
(ITEA 2 – 13017)

Enabling of Results from AMALTHEA and others
for Transfer into Application and

building Community around

Deliverable: D 1.3
Design Handbook

Work Package: 1
Continuous Design Flow and Methodology

Task: 1.8
Preparation of the design handbook

Document Type: Deliverable
Document Version: Preliminary
Document Preparation Date: August 31, 2017

Classification: Public
Contract Start Date: 01.09.2014
Duration: 31.08.2017

Contents

1 Introduction 2
1.1 Structure of the Document . 2

2 Overview of design steps 3

3 Support for design steps in APP4MC 5
3.1 Support for Multi-core Activities . 6

3.1.1 Partitioning . 6
3.1.2 Task Creation . 6
3.1.3 Target Mapping . 6

3.2 Support for Other Activities . 8
3.2.1 Definition of Software Architecture . 8
3.2.2 Behavior Modeling . 11
3.2.3 Implementation . 11
3.2.4 Validation and Testing . 11
3.2.5 Functional Safety Concept . 12
3.2.6 System safety requirements engineering 13
3.2.7 Software safety requirements engineering 13

4 Support from third-party tools 14
4.1 Third Party tools . 14

4.1.1 ReqTool . 14
4.1.2 IFAK RDL Editor . 16
4.1.3 SysML4CONSENS . 16
4.1.4 AMPLE . 18
4.1.5 VaCoMo . 20
4.1.6 MechatronicUML . 21
4.1.7 SCA2AMALTHEA . 22
4.1.8 Scenario Tools . 22
4.1.9 Stimuli from Activations Workflow Component 23
4.1.10 Constraint from Label Access Workflow Component 24
4.1.11 TA Tool suite . 25

5 Traceability Support 27
5.1 Capra . 27
5.2 Use Cases of traceability (with Capra) in Various Contexts 28

5.2.1 Capra + AMPLE + VaCoMo . 29
5.2.2 Capra + ReqTool . 29

5.3 Integration of APP4MC and DOORS via OSLC 29

ii

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

6 An example of how APP4MC can be integrated with third party tools 34

7 Conclusion 36

iii

List of Figures

2.1 Overview of functional and safety-related Design Steps 4

3.1 Partitioning in APP4MC . 7
3.2 Results of Partitioning decrease the overall execution time 7
3.3 Tasks generated from the software model . 8
3.4 Configurable aspects of the APP4MC mapping tool 9
3.5 The APP4MC mapping tool determines the optimal allocation from tasks to

cores (upper half) and illustrates the load on each core (lower half) 9
3.6 The task visualization overview provides basic information about the software

as well as the hardware of the system . 10
3.7 The task dependencies overview visualizes the task graph with its inter-task

dependencies as well as the communication delay. 10
3.8 The gantt chart view of the task visualizer showing the execution of each core.

Green means the task is running, yellow ready,red suspended and orange waiting. 11
3.9 Options that can be selected to run the Check-based Validation 12
3.10 Results of running the APP4MC check-bases Validation. 13

4.1 Formal requirements modeling. 17
4.2 Generated Test Cases. 17
4.3 Modeling software variability via a feature model. 19
4.4 Modeling variable hardware platforms and their properties. 19
4.5 Product configuration: Selecting distinct feature of the product. 20
4.6 Modeling variable component models with VaCoMo. 21
4.7 Generating an AMALTHEA model from C/C++ code. 23
4.8 System/Software Component Modelling. 26
4.9 Simulation of system model based on measured runtimes 26
4.10 Optimization of ECU configuration based on optimized simulation model 26
4.11 Verification of timing violations, bottlenecks, and interactions. 26

5.1 Traceability graph resulting from selecting one requirement. 28
5.2 A traceability Matrix. The X mark shows that a link exists between the elements

in the specific row and column. 29
5.3 Deriving product-specific component models via a product configuration and

traceability links. 30
5.4 The ReqTool editor showing requirements as well as the parents and children

traced to the requirements. 31
5.5 Linking a project area in DOORS to an AMALTHEA model. 32
5.6 Creating a link. 33
5.7 OSLC preview. 33

iv

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

6.1 Emergency Braking & Evasion Assistance System (EBEAS) 34
6.2 Combining the APP4MC platform with third party tools in a development process. 35

v

List of Tables

2.1 Overview of the identified Design Steps . 4

3.1 Overview of the identified Design Steps and APP4MC support 5

4.1 Overview of the identified Design Steps and support by third party tools devel-
oped in the AMALTHEA4Public project . 15

vi

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

The design handbook will describe all necessary steps for developing automotive multi- and
many-core systems with the AMALTHEA4public tool chain. The document describes how the
different design steps are supported by APP4MC as well as other third party tools developed
by project partners in the course of the project. Furthermore, the handbook gives an example
of how APP4MC and other third party tools can be integrated to develop multi-core systems.

1

1 Introduction

Performance is a critical quality attribute for systems developed in the automotive domain. The
introduction of multi- and many-core processors has lead to a significant increase in performance
as several tasks in the system can now run in parallel. However, designing and implementing
efficient multi-core systems requires specialized tools and processes for development. In this
report, we describe necessary steps that need to be carried out when developing multi- and
many-core systems and also describe how these steps are supported by the AMALTHEA4public
tool chain.
The AMALTHEA4public tool chain is a platform for engineering embedded multi- and many-

core software systems. The platform enables the creation and management of complex tool
chains including simulation and validation. This tool is now offered as a free and open source
Eclipse project called APP4MC (Application Platform Project for MultiCore). From this point
forward, we will refer to the AMALTHEA4public tool chain as APP4MC. The aim of this
deliverable is to show how the tool can be used to support various design steps and also show
how other third party tools can also be integrated with the APP4MC platform to facilitate
multi-and may-core development.

1.1 Structure of the Document

The rest of the document is organized as follows: Chapter 2 gives an overview of the design
steps that exist when developing embedded systems which were collected and reported in detail
in Deliverable 1.1 [1]. Chapter 3, describes how the design steps are supported by the APP4MC
platform. Chapter 4 discusses support for design steps provided by third party tools that have
been developed as part of the AMALTHEA4Public project. Chapter 5 describes the traceability
concept, its importance in systems development, and tools that support traceability developed
in the project. Chapter 6 gives an example of how APP4MC can be used in combination with
third party tools to develop multi- and many-core systems. Finally the document ends with
Chapter 7, which gives a conclusion.

2

2 Overview of design steps

In this Chapter we discuss the neccessary design steps for developing multi- and many-core
systems. Table 2.1, gives and overview of these steps. These steps were collected by sending
out an open ended survey to project partners. The project partners were asked to document the
steps they use in their current development processes. The results of this has been published
in [1] and in [6]. Note that no order in which these steps are carried out is implied since defining
a concrete development process with a concrete lifecycle is generally company specific. A wide
variety of lifecycles can be applied, including the V-model(cf. 2.1) that is implied by ISO 26262
and AUTOSAR. While some steps are carried out sequentially, others can be done in parallel.
The dependencies between the design steps at times imply an iterative approach where they are
repeated or at least revisited after other work has been performed. Such an approach is common
in iterative-incremental lifecycles. The identified steps cover most aspects of a traditional
software development effort, starting from contract negotiation and scope identification and
ending at the delivery of the software (with the exception of software maintenance). Some steps
and circumstances are specific in the context of the automotive domain, e.g., the differentiation
of system and software. Another re-occurring theme is variability management via software
product lines, even though this theme will not be regarded in detail in the context of this
paper. Some of the design steps we elicited, such as Requirement Engineering and Architecture
Design, can be found in nearly all development processes in a similar form. However, there
are specific steps steps that are only relevant in multicore development: Partitioning, Task
Creation and Target Mapping are, e.g., part of DS 10: System Integration. We discuss these
design steps in more detail in Chapter 3.
Since the automotive domain is a safety-critical domain and therefore needs to adhere to

safety standards, we analyzed the ISO 26262 standard, which is a functional safety standard
for road vehicles, for steps that are necessary to ensure that the system developed is safe. From
this standard, we derived six more safety related activities that are marked as DA to DS F
both in Figure 2.1 and Table 2.1.

3

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

DS 1: System Requirements
Engineering DS 7: Variant Configuration

DS 2: System Architecture Design DS 8: Implementation
DS 3: Software Requirements
Engineering DS 9: Validation and Testing

DS 4: Derivation of Product Variants DS 10: System Integration
DS 5: Definition of Software
Architecture DS 11: Handover

DS 6: Behaviour Modelling

DS A: Functional safety concept DS D: Safety Validation
DS B: System safety requirements
engineering DS E: Functional Safety Assessment

DS C: Software safety requirements
engineering

DS F: Integration and validation at
vehicle level

Table 2.1: Overview of the identified Design Steps

Concepts of
Operation

Requirements
& Architecture

Detailed Design

Implementation

Integration,
Testing &
Validation

System
Verification &

Validation

Operation &
Maintenance

Extended
Design Steps

DS 1

DS 2

DS 3

DS 4

DS 5

DS 6

DS 7

DS 8

DS 9

DS 10

DS 11

DS A

DS B

DS D

DS F

DS E DS C

Existing
Design Steps

Figure 2.1: Overview of functional and safety-related Design Steps

4

3 Support for design steps in APP4MC

As it can be seen from the Table 2.1, there are several common steps that apply to all system
development e.g., requirements engineering and implementation. The APP4MC platform how-
ever, was developed to support multi-and many-core development activities. For this reason
most functionality is dedicated towards activities relevant for multi-and many-core system de-
velopment. However, the APP4MC platform also provides supports for other activities that are
not necessarily muti-and many-core relevant. In this section we first describe how the APP4MC
platform supports muti-and many-core activities and also describe support for other activities.
Table 3.1 shows an overview of design steps that are supported by the APP4MC platform.

Design Step Support by
APP4MC

DS 1: System Requirements Engineering
DS 2: System Architecture Design
DS 3: Software Requirements Engineering
DS 4: Derivation of Product Variants
DS 5: Definition of Software Architecture
DS 6: Behaviour Modelling
DS 7: Variant Configuration
DS 8: Implementation
DS 9: Validation and Testing
DS 10: System Integration
DS 10.1: Create Executables
DS 10.2: Partitioning
DS 10.3: Task Creation
DS 10.4: Target Mapping
DS 11: Handover

DS A: Functional safety concept
DS B: System safety requirements engineering
DS C: Software safety requirements engineering
DS D: Safety Validation
DS E: Functional Safety Assessment
DS F: Integration and validation at vehicle level

Table 3.1: Overview of the identified Design Steps and APP4MC support

5

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

3.1 Support for Multi-core Activities

The more interesting step in this section is the step that is specific for many-and multi-core
development which is DS 10: System integration. This step consists of four sub-steps of which
three are most relevant, these are DS 10.2: Partitioning, DS 10.2: Task creation and DS
10.4: Target Mapping.
The support provided by the APP4MC platform for these steps are described as follows:

3.1.1 Partitioning

Partitioning in multi-and many-core systems development means identifying all tasks in the
system, their structure and deriving possible ways in which these tasks can be divided in
order for them to be executed in parallel. Especially for large systems, this is a complex task
and needs specialized tools that implement efficient partitioning algorithms. The APP4MC
platform, supports this task by allowing for the identification of software that can potentially
run in parallel under consideration of activations, ASIL(Automotive Safety Integrity Level)
safety levels, tags (e.g. for Software Components), Runnable Pairing Constraints, Runnable
Core Pairing Constraints, and timing constraints. This is possible because all these constraints
can be defined in the AMALTHEA model.
The partitioning component in APPMC utilizes the constraints defined in the AMALTHEA

model and in return, produces a partitioned model. Figure 3.1 shows a screen shot of the
partitioning plugin in action. It shows options that a programmer can enable or disable such as
grouping runnables by their activations or by their ASIL levels. Figure 3.2 on the other hand
shows how the partitioning tool can increase the performance of the system due to parallelism.
The screen shot shows that partitioning in this case reduced the execution time by 85%.

3.1.2 Task Creation

In this step, tasks are created from a software model. This step is important as it produces a
software model with tasks that can then be analyzed in order to identify tasks or group of tasks
that can be run in parallel. Tasks agglomerate multiple runnables into a larger group, which is
allocated on the target platform. In the APP4MC platform, this activity is supported by the
task generator component. This takes the software model as input and produces a software
model with tasks and sequencing constraints. Figure 3.3 shows the output of this process in
the APP4MC platform.

3.1.3 Target Mapping

This step involves finding a valid and optimal distribution of software elements to hardware
components. In APP4MC this is supported by the mapping component. The mapping com-
ponent utilizes the software model and hardware model, as well as the tasks activation from
the stimulation model, and calculates such a distribution. This tool determines the optimal
allocation of software elements to hardware components, e.g. tasks to cores, data to memories,
etc. The tool is currently capable of minimizing the run-time of a system by load-balancing
the cores of a hardware or its energy consumption by selecting appropriate voltage levels.
Figure 3.4 shows the Mapping component in action. As it can be observed from the screen

shot, the mapping tool allows the developer to choose between different algorithms of mapping,
specifically three algorithms are provided which are DFG (Data Flow Graph), ILP (Integer

6

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.1: Partitioning in APP4MC

Figure 3.2: Results of Partitioning decrease the overall execution time

7

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.3: Tasks generated from the software model

Linear Programming) and GA(Genetic Algorithm) based balancing. The tool also provides
an option to map the software to the hardware based on energy consumption preferences.
Note that this feature is still an experimental feature in APP4MC. An example of how the
partitioning model produced in this steps is given in Figure 3.5. The result of the mapping
activity are stored in a mapping model.
The APP4MC platform also provides another component called Task visualizer which simu-

lates the software based on the outcome of the mapping component, i.e. the execution of tasks
of the software model on the cores of the hardware model, possible deadline misses etc. The
task visualizer tool provides different visualizations and allows the programmer to set what
should be displayed. Figure 3.6 to 3.8 shows three different visualizations supported by the
APP4MC task visualizer.

3.2 Support for Other Activities

3.2.1 Definition of Software Architecture

In this step, the software is designed to implement the requirements. Here the components and
function groups of the software and their relationships based on the requirements are modelled.
To determine the component architecture, software architects use the requirements as well as
the corresponding variant model.
The APP4MC platform provides the software model and component model to support this

activity. The software model provides an abstract description of the software, e.g., which
runnables exist, how many instructions are required for the execution of each runnable, which
date is communicated etc. The software model also allows for the definition of constraints. The
component model contains the software components of the system, their communication and

8

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.4: Configurable aspects of the APP4MC mapping tool

Figure 3.5: The APP4MC mapping tool determines the optimal allocation from tasks to cores
(upper half) and illustrates the load on each core (lower half)

9

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.6: The task visualization overview provides basic information about the software as
well as the hardware of the system

Figure 3.7: The task dependencies overview visualizes the task graph with its inter-task depen-
dencies as well as the communication delay.

10

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.8: The gantt chart view of the task visualizer showing the execution of each core.
Green means the task is running, yellow ready,red suspended and orange waiting.

inter-dependencies.

3.2.2 Behavior Modeling

In this step the behavior of the software components in the architecture is specified. Be-
havior models describe the control structure of the system. In some cases the behavior of
non-functional requirements is also specified. The APP4MC platform provides support for this
activity through the constraint model, component model and software model. Architects can
use the models to describe the behavior of the system under development and specify constraints
such as timing constraints in the behavior.

3.2.3 Implementation

In this step the required code is produced, tests are developed and executed, the software is
integrated and the code is reviewed. The main resulting artifacts are source code and different
sets of tests (unit, component, integration) as well as the integrated software and its docu-
mentation. The source code can be written from scratch or generated from models in case a
model-driven development approach is followed. The software model of the APP4MC platform
can be used to generate source code in C.

3.2.4 Validation and Testing

This involves testing of software components to validate if they are working as desired, i.e.,
according to the specified requirements. For software components that will interact with hard-
ware components, simulations are run in order to fix as much defects as possible before the
component can be tested on the actual hardware. Deployable Control Software is a packaged
integrated software that is ready to be deployed on a specific hardware.

11

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

The APP4MC platform provides two ways of supporting this activity. The first is using
check-based validation. The APP4MC platform has a capability to perform check based vali-
dation (using Sphinx) on the AMALTHEA model. This validation reveals errors, warnings and
information on the model. This validation is run by the programmer when needed. Figure 3.9
show the constraints that can be checked by the validation and Figure 3.10 shows the results
of running this check based validation.

Figure 3.9: Options that can be selected to run the Check-based Validation

The second validation support provided by APP4MC is the Trace model. The trace model
gives details on time consumed by tasks to allow refinement of the model to get the most
efficient one.

3.2.5 Functional Safety Concept

This is a safety related step where hazard analysis and the risk assessment take place to define
the corresponding safety goals as top-level safety requirements. These safety requirements
usually lead to constraints that need to be defined and represented somewhere. In the APP4MC
platform, the constraints can be defined in the constraints model and other safety requirements
can also be represented in the component model.
The APP4MC platform also allows grouping of runnables and labels according to their ASIL

levels. This enables the algorithms for partitioning and mapping to take safety information
into account.

12

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 3.10: Results of running the APP4MC check-bases Validation.

3.2.6 System safety requirements engineering

This activity consists of planning verification/validation activities at system level and definition
of system safety requirements based on the systems requirements and the functional safety
concept of the system. This also includes the definition of safety-related assumptions caused by
the multi-core structure of the system under development. While the APP4MC platform does
not provide any support for planning the verification and validation activities, it provides some
support for definition of safety constraints. Constraints e.g., timing constraints can be defined
in the constraints model and the component model. Hardware related safety constraints can be
defined in the hardware model. Also, it must be ensured that the software safety requirements
are correct, complete, and consistent with respect to the safety goals and the system design.
Again there is no support for the planning of the verification and validation activities, but there
is similar support as for DS A. The constraint model and the software model can be used to
describe and model software safety requirements of the system.

3.2.7 Software safety requirements engineering

This activity is similar to DS B, which consists of planning verification/ validation activities
at software level, the definition of software safety requirements based on DS B (and the system
design), and the validation of the software safety requirements against the software requirements
(i.e., the part that is not safety-related).

13

4 Support from third-party tools

As it can be observed from the previous Chapter (Chapter 3), the APP4MC platform does not
provide support for all of the design steps. Over the course of the project, this was noted and
other tools, which are third party with respect to the APP4MC platform have been developed.
The aim of developing these tools was to make sure that there are tools to support all the
design steps and that these tools can be integrated with the APP4MC platform. These tools
are therefore all Eclipse-based. While most of the tools are open source, a few are commercial
but can still be integrated or used together with APP4MC. In this section we describe the tools
in details and show which design steps they support. Table 4.1 shows a summary of the design
steps that are supported by third party tools developed in the AMALTHEA4Public project.

4.1 Third Party tools

4.1.1 ReqTool

Description: ReqTool is a model and a requirements editor for the Eclipse Capra framework

License: EPL-1.0

Intended Audience: Sales representatives, Project Managers, Software Engineers, Hardware
Engineers and Quality Assurance Engineers

Documentation URL: https://github.com/hefloryd/reqtool/blob/master/README.md

Download URL: https://github.com/hefloryd/reqtool/releases

Technology Readiness Level (TRL): TRL 3

Input: Requirements in form of ReqIF, Source code (C/C++, Java, etc.), Test results in form
ox XML

Output: XML or Markdown

Design Step Supported: Requiremente related steps which are DS 1, DS 3, DS 11, DS B
and DS C. DS 8, DS 9 and DS D are supported by allowing for their input and output
artifacts to be traced.

Opportunity for Customization: The tools contains a meta-model for requirements in the
form of an Eclipse plugin. The plugin can be changed but this currently requires rebuilding
the tool. There is not yet any method for dynamically changing the meta-model.

Pre-requisites: The release consists of an Eclipse update site. The update site is not yet
hosted anywhere but it can be downloaded and installed from locally.

14

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Design Step Support by APP4MC

DS 1: System Requirements Engineering ReqTool, TA Tool Suite,
irdleditor, SysML4CONSENS

DS 2: System Architecture Design TA Tool Suite,
SysML4CONSENS

DS 3: Software Requirements Engineering ReqTool, TA Tool Suite,
irdleditor, ScenarioTools

DS 4: Derivation of Product Variants AMPLE

DS 5: Definition of Software Architecture
TA Tool Suite,
MechatronicUML, VaCoMo,
SCA2AMALTHEA

DS 6: Behaviour Modelling

TA Tool Suite, irdleditor,
MechatronicUML,
ConstraintsFromLabelAccesses
Workflow Component,
SCA2AMALTHEA

DS 7: Variant Configuration AMPLE
DS 8: Implementation MechatronicUML

DS 9: Validation and Testing

TA Tool Suite, irdleditor,
ScenarioTools,
StimuliFromActivations
Workflow Component,
ConstraintsFromLabelAccesses
Workflow Component

DS 10: System Integration ConstraintsFromLabelAccesses
Workflow Component

DS 10.1: Create Executables
DS 10.2: Partitioning TA Tool Suite

DS 10.3: Task Creation
TA Tool Suite,
StimuliFromActivations
Workflow Component

DS 10.4: Target Mapping
TA Tool Suite,
StimuliFromActivations
Workflow Component

DS 11: Handover ReqTool

DS A: Functional safety concept
DS B: System safety requirements engineering ReqTool
DS C: Software safety requirements engineering ReqTool
DS D: Safety Validation TA Tool Suite, MechatronicUML
DS E: Functional Safety Assessment
DS F: Integration and validation at vehicle level TA Tool Suite

Table 4.1: Overview of the identified Design Steps and support by third party tools developed
in the AMALTHEA4Public project

15

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

4.1.2 IFAK RDL Editor

Description: It provides editor support for formal modeling of behavioral requirements. The
editor implementation is using Xtext as DSL Framework. Based on the formal require-
ments, it is possible to generate directly test cases by the integration of external tools
for model synthesis and model based test generation. Figure 4.1 shows an example of
how requirements can be modeled in text and also shows the graphical representation in
terms of a sequence diagram. Figure 4.2 shows the test cases generated from the formal
requirements.

License: EPL-1.0

Intended Audience: Test engineers, Requirements engineers

Documentation URL: Not publicly available

Download URL: Not publicly available

Technology Readiness Level (TRL): TRL 4

Input: Requirement specification in form of text

Output: XML

Design Step Supported: DS 1, DS 3, DS 6 and DS 9

Opportunity for Customization: Cannot be customized

Pre-requisites: Eclipse Mars (4.5, June 2015)

4.1.3 SysML4CONSENS

Description: This is a SysML profile that allows creating models following the CONSENS
specification technique. It is used for both capturing system requirements as well as the
system architecture.

License: TBD

Intended Audience: System Engineers

Documentation URL: Gausemeier J, Rammig FJ, Schäfer W (eds.). Design Methodology
for Intelligent Technical Systems: Develop Intelligent Technical Systems of the Future.
Lecture Notes in Mechanical Engineering, Springer, 2014, Chapter 4.1

Download URL: To be released

Technology Readiness Level (TRL): TRL 3

Input: Initial ScenarioTools specification (Papyrus UML / XMI)

Output: Initial ScenarioTools specification (Papyrus UML / XMI)

Design Step Supported: DS 1, DS 2 and DS B

16

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 4.1: Formal requirements modeling.

Figure 4.2: Generated Test Cases.

17

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Opportunity for Customization: UML profiles / Papyrus capabilities

Pre-requisites: Papyrus SysML (dependency)

4.1.4 AMPLE

Description: AMPLE realizes a holistic variability management of software and hardware
artifacts throughout the entire software development lifecycle (SDLC).A Software Product
Line (SPL) is divided into domain and application engineering as well as a problem and
solution space. The domain engineering dimension captures all the domain knowledge,
i. e. common and variable features of a group of related products, via appropriate
models, while application engineering is responsible to derive products based on customer
demands. Within the problem space, the scope is stored, i. e. specifications established
during the domain analysis and requirements engineering. By contrast, the solution
space refers to core assets, e. g. components or code, which form the concrete product.
AMPLE make use of a so-called multi variability model (MVM) to manage such an SPL.
The MVM integrates two kinds of variability models, where each model takes different
characteristics of disciplines like software or hardware into account. Feature Models
(FMs) [1] (cf. Figure 4.3), as one type of variability model, are widely used in industry to
capture and manage software variability SDLC. A FM comprises a hierarchical arranged
set of features connected through different types of association (Mandatory, Optional,
Or, Alternative (XOR)) to express variability. Since hardware platforms typically have
only few variants, the hardware variability model (HVM) (cf. Figure 4.4) abstract from
the associations of a FM and use a simple tree structure instead to cover the hierarchy
of a hardware platform along with its elements and properties. Variability is described
through specific variation points. Figure 7 denotes the metamodels for the FM as well
as the HVM under the term System Family. A System Family allows to describe loosely
coupled dependencies between software and hardware elements and enables a combined
product configuration (cf. Figure 4.5) by selecting certain product functionalities.

License: TBD

Intended Audience: As system variability as a cross-cutting concern, it affects all abstraction
levels, models and artifacts in a SDLC. Thus, all roles for the respective development
activities must be aware of variability and the relation to the variability models. Addi-
tionally, the initial definition of the product line and the management of the according
variability models is done by requirements engineering and product line management.

Documentation URL: DOI: 10.1007/978-3-319-26844-6_32

Download URL: http://193.25.22.150/bitbucket/projects/AMA4PUB/repos/variability_management/

Technology Readiness Level (TRL): TRL 4

Input: N/A

Output: Variability models and product configuration (EMF/XMI), Component Models -via
Model-to-Model transformation (Amalthea, Autosar)

Design Step Supported: DS 4, DS 5 and DS 7

18

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Opportunity for Customization: The tool can be extended via the extension mechanisms in
eclipse (e.g. extension points). This has been demonstrated by the integration of Xtext.
Due to the use of EMF and the open meta model, the tool can be customized in any
direction, e. g. by adding new properties.

Pre-requisites: Eclipse 4.4

Figure 4.3: Modeling software variability via a feature model.

Figure 4.4: Modeling variable hardware platforms and their properties.

19

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 4.5: Product configuration: Selecting distinct feature of the product.

4.1.5 VaCoMo

Description: In order to apply variability management to the activities of the SDLC, e.g.
requirements engineering, models in domain engineering must support variability via
variation points. VaCoMo supports the modeling of component models (cf. Figure 4.6),
while it covers all product variants within a so-called 150% model. Based on a product
configuration, this enables the derivation of product-specific component models by remov-
ing optional components and ports. Optional features can be represented by components
and ports marked as optional, while an exclusive-or (XOR) is mapped to a Variation
Point, which again aggregates a set of optional components. In case components of a
Variation Point share the same target port, Variable Connectors can be used. Apart
from the variability related structures, VaCoMo make use of common structures: Com-
ponents represents functional units and are further divided into Hierarchical, Atomic,
and Sensor/Actuator. Furthermore, the interfaces of a component can be described via
appropriate ports, while connectors allow to connect components among each other via
compatible ports. Both, AMPLE (Section 4.1.4) and VaCoMo are realized as Eclipse
Plugins by means of customized EMF editors. Based on a product configuration and
traceability links between both models, this allows to apply model-to-model transforma-
tions for VaCoMo for deriving product-specific component models like AMALTHEA or
AUTOSAR.

License: TBD

Intended Audience: VaCoMo is used to define the system’s architecture and thus it is relevant
for architecture engineering and their roles. However, as the system architecture connects
requirements with implementation, also this disciplines may be involved in the system
architecture definition.

20

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Documentation URL: DOI: 10.1007/978-3-319-26844-6_32

Download URL: http://193.25.22.150/bitbucket/projects/AMA4PUB/repos/variability_management/

Technology Readiness Level (TRL): TRL 4

Input: N/A

Output: Component Models -via Model-to-Model transformation (Amalthea, Autosar)

Design Step Supported: DS 5

Opportunity for Customization: The tool can be extended via the extension mechanisms in
eclipse (e.g. extension points). This has been demonstrated by the integration of Xtext.
Due to the use of EMF and the open meta model, the tool can be customized in any
direction, e. g. by adding new properties.

Pre-requisites: Eclipse 4.4

High Beam
Control

Static

Cornering Light

Daytime
Running Light

Fog Light
Control

High Beam
Assistant

Dim Light
Control

Parking Light
Control

Turn Signal
Control

Right Parking
Light LED

Left Parking
Light LED

Cornering

Light LED

High Beam

LED

Fog Light

LED
High Beam

Camera

DtRL LED

Dim Light

LED

TEPT4400

Sensor

Car
Headlight
Control

Required Port

Provided Port

Variation Point

Optional

Connector

Variable

Connector

Sensor/

Actuator

Atomic

Variant

Dynamic
Turn

Signal
Type

Left Turn

Signal LED

Right Turn

Signal LED

Left Light

Chaser LED

Right Light

Chaser LED

Standard

Figure 4.6: Modeling variable component models with VaCoMo.

4.1.6 MechatronicUML

Description: MechatronicUML provides a modeling language, development process, and tool-
ing for engineering the software of software-intensive systems.

License: EPL

Intended Audience: Software Engineers

Documentation URL: http://www.mechatronicuml.org/en/publications.html

Download URL: http://www.mechatronicuml.org/en/download.html

21

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Technology Readiness Level (TRL): TRL 4

Input: N/A

Output: Initial APP4MC model (.amxmi), ANSI C Code (.c*, .h), Timed Automata

Design Step Supported: DS 5, DS 6, DS 8 and DS D (timed model-checking)

Opportunity for Customization: Custom properties, metamodel an be extended and custom
Eclipse plugins can be integrated.

Pre-requisites: MechatronicUML requires dependencies based on the features one would like
to use: E.g., UPPAAL for timed model-checking.

4.1.7 SCA2AMALTHEA

Description: This is a static code analyzer based on C language and LLVM. It is used for
analyzing static code out of legacy software artifacts and generating and AMALTHEA
model out of the legacy code. This tool is intended for companies that are migrating to
multi and many core systems development but already have existing software that also
needs to be migrated. Figure 4.7 shows how the tool works to generate an AMALTHEA
model.

License: EPL

Intended Audience: SW developer/architects with legacy code

Documentation URL: http://clang.llvm.org/

Download URL: http://releases.llvm.org/download.html

Technology Readiness Level (TRL): TRL 9

Input: C/C++

Output: AMALTHEA datadefintion (.amxmi)

Design Step Supported: DS 5 and DS 6

Opportunity for Customization: The inputs can be enhanced by data out of MDX, MSR or
AUTOSAR. Additionally, the variance within the source software can be eliminated by
using specific configuration files. It is highly customizable according to the user needs.

Pre-requisites: Eclipse installation

4.1.8 Scenario Tools

Description: ScenarioTools provides a formal modeling language for requirements engineering
of reactive systems that enables formal analyses techniques (e.g., consistency checks) early
in the design process.

License: EPL

22

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 4.7: Generating an AMALTHEA model from C/C++ code.

Intended Audience: System and Software Requirements Engineers

Documentation URL: http://www.mechatronicuml.org/en/publications.html

Download URL: http://www.mechatronicuml.org/en/download.html

Technology Readiness Level (TRL): TRL 4

Input: Initial ScenarioTools specification (Papyrus UML/XMI)

Output: Complete, formal requirements specification.

Design Step Supported: DS 3, DS 9 (Formal analysis and simulation) and DS C (modeling
of safety and timing requirements as well as formal analysis and simulation)

Opportunity for Customization: The metamodel can be extended, custom Eclipse plugins
can be integrated.

Pre-requisites: Papyrus (dependency)

4.1.9 Stimuli from Activations Workflow Component

Description: Extend an AMALTHEA model respectively create an AMALTHEA Stimuli
model by modeling stimuli based on activations given by AMALTHEA Software model;
tasks of the Software model are associated to the newly created stimuli (according to
their activations). This is currently restricted to periodic activations.

License: EPL

Intended Audience: System integration, system verification/validation (in general: those dis-
ciplines that require a Stimuli model)

Documentation URL: Not publicly available

23

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Download URL: Not publicly available

Technology Readiness Level (TRL): TRL 3

Input: AMALTHEA Software Model (.amxmi)

Output: AMALTHEA Stimuli Model (.amxmi)

Design Step Supported: DS 9, DS 10.3 and DS 10.4

Opportunity for Customization: By the workflow component method “setDefaultStimulus-
Name”, user can define the base name used for naming newly created stimuli (the stimulus
name is combined of this base name and a running number)

Pre-requisites: Eclipse installation

4.1.10 Constraint from Label Access Workflow Component

Description: This tool is used to extend an AMALTHEA model respectively and create an
AMALTHEA Constraints model by modeling precedence constraints of runnables and/or
tasks based on read and write accesses of runnables to labels. The tool assumes that each
label is written only by one runnable and only once.

License: EPL

Intended Audience: System integration, system verification/validation (in general: those dis-
ciplines that require a Constraints model)

Documentation URL: Not publicly available

Download URL: Not publicly available

Technology Readiness Level (TRL): TRL 3

Input: AMALTHEA Software Model (.amxml)

Output: AMALTHEA Constraints Model(.amxml)

Design Step Supported: DS 6 (Derives non-functional requirements (precedence constraints)
from label accesses, i.e. data dependencies), DS 9 (Precedence constraints must be proven
to guarantee data consistency) and DS 10 (Precedence constraints must be considered
at basic software configuration e.g,. at task priority assignment.)

Opportunity for Customization: By the workflow component method “setDefaultConstraintsName”,
user can define the base name used for naming newly created constraints (the constraints
name is combined of this base name and a running number)

Pre-requisites: Eclipse installation

24

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

4.1.11 TA Tool suite

Description: TA Tool Suite is a fully integrated solution for designing, developing and verify-
ing embedded multi- and many-core systems. Timing-Architects’ highly innovative Tool
Suite supports the entire project life cycle, including design, simulation, analysis, archi-
tecture optimization, and target verification. Figure 4.8 to 4.11 shows how the TA tool
suite can be used to model the system (using the TA Explores and Designer modules),
simulate how the modeled system will behave (using the TA simulator), optimize the
systems (using the TA Optimizer module) and verify timing constraints (using the TA
inspector module).

License: Commercial license

Intended Audience: Software Architects, Software Integrator, System Engineers, Testers,
Function Engineers and Electronic and Electric Architecture Designers (E/E Architects).

Documentation URL: https://www.timing-architects.com

Download URL: Only available after purchase

Technology Readiness Level (TRL): TRL 9

Input: System Constraints, System Description, ECU Configuration Description (.arxml),
Trace recording (csv, OT1, BTF), System constraints, System description (.amxmi), Data
specification of an ECUs software system (.mdx), Constraints and requirements(.csv),
Field bus configuration (.fibex), Application configuration (.oil)

Output: System Constraints, System Description, ECU Configuration Description (.arxml),
System constraints, System description(.amxmi), Data specification of an ECUs software
system (.mdx) and Trace recording (.btf)

Design Step Supported: DS 1, DS 2, DS 3, DS 5, DS 6, DS 9, DS 10.2, DS 10.3, DS
10.4, DS D and DS F.

Opportunity for Customization: General Eclipse customization (plug-in support), additional
scheduling algorithms via .dlls and command line interfaces to modules for batch automa-
tion

Pre-requisites: Minimum Windows 7 OS, Min. 2 GB RAM, Min 4 GB space on HDD, Java 8,
CodeMeter software installation from WiBu-Systems AG required and Microsoft Visual
C++ 2013 x86 Redistributable required

25

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 4.8: System/Software Component Modelling.

Figure 4.9: Simulation of system model based on measured runtimes .

Figure 4.10: Optimization of ECU configuration based on optimized simulation model .

Figure 4.11: Verification of timing violations, bottlenecks, and interactions.

26

5 Traceability Support

Traceability in software development refers to the ability to link software artifacts like require-
ments, code, and tests throughout the development life cycle [5]. Traceability facilitates impact
analysis, verifying that requirements have been implemented and tested, and in some domains,
e.g. in the automotive domain, it is required for fulfillment of safety standards such as ISO
26262 [3]. Traceability is a cross cutting concern since it involves linking not only artifacts
from the same design activity but also artifacts that are produced in the different design steps.
It is therefore important that a traceability tool can integrate into an existing workflow and
process in development companies.
In the AMALTHEA4Public project, we collected requirements for a traceability tool that can

integrate into a workflow for the development of embedded systems from a number of industrial
partners, mostly in the automotive domain. Based on the collected requirements, Capra1 has
been developed. A major challenge for traceability tool developers is that traceability needs
differ from company to company and even from project to project [4, 7]. To build a tool that
fits a certain company, one needs to analyze the needs of that company and in most cases
the solution will be feasible for that company only. This is not a good business model for
commercial tool vendors or open source tool developers who want the same tool to be used in
multiple companies. For these reasons, Capra is designed to be a flexible, customizable and
extendable tool in order to carter to different needs in industry.

5.1 Capra

Description: Capra is a dedicated traceability management tool that allows the creation,
management, visualization, and analysis of traceability links within Eclipse. Traceability
links can be created between arbitrary artifacts, including all EMF model elements, all
types of source code files supported by the Eclipse Platform through specialized devel-
opment tools, tickets and bugs managed by Eclipse Mylyn, and all other artifacts for
which an appropriate wrapper is provided. Capra is highly configurable and allows users
(in a company or project) to define link types that are useful to them. Compared to
other similar projects which may have similar features, Capra is not a modeling tool or a
tool for requirements management. All functionality is focused on providing traceability
capabilities, i.e., the ability to create and visualize links between artifacts modeled in
different domain-specific languages. This allows the architecture to be highly modular
and the tool to be extremely customizable. The tools also provides notifications when
changes are made to artifacts that are connected by traceability links so that the user
can also update the traceability links accordingly. Figure 5.1 shows an example of a
graphical visualization of traceability links and Figure 5.2 shows an example of a matrix
representation of traceability links. Both visualizations are automatically generated by
the tool depending on what the user selects.

1https://projects.eclipse.org/projects/modeling.capra

27

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

License: EPL

Intended Audience: Requirements Engineers, Architects, Testers, Developers

Documentation URL: https://wiki.eclipse.org/Capra

Download URL: https://projects.eclipse.org/projects/modeling.capra/downloads

Technology Readiness Level (TRL): TRL 4

Input: Artifacts from different design steps e.g., requirements, models, code, tests, tickets etc.

Output: Traceability model (.xmi)

Design Step Supported: Since traceability is a cross-cutting concern, the tool also provides
support for all the design steps

Opportunity for Customization: The traceability metamodel can be extended or even com-
pletely replaces, visualization can be customized and the storage mechanisms can also be
customized

Pre-requisites: Eclipse Neon installation and PlantUML 2

Figure 5.1: Traceability graph resulting from selecting one requirement.

5.2 Use Cases of traceability (with Capra) in Various Contexts

In this section, we give a brief description on how Capra has been customized and used for
traceability with various tools developed in the project.

2http://plantuml.com/download

28

https://projects.eclipse.org/projects/modeling.capra/downloads

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 5.2: A traceability Matrix. The X mark shows that a link exists between the elements
in the specific row and column.

5.2.1 Capra + AMPLE + VaCoMo

As described in Section 4.1.4 and Section 4.1.5, AMPLE is a component modelling tool that
allows the definition of variation points and VaCoMo is a variability management too that fa-
cilitates modelling of product lines. Together with Capra, these tools provides the functionality
to derive product specific requirements and product specific component models. This is done
by defining traceability links between the requirements and the feature model and between
the feature model and the component model. By deriving specific products from the feature
model by selecting which features t include and which features to exclude, corresponding prod-
uct specific requirements and product specific component models can be derived by following
traceability links. This functionality is illustrated in Figure 5.3.

5.2.2 Capra + ReqTool

ReqTool is a requirements management tool that supports creating requirements in an excel
like table. ReqTool uses Capra to facilitate traceability to and from requirements. ReqTool
demonstrate the capabilities of the Capra framework and the benefits of integrating a require-
ments tool with Capra and the Eclipse framework. By using these frameworks the ReqTool
editor can work with a wide variety of different kinds of artifacts, such as source code elements,
Microsoft Word documents and test cases.
This can give software developers a convenient way to manage requirement, their links to

other artifacts, and the status of tests for them. The convenience and overview that this
provides can result in requirements with a higher quality and better control of the development
process and the resulting software.
An example of traceability functionality integrated inti ReqTool is shown in Figure 5.4.

5.3 Integration of APP4MC and DOORS via OSLC

As part of its efforts to support the basic needs of ISO26262 requirements engineering processes,
OFFIS focused on integrating the IBM DOORS, an industry standard in requirements engi-
neering, with the Amalthea platform. As a result, OFFIS successfully enabled an OSLC (Open
Services for Lifecycle Collaboration 3) based integration between IBM Rational DOORS Next
Generation 4 (in the following IBM DOORS) and the Amalthea OSLC adapter enabling sev-
eral features such as traceability and visualization of the traceability relations from Amalthea
and IBM DOORS. The Amalthea OSLC Adapter provides web access to AMALTHEA Mod-
els. Amalthea model elements are provided as HTML and RDF 5 content. The AMALTHEA

3http://open-services.net/bin/view/Main/OslcCoreSpecification
4https://jazz.net/products/rational-doors-next-generation/
5https://www.w3.org/2001/sw/wiki/RDF

29

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Model-to-Model Transformation

 VaCoMo-2-AMALTHEA

 .

Capra API

Traceability

Links

Variation Point

Resolution (c)

(b)

(e)

Car Headlight

Control

DtRL

DtRL LED

TEPT4400

Sensor

Dim Light

Control

Dim Light

LEDHigh Beam

Control

High Beam

LED

Turn Signal

Control

Parking Light

Control

Fog Light

Control

Fog Light

LED

Right Parking

Light LED

Left Parking

Light LED

Left Light

Chaser LED

Right Light

Chaser LED

Dynamic

(d)

(a)

Figure 5.3: Deriving product-specific component models via a product configuration and trace-
ability links.

30

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 5.4: The ReqTool editor showing requirements as well as the parents and children traced
to the requirements.

OSLC Adapter acts as an OSLC provider for the Architecture Management 6 (AM) domain. It
provides all the services required by the IBM Jazz suite for an integration into IBM DOORS.
The following services have been implemented:

1. Rootservices 7

2. OSLC Service providers

3. OSLC Query capability; the OSLC Query language is not supported yet, but we provide
a SparQL 8 query engine.

4. OSLC Selection Dialogs: The user can browse the Amalthea model elements in a simple
Web page that may be embedded into the web interface of IBM DOORS.

5. OSLC Preview Dialogs: All model elements have also a simple HTML representation.
The preview is shown if the user hovers over a link in DOORS or opens an AMALTHEA
model element in a web browser.

Some services, such as OAuth authorization, are not fully implemented but provided as stubs.
This makes an integration with DOORS possible, although the functionality is still future work.
In order to link between requirements and AMALTHEA model elements, the user must

establish a link between the project area in DOORS and the Amalthea model from the adapter.
6http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-
Version-2.0/

7https://jazz.net/wiki/bin/view/Main/RootServicesSpec
8https://www.w3.org/TR/sparql11-query/

31

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

This is done via the project configuration in DOORS; the models that are provided by the
AMALTHEA OSLC Adapter are recognized as “Artifact Containers” (Figure 5.5). Now the
user can link requirements to model elements via the selection dialog shown in Figure 5.6.
After creating the link, it is visible in IBM DOORS. Hovering over the link opens the preview
in a speech bubble (Figure 5.7).
The links between requirements and AMALTHEA model elements are currently held in

memory by the AMALTHEA OSLC Adapter and are visible in the RDF representation. It
is possible to use SparQL to query for linked elements. This makes it possible to use OSLC
for analyses on combined models from IBM DOORS and AMALTHEA, for example as OSLC
automation on top of IBM Rational Quality Manager 9. Future work may be to use Capra for
storing the links in order to de-couple the inter-domain relations from the models.

Figure 5.5: Linking a project area in DOORS to an AMALTHEA model.

9https://jazz.net/products/rational-quality-manager/

32

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

Figure 5.6: Creating a link.

Figure 5.7: OSLC preview.

33

6 An example of how APP4MC can be
integrated with third party tools

This chapter describes how APP4MC can be integrated in a development workflow that uses
third party tools. We take an example that uses a model driven approach to develop an em-
bedded system called Emergency Braking & Evasion Assistance System (EBEAS). The system
under development (EBEAS) is a system that sends messages to drivers on the road with in-
formation on whether they should immediately brake or evade in case of emergencies while
driving. An overview of how the system should work is given in Figure 6.1. If the front car
detects an obstacle, it should send a message to both the ego, rear and overtaking car with
instructions about the obstacle and request the cars to take action to avoid collision.

Figure 6.1: Emergency Braking & Evasion Assistance System (EBEAS)

To develop such a system, a V-model is assumed since it is a common development process
in the automotive domain. The focus of the development is on the software part of the system
and not the hardware part. However, the hardware that the software will run on is still under
consideration.
Systems engineering (DS 1 and DS 2) is done by using the SYSML profile called CONSES

(Chapter 4.1.3). This profile provides several metamodels that can be used to model the System
Under Development (SUD) such as the environment model which is used to model the system
and its interface to the environment. Once the SUD has been designed, software requirements
can be derived and modeled. In this example, the software requirements are modeled using
scenarioTools (Chapter 4.1.8). Scenario tools allow the creation of the initial software architec-
ture and specification of formal requirements. Specification of formal requirements means that
these formal requirements can also be used for simulation and consistency checks of e.g., tim-
ing constraints. The specification of the behavior of the SUD is done using MechatronicUML.
MechatronicUML allows for the definition of real-time state charts to describe the behavior
of the system. The real-time state charts from Mechatronic UML can be used to generate an
AMALTHEA model and the AMALTHEA model generated can be used to generate C/C++

34

D1.3 – Preliminary Design Handbook ITEA 2 – 13017

code for the software. This is done through model to model transformations. To connect all the
artifacts from system requirements to implementation, Capra (Chapter 5.1) is used. Figure 6.2
shows the tools used in the different steps of the V-model.

Figure 6.2: Combining the APP4MC platform with third party tools in a development process.

For a more detailed explanation and the EBEAS models created/generated at each step,
please refer to [2].

35

7 Conclusion

This deliverable has given an overview of design steps involved when developing multi-and
many-core systems. It has also shown how the tools developed in the project can be used
for the various design steps. The aim is to make sure that practitioners both from the
AMALTHEA4Public project and outside the project get an understanding of how to develop
multi-and many-core systems and also get an overview of the spectrum of tools (mostly open
source) available for such development. These tools either emerged from the project or were
present and have therefore been further developed by efforts in the project. The deliverable
has a special focus on design activities specific for multi-and many-core systems which are DS
10.2: Partitioning, DS 10.3: Task creation and DS 10.4: Target mapping. The APP4MC
platform which is one of the main outcome of the project has been designed to support these
multi-and many-core activities. Safety related design steps derived from the ISO26262 standard
which are necessary when developing safety-critical systems have also been described.
The deliverable has also discussed aspects of traceability and shown that traceability is a cross

cutting concern when it comes to systems development. A traceability management tool Capra
has been presented with various use cases of how it can be incorporated into the development
activities. Further traceability support between APP4MC and a requirements management
system known as DOORS, has been demonstrated through an OSLC adapter.
To bring the tools together, an example of an Emergency Braking and Evading System

(EBEAS) has been presented which is developed using some of the tools described. The aim
here is to show how the different tools can be integrated in a development environment.
As it can be observed from Table 3.1 and Table 4.1, combining the APP4MC platform with

third part tools ensures that almost all the design steps have tool support. There is only one
step which has no support so far which is DS E: Functional Safety Assessment. While this is
still an area for further research and development for us, we are aware of commercial tools such
as Medini Analyze 1 which have the capability of supporting this step. We therefore recommend
that companies use such tools to complement steps not supported by the APP4MC platform
and other third party tools presented in this report.

1http://www.medini.eu/index.php/en/products/functional-safety

36

Bibliography

[1] Amalthea4Public Project: D1.1: Analysis of Necessary Design Steps / ITEA. 2015.
– Forschungsbericht. Available online

[2] Holtmann, Jörg ; Fockel, Markus ; Koch, Thorsten ; Schmelter, David ; Bren-
ner, Christian ; Bernijazov, Ruslan ; Sander, Marcel: The MechatronicUML Require-
ments Engineering Method: Process and Language / Software Engineering Department,
Fraunhofer IEM / Software Engineering Group, Heinz Nixdorf Institute. Dezember 2016
(tr-ri-16-351). – Forschungsbericht

[3] ISO: ISO 26262 - Road vehicles — Functional safety. November 2011

[4] Kirova, Vassilka ; Kirby, Neil ; Kothari, Darshak ; Childress, Glenda: Effective
requirements traceability: Models, tools, and practices. In: Bell Labs Technical Journal 12
(2008), Nr. 4, S. 143–157

[5] Spanoudakis, George ; Zisman, Andrea: Software traceability: a roadmap. In: Handbook
of Software Engineering and Knowledge Engineering 3 (2005), S. 395–428

[6] Trei, Maria ; Maro, Salome ; Steghöfer, Jan-Philipp ; Peikenkamp, Thomas: An ISO
26262 Compliant Design Flow and Tool for Automotive Multicore Systems. In: Product-
Focused Software Process Improvement: 17th International Conference, PROFES 2016,
Trondheim, Norway, November 22-24, 2016, Proceedings 17 Springer (Veranst.), 2016,
S. 163–180

[7] Winkler, Stefan ; Pilgrim, Jens: A survey of traceability in requirements engineering
and model-driven development. In: Software and Systems Modeling (SoSyM) 9 (2010),
Nr. 4, S. 529–565

37

https://itea3.org/project/workpackage/document/download/2347/13017-AMALTHEA4public-WP-1-D11:AnalysisofNecessaryDesignSteps.pdf

	Introduction
	Structure of the Document

	Overview of design steps
	Support for design steps in APP4MC
	Support for Multi-core Activities
	Partitioning
	Task Creation
	Target Mapping

	Support for Other Activities
	Definition of Software Architecture
	Behavior Modeling
	Implementation
	Validation and Testing
	Functional Safety Concept
	System safety requirements engineering
	Software safety requirements engineering

	Support from third-party tools
	Third Party tools
	ReqTool
	IFAK RDL Editor
	SysML4CONSENS
	AMPLE
	VaCoMo
	MechatronicUML
	SCA2AMALTHEA
	Scenario Tools
	Stimuli from Activations Workflow Component
	Constraint from Label Access Workflow Component
	TA Tool suite

	Traceability Support
	Capra
	Use Cases of traceability (with Capra) in Various Contexts
	Capra + AMPLE + VaCoMo
	Capra + ReqTool

	Integration of APP4MC and DOORS via OSLC

	An example of how APP4MC can be integrated with third party tools
	Conclusion

