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List of abbreviations/acronyms used in document: 
 
Abbreviation  Definition 
FMI   Functional Mock-up Interface 
FMU   Functional Mock-up Unit 
M&S   Modelling and Simulation 
SotA   State of the Art 
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1 OVERVIEW 

The OPENCPS project aims to provide an industry grade FMI master simulation tool based 
on a Modelica-UML compatible run-time system including extending the FMI standard to 
allow improved co-execution and co-simulation of FMUs generated from Modelica and 
UML. Another goal is to increase the efficiency and quality of verification, validation, testing 
activities.  In order to provide an industrially exploitable, efficient platform, improvements 
over the existing state-of-the-art will be made in the fields of state-machine debugging and 
validation, efficient multi-core co-simulation and model federation.  

2 STATE-OF-THE-ART (SOTA) ANALYSIS 

2.1 Model-driven development environments  

• Dominating modeling and simulation solutions are proprietary, reducing uptake and 
spread of M&S and model-driven rapid development technology in industry and 
society.  

• The dominating software modeling formalism (UML) works only for software. Recent 
SysML extensions are not well developed for physical system modeling. Requirements 
capture is often informal, text-based, leading to inconsistencies and incomplete models. 

• ArCon (Architecture Conformance Validation Tool) is an Eclipse plugin for automatic 
model (in model driven software development) inspection against defined architectural 
rules. 

• Dominating block-oriented modeling tools such as Simulink mainly support a block-
oriented causal modeling style which is cumbersome and error prone for physical 
systems, but fits control modelling well. 

• ModelicaML is a UML profile that enables using UML diagram notations for modeling 
complex physical system and using Modelica for simulations. Moreover, it supports a 
method for model-based design verification. This method and the ModelicaML 
prototype were developed by Airbus Group Innovations and Linköping University (see 
https://openmodelica.org/modelicaml/) in the ITEA OPENPROD project and slightly 
extended in the ITEA2 MODRIO project. 

• In order to compose simulation models automatically, i.e., to combine the formalized 
requirements system design models and scenario models, a bindings concept was 
elaborated in (Schamai W. , Ph.D. thesis, 2013) and prototyped in the ModelicaML 
language. 

 

2.2 Model Federation 

Today, the strong division between different domains’ expertise involved into the design and 
development of complex systems causes technological incompatibilities and difficulties. 
Those are the source of misalignment and friction when data is both conceptually and 
technically captured by several tools. This problem is generally managed in an ad-hoc manner 
and its resolution leads most of time in a misuse of tools. For example, the engineering of 
radar systems involves the definition of a system architecture and signal processing 
algorithms. The definition of an architecture is usually performed using an in-house tool that 
supports the vocabulary of the domain (Phased Array Antenna, Pulse Compression, Radar 
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Cross Section, etc.) while the definition of the algorithms use mathematical tools providing 
ordinary differential equations (ODE) solvers, differential algebraic equation (DAE) solvers, 
and matrix operations (multiplication, inversion, etc.) like Matlab. In this context, relying 
only on unified languages like UML and its derivatives (SysML, MARTE, etc.) is not 
satisfying because this requires contortions from both system architects and algorithm experts. 
Indeed, the projection of domain concepts onto a general purpose modeling language is not 
easy since the mapping is often not straightforward and imposes semantic restrictions. The 
necessity to adopt external modeling approaches does not soften the learning curve.  
Manufacturers need methods for seamless and transparent integration of specialized 
representations and their tooling at low cost. Beyond data and representations integration, we 
need to provide a real separation of concerns allowing a consistent reasoning and a better 
design space exploration. Maintaining a global consistency between the various prisms 
through which the system is studied needs formal foundations to support consistent reasoning 
and relevant querying (data mining, views extraction, information inferences). This requires 
the ability to define and maintain semantic traceability links between the artifacts produced by 
all the tools within a single modeling space. This includes inner domain traceability 
(refinement, derivation, versioning) or cross-domain traceability (between artifacts or between 
artifacts and process activities). For some application systems, we need to establish semantic 
links between the architecture built with a SysML tool and the algorithms e.g. defined in 
Matlab or algorithmic Modelica, and to clearly define the role of each model in relation with 
the intentions of the process stakeholders. Capturing such semantic links is particularly 
tedious and fragile within a context assuming an open world approach. The challenge is then 
to trace each decision against requirements in order to support both horizontal (versioning, 
decomposition) and vertical traceability (refinement). We need a framework to guide decision 
making when the use case imposes the integration of several heterogeneous and 
unsynchronized viewpoints generating data friction and inconsistencies. With a federation of 
models, we need to ensure that federated models can be simulated effectively in a distributed 
manner in order to support seamless integration and verification of IP’s produces by different 
contractors at different levels of abstraction; to our knowledge, this aspect of the co-
simulation is not well addressed by any tool nor by existing standards, in particular when we 
consider MoC refinement (time and data representation, computation, communication, 
synchronization) over a set of levels of abstraction. 
 

The Modelica association is currently working on the SSP (“System Structure and 
Parameterization”) standard for specifying more in detail how systems should be connected 
and parametrized SSP (Köhler et al, 2016). This is a good time to influence the standard if 
during the course of the project it becomes clear that extensions are needed to support UML-
Modelica inter-operability.  

Two co-simulation tools have been recently developed. DACCOSIM(Saidi et al, 2016) is a 
tool developed by EDF for co-simulation of models, it is Java based, which raises several 
issues when composing FMUs, however has interesting features for distributed co-simulation 
a collaboration with EDF is being envisaged on this topic. FMICOMposer10 is another tool 
similar to OMSimulator, however it does not offer TLM support.  

                                                
10 Modelon FMI Composer  http://www.modelon.com/products/fmi-tools/fmi-composer/  
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2.3 Safety related automatic code generation for behavioral modeling 

Support for automatic code generation greatly enhances the benefits of a model-based 
development (MBD) process. However, if the generated code affects safety related functions 
the additional effort to safeguard the generated code diminishes the initial benefit of MBD. A 
remedy is to rely on (automatic code generation) tools that are qualifiable (i.e., in some sense 
verifiable or possible to validate) for the identified use cases. Specialized standards (despite 
conceptual similarities and shared basis standards) apply for different industrial domains, e.g., 
ISO 13849: (Machinery Control Systems), ISO 26262 (Automotive), DO-178 (Aircraft), etc.). 
Only a few tools exist (typically restricted to particular industrial domains) which fulfill the 
necessary requirements for safety related developments and which support control system 
modeling in an adequate manner. The available tools on the market are based on discrete-time 
causal data-flow models (block-diagrams), e.g., the TargetLink11 code generator for 
Simulink/Stateflow12 (Schneider, Lovric, & Mai, 2009) or the Scade Suite13 that has its roots 
in the synchronous language community (Beneviste, Edwards, Halbwachs, Le Guernic, & De 
Simone, 2003). 
 
However, these tools rely on proprietary model formats and they are often unaffordable for 
small and medium sized enterprises. Their restriction to primarily discrete-time causal data-
flow prohibits the direct usage of physical (acausal) models in advanced controllers (a manual 
conversion of equation based physical models into discretized causal data-flow models is 
needed). 
 
The safety standards suggest several methods for tool qualification, among them (ISO 26262): 
increasing confidence from use, evaluation of the development process, validation of the 
software tool, development in compliance with a safety standard. The degree of required 
assurance depends on the usage context (criticality of the implemented function, etc.). Still, 
there remains considerable room for interpretation how to achieve adequate qualification in 
practice. In practice, the method of “tool validation” has proved to be a working approach to 
achieve tool qualification. A successful example for tool validation by using a “validation 
suite” approach for the TargetLink toolchain is reported in (Schneider, Lovric, & Mai, 2009). 
Another practical approach to comply to safety standards is to use “translation validation”: 
instead of demonstrating in advance that the complete toolchain produces target code that 
implements the source model correctly (as in (Schneider, Lovric, & Mai, 2009)), the 
correctness is demonstrated after a translation run by a subsequent validation phase. This 
approach is advertised for MathWork’s embedded code generator (Conrad, 2009). A problem 
of the validation suite approach is that qualification efforts can become prohibitively high for 
more complex input languages. A problem of the translation validation approach is that the 
subsequent validation phase may just offload the validation problems to the programmer – 
especially if formal specifications for the input language and the transformation rules of the 
code generator are missing or are insufficient. 
 

                                                
11 dSPACE GmbH: TargetLink® Automatic production code generator. http://www.dspace.com 
12 MathWorks, Inc.: Simulink®/Stateflow®. http://www.mathworks.com 
13 Esterel Technologies: SCADE Suite®. http://www.esterel-technologies.com 
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The complexity of the input language is a crucial factor for the applicability of the “validation 
suite” method. Therefore some of us (Thiele, Schneider, & Mai, 2012) recently proposed a 
subset of Modelica deemed suitable for a qualifiable code generator. However, up to now no 
qualifiable Modelica tool is available on the market.  
 
To reap the benefits of an advanced Modeling language like Modelica and to avoid the 
drawbacks of being dependent on proprietary, closed-source tools for rapid control 
prototyping Bosch Rexroth AG has started an effort for a prototype based on open source 
software. Menager et al. (Menager, Worschech, & Mikelsons, 2014) decided to leverage the 
OpenModelica compiler and adapt the code generation to their needs. Their results are very 
encouraging, however in order to fully utilize the benefits of directly using acausal models in 
safety-related, advanced controllers (such as model predictive control or nonlinear inverse-
model based control) substantial further advances in code generation technology, particularly 
addressing V&V requirements, is required.  

2.4 Debugging 

Since equation-based object-oriented languages are declarative, such debugging is also 
somewhat related to work in debugging of (mostly) declarative functional languages, of 
which some is mentioned below. 
 
In lazy functional languages like Haskell the execution order is hard to understand. Partly for 
these reasons the concept of the Evaluation Dependence Tree (EDT) tree (Nilsson, 1998) was 
developed to help the understanding and debugging of such languages. On the other hand, 
functions in an equation-based object-oriented language like Modelica are similar to functions 
in a strict functional language where arguments are evaluated before the call and in this 
respect closer to Standard ML (Milner, Harper, MacQueen, & Tofte, 1997).  
 
Explanation of program execution in deductive systems like Deductive Databases (Mallet & 
Ducassé, 1999) or Description Logic reasoners (McGuinness, Explaining reasoning in 
description logics, 1996), (McGuinness & Borgida, 1995), (McGuinness & Silva, 2003) has 
similarities to our MetaModelica debugger (Pop & Fritzson, 2005) because they generate and 
analyze proof-trees (or derivation trees).   
 
In the context of dynamic (run-time) debugging of equation-based object-oriented languages, 
some of us earlier (Bunus & Fritzson, 2003) proposed an automated declarative debugging 
solution in which the user has to provide a correct diagnostic specification of the model, 
which is used to generate assertions at runtime. Starting from an erroneous variable value the 
user explores the dependent equations (a slice of the model) and acts like an “oracle” to guide 
the debugger in finding the error. 
 
Recently a design for tracing symbolic transformations and operations for an equation-based 
object-oriented language such as Modelica has been developed and efficiently implemented in 
the OpenModelica compiler (Pop, Sjölund, Ashgar, Fritzson, & Casella, 2012). It allows 
tracing the causes of errors and presenting the information in a human understandable form.  
 
Regarding debugging in requirement modeling, requirements are most often modeled in 
dedicated domain specific languages, although some formal foundations with formalisms 
such as the Four Variable Model (Parnas & Madey, 1991) have been proposed and extended. 
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Some efforts to integrate requirements into system modelling tools, have also been made, for 
instance SysML supports requirement modelling. However, SysML has not yet employed 
requirements formalized as assertions and equations for automatic requirement testing as in 
(Schamai W. , Helle, Fritzson, & Paredis, 2010). A model driven design process including 
automatic requirement testing has been recently developed (Schamai W. , Helle, Fritzson, & 
Paredis, 2011). A model driven design process including automatic generation of fault trees 
and a prototype toolchain for requirement modelling and analysis in Modelica has been 
implemented in OpenModelica (Hossain, Nyberg, Rogovchenko, & Fritzson, 2012). 

2.5 Modelica model compilers 

Most Modelica model compilers and tools are typically closed proprietary solutions, do not 
yet support software modeling well, are rather monolithic and hard to extend, have sometimes 
portability problems caused by informal semantics. 
 
Multi-core simulation has just recently been established in a few Modelica compilers, 
whereas various theoretical publications on that topic exist. The already available 
implementations cover either an automated task-graph based parallelization (Walther, 
Waulrich, & al., 2014), (Elmqvist, Eric, & Olsson, 2014) of the continuous model equations 
or manual decoupling of submodels e.g. Transmission Line Modeling (TLM) (Sjölund, 
Braun, Fritzson, & Krus, 2010), (Sjölund, Gebremedhin, & Fritzson, 2013). All presented 
parallelization approaches focus on the continuous-time model equations. Concepts to support 
multi-core-simulation for hybrid models with a large number of events or discrete, clocked 
models do not yet exist. 

2.6 Process simulation and plant modelling 

The introduction of simulators in process industry has been a lengthy and complex process 
that is still going on. Simulators have been understood as expensive tools that require 
considerably special skills. User training for a certain simulation product has been expensive 
and time-consuming. Thus, there is a definite need to develop entirely new business and 
technological models to complement the sales of simulator licences and to make the 
implementation of simulators in industry easier and more effective. 
 
Plant engineering has undergone several changes during the last decades. Computer-assisted 
methods took the planners away from the drawing tables and planted them in front of 
computer screens to draw process, automation and structural charts. During the last decade, 
3D-plant modelling has brought about yet another new way to design and model a plant. As 
electronic data management is becoming more efficient, we are currently moving away from 
document and chart-based design towards plant model-oriented design, where a conceptual 
model is defined in advance for the plant structures. The plant engineering project then uses 
this model and transfers the planning data between the various actors in this structural form. 
The traditional charts or 3D-images are views into the plant model in this approach. Another 
change in plant engineering is its increasingly networked nature. Participation in the design is 
more and more global and involves persons from various organisations. This, in turn, sets 
increasing demands on the design and simulation environment. 
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Computational and simulation models strive to master both larger and larger entities and 
smaller and smaller phenomena. For example, the need for integration of the CFD 
(Computational Fluid Dynamics) method and large-scale flow network solution methods 
exists, but it is not possible to create the most favourable integration with regard to the user by 
merely combining existing products. In more general terms, this is a question of the need to 
combine calculation methods of various levels of detail into operations that are visible as parts 
of the plant model. 
 
A computational model is usually constructed for a specific purpose. Often the models may 
also be applied to other purposes, however. For example, a dynamic process simulation model 
that has been constructed to support design can also be of service in automation testing and 
operator training as well as in performance analysis and optimisation during operation of the 
plant. Nevertheless, speaking in terms of software technology, the model is often too tightly 
linked to its original application environment. In this sense, modular flexibility of components 
in computational models is becoming an increasingly important requirement. In this way, the 
computational models developed and used in connection with plant modelling could also be 
used to support model-predictive control or maintenance in intelligent field equipment in an 
integrated way. Integration of the computational models of various phases of engineering into 
the plant model would enable seamless combination and thereby simulation of the operation 
of the various entities. This would support the introduction of new working methods based on 
simulation in the design of processes, automation and structures. 
 

3 STARTING TECHNOLOGICAL BASE FOR THIS PROJECT 

• Eclipse, the world-leading software development framework, open-source from the 
Eclipse Consortium.  

• Papyrus, an Eclipse-based open source and UML-compliant software design suite. 
• The OpenModelica model compiler for Modelica and its associated Eclipse plugin with 

a Modelica/UML profile; open source from the Open Source Modelica Consortium 
(www.openmodelica.org) and Linköping University. 

• The Simantics integration platform based on semantic data modelling; open source from 
THTH association (www.simantics.org) 

• Modeling and simulation tools, environments, interoperability techniques, and 
application products from partners. 

• Open standards and technologies such as Modelica and FMI from the Modelica 
Association, UML and OWL from OMG. 

3.1 Related collaborative research projects. 

Link to previous and/or current collaborative research projects:  

Project 
Name 

Cooperative 
Programme 

Time 
period  

Technical Focus Relationship 

MODELISAR 

 
ITEA2 2008-

2011 
MODELISAR 
Integrates Modelica 
and Autosar with the 

OPENCPS 
complements, focusing 
instead on general 
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Project 
Name 

Cooperative 
Programme 

Time 
period  

Technical Focus Relationship 

Dassault Systemes 
proprietary V6 tool 
suite, focusing on 
automotive 
embedded systems.  

interoperability and 
cyber-physical product 
development based on 
open-source. 
Specifically, FMI-related 
open-source 
components and 
standards from 
MODELISAR will be 
used in OPENPCPS. 

OPENPROD ITEA2 2009-
2012 

Development of an 
open model-driven 
development, 
modeling and 
simulation (M&S) 
environment that 
integrates Eclipse 
with open-source 
modeling and 
simulation tools such 
as OpenModelica 
and industrial M&S 
tools and 
applications. 

OPENCPS focuses on 
efficient execution of 
models of software and 
physical phenomena, 
including a run-time 
system supporting a 
high event rate. 

 

OPENCPS extends the 
approach to certified 
code generation. 

 

Moreover, OPENCPS 
performs an industrial-
strength integration of 
the open source tools 
OpenModelica and 
Papyrus. 

POSE²IDON FP7 2009-
2012 

Simulations and 
comparisons of 
diesel ships, full 
electric ships & 
hybrid ships. New 
electrical architecture 
including energy 
recovery has been 
defined and 
assessed, and a 
physical (hardware in 
the loop) 
demonstrator has 
been developed by 

Application of 
OPENCPS 
methodologies and tools 
to improve the ECOSIM 
software and physical 
hardware in the loop 
demonstrator, with 
improved physical 
modelling and system 
integration. 
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Project 
Name 

Cooperative 
Programme 

Time 
period  

Technical Focus Relationship 

SIREHNA. SIREHNA 
has developed a 
multi-physics ship 
simulator ( ECOSIM - 
emission energy and 
consumption ship 
simulator)  to assess 
emissions (CO², 
NOX and SOX) and 
fuel consumption by 
simulating a 
complete ship: 
mechanical part, 
electric part, thermal 
part and associated 
command control 
systems, as well as 
the global energy 
production which is 
controlled  by a 
Power Management 
System. 

iFEST ARTEMIS 2010-
2013 

Integration 
Framework for 
Embedded Systems 
Tools.  This project 
aimed to provide a 
framework to 
integrate tools for the 
design, 
implementation and 
verification of real-
time embedded 
systems, including 
life-cycle aspects 
(versioning, bug-
tracking, 
transformations, 
etc.). It has 
contributed to the 
emerging standard 
on linked engineering 
data OSLC. 

Federation of models 
developed within the 
use-cases and 
distributed co-
simulation. 
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Project 
Name 

Cooperative 
Programme 

Time 
period  

Technical Focus Relationship 

MODRIO ITEA2 2012-
2015 

MODRIO extends 
state-of-the-art 
modeling and 
simulation 
environments based 
on open standards to 
increase energy and 
transportation 
systems safety, 
dependability and 
performance 
throughout their 
lifecycle. 

Some MODRIO 
application modeling 
results will be the basis 
for certain models  in 
WP6 in OPENCPS, and 
integrated into the 
context of an open 
source environment. 

 

FMI enhancements from 
MODRIO will be the 
starting point for 
OPENCPS work in 
WP2. 

 

Debugging and multi-
core simulation results 
from MODRIO will be 
further enhanced in 
OPENCPS WP4 and 
WP5 respectively. 

HPCOM BMBF 2013-
2016 

Implementation of 
various 
parallelization 
approaches in the 
OpenModelica 
Compiler 

Extend Parallel 
Simulation to discrete 
models with many 
events. 

TRIBUTE EU FP7 2013-
2017 

Application of 
equation based 
simulators for 
buildings in the 
operation phase. 

Focus on relationship 
between simulators and 
building controls 

INTO-CPS HORIZON  2015-
2018 

The aim of INTO-
CPS project is to 
create an integrated 
“tool chain” for 
comprehensive 
Model-Based Design 
(MBD) of Cyber-

Work on FMI 
cosimulation done in 
INTO-CPS will be used 
to drive the work on FMI 
in OPENCPS  
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Project 
Name 

Cooperative 
Programme 

Time 
period  

Technical Focus Relationship 

Physical Systems 
(CPSs). 

EMPHYSIS ITEA3 2017-
2020 

The aim is  to 
develop a new 
standard (eFMI: FMI 
for embedded 
systems) to 
exchange physics-
based models 
between modelling 
and simulation 
environments 

The master simulation 
tool developed in 
OPENCPS will be used 
in this project. 
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