
OPENCPS
ITEA3 Project no. 14018

D3.4 (M24) Validation oriented state machine
translation (M24 prototype)

Access1: PU

Type2: Prototype

Version: 1.1

Due Dates3: M24, M36

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

This report accompanies the first incremental development prototype of a validation oriented ap-
proach for translating Modelica state machines. The prototype is part of the OpenModelica v1.12.0
distribution released on October 31, 2017, which can be downloaded from the OpenModelica web-
site (https://www.openmodelica.org/). This report presents the state of the M24 prototype and briefly
describes the remaining work planed for the final M36 prototype.

1Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3Due month(s) according to FPP.
4It is mandatory to provide an executive summary for each deliverable.

https://www.openmodelica.org/

D3.4 (M24) - M24 state machine prototype

Deliverable Contributors:

Name Organisation Primary role in
project

Main
Author(s)5

Deliverable
Leader6

Bernhard Thiele LIU WP3 Leader X

Contributing
Author(s)7

Lena Buffoni LIU T4.3,T4.4
Leader

Internal
Reviewer(s)8

Document History:

Version Date Reason for change Status9

0.1 07/11/2017 First Draft Draft

0.2 07/11/2017 Internal review version completed In Review

0.9 15/11/2017 Integrated comments by first reviewer In Review

1.0 16/11/2017 Integrated additional comments In Review

1.1 17/11/2017 Changing status to released Released

5Indicate Main Author(s) with an “X” in this column.
6Deliverable leader according to FPP, role definition in PCA.
7Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9Status = “Draft”, “In Review”, “Released”.

OPENCPS, ITEA3 Project no. 14018 Page 2 of 9

D3.4 (M24) - M24 state machine prototype

Contents
1 Introduction 4

2 Features available in the M24 prototype 4

3 Implementation 5

4 Usage 6
4.1 Creating a New Modelica State Class . 6
4.2 Making Transitions . 7
4.3 State Machine Simulation . 7

5 Industry benchmark problems 8

6 Features planned for the final prototype at M36 8

7 Conclusion 8

References 9

OPENCPS, ITEA3 Project no. 14018 Page 3 of 9

D3.4 (M24) - M24 state machine prototype

1 Introduction

This report accompanies the first incremental development prototype of the validation oriented
Modelica state machines translator. Automata-based programming is an important paradigm
in embedded-software development where the program (or a part of it) is modeled as a set of
finite state machines. Indeed, high-level control applications typically consists of

1. data-flow parts, realized as block diagrams, and

2. system logic, realized as state machines.

In previous attempts, efforts have been spent on developing library-based solutions for pro-
viding a mechanism for graphical Modelica-based modeling of state-machines (e.g., STATE-
GRAPH and STATEGRAPH2 library [Ott+09]). However, these library-based attempts were not
considered to be powerful enough, convenient, and safe to use.

Therefore, Modelica 3.3 [Mod14] introduced dedicated built-in language support for clocked
state machines [Elm+12] that was inspired by semantics from Statechart [Har87] and mode au-
tomata formalisms [MR03], particularly the mode automata variant implemented in the Lucid
Synchrone 3.0 language [Pou06].

The present deliverable is developed in T3.2 with the aim of integrating smoothly with the the
data-flow based code-generation as described in T3.1 [TB16; TS16].

2 Features available in the M24 prototype

The M24 prototype supports hierarchic and parallel composition of states, immediate (strong)
and delayed (weak) transitions, entering a state with reset or resume of internal state memory
(enter by history).

Figure 1 shows a Modelica state machine with hierarchical and parallel composition of states
which is inspired by a mode-automaton example described by Maraninchi and Rémond [MR03].
This and other examples are available in OpenModelica’s test suite. The depicted graphical ren-
dering is from the Dymola10 tool, since the graphical editor of OpenModelica v1.12.0 does not
yet support transparency when rendering hierarchical compositions. State a is composed by the
two parallel state machines (c-d and e-f). The initial states (a, c, e) are marked by an attached
filled circle. The state machine has three “global” variables (x, y, z) which can be accessed
in the inner state instances. For allowing that implicit access it is necessary to use Modelica
inner/outer constructs as depicted in the picture.

The state machine in Figure 1 has the two inputs i and j, which are instances of the standard
Boolean directed data-flow connectors11 from the Modelica Standard Library (MSL). Modelica
state machines are based on the clocked synchronous language elements extension and are
activated whenever the associated clock ticks. If no clock is explicitly specified, a default clock
with a periodicity of 1s is selected. Figure 2 shows the result plot from simulating the example
model in OpenModelica for 30s while feeding a constant input stream of i=true and j=true.

10Dassault Systèmes, www.dymola.com.
11Hence, instances of class Modelica.Blocks.Interfaces.BooleanInput.

OPENCPS, ITEA3 Project no. 14018 Page 4 of 9

www.dymola.com

D3.4 (M24) - M24 state machine prototype

inner Integer x(start=0);
inner Integer z(start=0);
inner Integer y(start=0);i

j

a

outer output Integer x;
inner outer output Integer y;
inner outer output Integer z;
x = previous(x) + 1;

c
outer output Integer y;
y = previous(y) + 1;

d
outer output Integer y;
y = previous(y) - 1;

e
outer output Integer z;
outer input Integer y;
z = previous(z) + y;

f
outer output Integer z;
outer input Integer y;
z = previous(z) - y;

y == 10

y == 0

z > 100

z < 50

b

outer output Integer x;
x = previous(x) - 1;

(z > 100 and i) or j

x == 0

Figure 1: Hierarchical and parallel composition of states (Modelica version of a mode-
automaton example described by Maraninchi and Rémond [MR03]).

3 Implementation

The approach of translating a state machine is briefly outlined in Figure 3. The state ma-
chine constructs are instantiated and transformed into a symbolic intermediate representation
which has been described in [TPF15]. This intermediate representation is further elaborated,
instance hierarchies are collapsed (flattened) and transformed into clocked synchronous data-
flow equations. At this point state machines are in the same representation as clocked data-flow
equations allowing the complete reuse of the compiler processing modules for synchronous
data-flow equations.

x y z

0

20

40

60

80

100

120

time	(s)
0 5 10 15 20 25 30

Figure 2: OpenModelica result plot from simulating the example model for 30s while feeding
a constant input stream of i=true and j=true.

OPENCPS, ITEA3 Project no. 14018 Page 5 of 9

D3.4 (M24) - M24 state machine prototype

Front-end
 parsing & instantiation
& flattening

Modelica state-
machine model

Flat Modelica with
symbolic state machine
representation

Back-end

Data-flow AST

Reuse existing
equation
transformation &
code generation

Executable

State machine
instantiation

State machine
elaboration

InstStateMachineUtil.mo

StateMachineFlatten.mo

Figure 3: Outline of the state machine compilation process.

4 Usage

The state machine support is part of the OpenModelica v1.12.0 distribution. Modeling with
state machines is possible by writing textual Modelica code, or by using OpenModelica’s
graphical editor OMEdit. The following section describe the basic support by the graphical
editor. The available graphical support for creating and debugging state machines will be ex-
tended in future versions (task T4.1). The following sections are adapted from the OpenMod-
elica User’s Guide.

4.1 Creating a New Modelica State Class

This involves the same steps as creating a new class. Additionally the State checkbox needs to
be ticked.

OPENCPS, ITEA3 Project no. 14018 Page 6 of 9

D3.4 (M24) - M24 state machine prototype

4.2 Making Transitions

In order to make a transition from one state to another the user needs to make sure that the
transition mode in the toolbar is enabled (enabled by default, toolbar icon shown below).

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross
cursor. To start the transition press left button and move while keeping the button pressed.
Now release the left button. Move towards the end state and click when cursor changes to cross
cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes.
Cancelling the dialog will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition
attributes.

4.3 State Machine Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3.
A subtle problem can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard
Library v3.2.2, because in this case the OpenModelica Compiler (OMC) automatically switches
into Modelica v3.2 compatibility mode. Trying to simulate a state machine in Modelica v3.2
compatibility mode results in an error. It is possible to use the OMC flag --std=latest in
order to enforce (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting
that flag in the Tools→Options→Simulation dialog.

OPENCPS, ITEA3 Project no. 14018 Page 7 of 9

D3.4 (M24) - M24 state machine prototype

5 Industry benchmark problems

RTE has provided first (preliminary) test cases for the state machine translation which are
available in the project’s internal subversion repository. The goal is to use state machines
for describing mode switches in electrical power systems. At present these test cases fail in
OpenModelica v1.12.0 even if they are simplified up to the point where no state machine is
used at all. The problem is that OpenModelica fails in solving some of the nonlinear systems
of equations resulting from the (physical) electrical power systems model. Solving this issue
and supporting the indicated use-case is a task for the final project year.

6 Features planned for the final prototype at M36

For the final prototype the OpenModelica embedded code-generator developed in T3.3 needs
to be extended so that it supports state machines. The unified symbolic intermediate repre-
sentation of state machines and clocked synchronous data-flow as indicated in Section 3 will
facilitate this task. Notice that the M24 OpenModelica embedded code-generator prototype
(D3.6) is described in report [TS17]. Further, the present prototype needs to be extended and
improved so that it provides traceability information, better error diagnostics, and improved
debugging capabilities (interconnected with task T4.1 and T4.2).

7 Conclusion

The prototype scheduled for M24 has been developed and is part of the OpenModelica v1.12.0
distribution released on October 31, 2017, which can be downloaded from the OpenModelica
website (https://www.openmodelica.org/). Development of the remaining features for the final
prototype at M36 as well as other improvements to the M24 prototype will start next year.

OPENCPS, ITEA3 Project no. 14018 Page 8 of 9

https://www.openmodelica.org/

D3.4 (M24) - M24 state machine prototype

References

[Elm+12] Hilding Elmqvist et al. “State Machines in Modelica”. In: 9th Int. Modelica Con-
ference. Ed. by Martin Otter and Dirk Zimmer. Munich, Germany, Sept. 2012. DOI:
10.3384/ecp1207637.

[Har87] David Harel. “Statecharts: a visual formalism for complex systems”. In: Science of
Computer Programming 8.3 (1987), pp. 231–274. ISSN: 0167-6423. DOI: 10.1016/
0167-6423(87)90035-9.

[Mod14] Modelica Association. Modelica - A Unified Object-Oriented Language for Sys-
tems Modeling - Version 3.3 Revision 1. Standard Specification. July 2014. URL:
http://www.modelica.org/.

[MR03] Florence Maraninchi and Yann Rémond. “Mode-Automata: a new domain-specific
construct for the development of safe critical systems”. In: Science of Computer
Programming 46 (2003), pp. 219–254.

[Ott+09] Martin Otter et al. “A New Formalism for Modeling of Reactive and Hybrid Sys-
tems”. In: 7th Int. Modelica Conference. Como, Italy, Sept. 2009, pp. 364–377.

[Pou06] Marc Pouzet. Lucid Synchrone Tutorial and Reference Manual. 2006.
[TB16] Bernhard Thiele and François Beaude. Concept for customizing code generation

including flexible adaptation to different target systems. Technical Note D3.3. ITEA3,
Project 14018: OPENCPS project, Dec. 2016.

[TPF15] Bernhard Thiele, Adrian Pop, and Peter Fritzson. “Flattening of Modelica State
Machines: A Practical Symbolic Representation”. In: 11th Int. Modelica Confer-
ence. Ed. by Peter Fritzson and Hilding Elmqvist. Versailles, France, Sept. 2015.
DOI: 10.3384/ecp15118255.

[TS16] Bernhard Thiele and Per Sahlin. Translation validation and traceability concept
from acausal hybrid models to generated code. Technical Note D3.2. ITEA3, Project
14018: OPENCPS project, Dec. 2016.

[TS17] Bernhard Thiele and Martin Sjölund. Efficient, traceable, and flexibly adaptable
C/C++ code generation for embedded targets from OpenModelica (M24 proto-
type). Technical Note D3.6 (M24). ITEA3, Project 14018: OPENCPS project, Dec.
2017.

OPENCPS, ITEA3 Project no. 14018 Page 9 of 9

http://dx.doi.org/10.3384/ecp1207637
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://www.modelica.org/
http://dx.doi.org/10.3384/ecp15118255

	Introduction
	Features available in the M24 prototype
	Implementation
	Usage
	Creating a New Modelica State Class
	Making Transitions
	State Machine Simulation

	Industry benchmark problems
	Features planned for the final prototype at M36
	Conclusion
	References

