

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 1

Delivery Date:

M12 - 30/11/2017

Project Number:

ITEA3 Call2 15011

Responsible partner:

 D3.1

Machine Learning and Artificial Intelligence for Digital

Interaction Intelligence; State-of-the-art and Guidance

Report

WP3 Digital Interaction Intelligence Techniques – T3.1 DII software SoTA and guidance

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 2

DOCUMENT CONTRIBUTORS

Name Company Email

Mirela Ardelean SIVECO Romania mirela.ardelean@siveco.ro

Cristina Ivan SIVECO Romania cristina.ivan@siveco.ro

Raúl Santos de la Cámara HI Iberia Ingeniería y Proyectos rsantos@hi-iberia.es

Arun Kumar Taiger Spain Arun.kumar@taiger.com

DOCUMENT HISTORY

Version Date Author Description

0.1 03.08.2017 SIVECO Romania Initial ToC

0.2 09.11.2017 HIB Add section Natural Language Processing and

Opinion Mining

0.3 22.11.2017 Taiger Spain Add section Machine learning

0.4 10.12.2017 SIVECO Romania Add contribution in Pattern Recognition section

First integrated version

0.5 20.12.2017 Taiger Spain Added elaborated Machine learning section

0.6 03.01.2018 Taiger Spain Reviewed

1.0 05.01.2018 SIVECO Romania Release final version

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 3

TABLE OF CONTENTS

DOCUMENT CONTRIBUTORS ... 2

DOCUMENT HISTORY ... 2

TABLE OF CONTENTS ... 3

ABBREVIATIONS ... 5

REFERENCES ... 6

1. INTRODUCTION ... 8

2. DATA MINING AND MACHINE LEARNING ... 9

2.1. DATA MINING .. 9

2.2. MACHINE LEARNING ... 10

2.2.1. Supervised Learning ...11

2.2.2. Unsupervised Learning ..12

2.2.3. Deep Learning ..13

2.2.4. Summary of Machine Learning Tools ..16

3. PATTERN RECOGNITION .. 19

3.1. PATTERN RECOGNITION APPROACHES ... 19

3.2. PATTERN RECOGNITION SYSTEM ... 20

3.2.1. FEATURE EXTRACTION ...21

3.2.2. FEATURE SELECTION/REDUCTION ..22

3.2.3. TEXT CLASSIFICATION ..23

3.3. TOOLS FOR PATTERN RECOGNITION .. 25

3.3.1. APACHE SPARK ...25

3.4. ALTERNATIVES TO APACHE SPARK ... 26

3.4.1. SPARK VS HADOOP ..27

3.4.2. SPARK VS MAPREDUCE ...27

3.4.3. SPARK VS STORM ...28

3.4.4. SPARK VS HERON ...28

3.4.5. SPARK VS FLINK ...29

4. NATURAL LANGUAGE PROCESSING AND OPINION MINING 30

4.1. General Aspects of Natural Language Processing .. 30

4.2. Text processing ... 32

4.3. Text Classification ... 32

4.3.1. Natural Language Toolkit (NLTK) ..33

4.3.2. LingPipe ...33

4.3.3. Weka..34

4.3.4. LibShortText ..37

4.4. Topic Modelling ... 38

4.4.1. Mallet ..38

4.4.2. Gensim ..38

4.5. Key Word Extraction .. 39

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 4

4.5.1. Kea ..39

4.5.2. Maui ...41

4.6. Text summarization... 42

4.6.1. MEAD ...42

4.7. Entity Linking ... 43

4.7.1. Wikipedia Miner ..43

4.7.2. Illinois Wikifier ...43

4.7.3. Illinois Named Entity Tagger ..44

4.7.4. OpenNLP, ..44

4.7.5. Stanford CoreNLP ...44

4.8. Co-reference Resolution ... 45

4.8.1. MaltParser ...45

4.9. Opinion Mining .. 46

4.9.1. TextBlob ..46

4.9.2. Pattern ...46

4.10. Frameworks ... 47

4.10.1. UIMA ..47

4.10.2. GATE ,...49

4.11. Text Mining and cluster analysis ... 50

4.11.1. Carrot ...50

4.12. Natural Language Processing and Opinion Mining Summary 53

5. Conclusions ... 55

Figure 1. Recurrent Neural Network ... 13

Figure 2. Recurrent Neural Networks elaborated ... 14

Figure 3. Long term short term memory ... 14

Figure 4. Pattern recognition system .. 21

Figure 5. Parse tree in NLTK .. 33

Figure 6. Processing Tweets with LingPipe ... 34

Figure 7. WEKA Explorer .. 36

Figure 8. WEKA Knowledge Flow ... 36

Figure 9. WEKA Experimenter .. 37

Figure 10. KEA functioning .. 40

Figure 11. UIMA Framework .. 48

Figure 12. GATE developer main window.. 50

Figure 13. Carrot2 Document Clustering Workbench screenshot ... 51

Figure 14. Carrot2 Web Application results screen .. 52

Table 1 Summary of Machine Learning Tools .. 17

Table 2 Pattern Recognition models ... 20

Table 3. LibShort Text Workflow .. 38

Table 4. Summary of NLP Tools ... 54

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 5

ABBREVIATIONS

BNP Bayesian non parametric

BFGS Broyden–Fletcher–Goldfarb–Shanno

DID Digital Interaction Data

DII Digital Interaction Intelligence

NER Named Entity Recognition

NLP Natural Language Processing

POS Part of Speech

SoTA State of the Art

WP Work package

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 6

REFERENCES

[1]. Jignian Chen. Feature selection for text classification with Naïve Bayes

[2]. http://sentiment.christopherpotts.net/classifiers.html#nb

[3]. Introduction to pattern recognition system.

http://shodhganga.inflibnet.ac.in/bitstream/10603/25143/7/07_chapter%201.pdf (3)

[4]. http://www.oracle.com/technetwork/database/options/advanced-analytics/odm/odm-

techniques-algorithms-097163.html

[5]. https://www.redhat.com/en/about/press-releases/red-hat-unveils-big-data-and-open-

hybrid-cloud-direction

[6]. https://www.cs.waikato.ac.nz/~ihw/papers/99IHW-EF-LT-MH-GH-SJC-WEKA.pdf

[7]. https://www.rtinsights.com/using-apache-spark-machine-learning-to-predict-consumer-

behavior/

[8]. http://www.ijste.org/articles/IJSTEV3I10225.pdf

[9]. http://www.corejavaguru.com/bigdata/storm/introduction

[10]. http://sci-hub.cc/10.1145/2723372.2742788

[11]. https://dzone.com/articles/6-sparkling-features-apache

[12]. http://www.metistream.com/comparing-hadoop-mapreduce-spark-flink-storm/

[13]. http://www.developintelligence.com/blog/2017/02/comparing-contrasting-apache-flink-

vs-spark/

[14]. https://www.imaginea.com/apache-spark/

[15]. http://www.computerweekly.com/feature/Apache-Spark-speeds-up-big-data-decision-

making

[16]. https://spark-summit.org/east-2016/events/insights-into-customer-behavior-from-

clickstream-data/

[17]. Bishop, C. M. (n.d.). Pattern recognition and machine learning

[18]. Go, A. (n.d.). Twitter Sentiment Classification using Distant Supervision.

[19]. Križan, V. (n.d.). Social media analysis using pattern recognition.

[20]. Nicolov, N. (n.d.). Spring Symposium on Computational Approaches to Analysing Weblogs.

[21]. Y. Liu, X. H. (n.d.). A sentiment-aware model for predicting.

[22]. Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural

networks. Physical review letters, 59(19), 2229.

[23]. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Comput. 9, 8 (November 1997), 1735-1780.

[24]. Sutton, C., & McCallum, A. (2012). An introduction to conditional random

fields. Foundations and Trends® in Machine Learning, 4(4), 267-373.

[25]. Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268-278.

[26]. Choi, Y., Cardie, C., Riloff, E., & Patwardhan, S. (2005, October). Identifying sources of

opinions with conditional random fields and extraction patterns. In Proceedings of the

conference on Human Language Technology and Empirical Methods in Natural Language

Processing (pp. 355-362). Association for Computational Linguistics.

[27]. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector

machines. IEEE Intelligent Systems and their applications, 13(4), 18-28.

[28]. Tony Mullen, Nigel Collier. 2004. Sentiment Analysis using Support Vector Machines with

Diverse Information Sources. Proceedings of EMNLP 2004, pages 412–418, Barcelona,

Spain. Association for Computational Linguistics.

[29]. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J. … & Kudlur, M. (2016,

November). TensorFlow: A System for Large-Scale Machine Learning. In OSDI (Vol. 16, pp.

265-283).

[30]. Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[31]. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., ... & Bengio,

Y. (2016). Theano: A Python framework for fast computation of mathematical

expressions. arXiv preprint.

[32]. Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June). Learning

word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 7

Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp.

142-150). Association for Computational Linguistics.

[33]. McCallum, Andrew Kachites. MALLET: A Machine Learning for Language Toolkit.

http://mallet.cs.umass.edu. 2002.

[34]. Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

[35]. bnpy: Reliable and scalable variational inference for Bayesian nonparametric models."

Michael C. Hughes and Erik B. Sudderth. Probabilistic Programming Workshop at NIPS 2014.

http://mallet.cs.umass.edu/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 8

1. INTRODUCTION

The overall objective of Task 3.1 is to provide a living or dynamic document that describes the state

of the art in the domain of Digital Interaction intelligence and a guidance report captured from

SoMeDi experience. The focus will be on techniques and approaches in machine learning and

artificial intelligence. The output of Task 3.1 consists of this current deliverable D3.1.

Deliverable D3.1 will have two iterations with the objective to have an ongoing view of state-of-the-art

in DII domain. The first iteration compiles the current trendy algorithms and open source tools from

machine learning, pattern recognition, natural language processing and opinion mining while the

second iteration – that will be delivered one year later - will update the state-of-the-art section and

will provide a guidance report, construct based on our experience gathered during the first two years

of SoMeDi project.

The current document represents the first iteration of D3.1. The material presented here is the result

of the work performed by the responsible partners: they conducted a literature review and a field

research, based on their knowledge and experience, to identify the most suitable algorithms and the

available tools that can be used to develop the SoMeDi’s DID toolkit. The field research was

conducted in the above mentioned domains: machine learning, pattern recognition, natural language

processing and opinion mining.

This first iteration of D3.1 document is organised as follows:

 Section 2 describes algorithms and open tools available for Machine Learning

 Section 3 describes algorithms and open tools available for Pattern Recognition

 Section 4 describes algorithms and open tools available for Natural Language

Processing and Opinion mining

 Section 5 concludes the document

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 9

2. DATA MINING AND MACHINE LEARNING

Digital data analysis depends heavily on machine learning and data mining techniques.

2.1. DATA MINING

Data mining is the computing process of discovering patterns in large data sets involving methods at

the intersection of machine learning, statistics, and database systems. It is an essential process

where intelligent methods are applied to extract data patterns. It is an interdisciplinary subfield

of computer science. The overall goal of the data mining process is to extract information from a

data set and transform it into an understandable structure for further use. Aside from the raw

analysis step, it involves database and data management aspects, data pre-

processing, model and inference considerations, interestingness metrics, complexity considerations,

post-processing of discovered structures, visualization, and online updating. Data mining is the

analysis step of the "knowledge discovery in databases" process, KDD.

The process of data mining has the following steps:

(1) Pre-processing

(2) Data mining

(3) Interpretation/evaluation.

(1) Pre-processing

Before data mining algorithms can be used, a target data set must be assembled. As data mining

can only uncover patterns actually present in the data, the target data set must be large enough to

contain these patterns while remaining concise enough to be mined within an acceptable time limit.

A common source for data is a data mart or data warehouse. Pre-processing is essential to analyse

the multivariate data sets before data mining. The target set is then cleaned. Data cleaning removes

the observations containing noise and those with missing data.

(2) Data Mining

Data mining involves six common classes of tasks:

 Anomaly detection (outlier/change/deviation detection) – The identification of unusual data

records, that might be interesting or data errors that require further investigation. Anomaly

detection (also outlier detection) is the identification of items, events or observations which

do not conform to an expected pattern or other items in a dataset. Typically, the anomalous

items will translate to some kind of problem such as bank fraud, a structural defect, medical

problems or errors in a text. Anomalies are also referred to as outliers, novelties, noise,

deviations and exceptions. In particular, in the context of abuse and network intrusion

detection, the interesting objects are often not rare objects, but unexpected bursts in

activity. This pattern does not adhere to the common statistical definition of an outlier as a

rare object, and many outlier detection methods (in particular unsupervised methods) will

fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis

algorithm may be able to detect the micro clusters formed by these patterns

 Association rule learning (dependency modelling) – Searches for relationships between

variables. For example, a supermarket might gather data on customer purchasing habits.

Using association rule learning, the supermarket can determine which products are

frequently bought together and use this information for marketing purposes. This is

sometimes referred to as market basket analysis. Moreover, association rule learning is a

rule-based machine learning method for discovering interesting relations between variables

in large databases. It is intended to identify strong rules discovered in databases using

some measures of interestingness.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 10

 Clustering – is the task of discovering groups and structures in the data that are in some

way or another "similar", without using known structures in the data. Moreover, Cluster

analysis or clustering is the task of grouping a set of objects in such a way that objects in

the same group (called a cluster) are more similar (in some sense or another) to each other

than to those in other groups (clusters). Cluster analysis itself is not one specific algorithm,

but the general task to be solved. It can be achieved by various algorithms that differ

significantly in their notion of what constitutes a cluster and how to efficiently find them.

Popular notions of clusters include groups with small distances among the cluster members,

dense areas of the data space, intervals or particular statistical distributions. Clustering can

therefore be formulated as a multi-objective optimization problem. The appropriate

clustering algorithm and parameter settings (including values such as the distance function

to use, a density threshold or the number of expected clusters) depend on the individual

data set and intended use of the results. Cluster analysis as such is not an automatic task,

but an iterative process of knowledge discovery or interactive multi-objective optimization

that involves trial and failure. It is often necessary to modify data pre-processing and model

parameters until the result achieves the desired properties.

 Classification – is the task of generalizing known structure to apply to new data.

Classification is the problem of identifying to which of a set of categories (sub-populations) a

new observation belongs, on the basis of a training set of data containing observations (or

instances) whose category membership is known. An example would be assigning a given

email into "spam" or "non-spam" classes or assigning a diagnosis to a given patient as

described by observed characteristics of the patient (gender, blood pressure, presence or

absence of certain symptoms)

 Regression – attempts to find a function which models the data with the least error that is,

for estimating the relationships among data or datasets. Moreover, Regression analysis is a

set of statistical processes for estimating the relationships among variables. It includes

many techniques for modelling and analysing several variables, when the focus is on the

relationship between a dependent variable and one or more independent variables (or

'predictors'). More specifically, regression analysis helps one understand how the typical

value of the dependent variable (or 'criterion variable') changes when any one of the

independent variables is varied, while the other independent variables are held fixed. Most

commonly, regression analysis estimates the conditional expectation of the dependent

variable given the independent variables – that is, the average value of the dependent

variable when the independent variables are fixed. Less commonly, the focus is on a

quantile, or other location parameter of the conditional distribution of the dependent

variable given the independent variables. In all cases, a function of the independent

variables called the regression function is to be estimated. In regression analysis, it is also

of interest to characterize the variation of the dependent variable around the prediction of

the regression function using a probability distribution.

 Summarization – providing a more compact representation of the data set, including

visualization and report generation.

These tasks are typically done using machine learning.

2.2. MACHINE LEARNING

Machine Learning is a branch of computer science that enables computers to act without explicitly

programmed. Machine learning uses statistical and pattern matching techniques to accomplish

prediction and data analysis task. Moreover, machine learning is a subfield of artificial intelligence.

Its goal is to enable computers to learn on their own. A machine’s learning algorithm enables it to

identify patterns in observed data, build models that explain the world, and predict things without

having explicit pre-programmed rules and models.

In machine learning, the major objective is to find a model or function that maps input variables to

output variables. Consider we have set of input variables (X) and set of output variables (Y), the

objective of machine learning is to find a function f that maps the input variable (X) to (Y).

Y= f(X)

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 11

This function f can be learned from the data. Based on how we learn the function f, machine learning

techniques are classified into three major categories:

1. Supervised Learning

2. Unsupervised Learning

3. Deep learning

2.2.1. SUPERVISED LEARNING

In supervised learning, target function f is learned from set of labelled examples. As a reason the

training data consist of both input and desired result. In the case of sentiment analysis, supervised

machine learning requires training samples that are classified to both positive and negative. The

requirement of labelled data for training leads other problems; if the training dataset size is small

the models are highly probable to over-fitting. Typically, supervised learning is known as

classification.

The major algorithms in this category for sequence labelling. Sequence labelling is a type of pattern

recognition task that involves the algorithmic assignment of a categorical label to each member of a

sequence of observed values. A common example of a sequence labelling task is part of speech

tagging, which seeks to assign a part of speech to each word in an input sentence or document.

Sequence labelling can be treated as a set of independent classification tasks, one per member of

the sequence. However, accuracy is generally improved by making the optimal label for a given

element dependent on the choices of nearby elements, using special algorithms to choose the

globally best set of labels for the entire sequence at once. The major algorithms for sequence

labelling are:

A) Conditional Random Fields (CRF)

Conditional Random Fields [24] are class of probabilistic models that are typically used for

structured predictions. They are discriminative undirected probabilistic graphical models that

capture dependency between features and target predictions. The model as follows:

where y is the output variable, x is the input variable and fj (yi-1, yi, x i) is the feature function that

explains the connection between input and output variables.

Z(x) can be represented as follows

The inference on these models are done using Viterbi algorithm [25] as exact inference is not

tractable. Sentiment analysis problem is modelled using CRF model due to the ability of structured

prediction [26].

B) Support Vector Machines (SVM)

Support Vector Machines [27] are machine learning algorithms that can be used for both

classification and regression. Moreover, they are discriminative classifiers work by defining various

hyperplanes for classification and regression. Given a set of training data, SVM outputs an

optimized hyperplane that categorizes the training data; due to this property SVMs are successfully

used in sentiment analysis and opinion mining [28].

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 12

More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a high- or

infinite-dimensional space, which can be used for classification, regression, or other tasks like

outliers detection. Intuitively, a good separation is achieved by the hyperplane that has the largest

distance to the nearest training-data point of any class (so-called functional margin), since in general

the larger the margin the lower the generalization error of the classifier.

Open Source Tools of Supervised Learning

 Mallet

MALLET (MAchine Learning for LanguagE Toolkit) [33] is a Java-based package for statistical

natural language processing, document classification, clustering, topic modeling, information

extraction, and other machine learning applications to text. It supports various machine learning

algorithms such as Naïve Bayes and Conditional Random Fields. It also supports sequence

labeling.

 LIBSVM

LIBSVM [34] is an integrated software for support vector classification, (C-SVC, nu-SVC),

regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-

class classification. It is open source and written in C++. It is supported by National University of

Taiwan.

 CRF ++

CRF++ is a simple, customizable, and open source implementation of Conditional Random Fields

(CRFs) for segmenting/labeling sequential data. CRF++ is designed for generic purpose and will

be applied to a variety of NLP tasks, such as Named Entity Recognition, Information Extraction

and Text Chunking. It supports fast training based on L-BFGS (Limited-memory BFGS), a quasi-

newton algorithm for large scale numerical optimization problems. It is licensed under GNU

Lesser General Public License.

2.2.2. UNSUPERVISED LEARNING

In unsupervised learning, the task is to infer a function that describes unlabelled data. In

unsupervised learning setup the machine learning algorithms are provided with un labelled data set

for training. As the machine learning function is learned from unlabelled data, these methods are

less susceptible to overfitting problem. Unsupervised machine learning algorithms typically known

as clustering algorithms. One of the most important clustering algorithms is K-mean clustering.

A) K-means clustering

The major steps of K-means as follows:

Given a set of data points in set X with set of labels K clusters:

1. Define the k centroids. Initialize these at random

2. Find the closest centroid and update cluster assignments. Assign each data point in X to one of

the k clusters. Each data point is assigned to the nearest centroid’s cluster. Here, the measure of

“nearness” is a hyper parameter — often Euclidean distance.

3. Move the centroids to the center of their clusters. The new position of each centroid is calculated

as the average position of all the points in its cluster.

Keep repeating steps 2 and 3 until the centroid stop moving a lot at each iteration (i.e., until the

algorithm converges).

B) Bayesian Non Parametric Models

Bayesian non parametric (BNP) models are statistical models that have infinite number of

parameters. They are typically used for density estimation and clustering. As the density of the

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 13

probability models are estimated from the data set, these models not require any labelled data sets.

The major drawback of BNP models is large training time as BNP models do not have exact

equations to get the prediction from the models. The inference of the models is typically done using

sampling techniques, which is time consuming. For data analysis tasks Bayesian models are rarely

applied.

Open Source Tools of Unsupervised Learning

 Bnpy

The goal of bnpy is to make it easy for Python programmers to train state-of-the-art clustering models

on large datasets. It focuses on nonparametric models based on the Dirichlet process, especially

extensions that handle hierarchical and sequential datasets. Traditional parametric counterparts

(like finite mixture models) are also supported. Training a model with bnpy requires the user to

specify the dataset, the model, and the algorithm to use. Flexible keyword options allow advanced

users lots of control, but smart defaults make it simple for beginners. bnpy‘s modular

implementation makes it possible to try many variants of models and algorithms, to find the best fit

for the data at hand. bnpy trains a model in two ways: (1) from a command line/terminal, or (2) from

within a Python script (of course). Both options require specifying a dataset, an allocation model, an

observation model (likelihood), and an algorithm. Optional keyword arguments with reasonable

defaults allow control of specific model hyper parameters, and algorithm parameters.

2.2.3. DEEP LEARNING

Deep learning is a new branch of machine learning, where layers of neural networks are trained to

perform an analysis task. Neural network is a beautiful biologically-inspired programming paradigm

which enables a computer to learn from observational data. In all these models the training of the

neural network is done using backpropagation. Backpropagation, short for "backward propagation of

errors" is an algorithm for supervised learning of artificial neural networks using gradient descent.

Given an artificial neural network and an error function, the method calculates the gradient of the

error function with respect to the neural network's weights. It is a generalization of the delta rule for

perceptron to multilayer feedforward neural networks. There are various kind of neural networks that

could be used for various data analysis applications. However, the data analysis tasks such as

sentiment analysis are typically carried out by modelling it using Long Term Short Term Memory

(LSTMS) and Recurrent Neural Networks.

A) Recurrent Neural Networks (RNN)

Recurrent Neural Networks [22] are a special category of neural networks that designed to capture

sequential information. A traditional neural network fails to assume dependency between inputs

and outputs as a reason it fails to account sequential information. Sequential information is

important for modelling language data hence sentiment analysis. A recurrent neural network has the

following structure:

FIGURE 1. RECURRENT NEURAL NETWORK

The above diagram represents a recurrent neural network, where A takes an input xt and outputs ht

and the loops allows which information to be passed to next step of the neural networks.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 14

If unroll the network A, it will look like this:

FIGURE 2. RECURRENT NEURAL NETWORKS ELABORATED

The above diagram can be represented in mathematical notation in following way:

where ht hidden state at time t, tanh is hyperbolic tangent function or a squeezing function, Wih is

the weights for each neurons in a particular layer, xt is state of the previous layer or input layer and

bhh is the bias for neuron a particular layer.

B) Long Term Short Term Memory (LSTMS)

LSTMS [23] are a special kind of Recurrent Neural Networks that can capture long term

dependencies between inputs, which is important for sentiment analysis and other natural language

processing tasks.

FIGURE 3. LONG TERM / SHORT TERM MEMORY

Compared to normal neuron, a LSTM has got a forget gate that enables the neuron to remember its

states. An LSTM layer consists of a set of recurrently connected blocks, known as memory blocks.

These blocks can be thought of as a differentiable version of the memory chips in a digital computer.

Each one contains one or more recurrently connected memory cells and three multiplicative units –

the input, output and forget gates – that provide continuous analogues of write, read and reset

operations for the cells. The net can only interact with the cells via the gates.

The Long Short Term Memory architecture was motivated by an analysis of error flow in existing

RNNs which found that long time lags were inaccessible to existing architectures, because back

propagated error either blows up or decays exponentially. LSTMs are successfully used in sentiment

analysis, where the sentiment is modelled as long range dependencies between neurons [32]

The equations for LSTMs as follows:

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 15

Variables in LSTM:

The where the activation function can be Sigmoid or hyperbolic tangent function.

Open Source Tools for Deep Learning

 TensorFlow

Tensorflow [29] is a large scale heterogeneous machine learning library for deep learning. It

supports various neural network architectures such as RNNs and LSTMs. The major advantage of

this framework is the computation is done in graph structures. As a reason machine learning

using this framework can be distributed to many systems in a cluster or inside Graphical

Processing Units (GPU). Moreover, it also supports fast optimization algorithms and training

algorithms. For instance, it supports ADAM [30] which is a new fast algorithm for optimization.

One another major advantage of Tensorflow library is the large online community of supporters.

 Theano

Theano [31]is a python based library for machine learning. It can be used to design, develop and

optimize mathematical expressions that involve multi-dimensional arrays. Furthermore, it

supports symbolic differentiation, which is important for fast computation in a distributed setup.

This library supports most of the neural network architectures including RNN and LSTMs.

 DeepLearning4J

DeepLearning4J is a java based machine learning library for deep learning. It supports various

neural network architectures including RNN and LSTMS. The major advantage of this library is it

is distributed in Java Virtual Machine. Furthermore, it also supports Graphical Processing Units

(GPUs) which makes the computation faster.

 Apache Maxnet

Apache MAXNET is a deep learning library that supports various programming languages

including C++, Julia, and Python. It is an open source library licensed under apache license.

The major components of Apache Maxnet are:

1. Runtime Dependency Engine: Schedules and executes the operations according to their

read/write dependency.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 16

2. Storage Allocator: Efficiently allocates and recycles memory blocks on host (CPU) and

devices (GPUs).

3. Resource Manager: Manages global resources, such as the random number generator and

temporal space.

4. NDArray: Dynamic, asynchronous n-dimensional arrays, which provide flexible imperative

programs for MXNet.

5. Symbolic Execution: Static symbolic graph executor, which provides efficient symbolic graph

execution and optimization.

6. Operator: Operators that define static forward and gradient calculation (backprop).

7. SimpleOp: Operators that extend NDArray operators and symbolic operators in a unified

fashion.

8. Symbol Construction: Symbolic construction, which provides a way to construct a

computation graph (net configuration).

9. KVStore: Key-value store interface for efficient parameter synchronization.

10. Data Loading(IO): Efficient distributed data loading and augmentation.

 Keras: The Python Deep Learning library

Keras is a high-level neural networks API, written in Python and capable of running on top

of TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being

able to go from idea to result with the least possible delay is key to doing good research. It can

seamlessly on CPU and GPU.

Use Keras if you need a deep learning library that:

- Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).

- Supports both convolutional networks and recurrent networks, as well as combinations of

the two.

Keras is:

- User friendly: Keras is an API designed for human beings, not machines. It puts user

experience front and center. Keras follows best practices for reducing cognitive load: it

offers consistent & simple APIs, it minimizes the number of user actions required for

common use cases, and it provides clear and actionable feedback upon user error. 

- Modular: A model is understood as a sequence or a graph of standalone, fully-configurable

modules that can be plugged together with as little restrictions as possible. In particular,

neural layers, cost functions, optimizers, initialization schemes, activation functions,

regularization schemes are all standalone modules that you can combine to create new

models. 

- Extensible: New modules are simple to add (as new classes and functions), and existing

modules provide ample examples. To be able to easily create new modules allows for total

expressiveness, making Keras suitable for advanced research.

2.2.4. SUMMARY OF MACHINE LEARNING TOOLS

The table below illustrates a comparison between the presented open tools.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 17

Name of the tool Development
Latest

release

Operating

System

Licence Language

Mallet

McCallum Andrew and

team

MALLET

2.0

Cross

Platform

CLP 1.0 Java

LIBSVM National University of

Taiwan

2.88 Cross

Platform

BSD Java/C/

Python

CRF++ Nara Institute of

Science and

Technology

CRF++

0.58

Cross

Platform

BSD C++

Bnpy Brown University 0.1 Cross

Platform

BSD Python

TensorFlow Google Brain Team 1.3 Cross

Platform

Apache

2.0

Python

DeepLearning4J Skymind. 0.9.1 Cross

Platform

Apache

2.0

Java

Theano Université de Montréal 1.0.0 Cross

Platform

BSD Python

Apache MXNet The Apache Software

Foundation

1.0 Cross

Platform

Apache

2.0

Python/ C++

Keras François Chollet and

team

2.0.8 Cross

Platform

MIT Python

TABLE 1 SUMMARY OF MACHINE LEARNING TOOLS

Machine Learning for Sentiment Analysis

With the rapid development of information, the era of information networks is affecting people’s lives

at unprecedented rates. At the same time, social media also presents a variety of forms, BBS, blogs

and others network media have developed rapidly, and the network user's participation is continuing

to raise, for the use of network also has a huge change. The users are no longer a passive

knowledge of access network, but to become a maker of network information. The change has

resulted in a present a large number of network media used to express the user emotions, emotions

and ideas of all kinds of forms of subjective information, and the text is one of the most main forms.

According to these subjective information, how to more effective use of these vast amounts of data,

extract, carrying people interested in view of the text, and its accurate analysis is so far in the field of

natural language processing is one of the important research topic.

Text Sentiment Analysis is a very important research topic in the field of natural language

processing, and it is focus on people's ideas, feelings, attitudes, and for such products, services,

organizations, individuals, events, themes, such as entity emotions tend to make the effective

mining and Analysis, and then further to dig out the category of technology information induction and

reasoning.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 18

Various machine learning techniques have been applied to sentiment analysis task. The best

performing method for this task is Recurrent Neural Networks (RNN) and LSTMs, where a layer of

LSTMs are trained for the task.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 19

3. PATTERN RECOGNITION

Pattern recognition is concerned with the investigation of adaptive and analytic techniques for

processing large amounts of data, the extraction of useful information to reduce the data, and the

classification the data as required. It is closely akin to machine learning, and also finds applications

in fast emerging areas such as biometrics, bioinformatics, multimedia data analysis and most

recently data science. The great variety of pattern-recognition problems makes it difficult to say

precisely what pattern recognition is. However, a good idea of the scope of the field can be gained by

considering some typical pattern-recognition tasks. Pattern recognition has its origins in engineering,

and the term is popular in the context of computer vision. In pattern recognition, there is a higher

interest to formalize, explain and visualize the pattern, while machine learning focuses on

maximizing the recognition rates.

Previous studies have examined many different factors that play a role in the recognition of

opportunities for new business ventures. Among these, however, three have been identified as

especially important and received most attention: engaging in an active search for opportunities:

alertness to opportunities (the capacity to recognize them when they emerge); and prior knowledge

of a market, industry, or customers as a basis for recognizing new opportunities in these areas.

The field of pattern recognition is concerned mainly with the description and analysis of

measurements taken form physical or mental process. It consists of acquiring raw data and taking

actions based on the class of the patterns recognized in the data. Earlier it was studied as a

specialized subject due to higher cost of the hardware for acquiring the data and to compute the

answers. The fast developments in computer technology and resources enhanced possible various

practical applications of pattern recognition, which in turn contributed to the demands for further

theoretical developments.

3.1. PATTERN RECOGNITION APPROACHES

Patterns generated from the raw data depend on the nature of the data. Patterns may be generated

based on the statistical feature of the data. There are different mathematical techniques in order to

obtain the attributes for pattern recognition system. The four best-known approaches for the pattern

recognition are:

1. Template matching

2. Statistical classification

3. Syntactic matching

4. Neural networks

1. In template matching, the prototype of the pattern to be recognized is compared against the

pattern to be recognized. In the statistical approach, the patterns are described as random variables,

from which class densities can be inferred. Classification is done based on the statistical modelling

of data. In the syntactic approach, a pattern is seen as being composed of simple sub-patterns which

are themselves built from yet simpler sub-patterns, the simplest being the primitives. Inter

relationships between these primitive patterns are used to represent a more complex pattern. The

neural network approach to pattern recognition is strongly related to the statistical methods, since

they can be regarded as parametric models with their own learning scheme. The comparison of

different approaches is summarized in TABLE 2 [3]

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 20

Approach Representation Recognition Function Typical Criterion

Template matching Samples, pixels,

curves

Correlation, distance

measure

Classification error

Statistical

classification

Features Discriminant function Classification error

Syntactic or structural Primitives Rules, grammar Acceptance error

Neural network Samples, pixels,

features

Network function Mean square error

 TABLE 2 PATTERN RECOGNITION MODELS

3.2. PATTERN RECOGNITION SYSTEM

A pattern recognition system, in general, consists of two parts, namely, feature extractor and

classifier. The function of feature extractor is to extract or to measure the important characteristics

from the input patterns. The extracted characteristics are called features, and they are supposed to

best characterize all the possible input patterns. The function performed by a classifier is the one of

making a proper decision to assign each input pattern to one of the possible pattern classes. The

decision is made on the basis of the feature measurements supplied by the feature extractor in a

recognition system. The classification criterion is usually [17].

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 21

FIGURE 4. PATTERN RECOGNITION SYSTEM

3.2.1. FEATURE EXTRACTION

Text contains word, letters, punctuation or other symbols, and may be arrange into patterns. These

characteristics are known features (or attributes). Features are a part of the learning and evaluation

process, and they are used by classifier for finding the differences between classes. Frequently used

features by researches are n-grams, patterns, punctuation characters, emoticons (especially in blogs

and chats) uppercases and count features (counts of a specific feature) [19].

N-GRAMS

N-grams are sequences of n items, such as words, letters, syllables, etc. The purpose of n-grams is

to compute the joint of sequence probabilities or probability of an upcoming item in the sequence. A

simple n-gram model is the unigram model, where n is 1. The next most used n-grams are bigrams,

which are suitable for two-word phrases, including negative phrases, like “not good”. The

disadvantage of n-gram is that most languages have long-distant dependencies. This drawback

makes the n-gram model unsuitable for text data information extraction when using it as the only

model.

The n-grams might not be efficient for sentiment analysis. Unigrams can be supported by part-of-

speech (POS) tags as meta features. Besides of the POS tags, they mapped the words to their prior

subjectivity and polarity. The prior polarity is switched from positive to negative, or vice-versa, by the

occurrence of negative word (not) or negative expression. They derived the subjectivity and polarity

of the tag from the subjectivity lexicon.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 22

PUNCTUATION AND EMOTION

Punctuations are a part of sentences, and can be used as generic features. On the one hand the

exclamation marks and question marks can emphasize the textual emotional content. For example,

the repetition of exclamation marks significantly indicates anger.

On the other hand, emoticons are textual representations of emotions. They are usually written with

ASCII characters. Nowadays, ideograms, represented by pictograph, are getting more popular in

electronic messages and social networks. These pictographs are called emojis, and are represented

by a UTF-8 encoded character. As an analogy to the ASCII emoticons, the emojis represent their

emotions. Emoticons and emojis are considered as the most significant carries of information in the

textual content.

PATTERN-BASED FEATURES

One of the pattern based feature is based on the arrangement of texts into high frequency words

(HFW) and content words (CW). HFW is defined as words appearing more than TH times, per million

words, and CW as words appearing more than TC times, per million words. TH and TC are thresholds,

which were set to 1000 words per million for TC, and 100 words per million for TH.

Class sequential rules (CSR) are the next approach of pattern-based features. CSR is a sentence-

level pattern for the sentiment/emotion classification. Two emotion labels are obtained for each

sentence, by lexicon-based and SVM-based methods. The derived CSR feature is subsequently used

for SVM- based emotion classification. Sentences with conjunction words, such as “but” or “where”,

are separated before the feature extraction. These conjunction words are added into the sequence,

since they reflect relationship between the sub-sentences.

3.2.2. FEATURE SELECTION/REDUCTION

Extraction of all possible features from the training set is not an effective approach, since it can

cause over fitting or misclassification due to the inclusion of redundant or irrelevant features. To

solve these issues, the number of input features should be reduced by either selecting a certain

number of them or by transforming the whole feature space to a new space with smaller number of

dimensions.

In the feature selection, the issue is to acquire a considerable reduction of the features, without

affecting the performance of the classifier.

For example, according to this study [18] , Twitter language model has many unique properties, thus

it is possible to use these properties in order to reduce the feature space.

Usernames: Users often include Twitter usernames in their tweets in order to direct their messages,

where they have to include the @ symbol before the username. For example, an equivalence class

token (USERNAME) replaces all words that start with this symbol.

Usage of links: Users very often include links in their tweets. An equivalence class is used for all

URLs. One option is converting a URL like “http://” to the token “URL”

Repeated letters: Tweets contains very casual language. Many users write the same word with a

different number of letters. For instance, the search of hungry can be like “huungry” or “huuungry “.

In this case can be use a pre-processing, in which any letter can occurring more than two times in a

row is replaced with two occurrences. In the samples above, these words would be converted into

the token huungry.

These three reductions shrink the feature set down to 45.85% of its original size.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 23

In the feature selection, the issue is to acquire a considerable reduction of the features, without

affecting the performance of the classifier.

3.2.3. TEXT CLASSIFICATION

Classification is the last step of the pattern recognition process, assigns the input feature vector to a

certain class. There are several algorithms for the classification, the most known among them for

emotion recognition are: decision trees, rules, Bayes methods, nearest neighbour classifiers, SVM

classifiers, and neural networks.

Sentiment classification techniques can be differentiated into machine learning approach and

lexicon based approach. The machine learning approach (ML) applies the well-known ML algorithms

and uses semantic features. The Lexicon-based Approach depends with the respect to sentiment

lexicon. It is partitioned into dictionary-based approach and corpus-based approach which utilize

statistical or semantic methods to find sentiment polarity. The hybrid Approach combines both

approaches/methodologies and is exceptionally basic with sentiment lexicons playing a key part in

the majority of methods.

MACHINE LEARNING APPROACH

The text classification methods using Machine Learning Approach can be differentiated into

supervised and unsupervised learning methods. In general, the machine learning approach relevant

to sentiment analysis mostly belongs to supervised classification and text classification techniques

in particular.

Machine learning techniques like Naive Bayes (NB), maximum entropy (ME), and support vector

machines (SVM) have made extraordinary success in text categorization.

A) Naive Bayes.

The Naive Bayes classification method is based on Bayes rule, and relies on a simple representation

of document. The aim of this method is to choose the class with a highest probability. The accuracy

of Naive Bayes using unigrams and bigrams in Twitter is the 82.7%. Sentiment was represented as

positive, negative and neutral.

There are two different models of Naïve Bayes: The Multi-Variate Bernoulli Event Model and the

Multinomial Event Model. In the multi-variate Bernoulli event model, a vocabulary V is given. A

document is represented with a vector of |V| dimensions. The dimension of the vector corresponds

to word wk from V and is either 1 or 0, indicating whether word wk occurs in the document. To

simplify the calculation of probability, the Naïve Bayes assumption is made in this model: that in a

document the probability of the occurrence of each word is independent of the occurrence of other

words.

In the multinomial event model, a document is regarded as a “bag of words”. No order of the words

is considered, but the frequency of each word in the document is captured. In this model, a similar

Naïve Bayes assumption is made: that the probability of the occurrence of each word in a document

is independent of the word’s position and the occurrence of other words in the document [1].

The Naïve Bayes model is tremendously appealing because of its simplicity, elegance, and

robustness. It is one of the oldest formal classification algorithms. It is widely used in areas such as

text classification and spam filtering.

B) MaxEnt

Maximum Entropy (MaxEnt) is a feature-based model that uses search-based optimization to find

weights for the features that maximize the likelihood of the training data. The MaxEnt model does

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 24

not make an independence assumption of features, like in the Naïve Bayes, and therefore

overlapping features have no effect on the classification.

The MaxEnt classifier is closely related to a Naïve Bayes classifier, except that, rather than allowing

each feature to have its say independently, the model uses search-based optimization to find

weights for the features that maximize the likelihood of the training data.

The MaxEnt model can also handle mixtures of Boolean, integer and real-valued features. The

MaxEnt classifier can be built in the following steps, assuming that the only features are word-level

features.

1. For each word w and class c Є C, define a joint feature f(w,c) = N where N is the number of

times that w occurs in a document in class c.

2. Via iterative optimization, assign a weight to each joint feature so as to maximize the log-

likelihood of the training data.

3. The probability of class c given a document d and weights λ is

MaxEnt models are more difficult to implement than Naïve Bayes model, but MaxEnt has an

excellent software packages available [2].

C) Support Vector Machines

Support Vector Machines (SVMs) is another popular classification technique. It pre-processes data in

high dimensions, much higher than the original feature space. The main idea behind the SVMs, is to

find a separating hyperplane, with the largest margin in the learning process. SVMs are defined by

vectors of points closet to the separating hyperplane. The best hyperplane is defined by the largest

margin between two classes.

LEXICON-BASED APPROACH

The lexicon-based approach based on finding the opinion lexicon which is used to analyse the text.

Opinion words are utilized in many sentiment classification tasks. Positive opinion words are utilized

to express some desired sates, while negative opinion words are utilized to express some undesired

states. There are also opinion phrases and expression which together are called opinion lexicon. The

lexicon-based approach is partitioned into two methods. The dictionary-based approach based on

finding opinion seed words, and then searches the dictionary of their equivalent synonyms and

antonyms. The corpus-based methodology starts with a seed list of opinion words, and then finds

other opinion words in a large corpus to get opinion words with context specific orientations. This

should be possible by utilizing statistical or semantic methods.

USAGE STATICS

Readers of the content, who may or may not also be contributors, provide valuable information about

the items they find interesting. In particular, usage statistics such as the number of clicks on the

item and the time have been shown useful in the context of identifying high quality web search

results, and are complementary to link-analysis based methods. Intuitively, usage statistics

measures are useful for social media content, but require different interpretation from the previously

studied settings.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 25

3.3. TOOLS FOR PATTERN RECOGNITION

In order to enable the processing of large quantities of data SOMEDI will propose different strategies

such as Apache Spark. This section will depict the different tools and the reason why Apache has

been chosen.

3.3.1. APACHE SPARK

Apache Spark is a powerful open source processing engine for Hadoop data built around speed, easy

to use, and sophisticated analytics. It was originally developed in UC Berkeley’s AMPLab and later-on

it moved to Apache. Apache Spark is basically a parallel data processing framework that can work

with Apache Hadoop to make it extremely easy to develop fast, Big Data applications combining

batch, streaming, and interactive analytics on all the data. In fact, a recent Sync sort report shows

that 70 percent of IT managers and BI analysts are interesting in Spark over MapReduce

Spark is also well-suited for running machine-learning queries in parallel. That is useful in almost

context where pattern detection is key.

This section will show some features which are really highlighting it in the Big data world:

Lighting Fast Processing

In Big Data processing is essential the speed. Spark enables applications in Hadoop clusters to run

up to 100x faster in memory, and 10x faster even when running on disk. Spark makes it possible by

reducing number of read/write to disc. It stores this intermediate processing data in-memory. It uses

the concept of a Resilient Distributed Dataset (RDD), which allows it to transparently store data on

memory and persist it to disc only it’s needed. This helps to reduce most of the disc read and write –

 the main time-consuming factors – of data processing

Ease of use as It supports multiple languages

Spark lets you quickly write applications in Java, Scala or Python. This helps developers to create and

run their applications on their familiar programming languages.

Support for sophisticated analytics

In addition to simple map and reduce operations, Spark support SQL queries, streaming data, and

complex analytics such as machine learning and graph algorithms out-of-the-box. Furthermore, users

can combine all these capabilities seamlessly in a single workflow

Real time Stream Processing

Spark can handle real time streaming. Map-reduce mainly handles and process the data stored

already. However, Spark can also manipulate data in real time using Spark Streaming. Not ignoring

that there are other frameworks with their integration we can handle streaming in Hadoop.

Here there is some abilities about Sparks:

https://spark.apache.org/
http://hadoop.apache.org/
https://amplab.cs.berkeley.edu/
https://spark.apache.org/
http://hadoop.apache.org/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 26

Easy: Built on Spark’s lightweight yet powerful APIs, Spark Streaming lets you rapidly develop

streaming applications

Fault tolerant: Unlike other streaming solutions (e.g. Storm), Spark Streaming recovers lost work and

delivers exactly-once semantics out of the box with no extra code or configuration

Integrated: Reuse the same code for batch and stream processing, even joining streaming data to

historical data

Ability to integrate with Hadoop and Existing Hadoop Data.

Spark can run independently. Apart from that it can run on Hadoop 2’s cluster manager, and can

read any existing Hadoop data, such as HBase and HDFS. This feature of Spark makes it suitable for

migration of existing pure Hadoop applications

Active and Expanding community.

Apache Spark is built by a wide set of developers from over 50 companies and is expanding

continuously.

APACHE SPARK IN ORDER TO EVALUATE CUSTOMER BEHAVIOUR

In the case of consumer behaviour, because consumers are shopping for different products and

exhibit varying behaviours, multiple algorithms are run to find the one best-suited to tackle a

predictive task, and that is where Apache Spark excels [7].

Many different classification algorithms could be used in order to analyse, classify or predict data.

These algorithms differ in their performance and results. With Apache, it is possible to use different

techniques, such as Naïve Bayes and Support Vector Machines in order to select the best choice.

Spark’s combination of high-performance distributed processing and extensive libraries make it an

attractive platform for tackling customer segmentation. Spark’s speed and flexibility make it ideal for

rapid, iterative processes such as machine learning, with Postcodeanywhere. Postcodeanywhere is a

provider of address data to popular e-commerce and retail websites, has been using Spark internally

for more than a year to help understand and predict customer behaviour on its platform, enabling

the company to improve service [15].

On the other hand, through Apache Spark is possible to use different algorithms in order to predict

the CTR [14]. Click Trough Rates (CTR) is essential for measure the success of an online advertising

campaign for a particular website as well as the effectiveness of email campaigns. For that reason,

this parameter would be very useful for SOMEDI.

3.4. ALTERNATIVES TO APACHE SPARK

Apache Hadoop is an open source software framework. Hadoop consists of two main components: a

distributed processing framework named MapReduce and a distributed file system known as the

Hadoop distributed file system, or HDFS.

https://storm.incubator.apache.org/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 27

HDFS is used for storage. In short, HDFS provides a distributed architecture for extremely large-scale

storage. On the other hand, MapReduce is a programming model for processing and generating

large data sets

Through MapReduce is possible to study the consumer behaviour. For example, in this study [8]

have been analysed customer behaviour using big data analytics.

Hadoop is an open-source, distributed computing technology. This configuration enables users to

distribute processing of large data sets across clusters of computers to run simple programming

models.

Users can scale Hadoop from a single server to thousands of servers. And, each connected server

can provide its own local computation and storage [12].

For persistence this project will use HDFS in order to store the data due to its simplicity, efficiency,

distribution architecture and ease of integration with Apache Spark.

3.4.1. SPARK VS HADOOP

Between Hadoop/HDFS and Spark are two fundamentally different systems and used for different

purposes. Essentially, HDFS is a storage solution and Spark is fast and general engine for large-

scale data processing.

Companies use Hadoop/HDFS to store data in a reliable and secure manner. Companies use Spark

to make sense of that data.

Spark offers a fast technology for large-scale data processing. This framework provides high-level

APIs in Java, Scala and Python. And, it provides a very rich set of data stores including streaming

processing and machine learning [12].

Google introduced MapReduce as a programming model to facilitate its search processes. This

framework serves two basic functions: It parcels out work to various nodes within a map (or cluster),

and it organizes the workload to reduce the results into a relevant answer to a query.

One of the limitations of Hadoop MapReduce is that the framework can only batch process one job

at a time [12].

3.4.2. SPARK VS MAPREDUCE

One of the significant challenges for systems developed with this framework is its high-latency,

batch-mode response. Since MapReduce has evolved over the last 10 years some developers would

complain that it’s difficult to maintain because of inherent inefficiencies in its design and code.

Spark, on the other hand, is faster and better suited for big data analytics. It can run on a variety of

file systems and databases. Some users report that processes work on Spark 100 times faster than

the same process on MapReduce.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 28

Spark is also more developer-friendly with an API that is easier for most developers to use when

compared to MapReduce.

While MapReduce is limited in “map” and “reduce” operations, Spark supports SQL queries,

streaming data and complex analytics such as machine learning and graph algorithms. Furthermore,

users can combine all these capabilities seamlessly in a single workflow [11].

Apache Storm is an open source, scalable, fault-tolerant, distributed real-time computation system. It

is popular because of it real-time features and many organizations have implemented it a part of

their system for this very reason.

Storm provides Twitter’s publisher analytics product, processing every tweet and click that happens

on Twitter to provide analytics for Twitter’s publisher partners. Storm integrates with the rest of

Twitter’s infrastructure, including Cassandra, the Kestrel infrastructure, and Mesos. Apache Storm is

able to process customer behaviour on web pages and mobile apps [9].

Storm has long served as the main platform for real-time analytics at Twitter. However, as the scale

of data being processed in real-time at Twitter has increased, along with an increase in the diversity

and the number of use cases, many limitations of Storm have become apparent [10].

3.4.3. SPARK VS STORM

One key difference between these is that Spark performs Data-Parallel computations while Storm

performs Task- Parallel computations. While Spark and Storm provide fault tolerance and scalability,

each framework uses a different processing model. Spark uses micro-batches to process events

while Storm processes events one by one. This difference in process handling means that Spark has

a latency of seconds while Storm provides a millisecond of latency. Spark Streaming provides a high-

level abstraction called a Discretized Stream or DStream, which represents a continuous sequence

of RDDs [12].

Heron is built with a wide array of architectural improvements that contribute to high efficiency gains.

It has powered all real-time analytics with varied use cases at Twitter since 2014. In addition is an

API compatible with Apache Storm and hence no code change is required for migration.

On the other hand, Heron architecture is very complex. Multiple tasks are written into a single file, for

that reason it is hard to identify any errors or exceptions that are associated with a particular task.

Furthermore, an unhandled exception in a single task takes down the entire worker process [10].

3.4.4. SPARK VS HERON

The main disadvantage in Heron is that is not an open source, while Spark is it. Heron has already

replaced the internal usage of Storm at Twitter, running hundreds of development and production

topologies. However, most of the IoT platforms are using a combination of Apache Kafka, Apache

Storm and Apache Spark for data ingestion, data aggregation and data analytics.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 29

Apache Flink is an open-source stream processing framework for distributed, high-performing,

always-available, and accurate data streaming applications. It is fast, reliable, scalable and easy to

use. Flink can be used in different environments, like in the optimization of e-commerce search

results in real-time.

Flink applications are fault-tolerant in the event of machine failure and support exactly-once

semantics. Programs can be written in Java, Scala, Python and SQL and are automatically compiled

and optimized into dataflow programs that are executed in a cluster or cloud environment.

3.4.5. SPARK VS FLINK

Apache Spark is considered a replacement for the batch-oriented Hadoop system. But it includes a

component called Apache Spark Streaming as well. Contrast this to Apache Flink, which is

specifically built for streaming [13].

The main difference is Flink was built from the ground up as a streaming product. Spark added

Streaming onto their product later. Spark Streaming uses a fast-batch operation. It works on a

portion of incoming data during a set period of time. While this approach to processing data works

well for many situations, it may not be the best in all use cases. On the one hand, Apache Flink can

provide a purer stream-processing capability with lower latency. Flink can lead Spark in the future,

but actually the community of the users is lower.

Oracle Advanced Analytics provides a broad range of in-database, parallelized implementations of

machine learning algorithms to solve many types of business problems.

Oracle has different techniques, such as classification, regression, attribute importance, anomaly

detection, clustering, association and feature selection and extraction. In relation to the feature

selection and extraction produces new attributes as linear combination of existing attributes,

applicable for pattern recognition [4].

Oracle offers advertisers something akin to a real-time target marketing list, where machine learning

already has determined which customers are most likely to buy the advertiser’s products.

Predictive consumer behaviour is considered the most important goal of marketing, but a classic

problem is filtering out the noise from customers who are ready to buy. Web activity such as search

and browsing may generate petabytes of data. This problem was solved moving Oracle Data Cloud

from an on premise single machine for data processing to cloud-based Apache Hive and ultimately

Apache Spark [7].

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 30

4. NATURAL LANGUAGE PROCESSING AND OPINION

MINING

In SoMeDi, in order to automate the process of understanding the social media data that is usually

done by human experts, we will use tools and algorithms on the Natural Language Processing realm

(henceforth NLP) that try to understand the language generated by users of the social networks and

then represents it in data formats that are useful for analysis by computers.

We will first explain a series of general aspects in the NLP theory. After this, in subsections 5.2

onwards we will explain in detail tools and approaches used for this and how they can be leveraged

in SoMeDi to achieve the global understanding task.

4.1. General Aspects of Natural Language Processing

The following is a list of some of the most commonly researched task in NLP that are discussed in

this deliverable. For each one there is typically a well-defined problem setting, a standard metric for

evaluating the task, standard corpora on which the task can be trained or evaluated and

competitions devoted to the specific task.

 Sentence breaking: given a chunk of text, find the sentence boundaries. Sentence

boundaries are often marked by periods, colons or other punctuation marks, but these

same characters can serve other purposes (e.g. marking abbreviations). Usually, this task is

carried out by the sentence splitter module.

 Word segmentation carries out a lexical analysis, splitting texts into very simple tokens such

as words, numbers, punctuation, space tokens and symbols. Usually, this task is carried out

by the tokenizer module.

 Part-of-speech (POS) tagging: given a sentence, determine the part of speech for each word.

Many words can serve as multiple parts of speech. For example, “set” can be a noun, verb

or adjective. Usually, this task is carried out by the part-of-speech tagger module.

 Named entity recognition (NER): given a stream of text, determine which items in the text

map to proper names, such as people or places, and what type of each such name is (e.g.

person, location, organization). This identification is based on gazetteer lists. These are plain

text files, with one entry per line. Each list represents a set of names, such as names of

cities, organizations, days of the week… Usually, this task is carried out by the gazetteer

module.

 Parsing makes the grammatical analysis determine a parse tree for each given sentence.

The grammar for natural languages is ambiguous and typical sentences have multiple

possible analyses. Usually, this task is carried out by the parser module.

 Co-reference resolution: given a sentence or larger chunk of text, determine which words

(“mentions”) refer to the same objects (“entities”). The more general task of co-reference

resolution also includes identifying so-called “bridging relationships” involving referring

expressions. For example, in a sentence such as “He entered John´s house through the

front door”, “the front door” is a referring expression and the bridging relationship to be

identified is the fact that the door being referred to is the front door of John´s house (rather

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 31

than of some other structure that might also be referred to). Usually, this task is carried out

through a co-reference tagger based on co-reference chains.

 Relationship extraction: given a chunk of text, identify the relationships among named

entities (e.g. who is the wife of whom).

 Word sense disambiguation: many words have more one meaning; this task is in charge of

selecting which makes the most sense in context. For this problem, it is usually given a list

of words and associated word senses.

In some cases, sets of related task are grouped into complete subfields of NLP that are often

considered separately from NLP as a whole. Examples include:

 Information retrieval: this is concerned with storing, searching and retrieving shallower

elements information from corpora of text. This includes search engines, indexers and

similar software modules.

 Information extraction: this is concerned in general with the extraction of deeper semantic

information from text. This covers tasks such as named entity recognition, co-reference

resolution, …

As well as traditional natural language processing, statistical language processing will be also

considered. Some of the most commonly used methods are:

 TF-IDF: mathematically, TF-IDF is expressed as the product of the term frequency (TF, it

represents the importance of a term in a specific document and IDF, it represents the

importance of a term relative to the entire corpus). Toolkits such as NLTK provide lists of

stop words that can be used to filter out terms such as “the”, “a”, “and”, etc. The TF-IDF

means that the order of terms in both the document and the query itself does not matter.

 Bigram Analysis: using NLTK to compute bigrams and collocations for a sentence, i.e., if

someone were to tell you that a few of the most common term in a document are “open”,

“source” and “government”, could you necessarily say that the text is probably about “open

source”, “open government”, both or neither? Bigram offers the option of find out how often

a pair of words occurs in a sentence.

 Vector Space Model is a large multidimensional space that contains one vector for each

document, and the distance between any vectors indicates similarity of the corresponding

documents. One of the most powerful things about vector space models is that they can

also represent a query as a vector and find the most relevant documents for the query by

finding the document vectors with the shortest distance to the query vector.

 Cosine similarity can be used to cluster documents. For example, suppose document 1

contained the terms (A,B,C) and had the corresponding vector of TF-IDF weights (0.1, 0.15,

0.12), while document2 contained the terms (C,D,E) with the corresponding vector of TF-IDF

weights (0.05, 0.1, 0.09). The derived vector for document1 would be (0.1, 0.15, 0.12, 0, 0)

and the derived vector for document2 would be (0, 0, 0.05, 0.1, 0.09). Each of these

vectors could be passed into the NLTK´s cosine distance function, which yields the cosine

similarity. Although we use TF-IDF calculations, the exact scoring function could be any

useful metric.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 32

After this initial definition of terms we will begin to discuss concrete implementations of algorithms

that might prove useful for SoMeDi analyses.

4.2. Text processing

Before the in-depth analysis of the text by the Language Processing Software, the text gathered by

the crawler has to be treated:

 If the language data stored is already available as text, it is most likely to be stored in files.

Apache parser libraries like POI1 and PDFBox2 extract text from the most common formats

(Microsoft documents and PDF, respectively). Apache Tika3 is a toolkit that uses such

libraries to extract text and other types of metadata from most types of documents. Tika

unifies these parsers under a single interface to allow easily parsing over a thousand

different file types. It is useful for search engine indexing, content analysis, translation and

identifying the document language if needed. A great way of organizing and accessing text

data is by using a search engine [13][14].

 If the language data is on the web, most likely it is part of some other larger website.

BoilerPipe4 provides algorithms to detect and remove the surplus “clutter” around the main

textual content of a web page, like navigational menu or ads. We can use the results of

complete solutions for web scraping such as Scrapy5 or similar.

 If the language data is stored in images, you need to use OCR to extract the text. Tesseract6

can read a wide variety of image formats and convert them to text in over 60 languages

(including English, Italian and Spanish). It can be tuned to get commercial grade quality

 Finally, if the language data is stored as audio, CMU Sphinx7 converts speech to text.

Depending on how diverse the speakers are and what they say, the results may be quite

usable. It is important to highlight that the support that CMU provides via email, forums and

IRC is actually better than the support most commercial vendors offer. In SoMeDi we can

target content in social media that has elements of speech and hence could benefit from

speech recognition.

Independently of the type of language data, the software used will depend on what are the needs of

the user: text classification, topic modeling, key word extraction, entity linking, summary, parsing or

co-reference resolution. We will analyse these in the following sections.

4.3. Text Classification

Methods that fall under text classification can be quite versatile and powerful. They can be used for

guessing genre, estimating overall attitude or sentiment or even predict characteristic of the text

author, like their age or gender. But these methods also rely on two assumptions: a) classes are

known in advance and b) training data available for each of these classes. The quality of a text

classification approach always depends on the number of examples you are training on and how

distinct are the classes. Some of the toolkits which offer text classification as one of their features

are:

1 Apache POI – the Java API for Microsoft Documents: http://poi.apache.org/
2 Apache PDFBox – a Java PDF Library: https://pdfbox.apache.org/
3 Apache Tika – a content analysis toolkit:http://tika.apache.org/
4BoilePipe: http://tika.apache.org/
5 Scrapy: https://scrapy.org/
6Tesseract-ocr: https://code.google.com/p/tesseract-ocr/
7CMU Sphinx- Speech Recognition Toolkit: http://cmusphinx.sourceforge.net/

http://poi.apache.org/
https://pdfbox.apache.org/
http://tika.apache.org/
https://scrapy.org/
https://code.google.com/p/tesseract-ocr/
http://cmusphinx.sourceforge.net/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 33

4.3.1. NATURAL LANGUAGE TOOLKIT (NLTK) 8

The NLTK is a suite of libraries and programs for symbolic and statistical natural language

processing (NLP) for the Python programming language. NLTK includes graphical demonstrations

and sample data.

It is intended to support research and teaching in NLP or closely related areas, including empirical

linguistics, artificial intelligence, information retrieval and machine learning. NLTK has been used

successfully as a platform for prototyping and building research systems.

NLTK comes with a large collection of corpora, extensive documentation, and hundreds of exercises,

making NLTK unique in providing comprehensive framework to develop a computational

understanding of languages. NLTK´s code base of 100,000 lines of Python code includes support

for corpus access, tokenizing, stemming, tagging, chunking, parsing, clustering, classification,

language modelling, semantic interpretation, unification and much else besides.

FIGURE 5. PARSE TREE IN NLTK

Although NTLK includes a Spanish corpus, CESS Treebanks (it is derived from Freeling

project), in Spanish and Catalan, these resources do not allow to develop a tagging process

of new documents. Some reasons are:

- CESS corpus is designed to show results regarding the queries that we make inside

them, but do not allow implementing some learning process for a Spanish tagger.

- It hasn’t developed any method to train a Spanish tagger yet.

- There isn’t any tagged corpus of reference in Spanish, for free use and which belongs to

the libraries of NLTK.

- There aren’t any common criterions about the tagging process in Spanish.

For Romanian the situation is even less encouraging, with limited availability of corpora or

adaptations. However, NTLK it is a powerful tool in Statistical Language Processing where

the language isn’t so important (i.e. a term frequency).

4.3.2. LINGPIPE9

LingPipe is tool kit for processing text using computational linguistics. LingPipe is used to do

tasks like:

 Find the names of people, organizations or locations in news. Also, the “standard”

model supplies GSP (GeoSpatial Political Entity). This can be changed if the named

entity detector is retrained.

 Automatically classify Twitter search results into categories

 Suggest correct spelling of queries

8 http://cesaraguilar.weebly.com/uploads/2/7/7/5/2775690/met_class12.pdf
9 http://alias-i.com/lingpipe/

http://cesaraguilar.weebly.com/uploads/2/7/7/5/2775690/met_class12.pdf

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 34

LingPipe´s architecture is designed to be efficient, scalable, reusable and robust. Highlights

include:

 Java API with source code and unit tests

 Multi-lingual, multi-domain, multi-genre models

 Training with new data for new tasks

 N-best output with statistical confidence estimates

 Online training (learn-a-little, tag-a-little)

 Thread-safe models and decoders for concurrent-read exclusive-write (CREW)

synchronization

 Character encoding-sensitive I/O

FIGURE 6. PROCESSING TWEETS WITH LINGPIPE

As it was mentioned above, named entity recognition finds mentions of things in text. The interface

in LingPipe provides character offset representations as chunkings.

Name entity recognizers in LingPipe are trained from a corpus of data. Although they are only

providing English data, there is training data available (usually for research purposes only) in a

number of languages, including Spanish. Many of these training sets may be purchased for

commercial applications. LingPipe also supports Unicode and can process documents in any

language with Unicode support.

4.3.3. WEKA10

Weka is a library containing a large collection of machine learning algorithms, implemented in Java.

It supports several standard data mining task. Some of the most important are listed below:

 Classification: given a labelled set of observations, learn to predict labels for new

observations

 Regression: numeric value instead of value

 Attribute selection: find attributes of observations that are important for prediction

10 http://www.cs.waikato.ac.nz/~eibe/WEKA_Ecosystem.pdf

http://www.cs.waikato.ac.nz/~eibe/WEKA_Ecosystem.pdf

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 35

 Clustering: no labels, just identify groups of similar observations (clusters)

 There is also some support for association rule mining and (conditional) density

estimation

All of Weka’s techniques are predicted on the assumption that the data is available as a single flat

file or relation, where each data point is described by a fixed number of attributes (normally, numeric

or nominal attributes, but some other attribute types are also supported). Weka provides access to

SQL databases using Java Database Connectivity and can process the result returned by a database

query. It is not capable of multi-relational data mining, but there is separate software for converting a

collection of linked database tables into a single table that is suitable for processing using Weka.

Another important area that is currently not covered by the algorithms included in the Weka

distribution is sequence modeling.

Weka’s main user interface is the Explorer, but essentially the functionality can be accessed through

the component-based Knowledge Flow interface and from the command line. There is also the

Experimenter, which allows the systematic comparison of the predictive performance of Weka’s

machine learning algorithms on a collection of datasets.

 Explorer: still the most popular interface for batch data processing; tab-based interface to

algorithms. It features several panels providing access to the main components of the

workbench:

o The Preprocess panel has facilities for importing data from a database, a CSV file,

etc. and for preprocessing this data using a so-called filtering algorithm. These

filters can be used to transform the data and make it possible to delete instances

and attributes according to specific criteria.

o The Classify panel enables the user to apply classification and regression

algorithms (indiscriminately called classifiers in Weka) to the resulting dataset, to

estimate the accuracy of the resulting predictive model, and to visualize erroneous

predictions, ROC curves, etc. or the model itself (if the model is amenable to

visualization like, e.g., a decision tree).

o The Associative provides access to association rule learners that attempt to identify

all important interrelationships between attributes in the data.

o The Cluster panel gives access to the clustering techniques in Weka, e.g., the

simple k-means algorithms. There is also an implementation of the expectation

maximization algorithm for learning a mixture of normal distributions.

o The Select attributes panel provides algorithms for identifying the most predictive

attributes in a dataset

o The Visualize panel shows a scatter plot matrix, where individual scatter plots can

be selected and enlarged, and analysed further using various selection operators.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 36

FIGURE 7. WEKA EXPLORER

 Knowledge Flow: users lay out and connect widgets representing WEKA components

FIGURE 8. WEKA KNOWLEDGE FLOW

 Experimenter: enables large scale comparison of predictive performance of learning

algorithms.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 37

FIGURE 9. WEKA EXPERIMENTER

Weka also has a command-line interface and its functionality can be accessed through the OS shell.

Only Knowledge Flow and command-line interface enable incremental processing of data.

Related to the use of external interfaces, Weka provides a unified interface to a large collection of

learning algorithms and is implemented in Java.

There is a variety of software through which one can make use of this interface:

 Octave/ Matlab

 R statistical computing environment: RWeka

 Python: python-weka-wrapper

Other software through which one can access WEKA are Mathematica, SAS, KNIME and RapidMiner.

4.3.4. LIBSHORTTEXT11

LibShort Text is an open source library for short-text classification and analysis. Properties of short

text are considered in its design and implementation. The package supports effective text pre-

processing and fast training/ prediction procedures. Because of the short length, details of each

short text can be investigated easily. It has the following features:

1. For large-scale short-text classification, it is more efficient than general text-mining

tools.

2. Users not try many options to get the best performance for their applications

3. An interactive tool to perform error analysis. In particular, because of short lengths,

details of each text can be investigated.

4. The package is mainly written in Python for simplicity and extensibility, while time-

consuming operations are implemented in C/C++ for efficiency.

5. Full documentation including class references and examples

11 http://www.csie.ntu.edu.tw/~cjlin/libshorttext/

http://www.csie.ntu.edu.tw/~cjlin/libshorttext/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 38

The workflow of LibShort Text is shown in the following figure. Each step corresponds to a library in

the core Python module libshorttext.

Workflow Libraries Command-line tools

Short texts

Pre-processing feature

generation

libshorttext.converter
text-train.py

text2svm.py

Training

Testing

libshorttext.classifier
text-train.py

text-predict.py

Analysis libshorttext.analyzer
TABLE 3. LIBSHORT TEXT WORKFLOW

The ease of use, efficiency and extensibility of LibShort Text make it very useful for practitioners

working on short-text classification and analysis, like Facebook comments and tweets.

4.4. Topic Modelling

In situations in which there is an abundance of data and no idea about the discussed concepts or

topics, topic modeling allows to cluster documents while providing a series of possible labels (topics)

for each cluster. Some of the toolkits which offer topic modeling are

4.4.1. MALLET

Mallet12 is an integrated collection of Java code useful for statistical natural language processing,

document classification, cluster analysis, information extraction, topic modeling and other machine

learning applications to text.

Mallet includes sophisticated tools for document classification: efficient routines for converting text

to “features”, a wide variety of algorithms (including Naïve Bayes, Maximum Entropy and Decision

Trees) and code for evaluating classifier performance using several commonly used metrics.

In addition to classification, Mallet includes tools for sequence tagging for applications such as

named-entity extraction from text. Algorithms include Hidden Markov Models, Maximum Entropy

Markov Models and Conditional Random Fields. These methods are implemented in an extensible

system for finite state transducers.

Topic models are useful for analyzing large collections of unlabeled text. The Mallet topic modeling

toolkit contains efficient, sampling-based implementations of Latent Dirichlet Allocation, Pachinko

Allocation and Hierarchical LDA.

In addition to sophisticated Machine Learning applications, Mallet includes routines for transforming

text documents into numerical representations that can then be processed efficiently. This process

is implemented through a flexible system of “pipes”, which handle distinct tasks such as tokenizing

strings, removing stop words and converting sequences into count vectors.

An add-on package to Mallet, called GRMM, contains support for interference in general graphical

models and training of CRFs with arbitrary graphical structure.

4.4.2. GENSIM

12http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 39

Gensim13 is a free Python library designed to automatically extract semantic topics from documents,

as efficiently (computer-wise) and painlessly (human-wise) as possible.

The algorithms in Gensim, such as Latent Semantic Analysis, Latent Dirichlet Allocation or Random

Projections, discover semantic structure documents, by examining word statistical co-occurrence

patterns within a corpus of training documents. These algorithms are unsupervised, which means no

human input is necessary – only a corpus of plain text documents is needed.

Once these statistical patterns are found, any plain text documents can be succinctly expressed in

the new, semantic representation, a queried for topic similarity against other documents.

The main features of Gensim are:

 Memory independence – there is no need for the whole training corpus to reside fully in

RAM at any one time (can process large, web-scale corpora)

 Efficient implementation for several popular vector space algorithms, including TF-IDF,

distributed incremental Latent Semantic Analysis, distributed incremental Latent

Dirichlet Allocation (LDA) or Random Projection; adding new ones is easy

 I/O wrappers and converters around several popular data formats

 Similarity queries for documents in their semantic representation

4.5. Key Word Extraction

Key Word Extraction consists of extracting relevant terms from a given corpus automatically.

Compared to text classification and topic modeling, key word extraction assumes that the number of

possible topics (or categories, or tags) can be large (thousands or more), that each document may

have different number of matching topics and that these topics are well-formed phrases. Key words

can be chosen from document text or from a predefined vocabulary, which ensures their

consistency.

4.5.1. KEA

KEA14 is an algorithm for extracting key phrases from text documents. It can be either used for free

indexing or for indexing with a controlled vocabulary.

The functioning of Kea is the following:

1. Documents. Kea gets a directory name and processes all documents in this directory

that have the extension “.txt”. The default language and the encoding is set to English,

but this can be changed as long as a corresponding stop word file and a stemmer is

provided.

2. Thesaurus. If a vocabulary is provided, Kea matches the documents’ phrases against

this file. For processing SKOS15 files stored as RDF files, Kea uses the Jena API.

3. Extracting candidates. Kea extracts n-grams for a predefined length that do not start or

end with a stop word. In controlled indexing, it only collects those n-grams that match

thesaurus terms. If the thesaurus defines relations between non-allowed terms (non-

descriptors) and allowed terms (descriptors), it replaces each descriptor by an

13http://radimrehurek.com/gensim/intro.html
14http://www.nzdl.org/Kea/index.html
15 SKOS is a W3C recommendation for representation of thesauri, classification schemes, taxonomies, subject-heading

systems or any other type of structured controlled vocabulary. SKOS is part of the Semantic Web family of standards built

upon RDF and RDFS.

http://radimrehurek.com/gensim/intro.html
http://www.nzdl.org/Kea/index.html

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 40

equivalent non-descriptor. In the bellow diagram, pseudo-phrase matching means

removing stop words from the phrase, and then stemming and ordering the remaining

words.

FIGURE 10. KEA FUNCTIONING

4. Features. For each candidate phrase Kea compute 4 feature values:

 TF/IDF

 First occurrence. It is the percentage of the document preceding the first

occurrence of the term in the document. Terms that tend to appear at the start or

at the end of a document are more likely to be key phrases

 Length of a phrase is the number of its component words. Two-word phrases are

usually preferred by human indexers

 Node degree of a candidate phrase is the number of phrases in the candidate set

that is semantically related to this phrase. This is computed with the help of

thesaurus. Phrases with high degree are more likely to be key phrases.

5. Building the model. Before being able to extract key phrases from new documents, Kea

first needs to create a model that learns the extraction strategy from manually indexed

documents. This means, for each document in the input directory they must be a file

with the extension “.key” and the same name as the corresponding document. This file

should contain manually assigned key phrases, one per line.

Given the list of the candidate phrases (.3), Kea marks those that were manually

assigned as positive example and all the rest as negative examples. By analysing the

feature values (.4) for positive and negative candidate phrases, a model is computed,

which reflects the distribution of feature values for each phrase.

6. Extracting key phrases. When extracting key phrases from new documents, Kea takes

the model (.5) and feature values for each candidate phrase and computes its

probability of being a key phrase. Phrases with the highest probabilities are selected

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 41

into the final set of key phrases. The user can specify the number of key phrases that

need to be selected.

4.5.2. MAUI

Maui16,17 automatically identifies main topic in text documents. Depending on the task, topics are

tags, keywords, keyphrases, vocabulary terms, descriptors, index terms or titles of Wikipedia articles.

Maui performs the following tasks:

 Term assignment with a controlled vocabulary (or thesaurus)

 Subject indexing

 Topic indexing with terms from Wikipedia

 Key phrase extraction

 Terminology extraction

 Automatic tagging

 Semi-automatic topic indexing

Maui builds on the key phrase extraction algorithm Kea by adopting its two-stage indexing process

and inheriting some of its components. The Maui algorithm consists in four main steps:

1. Generating candidate topics (training and extraction)

2. Computing features for the candidates (training and extraction)

3. Building the topic indexing model (training only)

4. Applying the topic indexing model (extraction only)

After the candidate generation Maui computes features for each of candidates. The following

features are computed during the candidate generation step:

 Term frequency

 First occurrence – the position of the first occurrence for each candidate relative to the

number of words in the document

 Last occurrence – the position of the last occurrence for each candidate relative to the

number of words in the document

In the training stage Maui also creates tables with the following values:

 is how many documents contain each candidate topic

 is the total number of documents

 is the frequency of a topic that appears in the manually assigned topic sets

These features are then used in the computation of the following features:

 Inverse document frequency (IDF)

 TF-IDF

 Spread = last occurrence – first occurrence

 Domain keyphraseness is 0 if the candidate topic never appears in a manually

assigned topic set and otherwise

16 https://code.google.com/p/maui-indexer/
17 http://www.ke.tu-darmstadt.de/lehre/arbeiten/bachelor/2011/Seifert_Viktor.pdf

https://code.google.com/p/maui-indexer/
http://www.ke.tu-darmstadt.de/lehre/arbeiten/bachelor/2011/Seifert_Viktor.pdf

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 42

 Wikipedia keyphraseness involves matching candidate title against anchors appearing

in the Wikipedia corpus. Values are pre-computed during candidate generation

 Inverse Wikipedia frequency is computed by retrieving the most likely Wikipedia article

for the current candidate (unless the candidate is a Wikipedia article itself) and

counting the number of its incoming links

 Total Wikipedia keyphraseness is the sum of Wikipedia keyphraseness values over all

n-grams that were mapped to the Wikipedia article corresponding to the given

candidate

 Semantic relatedness is the total relatedness of the Wikipedia article representing the

candidate to Wikipedia articles identified for all other candidates computed using

Wikipedia Miner

 Term length is the number of words in the candidate topic’s name

 Generality is composed for candidates that were mapped to Wikipedia articles, and is

the distance between the category corresponding to the article and the root of the

category tree, normalized by the tree depth

 Class value, which is only known for training documents, is 1 if the candidate has been

assigned manually, and 0 otherwise

In the third step Building the topic indexing model, Maui uses Machine Learning to build an indexing

model.

In the fourth step Maui determines for each candidate a probability of it being a candidate according

to the previously built indexing model. The k candidates with highest probabilities are chosen as

topics.

Maui supports stemmers and stop words for English, French and Spanish, but can be extended to

work in many other languages, including languages that require special encoding.

After Maui is installed, there are two ways of using it: from the command line and from the Java

code. Either way, the input data is required first.

4.6. Text summarization

Whereas text classification, topic modeling and key word extraction all summarize the content of the

document categorically, summarizing the very text by extracting the most relevant sentences is also

possible.

4.6.1. MEAD

MEAD18 is a publicly available toolkit for multi-lingual summarization and evaluation using standard

metrics. The toolkit implements multiple summarization algorithms such as position-based, Centroid,

TF*IDF and query-based methods. Methods for evaluating the quality of the summaries include co-

selection and content-based measures.

MEAD can perform many different summarization tasks. It can summarize individual documents or

clusters of related documents (multi-document summarization).

MEAD includes two baseline summarizers: lead-base and random. Lead-based summaries are

produced by selecting the first sentence of each document, then the second sentence of each, etc.

18 http://www.summarization.com/mead/documentation/meaddoc.pdf

http://www.summarization.com/mead/documentation/meaddoc.pdf

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 43

until the desired summary size is met. A random summary consists of enough randomly selected

sentences (from the cluster) to produce a summary of the desired size.

MEAD has been primarily used for summarizing documents in English, but recently, Chinese

capabilities have been added to the publicly available version of MEAD. It is relatively easy to coerce

MEAD to produce summaries of other languages.

Query-based summarization is often used in natural language circles, and is (not coincidentally)

included in MEAD as well.

The MEAD evaluation toolkit (MEAD Eval), allows evaluation of human-human, human-computer and

computer-computer agreement. It currently supports two general classes of evaluation metrics: co-

selection and content-based metrics. Co-selection metrics include precision, recall, Kappa and

Relative Utility, a more flexible cousin of Kappa. MEAD’s content-based metrics are cosine (which

uses TF*IDF), simple cosine (which doesn’t) and unigram-and bigram-overlap. Relevance correlation

has previously been used in conjunction with MEAD but is not included with the current distribution.

4.7. Entity Linking

Going beyond key categories and phrases, concepts and entities mentioned in text could be

extracted and identified. If the focus is in names of people, organizations and locations, Name Entity

Recognition (NER) is the technique to use.

Entity linking performs this by disambiguating entities to their unique ids in a knowledge base.

4.7.1. WIKIPEDIA MINER

Wikipedia Miner19,20 is a toolkit for tapping the rich semantics encoded within Wikipedia. It makes

easy to integrate Wikipedia’s knowledge into the applications, by:

 Providing simplified, object-oriented access to Wikipedia’s structure and content

 Measuring how terms and concepts in Wikipedia are connected to each other

 Detecting and disambiguating Wikipedia topics when they are mentioned in documents

This toolkit uses Wikipedia to train a program to automatically recognize topics when they are

mentioned. This learns from the categories and internal links that pepper Wikipedia’s articles.

The same program can be run on any webpage or document, yielding a number of links to Wikipedia

topics. A search engine can use this to see people, places, events and ideas rather than just letters.

4.7.2. ILLINOIS WIKIFIER

Illinois Wikifier21,22 identifies important entities and concepts in text, disambiguates them and links

them to Wikipedia. Wikification is an important step in helping to facilitate Information Access, in

knowledge acquisition from text and in helping to inject background knowledge into NLP

applications. The main decisions the Wikifier must take are:

 What expression to link to Wikipedia

 Disambiguating the ambiguous expressions and entities. For example, four possible

types of features could be:

19 http://wikipedia-miner.cms.waikato.ac.nz/
20 http://www.nzdl.org/wikification/about.html
21 http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier

 22https://sites.google.com/site/vaprdemos/projects/wikifier

http://wikipedia-miner.cms.waikato.ac.nz/
http://www.nzdl.org/wikification/about.html
http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
https://sites.google.com/site/vaprdemos/projects/wikifier

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 44

o String matching and prevalence of entities in Wikipedia

o Lexical similarity between the input document and the Wikipedia pages

o “Semantic similarity” between the ESA summary of the input document and the

Wikipedia pages

o How likely is a set of Wikipedia pages to be linked from a single document (this is

gotten by looking at the linkage patterns in Wikipedia)

The Wikifier provides a quick way to learn the meaning of important concepts; it links mentions of

people, organizations and other entities across documents and is an easy way to learn more about

key concepts and entities that appear in free form text. For example, if a mention of “Armstrong” in

text is seen, knowing who is mentioned could be needed– is it Lance Armstrong, Louis Armstrong,

Neil Armstrong or another prominent Armstrong? Also, knowing something about them beyond what

is mentioned in the text, which was probably written under the assumption that the reader knows

what is meant, could be interesting. The Wikifier will disambiguate the correct Armstrong based on

the context, will provide some information about the entity (e.g., he is an astronaut) and a link to

Wikipedia about the entity.

4.7.3. ILLINOIS NAMED ENTITY TAGGER

Illinois Named Entity Tagger23 is a state of the art Name Entity Recognition tagger that tags plain text

with named entities. The newest version tags entities with either the “classic” 4-label type set

(people/ organizations/ locations/ miscellaneous), while the most recent can also tag entities with a

larger 18-label type set (based on the OntoNotes corpus 24). It uses gazetteers extracted from

Wikipedia, word class models derived from unlabeled text and expressive non-local features. The

tagger is robust and has been evaluated on a variety of datasets.

4.7.4. OPENNLP25,26

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural

language text. It supports the most common NLP tasks via components such as tokenization,

sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and co-

reference resolution. Components contain parts which enable one to execute the respective natural

language processing task, to train a model and often also to evaluate a model. Each of these

facilities is accessible via its application program interface (API). In addition, a command line

interface (CLI) is provided for convenience of experiments and training. These tasks are usually

required to build more advanced text processing services.

There is independent named entity recognition for Spanish and Dutch and currently there are data

files available for Spanish.

4.7.5. STANFORD CORENLP

Stanford CoreNLP27,28 provides a set of natural language analysis tools which can take raw text input

and give the base forms of words, their parts of speech, whether they are name of companies,

people, etc. (Named Entity Recognition), normalized dates, times, and numeric quantities, mark up

the structure of sentences in terms of phrases and work dependencies, and indicate which noun

phrases refer to the same entities (co-reference resolution). Stanford CoreNLP is an integrated

framework, which makes very easy to apply a bunch of language analysis tools to a piece of text.

23 http://cogcomp.cs.illinois.edu/page/software_view/NETagger
24 OntoNotesRelease 5.0: https://catalog.ldc.upenn.edu/LDC2013T19
25 http://en.wikipedia.org/wiki/OpenNLP
26 http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html#tools.corpora.conll
27https://www.npmjs.org/package/stanford-simple-nlp
28http://www-nlp.stanford.edu/

http://cogcomp.cs.illinois.edu/page/software_view/NETagger
https://catalog.ldc.upenn.edu/LDC2013T19
http://en.wikipedia.org/wiki/OpenNLP
http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html#tools.corpora.conll
https://www.npmjs.org/package/stanford-simple-nlp
http://www-nlp.stanford.edu/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 45

Starting from plain text, running all the tools on it with just two lines is possible. Its analysis provides

the foundational building blocks for higher-level and domain-specific text understanding

applications.

Stanford CoreNLP integrates all NLP tools, including the part-of-speech (POS) tagger, the named

entity recognizer (NER), the parser and the co-reference resolution system and provides model files

for analysis of English.

Another distinguishing feature of Stanford NLP is the combination of deep linguistic modeling and

data analysis with probabilistic and machine learning approaches to NLP.

4.8. Co-reference Resolution

When people speak or write, they use pronouns and other ways to refer to the same entities in order

to avoid repetition and sound nice. The computer first needs to understand which pronoun and

expression refers to which entity. The technique to do this is called co-reference resolution. The

previous libraries mentioned in the above section also offer these capabilities (e.g., Stanford NLP,

OpenNLP, IllinoisNLP). Now we will detail one of the dedicated tools for resoluting coreferences.

4.8.1. MALTPARSER

MaltParser29,30 is a system for data-driven dependency parsing, which can be used to induce a

parsing model from treebank data and to parse new data using an induced model. Parsers

developed using MaltParser have achieved state-of-the-art accuracy for a number of languages.

However, MaltParser is a fairly complex system with many parameters that need to be optimized.

Simply using the system “out of the box” with default settings is therefore likely to result in

suboptimal performance.

MaltParser can be characterized as a data-driven parser-generator which constructs a parser given a

treebank. MaltParser is an implementation of inductive dependency parsing, where the syntactic

analysis of a sentence amounts to the derivation of a dependency structure, and where inductive

machine learning is used to guide the parser at nondeterministic choice points. The parsing

methodology is based on three essential components:

1. Deterministic parsing algorithms for building labeled dependency graphs

2. History-based models for predicting the next parser action at nondeterministic choice

points

3. Discriminative learning to map histories to parser actions

In addition, is important to mention that the training data for MaltParser consists of sentences

annotated with dependency trees. If the source treebank does not contain dependency trees, there

are usually standard procedures for conversion that can be used (with varying degrees of precision

depending on the nature of the original annotation). MaltParser supports several input formats, but

by default it is assumed that the data is in the CoNLL representation format (Buchholz and Marsi,

2006) for data-driven dependency parsing.

MaltParser has a module for Spanish, espmalt-1.0. mco and is also able to analyze an Italian

treebank.

29 http://www.maltparser.org/optiondesc.html
30 http://www.maltparser.org/guides/opt/quick-opt.pdf

http://www.maltparser.org/optiondesc.html
http://www.maltparser.org/guides/opt/quick-opt.pdf

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 46

4.9. Opinion Mining

Opinion mining or sentiment analysis refers to the use of automated language analysis tools to

evaluate personal attitudes and subjective information about digital or physical assets. This is used

frequently in fields such as social media analytics, dialogue management and e-commerce

monitoring.

Opinion mining is based upon psychological theories on emotions and their representation: models

to categorize emotional feedback from a person so it can be stored, processed, compared or shared

with others. Among these models we can cite the fundamental emotional work of Paul Ekman31 that

informs many of these models. The main models used in opinion mining are dimensional analysis

frameworks that attempt to systematize the emotional representation around two or three

dimensions. Most dimensional models incorporate valence/polarity (quality factor between positive

and negative) and arousal (quantity or intensity factor such as relaxed or excited) dimensions. Many

times in the sentiment analytics this is simplified to the valence/polarity axis to simplify the analytics

process. Common models to represent emotion in the opinion mining are the classic PAD model

(Pleasure, Arousal and Dominance)32, the also three-dimensional Lövheim cube of emotion33 and the

more modern and much more featured model proposed by Cowen and Keltner34 that, based on

massive machine learning analytics, identifies 27 distinct vectors of emotion.

Sentiment analysis is often very subjective and based on very deep layers of language

understanding. A sentence such as “The movie was surprising with plenty of unsettling plot twists”

could be quickly dismissed as pertaining to negative emotions because of used adjectives that are

often used to express negative emotions (‘surprising’, ‘unsettling’) yet here are rotundly expressing a

positive factor. Hence, sentiment analytics many times hinges on many of the NLP tools that we

have mentioned in this chapter.

Many of the tools mentioned in past sections (such as OpenNLP or Standford CoreNLP) can be used

to construct sentiment analysis pipelines. However, dedicated tools also exist. We will now examine

tools commonly used to do sentiment analysis on texts:

4.9.1. TEXTBLOB

TextBlob35 is a Python (2 and 3) library for processing textual data. It provides a consistent API for

diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun

phrase extraction, sentiment analysis, and more. It effectively wraps NTLK libraries with a high level

API to generate some extra results.

For sentiment analysis, a primitive is available for every sample text that is provided. The sentiment

property returns a value including a score for ‘polarity’ and other for ‘subjectivity’. The polarity score

is a float within the range [-1.0, 1.0]. The subjectivity is a float within the range [0.0, 1.0] where 0.0

is very objective and 1.0 is very subjective.

4.9.2. PATTERN

31 Ekman, Paul (1992). "An Argument for Basic Emotions". Cognition and Emotion. 6 (3/4): 169–200.

doi:10.1080/02699939208411068.
32 Mehrabian, Albert (1980). Basic dimensions for a general psychological theory. pp. 39–53. ISBN 0-89946-004-6.
33 Lövheim H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses (2011), Epub

ahead of print. doi:10.1016/j.mehy.2011.11.016 PMID 22153577
34 Alan S. Cowen and Dacher Keltner (2017-09-05). "Self-report captures 27 distinct categories of emotion bridged by

continuous gradients". Pnas.org.
35 TextBlob website: https://textblob.readthedocs.io/en/dev/

https://textblob.readthedocs.io/en/dev/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 47

Pattern36 is a geneal workbench of NLP tools provided open source by the University of Antwerpen. It

is divided into different sub-modules for uses or languages. For example, the pattern.en module

contains a fast part-of-speech tagger for English (identifies nouns, adjectives, verbs, etc. in a

sentence), sentiment analysis, tools for English verb conjugation and noun singularization &

pluralization, and a WordNet interface.

The sentiment analytics are available out of the box for English. The pattern.en module bundles a

lexicon of adjectives (e.g., good, bad, amazing, irritating, ...) that occur frequently in product reviews,

annotated with scores for sentiment polarity (positive ↔ negative) and subjectivity (objective ↔

subjective).

 The sentiment() function returns a (polarity, subjectivity)-tuple for the given sentence,

based on the adjectives it contains, where polarity is a value between -1.0 and +1.0

and subjectivity between 0.0 and 1.0. The sentence can be a string, Text, Sentence,

Chunk, Word or a Synset (see below).

 The positive() function returns True if the given sentence's polarity is above the

threshold. The threshold can be lowered or raised, but overall +0.1 gives the best

results for product reviews. Accuracy is about 75% for movie reviews.

Even with the limitation of English-only out of the box, it will be explored to see whether it can be

extended to other languages of interest such as Spanish or Romanian for use in SoMeDi.

4.10. Frameworks

The majority of NLP software is available as a set of Java or Phyton toolkits. The advantage of using

toolkits is that they make easy to pass the output from one NLP component to another. However,

sometimes combining components from different libraries is needed. The below mentioned tools

allows to mitigate this problem by offering frameworks, which can combine components from

different authors into another systems.

4.10.1. UIMA37 38

UIMA is software architecture for the development, discovery, composition and deployment of multi-

modal analytics for the analysis of unstructured information and its integration with search

technologies developed by IBM.

One potential use of UIMA is a logistics analysis software system that could convert unstructured

data such as repair logs and service notes into relational tables. These tables can then be used by

automated tools to detect maintenance or manufacturing problems. UIMA analyzes large volumes of

unstructured information in order to discover knowledge that is relevant to an end-user. An example

UIMA application might ingest plain text and identify entities, such as persons, places, organizations;

or relations, such as works-for or located-at.

36 De Smedt, T. & Daelemans, W. (2012). Pattern for Python. Journal of Machine Learning Research, 13: 2031–2035.
37 http://en.wikipedia.org/wiki/UIMA
38 http://uima.apache.org/

http://en.wikipedia.org/wiki/UIMA
http://uima.apache.org/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 48

FIGURE 11. UIMA FRAMEWORK

The UIMA architecture can be thought of in four dimensions:

1. It specifies component interfaces in an analytics pipeline

2. It describes a set of Design patterns.

3. It suggests two data representations: an in-memory representation of annotations for

high-performance analytics and an XML representation of annotations for integration

with remote web services.

4. It suggests development roles allowing tools to be used by users with diverse skills.

UIMA enables applications to be decomposed into components, for example “language

identification” => “language specific segmentation” => “sentence boundary detection” => “entity

detection (person/place names etc.)”. Each component implements interfaces defined by the

framework and provides self-describing metadata via XML descriptor files. The framework manages

these components and the data flow between them. Components are written in Java or C++; the

data that flows between components is designed for efficient mapping between these languages.

UIMA can scale to very large volumes by replicating processing pipelines over a cluster of networked

nodes.

Apache UIMA is an Apache-licensed open source implementation of the UIMA specification.

The frameworks run the components, and are available for both Java and C++. The Java Framework

supports running both Java and non-Java components (using C++ framework) The C++ framework,

besides supporting annotators written in C/C++, also supports Perl, Python, and TCL annotators.

The frameworks support configuring and running pipelines of Annotator components. These

components do the actual work of analyzing the unstructured information. Users can write their own

annotators, or configure and use pre-existing annotators. Some annotators are available as part of

this project; others are contained in various repositories on the internet.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 49

Additional infrastructure support components include a simple server that can receive REST

requests and return annotation results, for use by other web services.

4.10.2. GATE 39,40

GATE is a Java suite of tools used worldwide for all sorts of natural language processing task,

including information extraction in many languages. GATE includes an information extraction system

called ANNIE (A Nearly-New Information Extraction System) which is a set of modules comprising:

tokenizer, part-of-speech tagger, sentence splitter, gazetteer, parser and co-reference tagger.

ANNIE can be used as-is to provide basic information functionality, or provide a starting point for

more specific task.

Languages currently handled in GATE include Spanish.

Plug-ins are included for machine learning with Weka, as well as a LIBSVM integration and an in-

house perceptron implementation, for managing ontologies like WordNet, for querying search

engines like Google or Yahoo.

GATE accepts input in various formats, such as TXT, HTML, Doc, PDF documents, and Java Serial,

PostgreSQL, Lucene, Oracle Databases with help of RDBMS storage over JDBC.

JAPE transducers are used within GATE to manipulate annotations on text.

GATE Developer and GATE Embedded are licensed under the GNU Lesser General Public License.

39 http://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering
40 http://gate.ac.uk/gate/doc/index.html

http://en.wikipedia.org/wiki/General_Architecture_for_Text_Engineering
http://gate.ac.uk/gate/doc/index.html

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 50

FIGURE 12. GATE DEVELOPER MAIN WINDOW

The license of GATE allows embedding the software as a library in other tools. The only restriction is

that distributed binaries that incorporate GATE must also include copies of GATE, and acknowledge

the use of their system. Modifications made to GATE itself must be clearly marked and also

distributed.

4.11. Text Mining and cluster analysis

4.11.1. CARROT

Carrot241 is an Open Source Search Results Clustering Engine. It can automatically organize small

collections of documents, e.g. search results, into thematic categories. Carrot2 integrates very well

with both Open Source and proprietary search engines. It should successfully deal with up to a few

thousands of documents, a few paragraphs each. For algorithms designed to process millions of

documents, the Mahout project provides better performance. It can cluster content in other

languages than English, like Spanish. Carrot2 is not a search engine on its own, there is no common

query syntax in Carrot2. The syntax depends on the underlying search engine you set it to use, e.g.

Bing, Solr, Lucene or any other.

Features:

 Two high-quality document clustering algorithms

41http://project.carrot2.org/

http://project.carrot2.org/

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 51

 Integrates with public and open source text search engines (Solr, Lucene)

 Easy to integrate with Java and non-Java software

 Ships a GUI application for tuning clustering for specific collections

 Ships with a simple web application

 Native C#/.NET API

Carrot2 comes with a suite of tools and APIs that can be used to quickly set up clustering on

datasets, tune clustering results and call Carrot2 clustering from Java or C# code or access Carrot2

as a remote service.

Carrot2 distribution contains the following elements:

 Carrot2 Document Clustering Workbench: which is a standalone GUI application you

can use to experiment with Carrot2 clustering on data from common search engines or

your own data. It can fetch and cluster documents from a number of sources, including

major search engines, indexing engines (Lucene, Solr) as well as generic XML feeds

and files, live tuning of clustering algorithm attributes, performance benchmarking,

attractive visualizations, modular architecture and extendibility (it is based on Eclipse

Rich Client Platform, which makes it easily extendable).

It is distributed for Windows, Linux 32-bit and 64-bit versions and OSX.

FIGURE 13. CARROT2 DOCUMENT CLUSTERING WORKBENCH SCREENSHOT

 Carrot2 Java API: for calling Carrot2 document clustering from your Java code. This

package contains Carrot2 JAR files along with all dependencies, JavaDoc API reference

and Java code examples. You can use this package to integrate Carrot2 clustering into

your Java software.

 Carrot2 C# API: for calling Carrot2 document clustering from your C# or .NET code. This

package contains all DLL libraries required to run Carrot2, C# API reference and code

examples.

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 52

 Carrot2 Document Clustering Server which exposes Carrot2 clustering as a REST

service. You can use Carrot2 Document Clustering Server to: integrate Carrot2 with

your non-Java software, build a high-throughput document clustering system by setting

up a number of load-balanced instances of the DCS. It features include: XML and JSON

response formats, various document source included (including major search engines

and indexing engines), direct XML feed, quick start screen that will let you make your

first DCS request straight from your browser.

 Carrot2 Command Line Interface: applications which allow invoking Carrot2 clustering

from command line. Currently, the only available CLI application is Carrot2 Batch

Processor, which performs Carrot2 XML format and saves the results as XML or JSON.

Apart from clustering large number of documents sets at one time, you can use the

Carrot2 Batch Processor to integrate Carrot2 with your non-Java applications.

 Carrot2 Web Application42which exposes Carrot2 clustering as a web application for

end users. It features include: two views of the clusters generated by Carrot2, contains

a large number of document sources, including major search engines, XSLT and

JavaScript-based presentation layer, high-performance front-end being optimized by

using technique as JavaScript and CSS merging and minification.

FIGURE 14. CARROT2 WEB APPLICATION RESULTS SCREEN

42 http://search.carrot2.org/stable/search

http://search.carrot2.org/stable/search

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 53

4.12. Natural Language Processing and Opinion Mining Summary

The table below presents a summary of NLP and opinion mining tools.

Name of the

tool
Developers

Latest

release
Written in

Operating

System

Type Licence

NLTK NLTK-
Developers

and
contributors

3.2.5 Python Cross-
platform

Text

classification/N

LP framework

Apache 2.0

LingPipe Alias-i 4.1.0 Java Cross-
platform

Entity

Recognition/

Text

classification

Alias-I
royalty free

license

Weka University
of Waikato

3.8.1 Java Cross-
platform

Text
classification/
Data mining

GPL

LibShort
Text

LibShortTe
xt project

1.1 Python and

C/C++

Cross-
platform

Text

classification

BSD

Mallet Andrew
McCallum,
graduate
students
and staff

2.0.8 Java Cross-

platform

Topic

modeling/ Text

classification

Common
Public
License 1.0

Gensim RadimRehu
rek

3.1.0 Pyton Cross-

platform

Topic

modeling

LGPL

KEA Gordon
Paynter

5.0 Java Cross-
platform

Key word

extraction

GPL

Maui AlyonaMed
elyan

2.0 Google code Cross-
platform

Key word

extraction

GPL v3

MEAD University
of Michigan

2.2.0 Perl: requires

XML-related

modules and

external

software

package

Cross-
platform

Text

summarization

GPL

Wikipedia
Miner

University
of Waikato

1.2.0. Java Cross-
platform

Entity Linking GPL v2

Illinois
Wikifier

University
of Illinois

2.0 N/A Cross-
platform

Entity Linking GPL

Illinois
Name
Entity
Tagger

University
of Illinois

2.7 Java Cross-
platform

Name Entity

Recognition

GPL

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 54

OpenNLP Apache
Software

Foundation

1.8.3

April

2013

Java Cross-
platform

Entity

Recognition/

Coreference

resolution/

Parsing

LGPL v2

Stanford

NLP

Stanford
university

3.8.0 Java 1.6 or

later for the

last version

Cross-
platform

Entity Linking/

Co-reference

resolution

GPL v2

GATE GATE
research

team, Dept.
Computer
Science,
University

of Sheffield

8.4.1 Java Cross-
platform

Entity

Recognition

LGPL

UIMA IBM,
Apache
Software

Foundation

2.10.2 Java with

C++

Enablement

Cross-
platform

NLP

Framework

Apache
License 2.0

Carrot2 Carrot
Search

3.15.1 Java Cross-
platform

Text mining

and cluster

analysis

BSD

TABLE 4. SUMMARY OF NLP TOOLS

D3.1

Machine Learning and Artificial Intelligence for

Digital Interaction Intelligence; State-of-the-art

and Guidance Report

 55

5. CONCLUSIONS

This document summarized the algorithm and tools that can be used in three areas of Artificial

Intelligence and Data mining: Machine Learning, Pattern Recognition and Natural Language

Processing and Opinion Mining. In each section we had also presented a short evaluation of each

tool, mentioning what type of problem can be solved by using that specific tool.

As is already mentioned, this document represents only the first version of a living document. The

involve partners will continue the research in the fields presented in this document with the goal to

update D3.1 with the new tools that will be available in the next months and that will be suitable,

form the technical point of view, with the DID Toolkit.

During the next phase of the project all involved partners will continue to evaluate the tools and will

choose the ones that will be used for development of DID toolkit. In this way, we will be able to

construct a guiding report, based on the experience gather during development of the tool, report

that will be deliver as the second version of D3.1.

