive System feature is used.

Discussion

This section starts with giving the main insights we gained while reviewing the publications. There-
after, we go into the detailed discussion and classi�cation of each approach.
First, most approaches are application-speci�c due to a pre-processing phase where a static or

dynamic analysis is executed on application speci�c data such as application logs. The advantage
of these approaches is that they do not rely on meta information of the corresponding application,
which makes them applicable in many situations. An exception to this are approaches that conduct
a static analysis of the applications source code, which may not always be available.
Second, we could not �nd a technique that heavily utilizes information given by speci�cations of

the corresponding applications. Especially in the automotive domain, where speci�cations are much
more common due to restrictive regulations, this seems to be a valuable research direction. In the

93

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

context of anomaly detection based approaches, this information may be used to relieve complexity
from the training phase of classi�ers while maintaining or even increasing precision.
Third, none of the reviewed publications chooses a classi�er based on application speci�cs. Very

often, the argument for choosing a certain classi�er is the availability of a corresponding implemen-
tation. A thorough evaluation examining the performance and precision of di�erent classi�ers in
di�erent application contexts seems to be missing.
Fourth, IDS having active response components seem to be rare. Systems relying on IDS with

active response can be regarded as being self-adaptive in the sense of self-protection, one of the
well-known self-X attributes [2]. A consolidation of these research domains seems to be promising.
Thus, ideas like the MAPE-K reference architecture for self-adaptive systems [2], and insights from
the research on quiescence [88] and state-transfer [56] might increase the self-protection capabilities
of a system by means of systematic and targeted adaptations.
Fifth, monitoring the runtime behavior of applications comes with the risk of compromising in-

tellectual property protection. This is even more severe in settings that may have to cope with
commercial interests as it is the case for the APPSTACLE platform. Thus, research on privacy
preserving monitoring in the sense of intellectual property protection is required.
Lastly, transferring computational expensive analyses to the cloud is a promising approach in the

context of APPSTACLE. This is mainly the case as the APPSTACLE in-car platform certainly has to
cope with resource constraints making costly analyses di�cult to execute. Furthermore, APPSTACLE
will provide a lot of the infrastructure needed for deploying analyses remotely. However, the possibility
to deploy time-criticial analyses on the in-car platform still has to be given. Furthermore, the in-car
platform can conduct certain pre-processing steps to lessen network tra�c.
In the following, we present a detailed discussion and classi�cation of the approaches that led to

the feature model introduced in the proceeding section. For this classi�cation, we label the discussed
approach with the leaf features of the feature model. Here, all leaf features that are recursively
associated with one of our main features (cf. Figure 3.38) are in square brackets. As these leaf
features have unique names, the corresponding, complete con�guration can directly be inferred from
the labels.

Probabilistic Program Modeling for High-Precision Anomaly Classi�cation [161] {Anomaly
Detection}, {Server, Utility, Linux, C, C++, ROP}, {System Calls, Library Calls}, {Pre-Processing,
Static, CFG}, {Benign, Random, Malicious, HMM}, {Benign, Random, Malicious, Length, HMM},
{Manual Interaction, Fuzzing}
Xu et al. introduce an approach to increase the precision of HMM-based anomaly detection in

the context of IDS [161]. The main idea of the approach is to use statistical information about the
execution of a monitored application to initialize the HMM.
Generally, the approach is in the domain of anomaly-based detection. Their prototype implemen-

tation STILO is implemented as a Linux application and used to secure server (proftpd and nginx)
and utility (�ex, grep, gzip, sed, bash, and vim) programs written in C and C++. The authors target
threats that alter the control �ow of applications and explicitly mention ROP exploits. Furthermore,
they monitor and analyze system and library calls of these applications. Montitoring is realized by
using strace and ltrace.
The �rst step to do so is to execute a static analysis of the applications' source code. This yields

an control �ow graph that is further processed to compute the probabilities of consecutive system
calls.
Then, they utilize this information for the initialization of an application-speci�c HMM. The HMM

is used for the classi�cation of system call sequences as being benign or malicious, respectively. To
further re�ne the HMM, Xu et al. train it with system call segments (n-grams) of a certain length.
In their evaluation they used segments of length 15.
They de�ne tree di�erent kinds of segements:
• Normal (Bening) segments obtained from manual interaction with the application

94

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• Abnormal-A segments (Malicious) obtained by reproducing real-world exploits that are not
referred to in more detail
• Abnormal-S segments (Random) obtained by replacing the last third of a normal segment with
randomly ordered calls from the legitimate call set

All tree kinds of segments are used to train the HMM. However, in their evaluation they only refer
to the classi�cation of Normal and Abnormal-S segments.

Classifying malicious system behavior using event propagation trees [99] {Anomaly De-
tection}, {Windows, Malware}, {Agent Based}, {Process Attributes, Thread Attributes, Network
Events, Registry Events, File Events}, {Benign, Dynamic, Process Tree}, {Benign, Agglomerative
Clustering}, {Batch, Nearest Prototype}, {Productive System}
Marschalek et al. present an approach that mainly relies on process trees. These are �human-

readable representations of an executables and all the activity they displayed during their lifetime� [99].
Basically, they classify these process trees as being bening or anomalous. Thus, their approach is in
the domain of anomaly detection. Their main motivation is to identify malware on Windows systems.
To this end, they deploy monitoring agents on these systems and gather the following data in a
central database:
• Process Attributes, i.e., the image name, PID, parent PID, usercontext (username, group,
owner), time of start and miscellaneous other information that they do not refer to in more
detail
• Thread Attributes, i.e., thread IDs
• Network Events, i.e., access of network resources and establishment of new inbound or outbound
connections via IPv4 or IPv6
• Registry Events, i.e., accesses and changes of the windows registry (the granularity of these
events is not explained in more detail)
• File Events, i.e., loading of protable executables or DLLs; creation, access, reading, modi�ca-
tion, or deletion of other �les

In the next step Marschalek et al. consolidate this dynamic information in form of a process tree.
This process tree is then converted in a format that can be processed by the Malheur tool suite 7.
Malheur uses a prototype based hierarchical clustering to cluster, in this case, benign process trees.

Marschalek et al. then utilize Malheur's classi�cation phase to check whether newly gathered process
trees belong to an benign cluster or are anomalous (rejected). Since the approach classi�es process
trees, we used the Batch feature instead of the sequence feature. The approach may also be used on
partial process trees of certain length or gathered in certain time intervals. However, the authors do
not elaborate on this in more detail.
In the evaluation of the approach, data from a company network is used. Furthermore, an isolated

machine was infected with three di�erent malware samples.

LEAPS: Detecting Camou�aged Attacks with Statistical Learning Guided by Program Anal-
ysis [55] {Anomaly Detection}, {Windows}, {System Calls, Library Calls, Function Calls}, {Be-
nign, Malicious, Pre-Processing}, {Dynamic, Event Trace, Pre-Processing}, {Hierarchical Clustering,
Pre-Processing}, {SVM, Pre-Processing}, {SVM, Batch}, {Productive System}
Gu et al. aim to detect attacks that use benign programs to cover up their malicious behavior. To

achieve their goal of classifying behavior as being benign or malicious, they employ anomaly detection
as their basic approach. Though, they also use malicious executions to train their classi�er.
The approach is demonstrated using a prototypical implementation on a Windows system running

a speci�c set of utility applications (vim, notepad++, putty, winscp). However, the approach could
work on other platforms as well. They perform several case studies demonstrating the e�ectiveness
of their prototype using di�erent exploits for the applications.

7http://www.mlsec.org/malheur/

95

http://www.mlsec.org/malheur/

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Their method of detecting anomalies relies on the collection of system events, library calls, and
function calls, depending on the application and availability of data on the platform. On their
Windows evaluation platform, they are able to monitor �system events�, caused by function calls,
library calls, or system calls.
To generate the system event logs, Gu et al. execute benign and malicious applications on a test

system. The collected raw event logs are then pre-processed by correlating function and library calls
gathered through a stack walk to the system events, leading to a list of system events with attached
function and library information for the malicious and benign executions. This list is then split into
application and system stack traces to di�erentiate application and operating system behavior.
Hierarchical clustering is used to partition the system stack traces into behavioral clusters, which

leads to the benign and malicious (or mixed) dataset later to be used in a statistical machine learning
process. Gut et al. use the application stack traces to build CFG's for the benign and malicious
application executions. The execution paths in the CFGs can be mapped to system events in the
datasets generated from the system stack trace. Di�erences in the execution paths in the benign and
malicious CFG are calculated and used to assign weights to the events in the mixed dataset, forming
a weighted dataset. They train a weighted SVM to classify behavior as malicious or benign, using
the benign dataset as the positive and the weighted dataset as the negative samples in the training
phase of the SVM. The learned SVM classi�er is then applied to system logs gathered and processed
exactly like the training data in the aforementioned pre-processing phases, making the approach a
batch analysis.
Gu et al. evaluate their approach in a case study using data gathered in a productive system.

Host Intrusion Detection for Long Stealthy System Call Sequences [105] {Anomaly De-
tection}, {Server, Linux}, {System Calls}, {Benign, Malicious, Dynamic, Markov Chain}, {Length,
Bayes Classi�er}, {Common Data}
Elgraini et al. introduce a host-based intrusion detection approach targeting hidden malicious intent

in long process system call sequences. Since they train their classi�er using benign and intrusive data
sets, we classify the basic approach as anomaly detection. The authors evaluate their approach on a
Linux platform running server applications such as sendmail. Their IDS requires only system calls to
be monitored.
The classi�er employs a naïve Bayes approach and the prior probabilities are estimated based on the

training data, which contains both benign and malicious sequences. The estimation is based on the
fraction of sequences labeled as either benign or malicious To increase the accuracy of their model,
the authors use a Markov model to calculate the class conditional probability of a sequence. The
Markov Model estimates the probability of a sequence occurring when given a supposed classi�cation
(benign or intrusive). The transition probabilities in a sequence are again estimated using malicious
and benign training data.
Using both the prior probabilities and the class conditional probabilities derived using the Markov

model, the sequences are classi�ed using the Bayes classi�er.
The authors evaluate their prototype using a common dataset provided by the University of New

Mexico containing labeled system call sequences from a system running sendmail. The sequences
vary in length and are classi�ed one after the other by the prototype.

Long-Span Program Behavior Modeling and Attack Detection [134] {Anomaly Detection},
{Server, Utility, Linux}, {Design Driver, DOP}, {System Calls, Function Calls}, {Benign, Dynamic,
Call Graph}, {Benign, Agglomerative Clustering}, {Passive, Batch, Agglomerative Clustering}, {Be-
nign, SVM}, {Conformance, Batch}, {Manual Interaction, Productive System}
Shu et al. introduce an approach to detect stealthy attacks in very long system call traces by

employing machine learning techniques to correlate events in the traces that can be very far apart.
Their main goal is to be able to detect attacks that do not directly alter the application control �ow
(data oriented programming [65]) or exploit legal control �ows (e.g. denial of service attacks). They

96

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

propose using a mildly context sensitive grammar as the basis for such an approach. In order to achieve
this, they design a program anomaly detection approach, which they evaluate on a Linux system using
both server and utility applications. They propose to monitor generic system events such as jumps,
function calls, or even generic instructions in program traces. However, in their implementation
and evaluation the authors opt to monitor system and function calls, depending on the monitored
application. The Analysis is split into two main phases: training and detection. The basis for both
phases is the �behavior pro�ling� step, which splits raw program traces into trace segments. These
segments are used to create event co-occurrence and event transition frequency matrices containing
routines that occur together and the number of occurrences of calls from one routine to another
respectively. The routine names are retrieved using static analysis. The matrices essentially represent
a dynamic call graph. Then, the �rst training step uses an agglomerative clustering algorithm to
separate all normal behavior instances into clusters.
The �rst detection step of the analysis tests whether a behavior instance �ts into a cluster. It is

checked if the co-occurred events in the behavior instance are consistent with the co-occurred events
in a cluster, if so, the behavior instance �ts into the cluster. If no �tting cluster is found an alarm is
raised, otherwise the behavior instance is passed on to the occurrence frequency analysis.
The occurrence frequency analysis is based on a training step called intra-cluster modeling. Therein,

a deterministic method and a probabilistic method are used to further re�ne the boundary for normal
behavior within the clusters according to the co-occurrence frequency of events. The probabilistic
method is an SVM and the deterministic method employs variable range analysis.
In the second detection step (occurrence frequency analysis), the behavior instances are examined

for quantitative frequency relational anomalies. If the frequencies do not �t the models derived in
the previously described training step, the instance is reported as anomalous.
The authors evaluate their approach using a prototypical implementation on a Linux platform

using the applications sendmail, sshd, and libpcre. The training data is gathered through monitoring
a productive system or manual interaction, depending on the application.

A Host-based Anomaly Detection Approach by Representing System Calls as States of
Kernel Modules [108] {Anomaly Detection}, {Linux, Application, Utility}, {System Calls}, {Fre-
quency Based, Benign} {Frequency Based, Batch}, {Common Data, Known Attack, Productive
System}
Murtaza et al.'s approach is centered around representing system call sequences as kernel module

states to allow an analyst to easier deduce the behavior of an application in the case of an anomaly,
by examining the states. In contrast to many anomaly detection approaches, this approach does not
rely on machine learning techniques but on a frequency-based analysis.
The approach is targeted at Linux based systems and the prototype is evaluated using various Linux

programs, both utilities and end user applications.
Since Linux system calls (usually) belong to one of eight Linux Kernel modules, the system calls can

be mapped to states that represent the kernel module they belong to. The authors propose analyzing
these state sequences in terms of the proportions to which the module states occur, based on the
observation that the distribution of states is signi�cantly di�erent in anomalous traces compared to
normal traces. To this end, the authors develop a �Kernel State Modules� algorithm which analyses
traces that are separated into training, validation, and testing sets. The proportions of kernel module
states are calculated using the training set. Then, a trace from the validation set is used to adjust the
threshold with which anomalous traces are recognized in the case that a normal validation trace is
falsely categorized as anomalous. This is repeated with all traces in the validation set as long as false
positives occur. The testing set is then used to evaluate the technique with the calculated threshold
and the testing set. To analyze potentially anomalous traces, the traces are passed to an evaluation
function (also used in the threshold calculation with the validation set). The approach is evaluated
using a variety of applications and utilities on a Linux platform (Firefox, Login, PS, Stide, Xlock) with
di�erent datasets, depending on the application. They use both common data and data generated on

97

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

their own through testing frameworks and productive system monitoring. The anomalous traces are
generated by using known attacks on the evaluated programs. Murtaza et al. compare their approach
to popular anomaly detection algorithms, namely a Hidden Markov Model approach and Stide.

The Best of Both Worlds. A Framework for Synergistic Operation of Host and Cloud
Anomaly-based IDS for Smartphones [35] {Anomaly Detection}, {iOS}, {Hybrid}, {IPC, Sys-
tem Calls, Library Calls, API Calls, Hardware Sensors}, {Discussion}
Damopoulos et al. focus on the architectural aspects of developing an IDS for smartphones [35].

They argue that in this domain certain analyses should be performed on the mobile device where
other analyses should be performed in the cloud. For example, an analysis that includes private data is
typically more acceptable to be performed on the mobile device. Whereas, computationally expensive
analyses should be executed in the cloud.
In general Damopulos et al. focus anomaly-based detection. Their prototype is implemented for

iOS. Additionally, they claim that an implementation for Android is straight forward.
Their architecture consists of the following components:
• Event Sensors collect information from di�erent layers of the operating system. The authors
state that their prototype is able to collect system calls, inter-process communication, data
from hardware sensors, API calls, and library calls.
• The System Manager decides which analysis technique is used and forwards events to the
Detection Manager
• The Detection Manager supports two types of engines. A host-engine runs on the mobile
device, whereas, a cloud-engine executes the analysis in the cloud
• The Response Manager supports modules that specify di�erent kinds of actions that are exe-
cuted in the case that an event was classi�ed as being suspicious, e.g., requesting user input,
blocking of events, or demanding re-authenti�cation.

Damopulos et al. classify their approach as being hybrid because of the �exibility in the deployment
of analyses. We follow this classi�cation to separate their approach from agent-based approaches
that do not share this kind of �exibility. However, their approach is similar to agent-based approaches
in the sense that event sensors can generally be regarded as being agents.
The discussed publication focuses on the architecture of their IDS and only states that they use

a Random Forest classi�er. They implemented four smartphone detection mechanisms using the
proposed architecture and refer to the corresponding publications [33, 34, 36, 83] for further details
on the analysis technique. However, we do not incorporate this information into this classi�cation.
The evaluation of the four detection mechanisms was performed on user-behavior pro�les created

based �on real data collected from a critical mass of participants� [35].

E�cient, Scalable and Privacy Preserving Application Attestation in a Multi Stakeholder
Scenario [3] {Misuse Detection, Anomaly Detection}, {Application, Linux}, {Distributed}, {Sys-
tem Calls}, {Discussion}
Ali et al. [3] introduce an approach to measure and report dynamic behavior of applications in

accordance to the Trusted Platform Modul speci�cation of the Trusted Computing Group (TCG)8.
Monitoring data is stored in so called Platform Con�guration Registers (PCR). They address the
problem that the TCG restricts the number of PCRs to 24. Thus, it is not possible to use one
PCR per application. Ali et al. use one PCR per stakeholder, de�ne an algorithm to aggregate
monitoring data of multiple applications of the same stakeholder, and specify an protocol for the
remote attestation of application behavior. This protocol also ensures the integrity of the monitored
data. Furthermore, this concept tackles the problem of privacy violations that may result from the
solution of using only one PCR for monitored application data.
The authors use their approach in the context of anomaly detection. However, the publication

focuses on measurement and reporting. Thus, we assume that the concept is not strictly restricted

8https://trustedcomputinggroup.org/tpm-library-specification/

98

https://trustedcomputinggroup.org/tpm-library-specification/

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

to this kind of approaches. The prototype is essentially a Linux kernel module. Furthermore, it
is tested monitoring the applications AMIDE, FreeMedicalProjectsForms, Firefox, Thunderbird, and
GNUCash.
Each system stores the monitored data and transmits it in certain intervals to a challenger for

veri�cation. The veri�cation itself is not split across several challengers. Nevertheless, we classify the
architecture of the approach as being distributed because the role of the challenger is not restricted
to one central entity. The monitoring itself is performed by a speci�c Linux kernel module that
intercepts system calls.
This publication does not focus on analysis techniques but the authors refer the reader to [71] for

a detailed description of the employed technique. Therefore, we do not incorporate this aspect in
our classi�cation. Furthermore, the evaluation of the approach is conducted in form of a discussion.
Here, the authors refer to insights they gained while testing their prototype for the analysis of the
applications mentioned above.

Detecting Code Reuse Attacks with a Model of Conformant Program [76] {Anomaly De-
tection}, {Server, Utility, Linux}, {Design Driver, ROP, JOP}, {System Calls, Callstack}, {Pre-
Processing, Static, CFG}, {Conformance, Process Termination, Event}, {Documented Attack}
Jacobson et al. target their approach [76] speci�cally at return oriented programming (ROP) and

jump oriented programming (JOP) attacks. ROP and JOP are used typically utilized to realize code
reuse attacks. Both aim at constructing exploits from code that is already present within a process.
To this end, ROP attacks overwrite return addresses and JOP attacks overwrite jump addresses.
Thus, both alter the control �ow of processes.
Essentially, the approach of Jacobson et al. identi�es control �ow deviations between the runtime

behavior of a process and a CFG that is inferred from the corresponding binary. Hence, we classify
their approach as belonging to the domain of anomaly detection.
ROPStop, the implementation of their approach, is build on top of the Dyninst toolset 9. It is

evaluated running on Red Hat Enterprise Linux 10. ROPStop intercepts system calls and essentially
checks whether the current callstack is valid w.r.t. the CFG constructed by statically analyzing the
corresponding binary. Jacobson et al. state that control �ow deviations manifest such that at least
one of the following assumptions is invalid:
• the currently executed instruction is speci�ed in the binary
• the callstack is valid, i.e.,

� the instruction at the return address of each stack frame is immediately preceded by a
call instruction

� the CFG inferred from the binary de�nes control �ow transfer between each caller and
callee frame

If these assumptions do not hold, the process is terminated before executing the system call.
The authors evaluate their appraoch against �ve documented ROP and JOP exploits and where

able to detect all of them. Furthermore, the performance of ROPStop was evaluated by utilizing
Apache 11 and SPEC CPU2006 12. The result was an 6.3% (Apache) and 5.3% (SPEC) overhead
on average.

System Call Anomaly Detection using multi-HMMs [162] {Anomaly Detection}, {Server,
Linux}, {System Calls}, {Benign, Clustering}, {Length, HMM}, {Common Data}
Yolacan et al. use HMMs to detect anomalies in system call sequences. However, in their approach,

multiple HMMs are used, one for each cluster of similar process executions.

9http://www.dyninst.org/
10https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
11https://httpd.apache.org/
12https://www.spec.org/cpu2006/

99

http://www.dyninst.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://httpd.apache.org/
https://www.spec.org/cpu2006/

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

For the evaluation of this anomaly based approach, the authors use the University of New Mexico
(UNM) system call set of the �sendmail� program, a Linux server program. Though the approach
could work in di�erent contexts, we categorize it according to the dataset used for evaluation.
No other data than the system call traces from the aforementioned training set are used in this

approach.
The system call sequences are �rst pre-processed to improve the accuracy of the HMM classi�cation

in the further operation. First, the program traces contained in the UNM dataset are partitioned by
process IDs. Then, identical processes are removed, in order to avoid same sequences in training and
testing. After this data reduction step, clusters based on the structural similarities of processes are
formed. In this case, three clusters were identi�ed. Lastly, the system call traces in the training set
are split into �xed-length subsequences of length six.
For the classi�cation of system call trace segments, the authors employ one HMM per cluster

identi�ed in the pre-processing stage. The length of the system call segments is the same as in the
training step.
The authors report high detection accuracy and comparatively low false positive rates for their

multi-HMM approach.

100

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.5.2. Network IDS

Scope

Network monitoring and intrusion detection for CAN network have already been addressed for over
a decade [22]. A Network-based IDS (NIDS) monitors network packets for a speci�c part of the
network [130]. Furthermore, it protects end-points by analyzing the tra�c going to and coming from
them. Generally speaking an NIDS architecture contains several sensors deployed at strategic points
on the network where they monitor and analyze tra�c and report attacks to a central management
console [13]. Some of the main advantages of NIDS systems are that they can detect network-
speci�c attacks and have no impact on the performance of the host [37]. However despite their many
advantages, car manufacturers seem not very eager to embed such capabilities inside their vehicles
leaving cars unprotected against malicious attacks, such as [1]. These attacks have led to current
considerations of adding a security layer in automotive environments, which consist of legacy network
protocols that were designed with no security in mind and are rather trivial to abuse. In this section
we will mention di�erent attempts proposed in the literature with regard to securing and protecting
automotive systems and justify our interest for NIDS.

Threats surface Adversaries target in- and ex-vehicle vulnerabilities in order to gain access to in-
vehicle network and the di�erent car functionalities. To this end, an attack may target non-sensitive
system components that can be used as a medium to grant access to the rest of the network. These
components can be later used to interrupt the normal operation of critical components in di�erent
car states (e.g. driving or parking mode). In general, the available attack surfaces are that can be
exploited in order to gain direct access to the physical in-vehicle interfaces are shown in Figure 3.45.

Figure 3.45.: Vehicle attack surfaces (source [23])

According to this �gure they can be divided into three categories, namely interfaces providing:
1. direct physical access such as the On-Board Diagnostics (OBD-II) port (federally mandated in

the U.S. after 1996). Other examples include the anti-theft key, that is used to lock the car as
well as the USB/CD drives of the infotainment unit.

2. short-range wireless access, such as the Tire-pressure monitoring system (TPMS) interface,
consisting of pressure sensors to measure the air within each wheel and indicate it to the car
dashboard. Other examples are the keyless entry, used to lock/unlock the car on distance and
the radio, providing in-car entertainment and information for the vehicle passengers

3. long-range wireless access, such as the Data Set Ready (DSRB) receiver for Vehicle-to-Vehicle
communication, Telematics interface that is used in the infotainment unit of the vehicle. In
this category we also �nd the OBDII wireless and Bluetooth modules that were mentioned
in previous paragraph and provide physical access to the OBD-II port. Finally, Over-the-Air
updates are another attack surface. They are usually issued by the car manufacturer in the
form of �rmware (FOTA) or software (SOTA) updates.

Securing those surfaces become an initial concern in 2010 when Ishtiaq et al. [70] attempted an
short-range wireless access attack by penetrating into the TPMS system.

101

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Few years later Miller and Valasek in [103] performed di�erent attacks targeting a number of
the attack surfaces of Chrysler's Jeep Grand Cherokee. They successfully issued various commands
remotely to kill the car's engine, and even stop the braking or steering functionality. As a result,
Chrysler was forced to take costly measures to �x the security issues, and recalled 1.4 million vehicles.
Having introduced the in-vehicle surfaces that may be vulnerable and exploited for adversary attack

scenarios, in the following section we provide deeper insight on the motivations and techniques that
are used by adversaries to achieve their goal.

Motivations and means The lack of security mechanisms makes it relatively easy for adversaries to
gain access to in-vehicle functionalities. And even though Miller and Valasek have spent almost 2 years
and approximately 1 million dollars to understand the Jeep's architecture, �nd its vulnerabilities and
perform attacks, they have demonstrated that vital threats to the vehicle's passengers are possible.
This triggers a serious question on the possibility that such attacks did not happen in the context of
a research study, but an actual attack scenario. Diverse types of persons could have interest in car
hacking, ranging from car reseller or a manufacturer competitor, to cyber-criminal. Even though each
category includes di�erent motivations, the techniques and procedures that are followed to exploit
the vulnerabilities of in-vehicle architectures are generally similar to the research study of Miller and
Valasek. Motivations to this end could be:

1. vehicle theft or copy the vehicle's architectural designs and speci�cations
2. espionage for tracking and recording sensitive information (e.g. current location, contacts and

addresses), in order to track people, eavesdrop on their calls and in-cabin conversations.
3. suppression of vehicle noti�cations and avoidance of incurring replacement expenses targeting

the safety of the vehicle. This technique is observed in second-hand (used) car dealers, in order
to hide faulty components and increase the price of the vehicle.

4. physical harm and wide-spread damage. This is the main type of motivation used by nation-
states, underworld and terror organizations who are well-founded to exploit in-vehicle vulnera-
bilities and be able to control them remotely.

Up to this point we have described the most common threat surfaces in the vehicle architecture
and the motivations of eventual adversaries. To be successful, an adversary should know thoroughly
the target in-vehicle architecture, in order to 1) understand the information that are exchanged
and 2) format the information to be injected in a way that they are handled by the other ECUs.
Otherwise, the packets may be treated as malformed and therefore discarded by the gateway �rewall.
Additionally, the adversary needs to reverse-engineer the manufacturer-speci�c way that is used to
encapsulate the data in a network frame, which may require deep in-vehicle protocol understanding.
In turn, a security engineer should also have the same understanding in order to be able to block
potential threats. Furthermore, threats are also classi�ed based on their severity should and likelihood.
For example, safety-related threats that put in danger passenger lives are the most vital and they
blocked �rst. In this context we understand the needs to protect cars from such threats. To this end,
in the following section we provide thorough details on intrusion detection systems and how such
techniques have been developed to protect in-vehicle networks.

Overview

Recent demonstrations [1] have shown that automobiles present a threat surface rather large which
triggers the interest of hackers and intelligence agencies. The criticality is such that developing an
e�ective security module for in-vehicle networks as the NIDS is now a pressing matter. But �rst let
us have a look of what "security module for in-vehicle networks" means.
To be able to secure and protect a network in the "traditional" IT desktop world, one �rst needs to

know what is happening on this network. Network monitoring is the capability to provide in real-time
a clear picture of the current health status of the network and therefore facilitate anomaly detection.
Network monitoring is a broad term which could convey di�erent meaning depending on the context.

102

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

More generally speaking, it focuses on monitoring the performance of the network. However in a
security context, network monitoring can help spotting malicious activities and is commonly referred
as intrusion detection.
Besides the technical di�erences, automotive networks could be regarded as similar to computer net-

works to a certain extent and therefore require the same monitoring capabilities to identify anomalies.
Researchers have been already investigating how to apply monitoring techniques to the automotive
world for some years. In the following state of the art we will review the di�erent work e�orts proposed
until now and will identify some leads to guide us in our future development. To make this possible
we will �rst introduce a set of notations and de�nitions to provide the reader with the necessary
background information. Then di�erent metrics will be presented in order to be able to distinguish
and rate the di�erent NIDSs. Finally we will detail a taxonomy of detection systems for automotive
in-vehicle networks in which we will investigate the di�erent technologies proposed in the literature.
Di�erent approaches exist on how to design a NIDS. Before discussing them, we will �rst look at

a set of metrics we can use to evaluate and compare them.

Metrics Since we will investigate in this state of the art the di�erent NIDS available for in-vehicle
networks, it is important to agree on metrics in order to assess the e�ciency of the detection systems.
Porras and Valdes proposed the following three metrics [120]:

a. Accuracy: Describes how (un)successful the system is in detecting incidents. For a given
event, a false positive occurs when the NIDS �ags wrongfully the benign event as malicious.
By opposition when the NIDS does not recognize a malicious event and considers it legitimate,
a false negative occurs. Finally a true positive happens any time the NIDS correctly detects a
malicious event. We will propose below some additional values we can use to better assess the
accuracy of a system. The ability for a system to dtect all the attacks is called as detection
rate.

b. Performance: Decribes the event processing rate. Depending on the system being monitored,
the rate needs to be high enough to guarantee real-time detection. The processing rate has a
direct impact on the detection latency, de�ned as "the time that elapses between the onset of
an attack and recognition of the attack by an intrusion detection system" [143]. The smaller
the latency, the greater the chance to thwart the attack. Due to the real-time constraints of
automotive systems, the performance is a crucial factor for the NIDS assessment.

According to Mitchell et al. [104] the accuracy can be determined based on its detection rate
on a speci�c attack set. In particular, Table 3.18 introduces a terminology that will be used in this
document for measuring the detection rate of a NIDS based on actual attacks.

Detection rate

Actual attack
Yes No

Yes True Positive (TP) False Positive (FP)

No False Negative (FN) True Negative (TN)

Table 3.18.: Attack detection terminology

Speci�cally, the most basic and commonly used metrics introduced by this table are the True
Positive Rate (TPR) and False Positive Rate (FPR), which indicate the probability that the IDS
outputs an alarm when there is an intrusion and the probability that the IDS outputs an alarm when
there isn't respectively. The remaining rates of this Table are the False Negative rate (FNR) and the
True Negative Rate (TNR), which can be calculated using the formulas: FNR = 1-TPR and TNR =
1-FPR. Ideally a perfect NIDS would have an FPR equal to 0 and therefore a TPR of 1, meaning it
is capable to detect every attack without making any mistake.

103

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

NIDS Taxonomy

The �eld of intrusion detection has evolved over time and new approaches have been proposed
to implement an IDS. For our study we will rely on the revised taxonomy of IDS [37] in which Debar
et al. introduced �ve concepts to classify IDS. First of all the detection method describes the two
complementary approaches used for detection. The �rst one, called knowledge based, uses informa-
tion about the attacks to detect them. The second approach, known as behavior based, builds a
reference model of the normal system behavior during a learning phase and detect attacks by looking
for deviations from this model. The reference model can also be speci�ed manually. This approach
is referred as behavior-speci�cation based and can be seen as a subset of behavior based [104] or as
an independant approach [86]. We will cover in greater details these approaches below. The second
concept, behavior on detection, quali�es how the IDS reacts to detected attacks. It can actively
take corrective or pro-active measures to counter the attack, or it can simply raise an alarm in a
passive manner. The audit source location relates to the kind of data used by the IDS for analysis.
It also helps categorizing IDS. A network based IDS will use packets on the network. An application
based IDS will leverage application logs, while a host based IDS will focus on system logs and audit
trails. The fourth concept, entitled detection paradigm, de�nes how the IDS will detect attack: it
can either evaluate states or transition [67]. Finally depending on its usage frequency, an IDS can
either monitor continuously in real-time or periodically by taking snapshots regularly.

There are several ways to categorize IDS. According to the literature, we commonly rely on either
the location of the audit source or the detection method, where we �nd application-based and
network-based IDS solutions. However, since application-based IDS was already addressed in Section
3.5.1 of this document, in this section we are solely focusing on network based solutions, which we'
ll categorize them according to their detection methods. For each method we will �rst discuss how
they work and then present the detection systems proposed in the literature for in-vehicle networks.
An overview of the available state-of-the-art detection methods is provided in Figure 3.46.

Figure 3.46.: In-vehicle NIDS taxonomy

1. Knowledge based: Also known as signature based or misuse detection, a knowledge based
NIDS uses information about attacks, so-called signatures, as a pattern characterizing a known
threat [104, 37]. The NIDS will compare the signatures against observed events to identify
possible attacks [130]. Upon detection (i.e., an event matches a signature) certain action(s)
will be executed.

2. Behavior based: Referred sometimes as anomaly based NIDS, it �rst creates a reference model

104

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

(or "pro�le") of a target system by collecting and recording "normal" (legitimate) operations.
Once done, the NIDS starts monitoring the current activity of the system. It then generates
an alert anytime it identi�es a signi�cant deviation from the model [38].

3. Behavior-speci�cation based: In the same fashion than behavior based approach, this tech-
nique detects attacks by identifying deviations from a norm [132]. But instead of creating the
normal behavior model during an initial learning phase, speci�cations are manually developed
to characterize legitimate program behaviors [147].

4. Hybrid NIDS: By combining two (or more) detection techniques together, one can obtain
the best of them while overcoming their limitations. As we previously mentioned, a common
combination is knowledge based and behavior based detection.

Below we will detail more on existing works in the scope of the presented taxonomy categories.

Knowledge based NIDS are e�ective to detect known threats with great accuracy : they generally
present a very low rate of false positives since the use of signatures guarantees that every match
means that a malicious event has been successfully detected. Although the main drawback comes
with completeness: the set of signatures cannot be exhaustive and therefore such NIDSs are unable to
catch unknown threats. With a �nite and limited number of signatures, attackers have no di�culties
to �nd and exploit new vulnerabilities. Moreover some techniques can be employed in order to bypass
detection systems [29], such as payload encoding. Additionally the more advanced and complex the
signature database becomes, the bigger the CPU system load during analysis.
In the automotive context the application of knowledge based detection seems to be limited. The

research encountered in the literature tend to discard this approach [111]. First of all as observed by
Miller and Valasek, all known CAN injection attacks take one of two forms: either CAN diagnostic
messages or standard messages sent with a highly in�ated rate [102]. According to the standards no
diagnostic message should be seen on the network when the car is moving. It is rather straightforward
to develop a knowledge based NIDS to detect attacks relying on the use of diagnostic messages. Miller
and Valasek proposed such approach in [102]. We will describe it further in the section entitled "hybrid
NIDS". The rest of the attacks can be detected with another intrusion detection approach called
"behavior based" (see next section). It seems there has been no other network knowledge based
NIDS proposed in the literature.
The main drawback of knowledge based detection in in-vehicle networks is the frequent update

requirement of the signature database [110]. As new attacks will undoubtedly emerge, how can
we make sure to have the latest NIDS update installed at any given time in cars? Asking the car
owners to manually update the systems themselves could be a daunting task for the non-technical
persons. Another idea could be to have the mechanics with the adequate skills performing such tasks
during a checkup at the garage. However the timeframe between two visits at the garage would be
too big, leaving the car exposed to eventual threats for an unacceptably long period. Hopefully the
future adoption of (secure) Over-The-Air (OTA) updates and the deployment of 5G tehnology could
remediate this challenge.
Even though knowledge based NIDS should not be completely discarded: once combined with a

behavior based approach (as detailed below), an hybrid NIDS can demonstrate great performance.
We will come back to it later.

Behavior based NIDS will �rst develop a model, or pro�le, of a system's normal behavior, and
will then spot behavior deviations from the norm. Building such pro�les can be done more or less
autonomously with machine learning algorithms using a sample of historical data [91], a training
data set [107] or on the �y [149]. Diverse methods such as statistics based [97], rule based [148] or
immunology based [48] methods can facilitate the model creation. Two of the most distinctive cate-
gories of Behavior-based NIDS are the �ow- and payload-based (Figure 3.46. Their main di�erence
is that the former relies on the analysis of communication patterns within the network, whereas the

105

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

later in the actual contents of the individual packets.
An example of model creation for behavior based NIDS applied to automotive systems is given by

Rieke et al. in [126]. They combined Process Mining (PM) [98] with Complex Event Processing
(CEP) [95] technologies to perform "analysis of anomalous behavior characterized by anomalies in
sequences of events and not detectable in single events on a CAN bus of a modern vehicle". As
they explained, anomalous behavior detection can be described as a two-step process: 1) discovery,
where the reference model is created, and 2) con�dence checking, where the model is used to identify
deviations (i.e., incidents).
Put simply, anything that does not happen according to the normal behavior previously learned

is regarded as an incident. The main advantage of the behavior based approach is its capability to
detect unforeseen attacks: any attack would (in theory) change the normal behavior of a system
by, for instance, accessing unusual resources or establishing connections with new machines outside
of the trusted network. Compared to knowledge based NIDS, behavior based detection systems do
not have the limitation of maintaining a signature database constantly up to date. Moreover they
do not need any speci�c knowledge about the underlying system they protect. Finally they can also
detect "abuse of privilege" types of attacks, in which a legitimate user does not actually exploit any
security vulnerability but accesses restricted �le [37]. By opposition to knowledge based, behavior
based NIDS might be complete, but unfortunately not accurate: if it can detect new attacks, it
comes with the price of (high) false positives. It is very challenging to build accurate pro�les because
systems' activities are usually quite complexe. Covering all legitimate operations during the learning
phase is not trivial, especially in dynamic environments. Therefore behavior based NIDS are prone to
produce many false alarms due to legitimate unanticipated activities deviating from the model [130].
Despite these limitations, the behavior based approach could overcome the drawbacks of knowledge

based systems aformentioned. In the automotive context, CAN tra�c is predictable, making behavior
based techniques well-suited for intrusion detection. More speci�cally in-vehicle communications
are much more deterministic than traditional IT-desktop, since it only implies machine-to-machine
communications [102]. There has been a certain number of publications focusing on the behavior of
cars' network to detect intrusions. We will now detail the ones relevant for our study.
As observed by Muter and Groll in [110], messages can be sent cyclically in the automotive network

with �xed intervals or on-demand (e.g., the driver activates a function by pressing a button). They
suggested that since most packets arrive at a strict frequency, performing an injection attack will
likely modify the expected arrival times of certain packets. More precisely, a spoofed message should
be sent 20 to 100 times faster than the legitimate one to make the target ECU accept the message
[102]. In order to detect these attacks, several papers have been published leveraging this idea.
Taylor et al. proposed a frequency based anomaly detector which measures inter-packet timing over
a sliding window and then compares current and historical packet timing [79]. Any deviations from
historical averages will be �agged as anomaly. In the same fashion Gmiden et al. proposed a simple
intrusion detection method for CAN network based on the analysis of time intervals of messages
[50]. Similarly Song et al. extended the same concept by also including a Denial of Service (DOS)
detection feature[136]. Finally Moore et al. modelled inter-signal arrival times by �rst observing few
seconds of CAN data (i.e., learning phase) and then detect deviations from the expected arrival time.
One limitation to these approaches is that once an incident has been identi�ed by a NIDS, there

is no way to know where the o�ence comes from. Due to the broadcasting nature of CAN it is hard
to know which ECU is responsible (i.e., has been compromised) by simply looking at the packets
on the network. To overcome this issue, Cho and Shin developed a Clock based NIDS (CIDS) [27]
which not only uses a frequency based approach to detect attacks like described above, but also
�ngerprints ECUs to facilitate root-cause analysis. The idea behind CIDS is to "monitor the intervals
of (commonly seen) periodic in-vehicle messages, and then exploits them to estimate the clock skews
of their transmitters which are then used to �ngerprint the transmitters".
Regarding machine learning algorithms, Taylor et al. proposed an anomaly detector based on a

Long Short-Term Memory (LSTM) recurrent neural network (RNN) to detect CAN bus attacks [144].

106

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

The idea is to train the neural network to predict the next packet data values. Any errors in prediction
are regarded as anomalies spotted in the sequence. One key bene�t of this approach is that it requires
no domain knowledge of the system it is modelling, making it suitable for many di�erent vehicles,
regardless the vendor or model, without substantial modi�cations.
Mutter et al. introduced the concept of information-theoretic detection approach to the area of

in-vehicle networks [109]. They noticed that automotive network tra�c is not only deterministic but
much more restricted than traditional IT tra�c: every packet in a CAN network and its data content
need to respect the CAN protocol speci�cations, de�ning for example the allowed packet payloads in
term of permitted value range and packet function. With this characteristics in mind, they developed
an entropy based anomaly detection system. Entropy can be described as a "measure of how much
coincidence a given data-set contains. The more coincidence it comprises, the higher the entropy it
contains."[109]. The restriction of the CAN protocol makes it suitable for such approach. The authors
measured the entropy in an automotive network under normal circumstances (i.e., without undergoing
attack) and used this value as norm. Then by continuously measuring the entropy, injection attacks
can be detected since it would reduce the entropy value.
The main challenge with behavior based anomaly detection is the initial creation of the reference

model. As stated previously the quality of the model has a direct impact on the detection rate.
Instead of trying to develop it empirically as discussed above, we can make use of the restricted
speci�cations of the CAN protocol. Let us discuss further this behavior-speci�cation based approach.

Behavior-speci�cation based: Another approach to intrusion detection is referred as behavior-
speci�cation based (or "anomaly-speci�cation" based), as they rely on a model of a system's normal
behavior manually de�ned according to its speci�cations. The main bene�t of behavior-speci�cation
based approach is its capability to distinguish deviations that are legitimate from the malicious ones.
A legitimate deviation could be caused by an action which never occured before during normal
operations. During the learning phase of the behavior based approach mentioned in the previous
section, it is di�cult to include such rare/unfrequent events in the normal model, leading to false
positives. However with the behavior-speci�cation based approach, unforeseen legitimate events
would not be detected as incident. The strength of this approach lies in the speci�cations: if correctly
developed, "the false positive rate can be comparable to that of knowledge based detection" [147].
This category of NIDS considers the semantics of the message payload and checks whether their

data content is realistic according to the protocol speci�cations. For example, for any given CAN-ID
present on the network, we know already according to the communication speci�cations what are
the type of data expected as payload. Therefore we can de�ne in advance how does a well-formed
packet look like, what is the �elds sizes, the expected data range, how frequent a packet should be
sent, in what subnet it should only be seen, and so on. When an infeasible correlation with previous
values or other messages occurs, we can tell with high con�dence that an incident is occuring. Let
us consider an example in which an attacker would like to confuse a driver by modifying the speed
displayed on the speedometer by switching instantely from 30 to 200 km/h. If we consider that the
attacker is capable of injecting a packet containing the spoofed speed value within the right time
frame, behavior based NIDS relying on the frequency of packets as described previously would not be
able to detect the attack. However with the correct behavior-speci�cations established, the detection
system would know that, according to the system speci�cations, it is physically infeasible for that
vehicle to reach abruptly this speed.
Behavior-speci�cation based NIDS sound extremely promising. However it is not that discussed in

the literature. Larson et al. in [89] have illustrated a method for creating security speci�cations for
communication and ECU behavior. The approach uses a high-level protocol for CAN, CANopen [25],
which provides a communication- and application-speci�c con�guration in order to detect the tra�c
which does not �t the protocol-level security speci�cations and ECU-behavior security speci�cations.
On a higher level, Muter et al. also proposed an approach to behavior-speci�cation by introducing a
set of anomaly detection sensors which allow the recognition of attacks during the operation of the

107

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

vehicle without causing false positives [110]. They left the sensors implementation for future work.
The bene�ts promised by behavior-speci�cation are undoubtedly very attractive. In addition it looks

like the automotive networks protocols (at least CAN) are well suited for this approach. However
the main hurdle lies in the development of the model based on the speci�cations. Since no NIDS
approach seems to smoothly �t into the automotive context, an idea would be to combine them
together into an hybrid NIDS.

Hybrid NIDS: this type of IDS corresponds to the combination of di�erent approaches discussed
above. For instance Miller and Valasek implemented such an hybrid NIDS in [102] by combining a
knowledge and behavior based IDS. As they noted, all known CAN injection attacks rely on either
CAN diagnostic messages or standard messages sent with a highly in�ated rate. In a knowledge
based approach they implemented a detection module looking for illegitimate diagnostic messages.
The second module they developed corresponds to a behavior based detection scheme applying a
frequency based approach, similar to the ones discussed previously. They designed a small device to
be plugged into the OBD-II port of a car. It starts �rst by learning tra�c patterns, and then detects
anomalies. Upon detection, the device would take preventive measures by short circuiting the CAN
bus, thus disabling all CAN messages.
Ujiie et al. [146] proposed an hybrid NIDS to protect CAN networks. The idea is to add a new

ECU dubbed �centralized monitoring and interceptor ECU� (CMI-ECU) which detects malicious CAN
messages and prevents them from being received by other ECUs. By implementing the CMI-ECU on
a gateway ECU, the NIDS will be able to monitor all in-vehicle CAN buses (depending on the car
architecture). The CMI-ECU implements two types of algorithms, namely "pattern matching" (i.e.,
knowledge based) and behavior based algorithms. As they accurately observed, "using only a single
algorithm is not enough when considering the need to be able to detect various types of malicious
CAN messages". For pattern matching, two algorithms are used:
• CAN-ID looking for messages with a CAN-ID not listed on a whitelist of legitimate IDs, and
• Fixed payload looking for messages with invalid (not on whitelist) payload and Data Length
Code (DLC).

Regarding the behavior based algorithms, three are implemented. First of all, Cycle will look for cyclic
CAN messages sent outside of normal cycles. Then Frequency will focus on non-cyclic messages sent
at an abnormal frequency. Finally Variable payload, which will be looking for messages containing
variables in the payload that do not match statistical values.
The hybrid detection approach sounds very powerfull. By combining several techniques and algo-

rithms together, one can leverage the strengths and advantages of knowledge, behavior and behavior-
speci�cation based methodologies, while remediating their weaknesses. Although one has to keep in
mind that the processing power available on ECUs is limited. Developing an NIDS combining too
many detection features could have an unacceptable impact on the real-time data processing of the
devices on the automotive network.
Now that we explored and discussed the in-vehicle network NIDSs proposed in the literature, in the

following section we will focus on performing a gap analysis in order to identify directions for future
work.

Discussion

Network monitoring and intrusion detection have been investigated by researchers for some years.
The �eld is still relatively new and some improvements need to be done. After reviewing the current
literature related to in-vehicle NIDS, we identi�ed some questions we would have to answer to give
us directions for further work and research. First of all the main question could be "what is currently
missing?". In the following part we try to categorize the research directions that should be followed
in the scope of NIDS.

108

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Evaluation criteria

According to the classi�cation of the previous section we accordingly try to classify in Table 3.19
the current attack classes that are described in the literature along with the IDS used to detect them.
The IDS detection method is organized according to Section 3.5.2.

Attack class Description Associated IDS categories

Denial Of Service
[87] [116]

Network �ooding with certain frame
ID

Behavior-based:[136], [109]
Hybrid: [146], [102]

Frame injection
[101]

Inserting known/unknown frame ID
Behavior-speci�cation: [136]

Behavior-based: [109], [155], [27]

Diagnostic mes-
sages [87]

Extract diagnostic info from ECUs al-
lowing to reprogram them

Knowledge-based: [102]

Masquerade / im-
personation attack
[4]

ECU spoo�ng or frame replay Behavior-based: [27]

Frames dropping
(e.g. blackhole
attack) [16]

Preventing legitimate frames from be-
ing received by all the nodes

Behavior-based: [27]

Table 3.19.: Existing attacks and their detection by existing IDS

Open challenges

Detection based on limited in-vehicle protocols: It seems that most e�orts had focused on
the CAN protocol. However as detailed previously, the other protocols such as LIN, MOST, FlexRay
or even automotive Ethernet should be equally investigated, both from the attack and the defense
perspectives. Quite some attacks on CAN have been published and at the same time researchers
proposed di�erent approaches to defend the bus as we just saw. Nilsson et al. have looked at abusing
FlexRay [113], although nobody proposed an NIDS for that protocol. Hence more work needs to be
done with regards to automotive protocols and how to protect them.
Common benchmark: Regarding the NIDSs presented above, it would be interesting to have a
way to assess them using a common benchmark. The results the authors respectively give in terms
of detection rate need to be reproduced and con�rmed. Having a standard data set with number
of attacks could help us identify the NIDSs performing the best. In addition, feasability studies
could be conducted to investigate the possibility of combining them together, as suggested in the
"hybrid NIDS" section. As we mentioned earlier, it would be mandatory to also respect the real-
time constraint of automotive systems. Lightweight techniques were proposed to perform intrusion
detection [136]. The in-vehicle subsystems consist of resource-constrained devices. Therefore the
NIDS should not require high computing power while still performing fast and e�ective incident
detection.
Lack of implementation: Another drawback of the detection systems above is the lack of actual
implementation within a vehicle. In most of the papers found, the solution the authors proposed has
been at best tested in a simulated environment. However it is hard to tell whether an implementation
in a car would work, and ultimately whether it would also give the same detection results. Some
researchers did test their NIDS in a vehicle, but unfortunately they do not mention anything about

109

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the brand and model. Since every car has a di�erent architecture [102], we could eventually see
signi�cant changes in the NIDS performance when deployed in two di�erent vehicles.
Creation of a normal behavior baseline: Regarding the behavior based and behavior-speci�cation
based intrusion detection approaches, a point of attention should be put on the creation of the model.
It is mandatory to �nd an e�cient way to build a robust model, which would avoid generating false
positives. The risk with false positives is that the driver could get tired of false alarms and ignore
future alerts, rendering the NIDS useless.
Incident response: The previous open problem also rises another crucial question: how to react to
an incident? Hoppe et al. proposed an approach called "adaptive dynamic reaction" which categorizes
incidents into three di�erent levels depending on their severity [63]. For non-critical incidents, a visual
warning will be displayed (e.g., light on the dashboard). In the case of a critical incident, an acoustic
message will be played to the driver (e.g., sound and speech similar to aircraft warnings to pilots).
Finally for severe incidents, an haptic action will be taken (e.g., automatic braking). This idea, even
though interesting, brings another discussion: how to rate the severity of incidents? As discussed in
the previous part, it is di�cult to tell whether an attack is life-threatening since it will depend on the
state the car is in. An attack could have a di�erent outcome if the vehicle is stopped, driving slow
or fast. Regarding autonomous response from the NIDS, some ethical questions arise. For example,
how far do we want the car to react for us? We often hear this type of discussions with autonomous
vehicle. In certain countries such as Germany, it is forbidden by law for a system to take critical
decisions by itself without the supervision of a human.
Network detection layer: Finally, while all the solutions found in the literature focus on detection at
Layer 2 of the OSI model (Data link), it could be also valuable to investigate if detection at the physical
layer would work, in order to detect for instance attacks that attempt to electronically manipulate
network-transmitted data. As stated by Hoppe, "these low-level communication characteristics could
be analysed by a special detection unit to identify the authentic device which has sent the current
message" [61]. This idea has been already evoked few times in [146, 26]. Furthermore, by relying
on CAN monitoring we can only detect threats that are already too close to the main in-vehicle
components which we want to protect. So an interesting direction would be to also have solutions
in higher layers than CAN, for early-stage threat detection (i.e. before it arrives to the CAN layer).

110

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.6. QoS Monitoring

The Quality of Service (QoS) describes the performance of a service according to diverse quality
requirements that are mostly outlined from a user's point of view [75]. In contrast, customer require-
ments are usually presented on a more abstract level. E.g., Cisco [28] de�nes QoS in a direct relation
to networking and managing network resources. It is mostly used in context of networks and their
ability to provide VoIP. Furthermore, monitoring supervises and guides a system such that monitoring
is often combined with QoS measurements to collect information on the di�erent system activities
and their performance and react consequently. Therefore, the gathered information has to be �ltered
and aggregated. Indicators are often derived from QoS analysis which show if all system components
work properly and meet their quality requirements.
Many real time systems, e.g., within the automotive domain, demand certain qualities e.g. re-

garding timing behavior, correctness, safety, security, clarity, comprehensiveness, among others. Such
qualities are constrained by available resources or technologies in many cases such as communication,
processor frequency, memory size and every other shared resource of a system. To achieve prede�ned
quality levels of di�erent services, various system levels must be addressed. Since single QoS mecha-
nisms may not be aware of their surrounding QoS approaches, system-wide monitoring can combine
several independent QoS in a system-wide context. Other QoS services are already considered within
early system design phases via sophisticated tooling, e.g., regarding timing behavior via Worst Case
Execution Time (WCET) analysis.

3.6.1. Scope

In general, QoS monitoring is a cross cutting concern applicable to a variety of abstraction levels,
components, and services. This section provides a brief summary of QoS monitoring systems.
A monitor is usually a standalone component that gathers data and eventually ensures a speci�c

state, processing, or service. Therefore, the monitor may consist of structures that analyze or interpret
recorded data while introducing as low overhead or interference to the existing system as possible.
Hence, the state to which the monitor introduces bias or simply in�uences the behavior of a system
should be avoided. As an example, a monitor can be placed into a vehicle and connected to the
available networks, e.g., CAN, LIN, MOST, etc. or even a gateway component. In order to keep
its in�uence as low as possible, the monitor often �lters and aggregates live information. Within
the APPSTALCE project, such aggregated information can be transmitted to the cloud in order to
achieve sophisticated analysis of vehicle related software services such as scheduling, task response
times or timing in general, communication, I/O executions, memory performance and more. In terms
of AUTOSAR, a service is de�ned as a basic sofware (BSW) available to any software component
(SWC) via the standardized interfaces related to (a) the operating system, (b) memory, and (c)
communication. Since APPSTACLE will not consider detailed AUTOSAR development activities,
the developed QoS measurements will be prototypical and AUTOSAR-independent.
An APPSTACLE QoS-Monitor component could consider four layers: (1) The ECUs at the bottom

layer that are interconnected to a (3) gateway via di�erent in-vehicle (2) communication buses such
as CAN, LIN, MOST, FlexRay or Ethernet. Beyond this, the (4) communication stack including
the mobile network towards the cloud builds up the last layer. Collected measurements can further
comply to di�erent safety levels related to the processes they are involved with. Measured values
can also directly relate to the bus system performances, e.g., to assess throughput, missed packages,
number of applied error corrections, number of delayed messages, average delay time of messages,
and more. Furthermore, application status can be assessed such as the amount of warnings, errors,
time spent in di�erent states, etc. Finally, the network layer parameters like bandwidth, collisions,
connections (correct/not/wrong/doubled/slow/ established connections, early connection loss), non
delivered packets, packet errors, jitter and delay could be monitored.

111

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.6.2. Overview

While searching for relevant technologies and projects, no open-source approaches were found, which
were totally compliant to the description of a monitor in the scope. Nevertheless, projects and
technologies are proposed in this section that may contribute in di�erent ways to the APPSTACLE
QoS-monitoring.
For monitoring development and maintenance activities in the automotive domain, mostly com-

mercial products, e.g. from Vector Informatik GmbH 13, are used. The tool CANalyzer14 can monitor
CAN, FlexRay, Ethernet, LIN and MOST buses. CANoe15 extends this further with the support for
simulation and test tools [152]. The various features of these products include
• Analyzing single ECUs or even whole networks
• Operating directly in the vehicle networks
• Con�guring several channels in each network
• Working with previous recorded data
• Using bus simulation for testing
• Use of several database types: DBC, LDF, FIBEX, Function Catalogs, Autosar System De-
scription, Car2x databases
• Visualization with a GUI
• Including OEM-Packages for integration of OEM speci�c features into the simulation
• Stimulating ECUs
• Use of KWP2000 and UDS for diagnostics
• Integration of an OBD-II tester

In order to connect networks to the workstation running CANoe or CANalyzer, proprietary hardware
from Vector is recommended [151]. The software is a commercial product, hence closed source, and
is more focused on maintenance or in-house diagnosis activities apart from regular vehicle operation.
An open-source approach, similar to the previous described commercial one, is BUSMASTER 16. It

is a joint project developed by RBEI17 and ETAS Group 18. The software can be used for monitoring,
analyzing and simulating CAN and LIN messages. It features[128]:
• Support of CAN 2.0A, 2.0B and LIN
• Analyze data bytes in raw or logical data format
• Separate monitoring of physical data and signals
• Logging for o�-line analysis
• Use of a message database (DBC, LDF)
• Support of USB CAN hardware with di�erent controllers

� ETAS BOA/ES581.3/ES581.4/ISOLAR-EVE
� i-VIEW
� InterprediCS neoVI
� IXXAT VCI
� Kvaser CAN
� MHS Tiny-CAN
� NSI CAN-API
� PEAK USB
� Vector XL
� VScom CAN-API

• Network statistics
� number of Standard, Extended, RTR and Error messages transmitted and received

13https://vector.com
14https://vector.com/vi_canalyzer_de.html
15https://vector.com/vi_canoe_de.html
16https://www.etas.com/en/products/applications_busmaster.php
17http://www.bosch-india-software.com/en/homepage/rbei_homepage.html
18https://www.etas.com/en/etas_group.php

112

https://vector.com
https://vector.com/vi_canalyzer_de.html
https://vector.com/vi_canoe_de.html
https://www.etas.com/en/products/applications_busmaster.php
http://www.bosch-india-software.com/en/homepage/rbei_homepage.html
https://www.etas.com/en/etas_group.php

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

� Network load as Bus tra�c
• Use of an API exposed by BUSMASTER over a COM interface
• Use of a C library for Node simulation
• Use of diagnostics standards like UDS or KWP2000
• FlexRay and CAN FD as commercial add-ons
Usually, BUSMASTER is operated through its Windows based GUI which also includes editors for

simulation scripts.
In addition to the previously mentioned products, some publications and concepts are available that

APPSTACLE can make use of. For example, the paper "Monitoring CAN performance in distributed
embedded systems" [20] describes a hardware monitoring approach. This hardware - a dsPIC33 - is
directly connected to the CAN bus and also o�ers a serial connection to a PC. The board runs a
FreeRTOS with the monitoring application witch is capable of receiving and sending messages on the
CAN. It accesses the CAN bus, extracts information and sends those to the PC host application. The
developed application detects communication errors, tra�c amount and types, overdue responses,
and bandwidth. Since the presented approach can only be accessed conceptually and its development
is not open source and requires dedicated hardware, its partial applicability towards APPSTACLE
needs must be carefully checked.

3.6.3. Discussion

Since open source development activities along with monitoring vehicle service qualities are quite
rare, BUSMASTER [129] is probably a prior choice to monitor bus systems established in the vehicle
domain, e.g. CAN. However, due to the wide application �eld of QoS-Monitoring in general, its
utilization in APPSTACLE is restricted to the CAN bus system at �rst, in order to provide an easy
starting point for interested parties getting involved to QoS-Monitoring for vehicles. APPSTACLE's
QoS-Monitoring adaptation towards BUSMASTER can involve its automatic data transmission to a
an Eclipse Hono instance and a cloud application consumer that accesses, analyzes, and visualizes
the data.

113

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

3.7. Over the Air updates

The ability to update software in vehicles via a wireless connection over-the-air (OTA) is becoming
increasingly important. The reasons are multifaceted: First, it makes the distribution of software
updates e�cient. Such software updates have become necessary because software complexity in
vehicles is vastly increasing and it is necessary to react to security issues that are likely be caused
by the proliferation of connectivity via di�erent channels. Second, software updates are the basis for
feature updates that allow the vehicle manufacturer to stay in touch with customers throughout the
vehicle's lifetime and to meet consumer electronic device expectations based on customer experience.
Today, software updates in vehicles are mostly processed in the workshop under de�ned conditions

and supervised by experienced personnel. Soon, various stakeholders (e.g., �eet managers, vehicle
owners, or drivers) will be able to perform software updates over the air nearly anywhere without
additional assistance.
Especially when installing updates, it is important to keep the update time as short as possible. In

most cases during the update, the vehicle � or at least parts of its functionality � are not available to
the driver. While the download phase may be performed while the vehicle is in motion, the installation
phase itself normally takes place while the vehicle is parked and the engine is not running.

3.7.1. Scope

The following section describes three di�erent types of OTA updates. In the simplest case, inactive
software functionality is activated by recon�guring the ECU without the need to modify its �rmware.
Afterwards it will be explained how individual, self-contained parts of the ECU �rmware can be
replaced in order to add or update individual functions. Finally, the update process of a complete
�rmware image is described.

3.7.2. Overview

Activation of software features
This section describes how individual software features can be activated without altering the

�rmware of the ECU. In this case, the ECU software must be supplied by the OEM with a full
feature set. The available functionality within this �rmware is then con�gured by software switches,
depending on the options selected by the buyer of the vehicle. For the vehicle manufacturer or OEM,
this o�ers the advantage that fewer di�erent �rmware versions have to be developed and kept in
stock. In addition, there are no costs for re-testing and certifying di�erent versions of the ECU
software. Furthermore, this approach also makes it possible to sell or rent functions without great
e�ort (i. e. without prior �rmware update process) even after delivery of the vehicle, provided that
the customer is willing to pay for the new functionality. Finally, the customer of the vehicle also
bene�ts from this as he can postpone the purchase decision for or against individual features into
the future and no longer necessarily has to make this decision when ordering the vehicle. Likewise,
he can decide to rent functions for a limited period of time, if the manufacturer o�ers this.
Although most vehicle manufacturers still require a visit to the workshop to change the software

con�guration, there is a trend towards o�ering, selling or renting new features for a limited period
of time directly in the car (e. g. via the central display) to the vehicle owner instead. In order to
avoid a workshop visit and to enable the user to activate the new functionality at home or on the
road, the vehicle must be connected to the Internet (e. g. via WiFi or mobile phone). The license
for a new functionality can then be purchased, for example, in a proprietary "app store" of the car
manufacturer Over-the-Air.
A popular example for this is the Tesla brand. Autonomous driving functions are available for

both the model S and the SUV Model X, which enable automatic lane changes and o�er an Adaptive
Cruise Control (ACC) mode. These and other features are sold as part of the "Autopilot" option. The
necessary hardware is installed in every vehicle produced from September 2014, regardless of whether

114

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

the autopilot has been ordered or not [127]. The autopilot can be ordered as described above when
purchasing the vehicle. On the other hand, this functionality can also be purchased over-the-air in
the vehicle's App Store. In order to make it easier for the customer to make a purchase decision, the
autopilot can be tested for one month free of charge. After this month, the purchase price is due for
payment if the function is still wanted. A visit to the workshop is neither necessary for the beginning
of the test month nor for the permanent installation of the equipment option. It can be assumed that
no change in the �rmware of the ECUs involved is necessary for autopilot activation, since this alone
would require up to two (possibly time-consuming) �rmware �ash operations to test the autopilot.
On the other hand, a customer could fraudulently prevent the original, reduced functional software
version from being re-installed after the end of the test month by blocking the vehicle's Internet
connection and thus keep the Autopilot without charge. Therefore, it is more likely that a (possibly
temporary) software certi�cate is used here.
In [100] Mercedes-Benz suggests that it wants to follow a similar path to Tesla. As an example,

an S Class is given here which is equipped with complete hardware for all features available for
this model, but the functions themselves are disabled by default. The customer can then decide
on-demand which functions he needs and in which period of time he wants to use or rent them.
Although Mercedes-Benz does not explicitly mention here how the functions are technically activated
and deactivated, it can be assumed that this will be done over-the-air, thus saving the customer
time-consuming visits to the workshop.
Audi is currently working on new Level 3 assistance systems that no longer require the driver's full

attention. For example, they mention a "Tra�c Jam Pilot", that will automatically accelerate and
brake on the motorway in case of a tra�c jam and, if necessary, form a rescue lane. However, as the
legal basis for Level 3 assistance systems has not yet been created in Germany, such functions may
not yet be used. Audi, however, suggests that such functions may be sold in advance and should
remain deactivated until the law is amended. It is still unclear, however, whether this function would
then have to be activated over-the-air or in a workshop [137].

Update or add self-contained software features
A step further from activating features and software parts which are already present is the update

of existing software features or the installation of new features. For this use case, most car manufac-
tureres currently restrict OTA updates to telematics units and In-Vehicle-Infotainment (IVI) systems
and keep back from updating safety-critical systems or, generally speaking, the real-time systems of
their E/E architecture. A notable exception is Tesla, who claim to do exactly this [10]. For example,
they have already used the center console to update a part of the transmision system [42]. But
since these kind of OTA updates are out of the scope of this project and not yet very common,
the following part deals mainly with updates of the IVI system (like the update of map material for
navigation systems).
One problem when looking at the updating process of the infotainment systems for di�erent car

manufacturers is how to get the neccessary information. Most car manufacturers do not provide
extensive information on how their OTA update process really works. So the subsequent short survey
relies mostly on what is published on the companies marketing and support websites. If OTA software
update features are missing, it does not neccessarily mean that they are not existent, but that they
might just not have been found. For example, for Daimler's COMAND online system [32], no speci�cs
about the updating process have been found.
Audi with their "Audi connect" system [6, 8] o�ers an online updating possibility for navigation

map data [7]. Additionally to map updates, VW makes the import of rout data possible in their
VW Car-Net system [153]. BMW with their ConnectedDrive system states that navigation maps are
updated automatically by the system. With the BMW ConnectedDrive Store the con�guration of
services and apps via internet (not in car) is possible, and after that, the feature is available in the
car [17]. If the new feature is installed or enabled is not elaborated.
Ford's Sync 3 system o�ers automatic updates via wi�. This includes updates of maps, of appli-

115

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

cations and even extends to new system software versions [47, 64]. The system can be con�gured,
so that these updates are done automatically, e.g. when connected to the home wi�.
Volvo provides OTA capabilities for map updates, new apps and app updates, and system updates

[154]. The updates are managed by a download center app (illustrated in Figure 3.47). Here the
driver is informed of new software versions and can than start the installation manually. The update
is not restricted to wi� (like with Sync 3) but may use any internet connection the system is capable
of.

Figure 3.47.: Volvo's download app [154]

All in all, the car manufacturers seem to be on seperate stages of the three stages of OTA
infotainment updates: map updates, app updates, and system updates. Almost all manufacturers
o�er OTA updates for maps and navigation material. This is the obvious �rst use case, since map
material has to be updated frequently and the update is apparently without any risk (a counter
example is [51]). Some manufacturers, however, already let applications and the system software be
updated over-the-air.
Since software parts are actually transfered to the vehicle (instead of just enabling existing ones),

security and robustness of the update process are of imminent importance. It has to be made sure
that the update does not render the functionality or the whole car useless and does not allow attackers
access to the car infrastructure. So for securitay matters authentication and integrity of the update
�le have to be assured and for robustness a failsafe update process and some kind of rollback strategy
have to be established. What happens, if this is not the case, shows the example of an OTA update
of the IVI and navigation system of the Lexus [51]. After the update the system crashed repeatedly
due to faulty data from the tra�c and weather service.

Firmware updates
This section describes how ECU �rmware can be updated as a whole. Firmware-Over-The-Air

(FOTA) is a method of performing software updates to vehicle ECUs remotely over the air. For
the description of FOTA, the following network architecture and mechanism (see 3.48) is used as
reference, as there are varieties of architectures for di�erent vehicle manufacturers. With FOTA, the
main cloud based server is capable of sending a software update to all the vehicles in the �eet that
are eligible for the update. Therefore, the client software and hardware in the vehicle must support
the update mechanism.

116

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Cloud	Server

ECU	1

ECU	2

ECU	3

ECU	X

…

Storage	for
SW	updates

Gateway
(OTA	Manager)

Telematics

SW	distribution	to	individual	ECU’s	is	
out	of	scope	due	to	proprietary	and	

safety	critical	concerns

Figure 3.48.: FOTA Environment Overview

The E/E architecture of a high-end vehicle is mostly structured into di�erent domains as shown
in Figure 3.49. In this architecture, a powerful ECU � called a domain controller (DC) � is available
for each domain. All DCs can be connected via a high-speed backbone network, such as automotive
Ethernet. Other domain ECUs are connected to the respective DC with a domain-speci�c network
(such as CAN or FlexRay). Although the E/E architectures vary considerably, this model is a good
basis for conceptual explanations. (Remark: As APPSTACLE won't be able to handle individual
E/E vehicle architectures the scope within the project will stop at DC level. Distribution within the
network has to be handled by network internal update management systems.)
For the FOTA mechanisms, the software update will be de�ned, maintained, and initiated on

a backend infrastructure. On the backend, among others, the de�nition of the software update
packages is managed for a complete �eet of vehicles, for given vehicle platforms, and for vehicles at
an individual level considering functionality and vehicle con�gurations. These are needed to run the
management for rolling out the update. The update packages are protected with security signatures
and CRCs and made available for download on the server (DLS).

52 | ASSUMED NETWORK ARCHITECTURE AND FOTA COMPONENTS

2 | Assumed network architecture and FOTA components

For firmware over-the-air (FOTA), we
consider the following network architec-
ture and mechanism (see Fig. 1). As these
will vary quite significantly between diffe-
rent vehicle manufacturers, this shall be
only used as a reference architecture.

We assume that the E/E architecture of a
high-end vehicle is structured into diffe-
rent domains. In this architecture, a
powerful ECU – called a domain controller
(DC) – is available for each domain. All
DCs are connected via a high-speed back-
bone network, such as automotive
Ethernet. Other domain ECUs are
connected to the respective DC with a
domain-specific network (such as CAN or
FlexRay). Although the E/E architectures of

different vehicle manufactures vary consi-
derably, this model is a good basis for
conceptual discussions.

For the FOTA mechanisms, we assume
that a software update will be defined,
maintained, and initiated on a backend
infrastructure. On the backend, among
others, the definition of the software
update packages are managed for a
complete fleet of vehicles, for given
vehicle platforms, and for vehicles at an
individual level considering functionality
and vehicle configurations. These are
needed to run the campaign management
for rolling out the update. The update
packages are protected with security
signatures and CRCs and made available

for download on the download server
(DLS).

In our consideration, update packages on
the backend are available based on “soft-
ware baselines” for the complete vehicle.
This is understood as a released set of
firmware software versions for all ECUs in
a vehicle that allows for safe and compa-
tible operation. On a technical level, the
release includes the validity for specified
vehicle configurations, such as hardware,
software, sensors, and actuators, and vali-
dity between the firmware versions for
the different ECUs themselves. This is typi-
cally specified and released by the OEM.
We assume that the update package
contains the information and firmware

Figure 1: FOTA network archtitecture
DLS DLC

DC DC DC DC

BL BL FUM UDM UMM

VUC

BL CS BL

BL

BL

BL BL BL

BL BL BL

ECU

ECU

ECU ECU ECU

ECU ECU ECU

D
om

än
en

ne
tz

w
er

k

D
om

än
en

ne
tz

w
er

k

D
om

än
en

ne
tz

w
er

k

D
om

än
en

ne
tz

w
er

k

Backend
DC

...

High-Speed-Backbone

...

Download-Phase

Installationsphase

Drahtlose Verbindung

Legende

BL Bootloader CS Content-Storage UDM Update-Distribution-Manager
DC Domain-Controller ECU Steuergerät UMM Update-Mode-Manager
DLC Download-Client FUM Firmware-Update-Manager VUM Vehicle-Update-Manager
DLS Download-Server TCU Telematik-Communication-Unit

Figure 3.49.: Overview of ECU network in high-end vehicles [43]

Update packages on the backend are available based on "software baselines" for the complete
vehicle. This is understood as a released set of �rmware software versions for all ECUs in a vehicle
that allows for safe and compatible operation. On a technical level, the release includes the validity
for speci�ed vehicle con�gurations, such as hardware, software, sensors, and actuators, and vali-
dity between the �rmware versions for the di�erent ECUs themselves. This is typically speci�ed
and released by the OEM. The update package contains the information and �rmware necessary
for updating all a�ected ECUs in order to reach the state from one valid baseline to another valid
baseline.

117

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

On the vehicle side, update packages are received by the download client (DLC) running on a
connectivity unit or Telematics Communication Unit (TCU) that can interact with the backend via a
wireless connection. After downloading, update packages are stored in a content storage unit (CS),
which might be located on one of the domain controllers (DC), e.g. the head unit.
After an update package is completely downloaded and includes the correct dependencies and has

been checked for security signatures and CRC, the DLC hands over the update package to the vehicle
update manager (VUM). With that, the "download phase" is complete. The download phase from
the backend to the CS is depicted in a dark color in Figure 3.49.
In the subsequent "installation phase", the VUM is responsible for organizing the preparation at

vehicle level, and also distributing and installing the download to the a�ected ECUs in multiple
domains. Preparation is de�ned as checking, achieving, and maintaining the necessary preconditions
for distribution and installation. Distribution refers to either normal or fast distribution within the
vehicle and across di�erent domains, such as the power train or chassis, and over di�erent busses.
The distribution of the update packages is handled by an update distribution manager (UDM) within
the VUM.
Downloading and installing update packages are only possible in dedicated modes known as "update

modes" and are dependent on certain conditions, such as power supply and the vehicle's operational
state. Such kind of mechanism is described with the following example methods of performing
software updates to vehicle ECUs remotely over the air. The Figure 1 illustrates in general how a
distribution can be performed. With FOTA, the main cloud based server is capable of sending a
software update to all the vehicles in the �eet that are eligible for the update. Therefore, the client
software and hardware in the vehicle must support the update mechanism.

Figure 3.50.: Priciple sketch of distribution [114]

As the functionality for FOTA is still in its early phase for automotive there are just some basic
illustrations of how a update work�ow can be initiated. In �gure 2 the work�ow is illustrated and
partly used within current vehicles depending on the needs, security and safety aspects within the
vehicle.
The current vehicle infrastructure and safety regulations prevent updating �rmware as most of the

ECUs within the system are blocked to the outside to prevent outside attacks and legal con�icts.

118

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Figure 3.51.: Overview of software update [114]

3.7.3. Discussion

Currently the OTA updates on vehicles have been performed for non-safety speci�c ECUs like Mul-
timedia, Navigation etc. For the safety speci�c ECUs like Engine Control, ABS, Airbag etc. FOTA
is still not being performed by the OEMs because of the safety aspects involved. The updates on
safety speci�c ECUs are performed by an authorized person under safe environment.
There are two challenges facing OTA updates on safety critical ECUs. First, car owners will not

tolerate vehicle downtime for updates. Therefore, they must take place seamlessly and invisibly in the
background. Additionally, the ability to remotely update vehicle �rmware introduces a new attack
vector for hackers. The two main motivations for hackers will be to use the OTA mechanism to
reprogramme critical ECUs to ultimately take control of the vehicle or to steal OEM �rmware.
To prevent reprogramming, the authenticity and integrity of the �rmware needs to be protected.

This ensures that the �rmware originates from a trusted source and that it has not been modi-
�ed. There are several methods of implementing such protection (e.g. HMAC, CMAC, or a digital
signature).
Checking the authenticity of �rmware guarantees that only trusted �rmware is used in an update

process but a hacker may still be able to read the plaintext (i.e. source binary) �rmware to reverse
engineer the source code, or steal data, which may lead to IP theft and/or privacy issues. Encryption of
the �rmware (for example, using AES) can prevent this. With integrity checking, the communication
channel over which the �rmware images are received will be protected to prevent the common "man-
in-the-middle" attack.
Finally, the in-vehicle OTA update manager should be protected against manipulation [69].

In summary, the following countermeasures should be applied:

119

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

• Protect the authenticity and integrity of �rmware to prevent a hacker from running modi�ed
code
• Encrypt the �rmware to prevent a hacker from accessing code (IP) and data
• Establish secure end-to-end communication between the vehicle and OEM servers to prevent
man-in-the-middle attacks
• Ensure a secure, trusted location for the OTA Manager application

120

Part II.

Speci�cation

121

4. Introduction

4.1. Scope

This chapter speci�es the APPSTACLE in-vehicle platform in the form of a requirements speci�-
cation. Hence, it de�nes the requirements of the di�erent elements of the APPSTACLE in-vehicle
platform as well as its overall behavior and structure.
The target platform for this speci�cation is exclusively the APPSTACLE in-vehicle platform. Use of
this speci�cation for other platforms is not not prohibited but is not covered in the design or content.

4.2. Terminology

Throughout this speci�cation, the word usage for indicating di�erent conformance levels is in line
with the corresponding de�nitions given section 10.1 of the 2014 IEEE Standards Style Manual [66].
In particular, the following key words are used in order to signify the requirements of this speci�cation:

• Shall
The word shall indicates that a certain requirement or behavior is mandatory and has to be
strictly followed in order to conform to the speci�cation. Thus, no deviation from such a
requirement or behavior is permitted.
• Should
The word should is used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that a certain course of action
is preferred but not necessarily required; or that (in the negative form) a certain course of action
is deprecated but not prohibited. The key word should thus may be used to point out that a
certain requirement or course of action may lead to a better performance or system behavior,
for example, without excluding other alternatives.
• May
The word may is used to indicate that a certain course of action is permissible within the limits
of the speci�cation.
• Can
The word can is used for statements of possibility and capability, whether material, physical,
or causal.

4.3. De�nitions and Glossary

For the purpose of this speci�cation, the following de�nitions apply. For terms not explicitly de�ned
in this clause, it should be referred to [21].

APPSTACLE in-vehicle platform. The APPSTACLE in-vehicle platform is a combination of
software and hardware components that can be integrated into a vehicle in order to (I) host appli-
cations, (II) allow access to vehicular data and functions and (III) set up a connection to a server
instance in the cloud.

122

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

App. An App is an encapsulated software component that can be downloaded to, installed on,
executed by and uninstalled from a dedicated application runtime environment.

123

5. APPSTACLE in-vehicle platform

speci�cation

124

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.1. Platform and App Runtime

5.1.1. Scope

This section de�nes the requirements regarding the Software Platform the APPSTACLE in-vehicle
platform is based on as well as the App Runtime integrated to host additional functionality in the
form of an App. As the APPSTACLE project team has decided to use Automotive Grade Linux (AGL)
as a base operating system this chapter only points out the additions APPSTACLE will provide.

5.1.2. Requirements

Platform Updates
R_PA1.001 The Software Platform should secure such remote software updates through authenti-

cation and validation measures.

R_PA1.002 The Software Platform may implement platform diagnostics or error logging function-
ality.

R_PA1.003 The Software Platform shall be updated in an atomic manner, meaning as a single
transaction and without intermediate state.

App Runtime
R_PA2.001 The App Runtime shall allow to install, uninstall, update, execute and kill Apps.

R_PA2.002 The App Runtime shall implement authentication and validation measures when in-
stalling an App.

R_PA2.003 The App Runtime should implement a permission management that is transparent and
controllable by the driver or the owner of the vehicle.

R_PA2.004 The App Runtime shall isolate Apps in order to prevent interference amongst Apps or
between an App and Software Platform.

R_PA2.005 The App Runtime may implement runtime diagnostics or error logging functionality.

R_PA2.006 The App Runtime may implement measures to protect the know-how and intellectual
property of the App developers.

R_PA2.007 The APPSTACLE project shall provide a development environment that supports App
developers in their task.

R_PA2.008 The APPSTACLE platform should provide a test environment for applications.

R_PA2.009 The App Runtime should provide an interface to connect to a cloud-based App Store.

R_PA2.010 The APPSTACLE Runtime should provide a garbage collection for applications.

R_PA2.011 The APPSTACLE Runtime should support crash and recovery management function-
ality in order to recover an application in the case of a crash and handle corruptions
regarding runtime variables.

125

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

R_PA2.012 The APPSTACLE Runtime environment should allow applications to run in the back-
ground.

126

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.2. APPSTACLE API

5.2.1. Scope

This section de�nes the overall characteristics of the APPSTACLE API.

5.2.2. Requirements

Accessibility
R_AP1.001 The APPSTACLE API shall be accessible by all Apps installed on the APPSTACLE

in-vehicle platform.

R_AP1.002 The APPSTACLE API may by accessible by other software components of the APP-
STACLE in-vehicle platform.

R_AP1.003 The APPSTACLE API may by accessible by Apps running on a cloud server connected
to the APPSTACLE in-vehicle platform.

R_AP1.004 The APPSTACLE API may provide its content using di�erent access technologies and
may support di�erent programming languages.

Abstraction
R_AP2.001 The APPSTACLE API shall provide harmonized and abstracted access to dedicated

resources of the vehicle. This includes an abstraction from the actual network topology
and architecture of the vehicle.

R_AP2.002 The APPSTACLE API should allow to develop Apps independently from the vehicle
manufacturer, makes or models.

Customization and Content
R_AP3.001 The APPSTACLE API shall de�ne or adopt a common set of data.

R_AP3.002 The APPSTACLE API should allow to customize the extent of the resources available
by adding or removing speci�c resources or resource groups.

R_AP3.003 The APPSTACLE API should integrate the content of APIs that are either standard-
ized or publicly available. 1

R_AP3.004 The resources available within the actual instance of the APPSTACLE API should be
discoverable by the Apps accessing it.

R_AP3.005 The resources available within the actual instance of the APPSTACLE API may be
browsable by the App accessing it.

R_AP3.006 The APPSTACLE API may provide historical data.

Security
R_AP4.001 The APPSTACLE API shall establish a roles and rights concept to gain or prevent

access to resources.

1e.g. the interfaces that are de�ned by GENIVI [78] or W3C [159] or standards like OBD [138] or Extended Vehicle
Remote Diagnostic Support [141]

127

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

R_AP4.002 The APPSTACLE API shall provide adequate mechanisms to prevent denial of service
attacks on the interface itself.

R_AP4.003 The APPSTACLE API should provide mechanisms to hide API interaction from other
Apps.

Behaviour
R_AP5.001 The APPSTACLE API shall respond in an appropriate way if a request by an App

cannot be ful�lled.

Documentation and Versioning
R_AP6.001 The APPSTACLE API shall be documented in a human readable form.

R_AP6.002 The APPSTACLE API shall implement a versioning schema based on major versions,
minor versions and patches were a major version increment indicates an incompatibility
at the API level, a minor version increment indicates an extension of the API with-
out compatibility issues and a patch indicates a bug �x without any compatibility issues.

R_AP6.003 New versions of the APPSTACLE API should be downwards compatible.

In-vehicle communication
R_AP7.001 The APPSTACLE API may provide the possibility to determine the available in-vehicle

communication channels.

R_AP7.002 The APPSTACLE API shall provide the possibility to directly send and receive CAN
messages without the use of higher layer protocols.

R_AP7.003 The APPSTACLE API shall provide the possibility to directly send and receive IP pack-
ages without the use of higher layer protocols.

128

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.3. Application IDS

5.3.1. Scope

This section de�nes the overall characteristics of the application Intrusion Detection System.

5.3.2. Requirements

General
R_AI1.001 The application IDS shall be able to monitor all deployed and running Apps.

R_AI1.002 The application IDS should not expose information to Apps that do not have extended
privileges.

R_AI1.003 The application IDS may be able to block all monitored events such that processing
continues after the events are identi�ed as being benign.

Architecture
R_AI2.001 The application IDS shall consist of loosely coupled components.

R_AI2.002 The application IDS should be extensible with respect to monitoring agents.

R_AI2.003 The application IDS should be extensible with respect to analysis components.

R_AI2.004 The application IDS should be extensible with respect to active response components.

R_AI2.005 The application IDS may be extensible with respect to pre-processing components.

R_AI2.006 Analysis components of the application IDS may be deployed on the APPSTACLE IoT
cloud platform.

Monitoring
R_AI3.001 The application IDS shall provide data that is referable to the App it originates from.

R_AI3.002 The application IDS should be able to monitor system calls.

R_AI3.003 The application IDS should be able to monitor library calls.

R_AI3.004 The application IDS should be able to monitor inter-process communication.

R_AI3.005 The application IDS should provide an interface such that instrumented Apps can report
status information.

Analysis
R_AI3.001 The application IDS should provide the possibility to execute multiple analyses for each

App.

R_AI3.002 The application IDS should provide the possibility to execute di�erent analyses for dif-
ferent Apps.

R_AI3.003 The application IDS should provide the possibility to execute the same analysis for dif-
ferent Apps.

129

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Response
R_AI3.001 The application IDS shall store alerts.

R_AI3.002 The application IDS should store events that produced alerts.

R_AI3.003 The application IDS should be able to send alerts to an authority (OEM, App company,
marketplace, etc.).

R_AI3.004 The application IDS should be able to inform the driver of an alert.

R_AI3.005 The application IDS may provide active response mechanisms.

130

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.4. Network IDS

5.4.1. Scope

The available NIDS solutions of Section 3.5.2 can be used for monitoring and early-stage detection in
in-vehicle environments when deployed in di�erent components of the vehicle to allow tra�c visibility.
Such components include the On-Board Unit (OBU), the OBD-II port as well as the central gateway
or network switch that certain vehicles feature 2. Even though each deployment will introduce a
di�erent setup and con�guration, the APPSTACLE framework and its interfaces to the NIDS are
modular and are illustrated in Figure 5.1.

Figure 5.1.: Interactions of NIDS with the APPSTACLE in-vehicle platform

This Figure presents the three main communication layers that are usually encountered in in-vehicle
environments and are considered as a part of the APPSTACLE project. In particular, the in-vehicle
layer includes all the subnetworks that are required for the correct functionality of the vehicle and
have a direct interface with the vehicle electronics, such as the body-control, chassis, powertrain
and infotainment subnetwork. Accordingly, the platform layer features the APPSTACLE in-vehicle
platform as well as its connections to the NIDS through di�erent interfaces, such as the connection
between the hardware and the monitoring sensor of the NIDS. Through this connection the NIDS is
operating as a passive solution that is able to achieve real-time monitoring of the communications
occurring inside the vehicle and detect potential security threats or miscon�gurations. In the same
time it is capable of minimizing overall impact in terms of performance on the overall system. The
NIDS is also connected to a Web server or an application running on an embedded device (e.g.
smartphone/tablet) that provides a user-friendly environment for the representation of the monitored
environment and the detected threats or miscon�gurations on it. This environment is provided
as a service to the APPSTACLE Cloud platform that resides on the V2X layer, namely the layer
that represents all the ex-vehicle interactions. The APPSTACLE Cloud platform can also receive
monitored in-vehicle communication events directly from the APPSTACLE in-vehicle platform through
the Eclipse Kuksa layer 3.

2https://standards.ieee.org/events/automotive/2017/d1-05_ziehensack_smart_ethernet_switch_architecture_v1.1.pdf
3https://projects.eclipse.org/proposals/eclipse-kuksa

131

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.4.2. Requirements

Information collection
R_NI1.001 The APPSTACLE in-vehicle platform SHALL support network monitoring.

The NIDS needs to have access to the in-vehicle network data, for example through a
span port on the APPSTACLE in-vehicle platform, or the NIDS could be integrated in
the APPSTACLE in-vehicle platform itself.

R_NI1.002 The NIDS MAY have access to unencrypted data for analysis
To achieve that it should become a trusted component, hence have the key for encrypted
tra�c in the APPSTACLE in-vehicle platform. In case this is not desirable, then the
NIDS will not be able to provide in-depth monitoring in case of encrypted tra�c. In
such case it can only perform analysis context-agnostic analysis (e.g. message frequency,
timing or header analysis)

R_NI1.003 All the network tra�c observed/available to the APPSTACLE in-vehicle platform SHALL
be forwarded/mirrored to the NIDS.
The NIDS analysis is restricted to the provided messages. To perform analysis the NIDS
requires full content capture of the messages that are exchanged in the APPSTACLE
in-vehicle platform.

Information Analysis
R_NI2.001 The NIDS SHOULD analyze network data against known malicious patterns
R_NI2.002 The NIDS SHOULD be able to receive regular security updates containing known ma-

licious patterns in a timely fashion
R_NI2.003 The NIDS' updates MAY be Over The Air (OTA) updates in order to guarantee that

the NIDS is up to date and possesses the latest malicious patterns/signatures
R_NI2.004 The NIDS SHOULD analyze network data to detect anomalous behavior.

The detection will be based on di�erent classes of NIDS that were presented in Section
3.5.2. In order to select which detection classes will be selected and implemented, an
evaluation still has to be conducted.

Result Dissemination
R_NI3.001 The NIDS SHALL log detected events/alerts for later evaluation.
R_NI3.002 The events/alerts SHOULD be obtained from the APPSTACLE platform
R_NI3.003 The NIDS MAY provide live alert feeds to the required stakeholder.

The stakeholders generally belong to di�erent categories, such as transport network au-
thorities, car owners, drivers or even System Operations Center (SOC). Each of these
authorities should have di�erent access rights on the alert feeds, which will be forwarded
by the NIDS.

Security
R_NI4.001 The NIDS SHALL not interrupt normal network operation. I.e. network performance

should not be impacted.
Network monitoring is meant to be a passive, non-invasive security solution. As such
it shall not take any actions when abnormal behavior is identi�ed nor have an impact
on the network performance, but only generate event logs/alerts

R_NI4.002 The APPSTACLE in-vehicle platform SHOULD prevent the network monitoring solution
from impacting the normal operation.
As NIDS is a part of the APPSTACLE platform, it can become an attack surface itself.
Therefore, it is essential that Compromising the NIDS itself should not provide an
attacker a foothold to attack the rest of the car architecture. The suggested location
to enforce this is in the APPSTACLE in-vehicle platform (�rewall). For an external
solution this relates to restricting the monitoring to reading data. If the NIDS is

132

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

integrated in the APPSTACLE in-vehicle platform this also involves process separation
and resource handling.

133

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.5. Ex-vehicle Connectivity

5.5.1. Scope

Intelligent Tra�c Systems (ITS) will typically combine the 802.11p communication channel with the
cellular communication channel. Which channel or channels to use will depend on the application
and its communication requirements. The conceptual architecture of the communication channels in
an ITS is presented in Figure 5.2.

Figure 5.2.: Conceptual architecture of V2X communication channels in ITS

Both communication channels are hidden from the applications by using the facilities layer. This
layer provides a common top-level interface that can be used to send messages both through the
802.11p communication as well as the cellular communication channel.

5.5.2. Requirements

Communication of ETSI messages
R_EC1.001 The Ex-vehicle communication subsystem shall be able to communicate ETSI CAM

messages through all the channels that support ETSI CAM message communication.

R_EC1.002 The Ex-vehicle communication subsystem shall be able to communicate ETSI DENM
messages through all the channels that support ETSI DENM message communication.

R_EC1.003 The Ex-vehicle communication subsystem shall be able to communicate ETSI MAP
messages through all the channels that support ETSI MAP message communication.

R_EC1.004 The Ex-vehicle communication subsystem shall be able to communicate ETSI SPAT
messages through all the channels that support ETSI SPAT message communication.

134

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

R_EC1.005 The Ex-vehicle communication subsystem shall be able to communicate ETSI IVI mes-
sages through all the channels that support ETSI IVI message communication.

Communication of IP messages
R_EC2.001 The Ex-vehicle communication subsystem shall be able to communicate TCP messages

through all the channels that support TCP message communication.

R_EC2.002 The Ex-vehicle communication subsystem shall be able to communicate UDP messages
through all the channels that support UDP message communication.

Con�guration publication
R_EC3.001 The Ex-vehicle communication subsystem shall be able to list all the channels that are

running within the subsystem (e.g. 802.11p, cellular).

R_EC3.002 The Ex-vehicle communication subsystem shall be able to list, per channel, the ETSI
message types that can be communicated through this channel.

R_EC3.003 The Ex-vehicle communication subsystem shall be able to list, per channel, the IP
message types that can be communicated through this channel.

135

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.6. QoS Monitoring

5.6.1. Scope

This section de�nes the overall characteristics of APPSTACLE's in vehicle QoS-Monitoring.

5.6.2. Requirements

QoS monitoring for CAN messages
R_QM1.001 QoS-Monitoring may measure CAN messaging performance via, e.g., measurements

for tra�c throughput, number of erroneous messages, delayed messages, etc.

R_QM1.002 In order to perform CAN message measurements, APPSTACLE may use a RPI
CAN shield comprising a MCP2515 CAN-Bus Controller and a MCP2551 CAN-Bus
Transceiver to connect to an existing CAN network.

R_QM1.003 For CAN message quality analyses, BUSMASTER [129] can be used.

Other QoS attributes
R_QM2.001 QoS-Monitoring may assess software processes. Therefore, APPSTACLE should

access QoS attributes written into dedicated QoS �les by the respective software pro-
cesses.

R_QM2.002 QoS-Monitoring may access further networks such as LIN, MOST, or Flex-Ray.

R_QM2.003 QoS-Monitoring may provide collecting available vehicle QoS measurements as an
extension to the APPSTACLE API (see Section 5.2).

136

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.7. Over the Air updates

5.7.1. Scope

This section de�nes the overall characteristics of Over the Air updates. Update mechanisms for
APPSTACLE Apps and the gateway will be implemented directly in the APPSTACLE platform, while
for OEM-speci�c ECU updates only extension points will be speci�ed.

5.7.2. Requirements

General
R_OU1.001 The APPSTACLE In-Car-Platform shall provide a mechanism for software updates.

Rationale: The update mechanism is needed to install bug �xes, security patches and
new software features.

R_OU1.002 The software update mechanism shall enable Over the Air updates.
Rationale: With OTA updates, the car owner does not have to go to the garage to
install an update.

R_OU1.003 The software update mechanism shall provide the APPSTACLE App OTA Update
Manager that is responsible for downloading and caching software updates for later
installation.
Rationale: The OTA Update Manager standardizes the download of software updates
and enables background prefetching.

R_OU1.004 The OTA Update Manager App shall have access to the Ex-Vehicle-Connectivity com-
ponent.
Rationale: Wireless internet/cloud access is required in order to download update
packages Over-the-Air.

R_OU1.005 The OTA Update Manager App shall have su�cient storage capacity for prefetching
of software updates for later installation.

R_OU1.006 Non volatile user settings should be preserved during updates.

R_OU1.007 In case of an error during an update (e. g. due to a corrupt installation), a rollback
mechanism should restore the system to its previous state.
Rationale: This prevents the vehicle from becoming unusable due to a fault.

R_OU1.008 The OTA Update Manager shall only download and apply authenticated and validated
update packages.
Rationale: The OTA Update Manager requires transparent methods for securely
downloading authenticated software updates that are ready for installation. The OTA
Update Manager expects this functionality from the APPSTACLE In-Car-Platform.

R_OU1.009 The software update mechanism may o�er extension points to enable the implemen-
tation of OEM-speci�c updates.
Rationale: This can be used, for example, to �ash a new �rmware image to an ECU
installed in the vehicle or to activate/deactivate software features.

R_OU1.010 The OTA Update Manager should provide settings for automatic installation of up-
dates.

137

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Rationale: This is especially intended for cases where safety- or security-critical
patches are to be installed.

Feature activation and deactivation
R_OU2.001 The software update mechanism should be able to activate and deactivate features of

APPSTACLE Apps by adjusting settings/parameters.

R_OU2.002 The software update mechanism may be able to activate and deactivate functions in
network-connected ECUs by modifying settings/parameters depending on the OEM-
speci�c extension points described in R_OU1.009.

Update or add self-contained software features
R_OU3.001 The software update mechanism shall be able to exchange or update software features

of the APPSTACLE Gateway.

R_OU3.002 The software update mechanism may be able to exchange or update software features
of network-connected ECUs depending on the OEM-speci�c extension points described
in R_OU1.009.

Firmware updates
R_OU4.001 The software update mechanism should support updating the APPSTACLE Gateway

�rmware.

R_OU4.002 The software update mechanism may support updating network-connected ECU �rmware
depending on the OEM-speci�c extension points described in R_OU1.009.

138

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

5.8. Hardware

5.8.1. Scope

Within the APPSTACLE project, two di�erent hardware platforms are planned to be used for the
APPSTACLE in-vehicle platform. The �rst one is a Raspberry Pi 3 as a so called "Community
Board". This Community Board is meant to be used for initial developments and serves as an easy
to obtain platform for interested people outside the APPSTACLE project. However, this Community
Board does not contain automotive speci�c elements. The second hardware platform used for the
APPSTACLE in-vehicle platform is the APPSTACLE project board. This APPSTACLE project board
is a piece of hardware created during the course of the project and tailored to its needs as well as
to the automotive domain. This section de�nes the hardware requirements regarding the Appstacle
Project board.

5.8.2. Requirements

General
R_HW1.001 The APPSTACLE Project board shall be suitable to develop, test and demonstrate

all of the APPSTACLE software.

R_HW1.002 The APPSTACLE Project Board shall consist of a gateway CPU unit providing con-
nectivity between the Cloud, the central CPU unit, and all of the in-car ECUs.

R_HW1.003 The APPSTACLE project board shall be able to run Automotive Grade Linux.

R_HW1.004 The APPSTACLE project board should support security measures as far as necessary
by means of hardware functions. This involves means to protect the system against
manipulation and sabotage. The hardware functions may include AES encryption and
tamper protection.

Interfaces
R_HW2.001 The main task of the distinct APPSTACLE project board consists in carrying out the

connection between the central CPU and the Cloud via LTE and, later on, 5G. This
involves all necessary software protocols and security checks. Apart from that, the
Gateway serves as the central router for various in-vehicle �eldbus interfaces which may
include Automotive Ethernet, CAN, CAN-FD, LIN, (MOST, Flexray). Furthermore,
ex-vehicle interfaces, e.g. ITS-G5, may be connected via USB or Ethernet.

R_HW2.002 The APPSTACLE Project board may include a Human-Machine-Interface (HMI). This
may consist of a TFT (e.g. 7") and a capacitive touchscreen.

R_HW2.003 The APPSTACLE project board should provide one or more Automotive Ethernet
(e.g. IEEE 802.3 100Base-T1) interfaces.

R_HW2.004 The APPSTACLE project board should provide one or more Controller Area Network
(CAN) interfaces.

Environmental Requirements
R_HW3.001 The power supply shall be compliant with vehicle electric systems, i. e. 12V to 24V.

It also involves protection against load dumps and inductive spikes.

R_HW3.002 The operating temperature range should be de�ned as -40 to +85◦C.

139

Bibliography

[1] WikiLeaks Vault 7 Conspiracy: Michael Hastings Assassinated by
CIA Remote Car Hack? http://heavy.com/news/2017/03/

wikileaks-vault-7-remote-car-hack-assassination-michael-hastings-conspiracy/.
� Accessed: 2017-08-22

[2] An architectural blueprint for autonomic computing. In: IBM White Paper 31 (2006)

[3] Ali, Toqeer ; Ali, Jawad ; Ali, Tamleek ; Nauman, Mohammad ;Musa, Shahrulniza: E�-
cient, Scalable and Privacy Preserving Application Attestation in a Multi Stakeholder Scenario.
In: Gervasi, Osvaldo (Publisher) ; Murgante, Beniamino (Publisher) ; Misra, Sanjay
(Publisher) ; Rocha, Ana Maria A. (Publisher) ; Torre, Carmelo M. (Publisher) ; Taniar,
David (Publisher) ; Apduhan, Bernady O. (Publisher) ; Stankova, Elena (Publisher) ;
Wang, Shangguang (Publisher): Computational Science and Its Applications � ICCSA 2016:
16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part IV. Springer
International Publishing, 2016, P. 407�421. � ISBN 978-3-319-42089-9

[4] Ansari, Mohammad R. ; Miller, W T. ; She, Chenghua ; Yu, Qiaoyan: A low-cost
masquerade and replay attack detection method for CAN in automobiles. In: Circuits and
Systems (ISCAS), 2017 IEEE International Symposium on IEEE (Organ.), 2017, P. 1�4

[5] ASAM: ASAM MCD-3 MC. 2017. � URL https://www.asam.net/standards/detail/

mcd-3-mc/wiki/

[6] Audi AG: Audi connect. � URL http://www.audi.com/en/innovation/connect.html

[7] Audi AG: Audi connect. � URL http://www.audi.com/corporate/en/innovations/

mobility-and-technology/audi-connect.html

[8] Audi AG: Audi connect and infotainment. 2016. � URL https://audi-illustrated.com/

en/CES-2016/Audi-connect-und-Infotainment

[9] Automotive Grade Linux: Automotive Grade Linux Requirments Speci�cation
v1.0. URL https://www.automotivelinux.org/wp-content/uploads/sites/4/2017/

08/agl_spec_v1_280515.pdf

[10] Automotive News: Over-the-air updates on varied paths. 2016.
� URL http://www.autonews.com/article/20160125/OEM06/301259980/

over-the-air-updates-on-varied-paths

[11] AUTOSAR: AUTOSAR Software Component Template. � URL https://www.autosar.

org/fileadmin/files/standards/classic/4-3/methodology-and-templates/

templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[12] AUTOSAR: AUTOSAR Speci�cation of RTE. � URL https://www.autosar.org/

fileadmin/files/standards/classic/4-3/software-architecture/rte/standard/

AUTOSAR_SWS_RTE.pdf

[13] Bace, Rebecca ; Mell, Peter: Intrusion Detection Systems. In: Special Publication (NIST
SP) - 800-31 (2001)

140

http://heavy.com/news/2017/03/wikileaks-vault-7-remote-car-hack-assassination-michael-hastings-conspiracy/
http://heavy.com/news/2017/03/wikileaks-vault-7-remote-car-hack-assassination-michael-hastings-conspiracy/
https://www.asam.net/standards/detail/mcd-3-mc/wiki/
https://www.asam.net/standards/detail/mcd-3-mc/wiki/
http://www.audi.com/en/innovation/connect.html
http://www.audi.com/corporate/en/innovations/mobility-and-technology/audi-connect.html
http://www.audi.com/corporate/en/innovations/mobility-and-technology/audi-connect.html
https://audi-illustrated.com/en/CES-2016/Audi-connect-und-Infotainment
https://audi-illustrated.com/en/CES-2016/Audi-connect-und-Infotainment
https://www.automotivelinux.org/wp-content/uploads/sites/4/2017/08/agl_spec_v1_280515.pdf
https://www.automotivelinux.org/wp-content/uploads/sites/4/2017/08/agl_spec_v1_280515.pdf
http://www.autonews.com/article/20160125/OEM06/301259980/over-the-air-updates-on-varied-paths
http://www.autonews.com/article/20160125/OEM06/301259980/over-the-air-updates-on-varied-paths
https://www.autosar.org/fileadmin/files/standards/classic/4-3/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/files/standards/classic/4-3/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/files/standards/classic/4-3/methodology-and-templates/templates/standard/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/files/standards/classic/4-3/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/files/standards/classic/4-3/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/files/standards/classic/4-3/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[14] Bace, Rebecca ; Mell, Peter: NIST special publication on intrusion detection systems /
BOOZ-ALLEN AND HAMILTON INC MCLEAN VA. 2001. � Research report

[15] Berwanger, Josef ; Peller, Martin ; Grieÿbach, Robert: Byte�ight a new protocol for
safety critical applications. In: Proceedings of the 28th FISITA World Automotive Congress.
Seoul, Korea: FISITA, 2000

[16] Bibhu, Vimal ; Kumar, Roshan ; Kumar, Balwant S. ; Singh, Dhirendra K.: Performance
analysis of black hole attack in VANET. In: International Journal Of Computer Network and
Information Security 4 (2012), Nb. 11, P. 47

[17] BMW Group: The future of smart connectivity. � URL https://www.bmwgroup.com/en/

innovation/technologies-and-mobility/connectivity.html

[18] Bosch, Robert: CAN speci�cation version 2.0. In: Robert Bosch GmbH, Stuttgart (1991)

[19] Bosch, Robert: CAN with Flexible Data-Rate speci�cation. In:
Robert Bosch GmbH, Stuttgart (2012). � http://www.bosch-
semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf

[20] Braescu, F. C. ; Ferariu, L. ; Franciuc, A.: Monitoring CAN performances in dis-
tributed embedded systems. In: 15th International Conference on System Theory, Control and
Computing, Oct 2011, P. 1�6

[21] Breitfelder, Kim ; Messina, Don: IEEE 100: the authoritative dictionary of IEEE stan-
dards terms. In: Standards Information Network IEEE Press. v879 (2000)

[22] Broster, Ian ; Burns, Alan: An analysable bus-guardian for event-triggered communication.
In: RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003 (2003). ISBN 0-7695-2044-8

[23] Brown, D ; Cooper, Geo�rey ; Gilvarry, Ian ; Rajan, Anand ; Tatourian, Alan ;
Venugopalan, Ramnath ; Wheeler, David ; Zhao, Meiyuan: Automotive security best
practices. In: White Paper (2015), P. 1�17

[24] Buchverlag, DATACOM: CAN calibration protocol. 2017. � URL http://www.itwissen.

info/CCP-CAN-calibration-protocol.html

[25] CAN in Automation: CANopen application layer and communication pro�le, Draft Stan-
dard 301. February 2011

[26] Cheifetz, Nicolas ; Same, Allou ; Aknin, Patrice ; De Verdalle, Emmanuel: A pat-
tern recognition approach for anomaly detection on buses brake system. In: IEEE Confer-
ence on Intelligent Transportation Systems, Proceedings, ITSC (2011), P. 266�271. ISBN
9781457721984

[27] Cho, Kyong-tak ; Shin, Kang G.: Fingerprinting Electronic Control Units for Vehicle Intrusion
Detection. In: Usec (2016), P. 911�927. � URL https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/cho. ISBN 978-1-931971-32-4

[28] Cisco: Quality of Service (QoS). 2017. � URL https://www.cisco.com/c/en/us/

products/ios-nx-os-software/quality-of-service-qos/index.html

[29] Colajanni, Michele ; Dal Zotto, Luca ; Marchetti, Mirco ; Messori, Michele: The
problem of NIDS evasion in mobile networks. In: 2011 4th IFIP International Conference
on New Technologies, Mobility and Security, NTMS 2011 - Proceedings (2011). � ISBN
9781424487042

141

https://www.bmwgroup.com/en/innovation/technologies-and-mobility/connectivity.html
https://www.bmwgroup.com/en/innovation/technologies-and-mobility/connectivity.html
http://www.itwissen.info/CCP-CAN-calibration-protocol.html
http://www.itwissen.info/CCP-CAN-calibration-protocol.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.cisco.com/c/en/us/products/ios-nx-os-software/quality-of-service-qos/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/quality-of-service-qos/index.html

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[30] Collabora Ltd.: Apertis Developer Portal. � URL https://developer.apertis.org/.
� Access date: 2017-07-19

[31] Czarnecki, Krzysztof ; Helsen, Simon ; Eisenecker, Ulrich: Formalizing cardinality-
based feature models and their specialization. In: Software Process: Improvement and Practice
10 (2005), Nb. 1, P. 7�29. � ISSN 1099-1670

[32] Daimler AG: Network on board. Multimedia systems in the vehicle. 2017. � URL https://

www.daimler.com/innovation/case/connectivity/connectivity-in-the-vehicle.

html

[33] Damopoulos, Dimitrios ; Kambourakis, Georgios ; Gritzalis, Stefanos: From keylog-
gers to touchloggers: Take the rough with the smooth. In: Computers & security 32 (2013),
P. 102�114

[34] Damopoulos, Dimitrios ; Kambourakis, Georgios ; Gritzalis, Stefanos ; Park,
Sang O.: Exposing mobile malware from the inside (or what is your mobile app really do-
ing?). In: Peer-to-Peer Networking and Applications 7 (2014), Nb. 4, P. 687�697

[35] Damopoulos, Dimitrios ; Kambourakis, Georgios ; Portokalidis, Georgios: The Best
of Both Worlds: A Framework for the Synergistic Operation of Host and Cloud Anomaly-based
IDS for Smartphones. In: Proceedings of the 7th European Workshop on System Security.
New York, NY, USA : ACM, 2014 (EuroSec '14), P. 6:1�6:6. � URL http://doi.acm.org/

10.1145/2592791.2592797. � ISBN 978-1-4503-2715-2

[36] Damopoulos, Dimitrios ; Menesidou, So�a A. ; Kambourakis, Georgios ; Papadaki,
Maria ; Clarke, Nathan ; Gritzalis, Stefanos: Evaluation of anomaly-based IDS for mobile
devices using machine learning classi�ers. In: Security and Communication Networks 5 (2012),
Nb. 1, P. 3�14

[37] Debar, Hervé ; Dacier, Marc ;Wespi, Andreas: A revised taxonomy for intrusion-detection
systems. (2000), P. 361�378

[38] Denning, E ; Ave, Ravenswood ; Park, Menlo: An intrusion detection model. In: IEEE
Transactions on Software Engineering (1986), P. 118�131

[39] E. Aina, S. S.: Apertis Platform Guide. � URL https://developer.apertis.org/index.

html. � Access date: 2017-10-16

[40] Eclipse: Franca. � URL https://eclipse.org/proposals/modeling.franca/

[41] Electronics, BuB: OBD II Background. 2011. � URL http://www.obdii.com/

background.html

[42] Embedded Computing Design: OTA update possibili-
ties put automotive on the road to V2X. 2014. � URL
http://www.embedded-computing.com/embedded-computing-design/

ota-update-possibilities-put-automotive-on-the-road-to-v2x

[43] ETAS GmbH: Fast Firmware Updates Over-the-Air. 2017. � URL https://www.etas.com/

download-center-files/engineering/Whitepaper_Bosch_FOTA_2017_web.pdf

[44] Festag, Andreas: Cooperative intelligent transport systems standards in Europe. In: in IEEE
communications magazine 52 (2014), P. 12

[45] Feuer, Magnus: Talk: Vehicle Signal Speci�cation. Apr 2016

142

https://developer.apertis.org/
https://www.daimler.com/innovation/case/connectivity/connectivity-in-the-vehicle.html
https://www.daimler.com/innovation/case/connectivity/connectivity-in-the-vehicle.html
https://www.daimler.com/innovation/case/connectivity/connectivity-in-the-vehicle.html
http://doi.acm.org/10.1145/2592791.2592797
http://doi.acm.org/10.1145/2592791.2592797
https://developer.apertis.org/index.html
https://developer.apertis.org/index.html
https://eclipse.org/proposals/modeling.franca/
http://www.obdii.com/background.html
http://www.obdii.com/background.html
http://www.embedded-computing.com/embedded-computing-design/ota-update-possibilities-put-automotive-on-the-road-to-v2x
http://www.embedded-computing.com/embedded-computing-design/ota-update-possibilities-put-automotive-on-the-road-to-v2x
https://www.etas.com/download-center-files/engineering/Whitepaper_Bosch_FOTA_2017_web.pdf
https://www.etas.com/download-center-files/engineering/Whitepaper_Bosch_FOTA_2017_web.pdf

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[46] FlexRay Consortium: FlexRay Communications System Protocol Speci�cation Version
3.1, 2010. In: Available at http{ www. �exray. com}

[47] Ford Motor Company: The future of smart connectivity. 2017. � URL https://www.

ford.com/technology/sync/sync-3/

[48] Forrest, S. ; Hofmeyr, S.A. ; Somayaji, A. ; Longstaff, T.A.: A sense of self for Unix
processes. In: Proceedings 1996 IEEE Symposium on Security and Privacy (1996), P. 120�128.
� URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=502675.
� ISBN 0-8186-7417-2

[49] GENIVI: Common API. � URL https://at.projects.genivi.org/wiki/display/

COMMONAPICPP/CommonAPI-cpp

[50] Gmiden, Mabrouka ; Gmiden, Mohamed H. ; Trabelsi, Hafedh: An Intrusion Detection
Method for Securing In-Vehicle CAN bus. (2016), P. 176�180. ISBN 9781509034079

[51] Golem.de: Lexus-Navigationssystem nach Over-The-Air-Update
unbrauchbar. 2016. � URL https://www.golem.de/news/

auto-lexus-navigationssystem-nach-over-the-air-update-unbrauchbar-1606-121393.

html

[52] Google Inc.: Android Automotive. � URL https://source.android.com/devices/

automotive/. � Access date: 2017-10-30

[53] Google Inc.: Android Interfaces and Architecture. � URL https://source.android.

com/devices/. � Access date: 2017-10-30

[54] Groll, André ; Ruland, Christoph: Secure and authentic communication on existing in-
vehicle networks. In: IEEE Intelligent Vehicles Symposium, Proceedings (2009), P. 1093�1097.
� ISBN 9781424435043

[55] Gu, Zhongshu ; Pei, Kexin ; Wang, Qifan ; Si, Luo ; Zhang, Xiangyu ; Xu, Dongyan:
LEAPS: Detecting Camou�aged Attacks with Statistical Learning Guided by Program Anal-
ysis. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, IEEE, 2015, P. 57�68. � ISBN 978-1-4799-8629-3

[56] Gupta, Deepak ; Jalote, Pankaj: On-line software version change using state transfer
between processes. In: Software: Practice and Experience 23 (1993), Nb. 9, P. 949�964

[57] Hank, Peter ; Müller, Ste�en ; Vermesan, Ovidiu ; Van Den Keybus, Jeroen: Auto-
motive ethernet: in-vehicle networking and smart mobility. In: Proceedings of the Conference
on Design, Automation and Test in Europe EDA Consortium (Organ.), 2013, P. 1735�1739

[58] Hank, Peter ; Suermann, Thomas ; Müller, Ste�en: Automotive Ethernet, a holistic
approach for a next generation in-vehicle networking standard. In: Advanced Microsystems for
Automotive Applications 2012 (2012), P. 79�89

[59] Hedges, Chris ; Perry, Frank: Overview and use of SAE J2735 message sets for commercial
vehicles. 2008. � SAE Technical Paper, No. 2008-01-2650

[60] here: Vehicle Sensor Data Cloud Ingestion Interface Speci�cation v2.0.2. 2015.
� URL https://lts.cms.here.com/static-cloud-content/Company_Site/2015_06/

Vehicle_Sensor_Data_Cloud_Ingestion_Interface_Specification.pdf

[61] Hoppe, Tobias ; Kiltz, Stefan ; Dittmann, Jana: Security threats to automotive CAN
networks�practical examples and selected short-term countermeasures. In: International Con-
ference on Computer Safety, Reliability, and Security Springer (Organ.), 2008, P. 235�248

143

https://www.ford.com/technology/sync/sync-3/
https://www.ford.com/technology/sync/sync-3/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=502675
https://at.projects.genivi.org/wiki/display/COMMONAPICPP/CommonAPI-cpp
https://at.projects.genivi.org/wiki/display/COMMONAPICPP/CommonAPI-cpp
https://www.golem.de/news/auto-lexus-navigationssystem-nach-over-the-air-update-unbrauchbar-1606-121393.html
https://www.golem.de/news/auto-lexus-navigationssystem-nach-over-the-air-update-unbrauchbar-1606-121393.html
https://www.golem.de/news/auto-lexus-navigationssystem-nach-over-the-air-update-unbrauchbar-1606-121393.html
https://source.android.com/devices/automotive/
https://source.android.com/devices/automotive/
https://source.android.com/devices/
https://source.android.com/devices/
https://lts.cms.here.com/static-cloud-content/Company_Site/2015_06/Vehicle_Sensor_Data_Cloud_Ingestion_Interface_Specification.pdf
https://lts.cms.here.com/static-cloud-content/Company_Site/2015_06/Vehicle_Sensor_Data_Cloud_Ingestion_Interface_Specification.pdf

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[62] Hoppe, Tobias ; Kiltz, Stefan ; Dittmann, Jana: Applying intrusion detection to auto-
motive it-early insights and remaining challenges. In: Journal of Information Assurance and
Security (JIAS) 4 (2009), Nb. 6, P. 226�235

[63] Hoppe, Tobias C. ; Kiltz, Stefan ; Dittmann, Jana: Applying Intrusion Detection to
Automotive IT � Early Insights and Remaining Challenges. 4 (2009), Nb. May, P. 226�235

[64] Houston Ford of Pine River: Can I update Ford Sync using
my home Wi-Fi? 2017. � URL http://www.houstonford.com/blog/

update-ford-sync-software-using-wi-fi-information/

[65] Hu, Hong ; Shinde, Shweta ; Adrian, Sendroiu ; Chua, Zheng L. ; Saxena, Prateek ;
Liang, Zhenkai: Data-oriented programming: On the expressiveness of non-control data
attacks. In: Security and Privacy (SP), 2016 IEEE Symposium on IEEE (Organ.), 2016,
P. 969�986

[66] IEEE: IEEE Standards Style Manual. � URL https://development.standards.ieee.org/

myproject/Public/mytools/draft/styleman.pdf

[67] Ilgun, Koral ; Kemmerer, R.A. ; Porras, P.A.: State transition analysis: a rule-based
intrusion detection approach. In: IEEE Transactions on Software Engineering 21 (1995),
Nb. 3, P. 181�199. � URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=372146. � ISBN 0098-5589

[68] Imtiaz, Jahanzaib ; Jasperneite, Jürgen ; Han, Lixue: A performance study of Ethernet
Audio Video Bridging (AVB) for Industrial real-time communication. In: Emerging Technologies
& Factory Automation, 2009. ETFA 2009. IEEE Conference on IEEE (Organ.), 2009, P. 1�8

[69] IoT Now: Securing automotive over-the-air updates. 2017. � URL https://www.iot-now.

com/2017/02/27/59018-securing-automotive-air-updates/

[70] Ishtiaq Roufa, Rob M. ; Mustafaa, Hossen ; Travis Taylora, Sangho O. ; Xua,
Wenyuan ; Gruteserb, Marco ; Trappeb, Wade ; Seskarb, Ivan: Security and privacy
vulnerabilities of in-car wireless networks: A tire pressure monitoring system case study. In:
19th USENIX Security Symposium, Washington DC, 2010, P. 11�13

[71] Ismail, Roslan ; Syed, Toqeer A. ; Musa, Shahrulniza: Design and Implementation of an
E�cient Framework for Behaviour Attestation Using N-call Slides. In: Proceedings of the 8th
International Conference on Ubiquitous Information Management and Communication. New
York, NY, USA : ACM, 2014 (ICUIMC '14), P. 36:1�36:8. � URL http://doi.acm.org/10.

1145/2557977.2558002. � ISBN 978-1-4503-2644-5

[72] ISO: 11898-1�Road vehicles�Controller area network (CAN)�Part 1: Data link layer and
physical signalling. In: International Organization for Standardization (2003)

[73] ISO: 11898-2, Road vehicles Controller area network (CAN) Part 2: High-speed medium
access unit. In: International Organization for Standardization (2003)

[74] ITU-R: IMT Vision�Framework and overall objectives of the future development of IMT for
2020 and beyond. (2015)

[75] ITWissen: QoS (quality of service). 2017. � URL http://www.itwissen.info/

QoS-quality-of-service-Dienstguete.html

[76] Jacobson, Emily R. ; Bernat, Andrew R. ; Williams, William R. ; Miller, Barton P.:
Detecting Code Reuse Attacks with a Model of Conformant Program Execution. In: Jürjens,

144

http://www.houstonford.com/blog/update-ford-sync-software-using-wi-fi-information/
http://www.houstonford.com/blog/update-ford-sync-software-using-wi-fi-information/
https://development.standards.ieee.org/myproject/Public/mytools/draft/styleman.pdf
https://development.standards.ieee.org/myproject/Public/mytools/draft/styleman.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=372146
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=372146
https://www.iot-now.com/2017/02/27/59018-securing-automotive-air-updates/
https://www.iot-now.com/2017/02/27/59018-securing-automotive-air-updates/
http://doi.acm.org/10.1145/2557977.2558002
http://doi.acm.org/10.1145/2557977.2558002
http://www.itwissen.info/QoS-quality-of-service-Dienstguete.html
http://www.itwissen.info/QoS-quality-of-service-Dienstguete.html

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

Jan (Publisher) ; Piessens, Frank (Publisher) ; Bielova, Nataliia (Publisher): Engineering
Secure Software and Systems: 6th International Symposium, ESSoS 2014, Munich, Germany,
February 26-28, 2014, Proceedings. Cham : Springer International Publishing, 2014, P. 1�18.
� URL https://doi.org/10.1007/978-3-319-04897-0_1. � ISBN 978-3-319-04897-0

[77] Jaguar Land Rover: Vehicle Signal Speci�cation. � URL https://github.com/GENIVI/

vehicle_signal_specification

[78] Jaguar Land Rover: Vehicle Signal Speci�cation. � URL https://github.com/GENIVI/

vehicle_signal_specification

[79] Japkowicz, Nathalie ; Taylor, Adrian: Frequency-Based Anomaly Detection for the Auto-
motive CAN bus. (2015), P. 45�49

[80] Jennings, Nicholas R.: On agent-based software engineering. In: Arti�cial Intelligence 117
(2000), Nb. 2, P. 277 � 296. � URL http://www.sciencedirect.com/science/article/

pii/S0004370299001071. � ISSN 0004-3702

[81] Johanson, Mathias ; Dahle, Pål ; Soderberg, A: Remote vehicle diagnostics over the
internet using the DoIP protocol. In: The Sixth International Conference on Systems and
Networks Communications, 2011

[82] Juliussen, Egil: Connected Cars: Perspectives to 2025. Paris : Presented on the 14th GENIVI
all members meeting, 2016. � URL https://at.projects.genivi.org/wiki/display/

WIK4/14th+GENIVI+AMM. � Access date: 2017-10-30

[83] Kambourakis, Georgios ; Damopoulos, Dimitrios ; Papamartzivanos, Dimitrios ;
Pavlidakis, Emmanouil: Introducing touchstroke: keystroke-based authentication system
for smartphones. In: Security and Communication Networks 9 (2016), Nb. 6, P. 542�554

[84] Kang, K. C. ; Cohen, S. G. ; Hess, J. A. ; Novak, W. E. ; Peterson, A. S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study / Carnegie-Mellon University Software
Engineering Institute. November 1990. � Technical Report No. CMU/SEI-90-TR-21

[85] Knirsch, Matthias ; Kesch, Bernd ; Tappe, Matthias ; Driedger, Günter ; Lehle,
Walter: Diagnosis. P. 304�325. In: Gasoline Engine Management, Springer Fachmedien, 2014

[86] Ko, C. ; Ruschitzka, M. ; Levitt, K.: Execution monitoring of security-critical programs in
distributed systems: a speci�cation-based approach. In: Proceedings. 1997 IEEE Symposium on
Security and Privacy (Cat. No.97CB36097) (1997), P. 175�187. � URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601332. � ISBN 0-8186-7828-3

[87] Koscher, Karl ; Czeskis, Alexei ; Roesner, Franziska ; Patel, Shwetak ; Kohno,
Tadayoshi ; Checkoway, Stephen ; McCoy, Damon ; Kantor, Brian ; Anderson,
Danny ; Shacham, Hovav u. a.: Experimental security analysis of a modern automobile. In:
Security and Privacy (SP), 2010 IEEE Symposium on IEEE (Organ.), 2010, P. 447�462

[88] Kramer, Je� ; Magee, Je�: The evolving philosophers problem: Dynamic change manage-
ment. In: IEEE Transactions on software engineering 16 (1990), Nb. 11, P. 1293�1306

[89] Larson, Ulf E. ; Nilsson, Dennis K. ; Jonsson, Erland: An approach to speci�cation-based
attack detection for in-vehicle networks. In: Intelligent Vehicles Symposium, 2008 IEEE IEEE
(Organ.), 2008, P. 220�225

[90] Lazarevic, Aleksandar ; Kumar, Vipin ; Srivastava, Jaideep: Intrusion detection: A
survey. In: Managing Cyber Threats. Springer, 2005, P. 19�78

145

https://doi.org/10.1007/978-3-319-04897-0_1
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://www.sciencedirect.com/science/article/pii/S0004370299001071
https://at.projects.genivi.org/wiki/display/WIK4/14th+GENIVI+AMM
https://at.projects.genivi.org/wiki/display/WIK4/14th+GENIVI+AMM
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601332
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601332

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[91] Li, Wei: Using genetic algorithm for network intrusion detection. In: Proceedings of the
United States Department of Energy Cyber Security Group 1 (2004), P. 1�8

[92] Lin, Xingqin ; Andrews, Je�rey ; Ghosh, Amitabha ; Ratasuk, Rapeepat: An overview of
3GPP device-to-device proximity services. In: IEEE Communications Magazine, no 52 (2014),
Nb. 4, P. 40�48

[93] LIN Consortium: LIN speci�cation package, revision 2.0. In: Munich, Germany (2003)

[94] LoRa Alliance: A technical overview of LoRa and LoRaWAN. November 2015

[95] Luckham, David C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA c©2001. � ISBN 0201727897

[96] Luh, Robert ; Marschalek, Stefan ; Kaiser, Manfred ; Janicke, Helge ; Schrit-
twieser, Sebastian: Semantics-aware detection of targeted attacks: a survey. In: Journal of
Computer Virology and Hacking Techniques 13 (2017), Nb. 1, P. 47�85

[97] Lunt, Teresa F. ; Tamaru, Ann ; Gilham, Fred ; Jagan, Nathan R. ; Jalali, Caveh ;
Neumann, Peter G.: A real-time intrusion-detection expert system (ides). (1992)

[98] Maggi, Fabrizio M. ; Montali, Marco ; Westergaard, Michael ; Van Der Aalst,
Wil M P.: Monitoring business constraints with linear temporal logic: An approach based on
colored automata. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics) 6896 LNCS (2011), P. 132�147.
� ISBN 9783642230585

[99] Marschalek, Stefan ; Luh, Robert ; Kaiser, Manfred ; Schrittwieser, Sebastian: Clas-
sifying malicious system behavior using event propagation trees. In: Indrawan-Santiago,
Maria (Publisher) ; Anderst-Kotsis, Gabriele (Publisher): Proceedings of the 17th Inter-
national Conference on Information Integration and Web-based Applications & Services ACM
(Organ.), 2015, P. 1�10

[100] Mercedes-Benz: In-Car Purchase: Special Features on Demand. � URL
https://www.mercedes-benz.com/en/taubenheim-13/taubenheim13blog/

in-car-purchase-special-features-on-demand/

[101] Miller, Charlie ; Valasek, Chris: Adventures in automotive networks and control units. In:
DEF CON 21 (2013), P. 260�264

[102] Miller, Charlie ; Valasek, Chris: A survey of remote automotive attack surfaces. In: black
hat USA (2014)

[103] Miller, Charlie ; Valasek, Chris: Remote exploitation of an unaltered passenger vehicle.
In: Black Hat USA 2015 (2015)

[104] Mitchell, Robert ; Chen, Ing-ray ; Tech, Virginia: A Survey of Intrusion Detection
Techniques for Cyber-Physical Systems. 46 (2014), Nb. 4

[105] Mohammed Taha Elgraini, Nasser Assem, Taiieeddine Rachtdt: HOST INTRU-
SION DETECTION FOR LONG STEALTHY SYSTEM CALL SEQUENCES. In: Colloquium
in Information Science and Technology (CIST), 2012 Volume 22 - 24 Oct. 2012, Fez, Morocco
; proceedings. URL http://ieeexplore.ieee.org/servlet/opac?punumber=6377152

[106] MOST Cooperation: MOST speci�cation revision 2.3. 2004

146

https://www.mercedes-benz.com/en/taubenheim-13/taubenheim13blog/in-car-purchase-special-features-on-demand/
https://www.mercedes-benz.com/en/taubenheim-13/taubenheim13blog/in-car-purchase-special-features-on-demand/
http://ieeexplore.ieee.org/servlet/opac?punumber=6377152

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[107] Mukkamala, Srinivas ; Janoski, Guadalupe ; Sung, Andrew: Intrusion detection us-
ing neural networks and support vector machines. In: Neural Networks, 2002. IJCNN'02.
Proceedings of the 2002 International Joint Conference on Volume 2 IEEE (Organ.), 2002,
P. 1702�1707

[108] Murtaza, S. S. ; Khreich, W. ; Hamou-Lhadj, A. ; Couture, M.: A host-based
anomaly detection approach by representing system calls as states of kernel modules. In: 2013
IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Nov 2013,
P. 431�440. � ISSN 1071-9458

[109] Müter, Michael ; Asaj, Naim: Entropy-based anomaly detection for in-vehicle networks. In:
Intelligent Vehicles Symposium (IV), 2011 IEEE IEEE (Organ.), 2011, P. 1110�1115

[110] Müter, Michael ; Groll, André ; Freiling, Felix C.: A structured approach to anomaly
detection for in-vehicle networks. In: Information Assurance and Security (IAS), 2010 Sixth
International Conference on IEEE (Organ.), 2010, P. 92�98

[111] Müter, Michael ; Groll, André ; Freiling, Felix C.: Anomaly Detection for In-Vehicle
Networks using a Sensor-based Approach. 6 (2011), P. 132�140

[112] Nilsson, Dennis K. ; Larson, Ulf E. ; Jonsson, Erland: E�cient in-vehicle delayed
data authentication based on compound message authentication codes. In: IEEE Vehicular
Technology Conference (2008), P. 1�5. � ISBN 9781424417223

[113] Nilsson, Dennis K. ; Larson, Ulf E. ; Picasso, Francesco ; Jonsson, Erland: A First
Simulation of Attacks in the Automotive Network Communications Protocol FlexRay. In:
Springer (2009), P. 84�91

[114] Odat, H. A. ; Ganesan, S.: Firmware over the air for automotive, Fotamotive. In: IEEE
International Conference on Electro/Information Technology, June 2014, P. 130�139

[115] Oguma, Hisashi ; Yoshioka, Akira ; Nishikawa, Makoto ; Shigetomi, Rie ; Otsuka,
Akira ; Imai, Hideki: New Attestation-Based Security Architecture for In-vehicle Communica-
tion. (2008), P. 1�6. ISBN 9781424423248

[116] Palanca, Andrea ; Evenchick, Eric ; Maggi, Federico ; Zanero, Stefano: A stealth,
selective, link-layer denial-of-service attack against automotive networks. In: International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment Springer
(Organ.), 2017, P. 185�206

[117] Panos, Christoforos ; Xenakis, Christos ; Kotzias, Platon ; Stavrakakis, Ioannis: A
speci�cation-based intrusion detection engine for infrastructure-less networks. In: Computer
Communications 54 (2014), P. 67�83. � URL http://dx.doi.org/10.1016/j.comcom.

2014.08.002. � ISSN 01403664

[118] Pfeiffer, Olaf ; Ayre, Andrew ; Keydel, Christian: Embedded networking with CAN and
CANopen. Copperhill Media, 2008

[119] Pillmann, Johannes ; Wietfeld, Christian ; Zarcula, Adrian ; Raugust, Thomas ;
Alonso, Daniel C.: Novel common vehicle information model (CVIM) for future automotive
vehicle big data marketplaces. In: Intelligent Vehicles Symposium (IV), 2017 IEEE IEEE
(Organ.), 2017, P. 1910�1915

[120] Porras, Phillip A. ; Valdes, Alfonso: Live Tra�c Analysis of TCP/IP Gateways. In: ISOC
Symposium on Network and Distributed System Security (NDSS'98), San Diego, CA (1998)

147

http://dx.doi.org/10.1016/j.comcom.2014.08.002
http://dx.doi.org/10.1016/j.comcom.2014.08.002

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[121] QNX Software Systems: QNX CAR Platform for Infotainment. � URL https://www.

qnx.com/content/qnx/en/products/qnxcar/index.html. � Access date: 2017-10-30

[122] QNX Software Systems: QNX for Automotive. � URL http://blackberry.qnx.com/

en/solutions/industries/automotive/index. � Access date: 2017-10-30

[123] Qualcomm: The path to 5G: Cellular Vehicle-to-Everything (C-V2X). � URL https://www.

qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x

[124] Ratasuk, Rapeepat ;Mangalvedhe, Nitin ; Ghosh, Amitava ; Vejlgaard, Benny: Nar-
rowband LTE-M system for M2M communication. IEEE : in Vehicular Technology Conference
(VTC Fall)

[125] Ratasuk, Rapeepat ;Mangalvedhe, Nitin ; Zhang, Yanji ; Robert, Michel ; Koskinen,
Jussi-Pekka: Overview of narrowband IoT in LTE Rel-13. In: IEEE conference on Standards
for Communications and Networking (CSCN), 2016

[126] Rieke, Roland ; Seidemann, Marc ; Talla, Elise K. ; Zelle, Daniel ; Seeger, Bernhard:
Behavior Analysis for Safety and Security in Automotive Systems. In: 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP) (2017),
P. 381�385. � URL http://ieeexplore.ieee.org/document/7912675/. ISBN 978-1-5090-
6058-0

[127] Road & Track Magazine: Tesla O�ers Free One-Month Autopilot Trial to Nearly Every
Tesla Owner. 2016. � URL http://www.roadandtrack.com/new-cars/car-technology/

news/a28872/tesla-autopilot-trial-month-long/

[128] Robert Bosch Engineering and Business Solutions Limited: Help.
2017. � URL https://raw.githubusercontent.com/rbei-etas/busmaster-documents/

master/help.pdf

[129] Robert Bosch GmbH, ETAS GmbH, MHS Elektronik, IXXAT, FKFS, Giga-

tronik, ICT Softwareengineering, VS com, NSI Altran, ASTR Soft: BUS-
MASTER is an Open Source Software tool to Simulate, Analyze and Test data bus systems
such as CAN, CAN FD, LIN, FlexRay. November 2017. � http://rbei-etas.github.io/

busmaster/

[130] Scarfone, Karen ; Mell, Peter: Guide to Intrusion Detection and Prevention Systems (
IDPS) (Draft) Recommendations of the National Institute of Standards and Technology. In:
Nist Special Publication 800-94 (2007), P. 127. � URL http://www.reference.com/go/

http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf

[131] Scarfone, Karen ;Mell, Peter: Guide to intrusion detection and prevention systems (idps).
In: NIST special publication 800 (2007), Nb. 2007, P. 94

[132] Sekar, R ; Gupta, A ; Frullo, J ; Shanbhag, T ; Tiwari, A ; Yang, H ;
Zhou, S: Speci�cation-based anomaly detection. In: Proceedings of the 9th ACM con-
ference on Computer and communications security - CCS '02 26 (2002), Nb. 2, P. 265.
� URL http://portal.acm.org/citation.cfm?id=586146{%}5Cnhttp://portal.acm.

org/citation.cfm?doid=586110.586146. � ISBN 1581136129

[133] Seo, Hanbyul ; Lee, Ki-Dong ; Yasukawa, Shinpei ; Peng, Ying ; Sartori, Philippe: LTE
evolution for vehicle-to-everything services. IEEE Communications Magazine, 2016

[134] Shu, Xiaokui ; Yao, Danfeng ; Ramakrishnan, Naren ; Jaeger, Trent: Long-Span
Program Behavior Modeling and Attack Detection. In: ACM Transactions on Privacy and
Security 20 (2017), Nb. 4, P. 1�28. � ISSN 24712566

148

https://www.qnx.com/content/qnx/en/products/qnxcar/index.html
https://www.qnx.com/content/qnx/en/products/qnxcar/index.html
http://blackberry.qnx.com/en/solutions/industries/automotive/index
http://blackberry.qnx.com/en/solutions/industries/automotive/index
https://www.qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x
https://www.qualcomm.com/documents/path-5g-cellular-vehicle-everything-c-v2x
http://ieeexplore.ieee.org/document/7912675/
http://www.roadandtrack.com/new-cars/car-technology/news/a28872/tesla-autopilot-trial-month-long/
http://www.roadandtrack.com/new-cars/car-technology/news/a28872/tesla-autopilot-trial-month-long/
https://raw.githubusercontent.com/rbei-etas/busmaster-documents/master/help.pdf
https://raw.githubusercontent.com/rbei-etas/busmaster-documents/master/help.pdf
http://rbei-etas.github.io/busmaster/
http://rbei-etas.github.io/busmaster/
http://www.reference.com/go/http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.reference.com/go/http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://portal.acm.org/citation.cfm?id=586146{%}5Cnhttp://portal.acm.org/citation.cfm?doid=586110.586146
http://portal.acm.org/citation.cfm?id=586146{%}5Cnhttp://portal.acm.org/citation.cfm?doid=586110.586146

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[135] Sierra Wireless: Legato Open Source Linux Platform. � URL https:

//www.sierrawireless.com/products-and-solutions/embedded-solutions/

open-source-initiatives/. � Access date: 2017-10-16

[136] Song, Hyun M. ; Kim, Ha R. ; Kim, Huy K.: Intrusion detection system based on the analysis
of time intervals of CAN messages for in-vehicle network. In: Information Networking (ICOIN),
2016 International Conference on IEEE (Organ.), 2016, P. 63�68

[137] Spiegel Online: Audi ist ein Level weiter. 2017. � URL http://www.spiegel.de/auto/

aktuell/audi-a8-audi-ist-beim-autonomen-fahren-ein-level-weiter-a-1169062.

html

[138] Standardization (ISO), International O. for: ISO 27145-3 Road vehicles � Implementation
of World-Wide Harmonized On-Board Diagnostics (WWH-OBD) communication requirements
� Part 3: Common message dictionary. Aug 2012

[139] Standardization (ISO), International O. for: ISO 14230 Road vehicles � Diagnostic
communication over K-Line. Aug 2015

[140] Standardization (ISO), International O. for: ISO 20077-1 Road Vehicles � Extended
vehicle (ExVe) methodology � Part 1: General information. 2017. � URL https://www.iso.

org/obp/ui/#iso:std:66975:en

[141] Standardization (ISO), International O. for: ISO 20080 Road vehicles - Information for
remote diagnostic support - General requirements, de�nitions and use cases. 2017. � URL
https://www.iso.org/standard/66979.html

[142] Streif, Rudolf J.: Talk: Vehicle Data Interfaces. Oct 2016

[143] Striki, Maria ; Manousakis, Kyriakos ; Kindred, Darrell ; Sterne, Dan ; Lawler,
Geo� ; Ivanic, Natalie ; Tran, George: Quantifying resiliency and detection latency of in-
trusion detection structures Maria Striki Kyriakos Manousakis. In: Proceedings - IEEE Military
Communications Conference MILCOM (2009). ISBN 9781424452385

[144] Taylor, Adrian ; Leblanc, Sylvain ; Japkowicz, Nathalie: Anomaly Detection in Au-
tomobile Control Network Data with Long Short-Term Memory Networks. In: 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA) (2016), P. 130�
139. � URL http://ieeexplore.ieee.org/document/7796898/. ISBN 978-1-5090-5206-6

[145] The Open Automotive Alliance: Open Automotive Alliance - Members. � URL https:

//www.openautoalliance.net/#members. � Access date: 2017-10-30

[146] Ujiie, Yoshihiro ; Kishikawa, Takeshi ; Haga, Tomoyuki ; Matsushima, Hideki ;
Wakabayashi, Tohru ; Tanabe, Masato ; Kitamura, Yoshihiko ; Anzai, Jun: A
Method for Disabling Malicious CAN Messages by Using a CMI-ECU. (2016). � URL
http://papers.sae.org/2016-01-0068/

[147] Uppuluri, P ; Sekar, R: Experiences with speci�cation-based intrusion detection. In: Recent
advances in intrusion detection (RAID) '00 (2000), P. 1�18. � URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.25.2352. � ISBN 3540427023

[148] Vaccaro, H.S. ; Liepins, G.E.: Detection of anomalous computer session activity. 1989

[149] Valdes, Alfonso: Detecting novel scans through pattern anomaly detection. In: DARPA Infor-
mation Survivability Conference and Exposition, 2003. Proceedings Volume 1 IEEE (Organ.),
2003, P. 140�151

149

https://www.sierrawireless.com/products-and-solutions/embedded-solutions/open-source-initiatives/
https://www.sierrawireless.com/products-and-solutions/embedded-solutions/open-source-initiatives/
https://www.sierrawireless.com/products-and-solutions/embedded-solutions/open-source-initiatives/
http://www.spiegel.de/auto/aktuell/audi-a8-audi-ist-beim-autonomen-fahren-ein-level-weiter-a-1169062.html
http://www.spiegel.de/auto/aktuell/audi-a8-audi-ist-beim-autonomen-fahren-ein-level-weiter-a-1169062.html
http://www.spiegel.de/auto/aktuell/audi-a8-audi-ist-beim-autonomen-fahren-ein-level-weiter-a-1169062.html
https://www.iso.org/obp/ui/#iso:std:66975:en
https://www.iso.org/obp/ui/#iso:std:66975:en
https://www.iso.org/standard/66979.html
http://ieeexplore.ieee.org/document/7796898/
https://www.openautoalliance.net/#members
https://www.openautoalliance.net/#members
http://papers.sae.org/2016-01-0068/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2352
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2352

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

[150] Vector: Measurement and Calibration Protocol XCP - Fundamentals. 2017. � URL https:

//vector.com/vi_xcp_basics_en.html

[151] Vector Informatik GmbH: CANoe/CANalyzer Versions and Supported Hardware. 2017.
� URL https://kb.vector.com/upload_551/file/CANwin_Versions_and_Supported_

Hardware_for%20KB_ext_555(9).pdf

[152] Vector Informatik GmbH: Feature Matrix CANoe 10.0 and CANalyzer 10.0.
2017. � URL https://vector.com/portal/medien/cmc/datasheets/CANoe_CANalyzer_

FeatureMatrix_DataSheet_EN.pdf

[153] Volkswagen AG: Guide & Inform. 2017. � URL http://page.volkswagen-carnet.com/

de_de/dienste-und-pakete/guide-und-inform.html

[154] Volvo Cars Support: Car system updates. 2017. � URL http://support.volvocars.

com/uk/Pages/article.aspx?article=27e39ea875601dcfc0a801513b825d11

[155] Waszecki, Peter ;Mundhenk, Philipp ; Steinhorst, Sebastian ; Lukasiewycz, Martin ;
Karri, Ramesh ; Chakraborty, Samarjit: Automotive Electrical/Electronic Architecture
Security via Distributed In-Vehicle Tra�c Monitoring. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2017)

[156] Wikimedia: Keyword Protocol 2000. 2017. � URL https://en.wikipedia.org/wiki/

Keyword_Protocol_2000

[157] Wikimedia: Uni�ed Diagnostic Services. 2017. � URL https://en.wikipedia.org/wiki/

Unified_Diagnostic_Services

[158] World Wide Web Consortium: Vehicle Signal Server Speci�cation. � URL https:

//www.w3.org/TR/vehicle-information-service/

[159] World Wide Web Consortium: Vehicle Signal Server Speci�cation. � URL https:

//www.w3.org/TR/vehicle-information-service/

[160] XiaGuo, Liu: Snappy Ubuntu Core - Enabling secure devices with app stores. � URL http://

7xi8kv.com5.z0.glb.qiniucdn.com/SnappyUbuntuCoreintroduction-changsha.pdf. �
Access date: 2017-10-16

[161] Xu, Kui ; Yao, Danfeng D. ; Ryder, Barbara G. ; Tian, Ke: Probabilistic program model-
ing for high-precision anomaly classi�cation. In: Computer Security Foundations Symposium
(CSF), 2015 IEEE 28th IEEE (Organ.), 2015, P. 497�511

[162] Yolacan, Esra N. ; Dy, Jennifer G. ; Kaeli, David R.: System Call Anomaly Detection
Using Multi-HMMs. In: 2014 IEEE Eighth International Conference on Software Security and
Reliability-Companion, IEEE, 2014, P. 25�30. � ISBN 978-1-4799-5843-6

150

https://vector.com/vi_xcp_basics_en.html
https://vector.com/vi_xcp_basics_en.html
https://kb.vector.com/upload_551/file/CANwin_Versions_and_Supported_Hardware_for%20KB_ext_555(9).pdf
https://kb.vector.com/upload_551/file/CANwin_Versions_and_Supported_Hardware_for%20KB_ext_555(9).pdf
https://vector.com/portal/medien/cmc/datasheets/CANoe_CANalyzer_FeatureMatrix_DataSheet_EN.pdf
https://vector.com/portal/medien/cmc/datasheets/CANoe_CANalyzer_FeatureMatrix_DataSheet_EN.pdf
http://page.volkswagen-carnet.com/de_de/dienste-und-pakete/guide-und-inform.html
http://page.volkswagen-carnet.com/de_de/dienste-und-pakete/guide-und-inform.html
http://support.volvocars.com/uk/Pages/article.aspx?article=27e39ea875601dcfc0a801513b825d11
http://support.volvocars.com/uk/Pages/article.aspx?article=27e39ea875601dcfc0a801513b825d11
https://en.wikipedia.org/wiki/Keyword_Protocol_2000
https://en.wikipedia.org/wiki/Keyword_Protocol_2000
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://en.wikipedia.org/wiki/Unified_Diagnostic_Services
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
http://7xi8kv.com5.z0.glb.qiniucdn.com/Snappy Ubuntu Core introduction - changsha.pdf
http://7xi8kv.com5.z0.glb.qiniucdn.com/Snappy Ubuntu Core introduction - changsha.pdf

D1.1 � �nal In-car Software Architecture Speci�cation ITEA 3 � 15017

151

	History
	Summary
	Introduction
	State-of-the-Art
	APPSTACLE Use Cases
	Stakeholders
	User Story: Roadside Assistance
	User Story: Vehicle Tracking
	User Story: Wrong Way Driver Warning
	User Story: Augment vehicle functionality
	User Story: Data Collection Fleet Learning
	User Story: IoT Data concentration
	User Story: Driver Seat Configuration
	User Story: Parking Space Finder
	User Story: Improved Carpooling System
	User Story: Car Accident Registration by Video
	User Story: Car Theft Registration, Car Vandalism Registration
	User Story: Traffic Jam Warning and Traffic Jam Avoidance
	User Story: Chat Service for Car Drivers
	User Story: Traffic Enforcement Camera Warning
	User Story: Advertising Services for Drivers
	User Story: Social Media
	User Story: Ambulance Assist
	User Story: System Surveillance and Maintenance
	User Story: Pool car management
	User Story: In-vehicle behavior learning
	User Story: Secure Car2X data exchange
	User Story: Emergency Braking & Evading Assistance System (EBEAS)

	State of the Art
	Platforms and App Runtimes
	Scope
	Overview
	Discussion

	Automotive APIs
	Scope
	Overview
	Discussion

	In-vehicle Connectivity
	Scope
	Overview

	Ex-vehicle Connectivity
	802.11p / cellular communication scenarios
	802.11p
	5G

	Intrusion Detection Systems
	Application Intrusion Detection Systems
	Network IDS

	QoS Monitoring
	Scope
	Overview
	Discussion

	Over the Air updates
	Scope
	Overview
	Discussion

	Specification
	Introduction
	Scope
	Terminology
	Definitions and Glossary

	APPSTACLE in-vehicle platform specification
	Platform and App Runtime
	Scope
	Requirements

	APPSTACLE API
	Scope
	Requirements

	Application IDS
	Scope
	Requirements

	Network IDS
	Scope
	Requirements

	Ex-vehicle Connectivity
	Scope
	Requirements

	QoS Monitoring
	Scope
	Requirements

	Over the Air updates
	Scope
	Requirements

	Hardware
	Scope
	Requirements

