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1 Introduction

This report accompanies the first incremental development prototype of the validation oriented
Modelica state machines translator. Automata-based programming is an important paradigm
in embedded-software development where the program (or a part of it) is modeled as a set of
finite state machines. Indeed, high-level control applications typically consists of

1. data-flow parts, realized as block diagrams, and

2. system logic, realized as state machines.

In previous attempts, efforts have been spent on developing library-based solutions for pro-
viding a mechanism for graphical Modelica-based modeling of state-machines (e.g., STATE-
GRAPH and STATEGRAPH2 library [Ott+09]). However, these library-based attempts were not
considered to be powerful enough, convenient, and safe to use.

Therefore, Modelica 3.3 [Mod14] introduced dedicated built-in language support for clocked
state machines [Elm+12] that was inspired by semantics from Statechart [Har87] and mode au-
tomata formalisms [MR03], particularly the mode automata variant implemented in the Lucid
Synchrone 3.0 language [Pou06].

The present deliverable is developed in T3.2 with the aim of integrating smoothly with the the
data-flow based code-generation as described in T3.1 [TB16; TS16].

2 Features available in the M24 prototype

The M24 prototype supports hierarchic and parallel composition of states, immediate (strong)
and delayed (weak) transitions, entering a state with reset or resume of internal state memory
(enter by history).

Figure 1 shows a Modelica state machine with hierarchical and parallel composition of states
which is inspired by a mode-automaton example described by Maraninchi and Rémond [MR03].
This and other examples are available in OpenModelica’s test suite. The depicted graphical ren-
dering is from the Dymola10 tool, since the graphical editor of OpenModelica v1.12.0 does not
yet support transparency when rendering hierarchical compositions. State a is composed by the
two parallel state machines (c-d and e-f). The initial states (a, c, e) are marked by an attached
filled circle. The state machine has three “global” variables (x, y, z) which can be accessed
in the inner state instances. For allowing that implicit access it is necessary to use Modelica
inner/outer constructs as depicted in the picture.

The state machine in Figure 1 has the two inputs i and j, which are instances of the standard
Boolean directed data-flow connectors11 from the Modelica Standard Library (MSL). Modelica
state machines are based on the clocked synchronous language elements extension and are
activated whenever the associated clock ticks. If no clock is explicitly specified, a default clock
with a periodicity of 1s is selected. Figure 2 shows the result plot from simulating the example
model in OpenModelica for 30s while feeding a constant input stream of i=true and j=true.

10Dassault Systèmes, www.dymola.com.
11Hence, instances of class Modelica.Blocks.Interfaces.BooleanInput.
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inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);i

j

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c
outer output Integer y;
y = previous(y) + 1;

d
outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

Figure 1: Hierarchical and parallel composition of states (Modelica version of a mode-
automaton example described by Maraninchi and Rémond [MR03]).

3 Implementation

The approach of translating a state machine is briefly outlined in Figure 3. The state ma-
chine constructs are instantiated and transformed into a symbolic intermediate representation
which has been described in [TPF15]. This intermediate representation is further elaborated,
instance hierarchies are collapsed (flattened) and transformed into clocked synchronous data-
flow equations. At this point state machines are in the same representation as clocked data-flow
equations allowing the complete reuse of the compiler processing modules for synchronous
data-flow equations.
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Figure 2: OpenModelica result plot from simulating the example model for 30s while feeding
a constant input stream of i=true and j=true.
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Figure 3: Outline of the state machine compilation process.

4 Usage

The state machine support is part of the OpenModelica v1.12.0 distribution. Modeling with
state machines is possible by writing textual Modelica code, or by using OpenModelica’s
graphical editor OMEdit. The following section describe the basic support by the graphical
editor. The available graphical support for creating and debugging state machines will be ex-
tended in future versions (task T4.1). The following sections are adapted from the OpenMod-
elica User’s Guide.

4.1 Creating a New Modelica State Class

This involves the same steps as creating a new class. Additionally the State checkbox needs to
be ticked.
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4.2 Making Transitions

In order to make a transition from one state to another the user needs to make sure that the
transition mode in the toolbar is enabled (enabled by default, toolbar icon shown below).

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross
cursor. To start the transition press left button and move while keeping the button pressed.
Now release the left button. Move towards the end state and click when cursor changes to cross
cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes.
Cancelling the dialog will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition
attributes.

4.3 State Machine Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3.
A subtle problem can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard
Library v3.2.2, because in this case the OpenModelica Compiler (OMC) automatically switches
into Modelica v3.2 compatibility mode. Trying to simulate a state machine in Modelica v3.2
compatibility mode results in an error. It is possible to use the OMC flag --std=latest in
order to enforce (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting
that flag in the Tools→Options→Simulation dialog.
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5 Industry benchmark problems

RTE has provided first (preliminary) test cases for the state machine translation which are
available in the project’s internal subversion repository. The goal is to use state machines
for describing mode switches in electrical power systems. At present these test cases fail in
OpenModelica v1.12.0 even if they are simplified up to the point where no state machine is
used at all. The problem is that OpenModelica fails in solving some of the nonlinear systems
of equations resulting from the (physical) electrical power systems model. Solving this issue
and supporting the indicated use-case is a task for the final project year.

6 Features planned for the final prototype at M36

For the final prototype the OpenModelica embedded code-generator developed in T3.3 needs
to be extended so that it supports state machines. The unified symbolic intermediate repre-
sentation of state machines and clocked synchronous data-flow as indicated in Section 3 will
facilitate this task. Notice that the M24 OpenModelica embedded code-generator prototype
(D3.6) is described in report [TS17]. Further, the present prototype needs to be extended and
improved so that it provides traceability information, better error diagnostics, and improved
debugging capabilities (interconnected with task T4.1 and T4.2).

7 Conclusion

The prototype scheduled for M24 has been developed and is part of the OpenModelica v1.12.0
distribution released on October 31, 2017, which can be downloaded from the OpenModelica
website (https://www.openmodelica.org/). Development of the remaining features for the final
prototype at M36 as well as other improvements to the M24 prototype will start next year.
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