
Deliverable D5 Version 1.0 1

ITEA 2 - 09033

TIMMO-2-USE
Timing Model – Tools, algorithms, languages, methodology, USE cases

Report type Deliverable D5

Report name Methodology description V1

Report status Consortium Confidential

Version number Version 1.0

Date of preparation 2011-06-15

Deliverable D5 Version 1.0 2

TIMMO-2-USE Partners

AbsInt Angewandte Informatik GmbH

Arcticus Systems AB

Chalmers University of Technology

Continental Automotive GmbH

Delphi France SAS

dSpace GmbH

INCHRON GmbH

Institute National de Recherche en Informatique et Automatique
INRIA

Mälardalen University

Rapita Systems Ltd, UK

RealTime-at-Work

Robert Bosch GmbH

Symtavision GmbH

Technische Universität Braunschweig

University of Paderborn

Volvo Technology AB

Project Coordinator

Dr. Daniel Karlsson

Volvo Technology AB

Dept 6270, M2.7

405 08 Göteborg

Sweden

Tel.: +46 31 322 9949

Email: Daniel.B.Karlsson@volvo.com

© Copyright 2010: The TIMMO-2-USE Consortium

Deliverable D5 Version 1.0 3

Authors

Cecilia Ekelin, Volvo Technology AB

Arne Hamann, Robert Bosch GmbH

Daniel Karlsson, Volvo Technology AB

Ulrich Kiffmeier, dSpace GmbH

Stefan Kuntz, Continental Automotive GmbH

Wendel Ramisch, INCHRON GmbH

Deliverable D5 Version 1.0 4

Document History

Version Date Description

0.1 2011-05-04 Initial Draft

1 2011-07-08 First released version

Deliverable D5 Version 1.0 5

Table of contents

TIMMO-2-USE Partners ..2

Authors ..3

Document History ..4

Table of contents ...5

1 Introduction ...6

2 Starting Point ..7

2.1 The TIMMO Methodology ..7

2.2 The EAST-ADL Methodology...10

3 Generic Methodology Pattern ...13

3.1 Example ...18

3.2 Abstracting Timing Properties..23

4 Application of the Generic Pattern to Use Cases..........................24

4.1 Integrate Re-useable Component ..24

4.2 Specify timing budgets...29

4.3 Specify synchronization timing constraints36

4.4 Develop Control Application...42

5 Conclusion & Outlook for the second year....................................48

6 EPF Model of the TIMMO-2-USE Methodology49

7 References..50

Deliverable D5 Version 1.0 6

1 Introduction

In this document the intermediate results of the TIMMO-2-USE
methodology are described in detail.

The main goal of the TIMMO-2-USE methodology is to address
practical use-cases that require special consideration of timing
aspects. Related “timing augmented” methodologies, like the TIMMO
and ATESST2 methodologies (see Section 0) do not offer such detail
and mainly describe the application of timing analysis and simulation
techniques for validation purposes. These aspects are also covered
in the TIMMO-2-USE methodology, but additionally it is described
how design decisions can be taken based on timing information. In
other words, the TIMMO-2-USE methodology introduces a
constructive feedback between automotive software system design
and real-time systems engineering.

The basis of the TIMMO-2-USE methodology is the Generic
Methodology Pattern (GMP) described in Section 3. All practical use
cases that are described in Section 4 are mapped to this generic
methodology. One important distinctive characteristic of the GMP is
the integration of top-down and bottom-up development aspects into
one single methodology.

The currently covered use-cases that are described in Section 4 are
the following:

 Integrate Re-useable Component

 Specify timing budgets

 Specify synchronization timing constraints

 Develop Control Application

All of these methodology instances are additionally modeled in SPEM
(Software Process Engineering Metamodel) using the EPF (Eclipse
Process Framework).

Deliverable D5 Version 1.0 7

2 Starting Point

In previous projects software system development methodologies
were developed taking into account timing aspects. In the following
sections, the most prominent projects and the developed
methodologies are shortly presented and related to the TIMMO-2-
USE methodology.

2.1 The TIMMO Methodology

In the ITEA2 predecessor project TIMMO (TIMing MOdel), a system
development methodology was defined explicitly taking into account
the real-time behavior of the developed system, an aspect that is
ignored in many comparable methodologies.

The TIMMO methodology describes the application of the Timing
Augmented Description Language (TADL), that was also developed
in the TIMMO project and that is extended in WP2 of TIMMO-2-USE,
in the context of the automotive software system development
process. Based on the information captured by TADL, the TIMMO
methodology highlights the possibilities of applying timing analyses to
help the designer taking design decisions and verifying the system’s
adherence to timing constraints. This guideline on how timing
analyses can be applied during the development process of
automotive software systems represents the main novelty of the
TIMMO methodology.

The TIMMO methodology is based on EAST-ADL at the higher levels
of abstraction and on AUTOSAR at implementation level (compare
Figure 1).

 Vehicle Phase (EAST-ADL)

 Analysis Phase (EAST-ADL)

 Design Phase (EAST-ADL)

 Implementation Phase (AUTOSAR)

Figure 1- The different Phases of the TIMMO Methodology

Deliverable D5 Version 1.0 8

The development steps (tasks) that are performed in the different
phases of the TIMMO methodology are shown in Figure 2. Please
note that the TIMMO methodology allows design iterations at each
phase. Each task or sequence of tasks involved in creating the
solution in the current phase can be repeated based on the
knowledge gained in the timing analysis tasks (“Analyze timing …”).
For this reason, each phase ends with a milestone acting as gateway
for checking the real-time behavior of the created solution before
continuing system development in the subsequent phase.

Figure 2 - Different phases and tasks of the TIMMO methodology

Timing Analyses

In the following, the timing analyses that can be performed during the
different phases to support the developers in taking design decisions
and helping her to ensure the correct real-time behavior are briefly
sketched.

Vehicle phase

Timing analysis during the vehicle phase focuses on two aspects.
First, the logical validation of the timing requirements is performed.
This consists in a first (in most cases subjective) evaluation of the

Deliverable D5 Version 1.0 9

general satisfiability of the timing requirements through timing
experts.

The second aspect consists in performing consistency checks of the
timing requirements.

Analysis phase

During the analysis phase the timing behavior of initial versions of the
functional models are checked against the timing requirements
formulated at vehicle phase. Additionally, robustness checks are
performed to early detect critical paths in the functional architecture
that need special focus in the subsequent phases.

Design phase

During the design phase the first implementation decisions are taken,
including the mapping of functionalities to computational resources
and utilized communication media. Due to these decisions also many
timing properties of the systems are fixed or can be estimated.
Therefore, the timing models that can be derived at design phase are
much more detailed compared to the previous phases. This enables
more detailed timing analyses assessing the approximate dynamic
behavior of the software system under development.

At design phase so-called Response Time Analyses Techniques can
be applied for the first time. They are performed to verify the system’s
adherence to end-to-end timing requirements. Response time
analysis can be performed for a wide range of scopes, spanning from
single tasks to complex cause-effect chains involving several ECUs.

Implementation phase

In the implementation phase all details for accurate timing analyses
are available. However, while in the previous phases the results of
timing analysis can be used to take design decisions, the focus
during the implementation shifts to pure validation, i.e. it is checked in
detail if all imposed timing requirements from the previous phases are
satisfied.

AUTOSAR defines four different views on the developed software
system:

 Virtual Function Bus (VFB) View

 System View

 Component View

 Electronic Control Unit (ECU) View

Each of these views focuses on different aspects, and thus different
timing analysis techniques are applied. For instance, on system view
the validation of global end-to-end delays, e.g. maximum reaction
constraints, spanning several ECUs are of interest. In the case of the
ECU view, the focus lies on response time analysis on task level and
deadlock analysis for shared resources.

Relation to the TIMMO-2-USE methodology

Deliverable D5 Version 1.0 10

The TIMMO methodology is one of the corner stones for the TIMMO-
2-USE methodology. The main differences compared to the TIMMO-
2-USE methodology are twofold:

 The TIMMO methodology has a pure top-down view on the
development process of automotive software systems. In
contrast, the TIMMO-2-USE methodology explicitly considers also
bottom-up aspects that play an important role for many use
cases.

 The TIMMO methodology’s main use case lies on the application
of timing analyses during the development process. The TIMMO-
2-USE methodology covers many more practical use cases that
require the consideration of timing aspects. Examples include the
specification of time budgets, the integration of new functionalities
into an existing system, the development of control applications,
etc.

2.2 The EAST-ADL Methodology

The purpose of the EAST-ADL Methodology, developed in the
ATESST2 project, is to give guidance on the use of the EAST-ADL
language for the construction, validation and reuse of a well-
connected set of development models for automotive embedded
software.

Given the complexity of the development activities in automotive embedded software
development, it is mandatory to structure the methodology so as to enable a relatively
fast and easy access to the EAST-ADL language for a small kernel of essential
development activities which can then be seamlessly extended to a comprehensive
treatment of the language including more specialized development activities which
may not necessarily be used in any development project. Hence the methodology is
structured into two major components, as illustrated in

Figure 3:

Figure 3 - The structure of the EAST-ADL methodology

The main component, the kernel methodology part, comprises a top-
down description of the central constructive phases of automotive
embedded software development.

Deliverable D5 Version 1.0 11

The left side of the kernel methodology directly reflects the
abstraction levels adopted by EAST-ADL. These phases describe the
tasks and activities that need to be performed on the respective
abstraction level in order to efficiently use the language in automotive
embedded system development. The implementation phase,
however, contains a reference to the AUTOSAR methodology. It
therefore only describes how to transit from the design phase to
implementation in AUTOSAR.

On the right side, integration and verification and validation is found.
The focus in the EAST-ADL methodology is in these phases on the
V&V aspects.

The kernel methodology is extended into a comprehensive
methodology for automotive development projects by adding three
additional and orthogonal activities to each of these phases:

 Specification of V&V cases to be executed and evaluated during
the corresponding integration phase. V&V cases are most
typically test cases, but can also include reviews etc.

 Verification of the model on a given abstraction level to the
requirements of the model at the abstraction level directly above.

 V&V activities on the model artifacts of a given level itself, i.e. peer
reviews, consistency checks, check of modeling guidelines etc.

The second main component of the EAST-ADL methodology consists
of a set of complementary loosely-coupled extensions to the kernel
methodology. Each of these extensions may be used as an add-on to
the kernel activities. The following extensions are currently included:

 Environment Modeling: Modeling of the (typically analog or
discrete-analog) environment of the system to be developed.

 Requirements and V&V: Detailed handling of complex
requirements and V&V artifacts.

 Safety Assurance: Development of Safety-critical systems

 Timing: Detailed handling of timing requirements and properties.

 Variability Modeling: Detailed handling of variability modeling.

 Behavior modeling: Detailed handling of behavioral modeling

The main idea is that the user of the methodology can compose any
set of extensions with the kernel. In order to illustrate the intended
correlation and interaction between the extensions, the EAST-ADL
methodology presents four different configurations (where a
configuration is a set of extensions plus the kernel) of increasing
complexity:

 Core: Only basic structural models in the kernel methodology.

 Quality: Requirements and V&V extensions are added to Core.

 Quality+: Variability, timing, behavior and reuse added to Quality.

 Safety: Safety added to Quality+.

The timing extension

All timing aspects, including analysis, are captured in the timing
extension. The timing extension contains a simplified and collapsed

Deliverable D5 Version 1.0 12

version of the TIMMO methodology, and has a clear focus on
specification of timing constraints in the vehicle, analysis and design
phases. The reason is that the analyses indicated in the vehicle and
analysis phases of the TIMMO methodology are of relatively informal
nature. Detailed timing analysis is not available until a hardware
architecture is defined in the design phase. The implementation
phase of the EAST-ADL methodology does not contain any timing
since AUTOSAR v3.1, to which the methodology interfaces, does not
support timing.

The timing extension of the EAST-ADL methodology contains the
following tasks:

 Capture Vehicle Timing: End-to-end timing constraints as well as
other timing constraints relevant for Vehicle Features are defined.

 Capture Internal Analysis Timing: A budget of delay timing
constraints making up end-to-end timing as well as other timing
constraints constraining elements inside the
FunctionalAnalysisArchitecture are defined.

 Capture External Analysis Timing: End-to-end timing
constraints as well as other timing constraints on external input
and outputs are defined

 Assess Timing Feasibility: Consistency of timing constraints and
feasibility of meeting timing constraint under a chosen
DesignArchitecture is assessed.

 Capture External Design Timing: End-to-end timing constraints
as well as other timing constraints on external input and outputs
are defined.

 Capture Internal Design Timing: A budget of delay timing
constraints making up end-to-end timing as well as other timing
constraints constraining elements inside the
FunctionalDesignArchitecture are defined.

Relation to the TIMMO-2-USE methodology

The EAST-ADL methodology addresses all aspects of the automotive
EE development process, whereas the TIMMO-2-USE methodology
focuses on a certain set of use cases related to timing that are
mapped to a Generic Methodology Pattern (GMP), see section 3. The
GMP summarizes all tasks in all extensions (except timing) of the
EAST-ADL methodology in one task: Create solution. The tasks in the
timing extension correspond to the other tasks in the GMP. However,
such mapping is not straight-forward and will result in a many-to-
many relation.

Deliverable D5 Version 1.0 13

3 Generic Methodology Pattern

This chapter describes the TIMMO-2-USE Generic Method Pattern
that is the basis for all steps to be taken during the course of a phase
that deals with creating, altering, processing, and utilizing timing
information.

Important Assumptions

The following assumptions shall be kept in mind when reading the
following paragraphs:

1. All tasks can be repeated an arbitrary number of times.

2. A sequence of tasks can be repeated an arbitrary number of
times.

3. A role or roles performing a task have access to all artifacts
that are a) available at the beginning of a phase, and b)
created by tasks during the course of the phase. For all details
about the work product dependencies refer to the EPF model
[4].

4. The term “Timing Property” is used in such a way that it refers
to the timing property and its value.

Introduction

As shown in Figure 4, the TIMMO-2-USE Generic Method Pattern
consists of the five tasks1 called “Create Solution”, “Find Timing
Properties”, “Analyze”, “Verify and Validate”, and “Specify Timing
Requirements”.

By and large, these tasks are carried out on every level of abstraction
defined by the EAST-ADL respectively during every phase of the
corresponding EAST-ADL methodology. As shown in Figure 5 there
are two exceptions: The first exception is that on the Vehicle Level
respectively at the beginning of the Vehicle Phase, a formal work
product “Timing Requirements” is not available.

And the second exception is that on the Operational Level
respectively at the end of the Operational Phase the task “Specify
Timing Requirements” is not carried out.

1 The term “task” is used for a number of subsequent steps to be taken to process the timing
related input work products and create the corresponding timing related output work products.

Deliverable D5 Version 1.0 14

Figure 4 - TIMMO-2-USE Generic Method Pattern

Instantiation

As already indicated in the previous paragraph the TIMMO-2-USE
Generic Method Pattern can be applied on all levels of abstractions.

Figure 5 - Instantiation of TIMMO-2-USE Generic Method Pattern

Deliverable D5 Version 1.0 15

This instantiation is shown in Figure 5. On every level of abstraction
respectively in every phase the corresponding tasks are conducted –
except the “Specify Timing Requirements” on the Operational Level.
At the end of the Vehicle-, Analysis-, Design-, and Implementation
Phase the work product “Timing Requirements” evolving from the
particular is phase is passed as basis for subsequent activities in the
following phase – except the Operational phase.

In the following, all tasks and their purpose are described briefly. The
tasks are described in the order as they appear in Figure 4 (from left
to right).

Create Solution

Based on the given requirements2, including timing requirements, that
originate from the higher level of abstraction respectively previous
phase a solution is created, or an already existing solution is revised.
While creating/revising the solution the given timing requirements
must be considered, in other words the given timing requirements,
like any other non-timing requirement, guide the creation of the
solution. The resulting solution is captured in appropriate models. In
case of EAST-ADL these models are the Technical Feature Model
TFM, Functional Analysis Architecture FAA, Functional Design
Architecture FDA, Hardware Design Architecture HDA, and
Environment Model EM.

Several solutions (alternatives) can evolve from the task “Create
Solution” and each of those solutions shall satisfy the given
requirements. However, each solution may result from specific design
decisions that have been taken during the course of this task.

Find Timing Properties

Once the solution has been created, the timing properties of this
solution are specified and the values of these timing properties are
determined and assessed. The methods applied to determine – find –
the particular values are manifold: [timing] expert estimation,
simulation, analysis, educated guess, knowledge from previous
projects respectively iterations, etc. The most appropriate and
suitable method should be selected for this purpose.

The objective of this task is to find timing properties that are inherent
in the solution and its requirements. The methods to perform this do
not involve taking any design decisions. The properties found in this
task shall rather form the basis for such design decision in
subsequent tasks.

Note that the purpose of this task is not to define new types of timing
properties, but to decide which of the timing properties, like latency,

2 A solution created on the higher level of abstraction respectively in the previous phase, is
considered as requirement – a set of requirements – as well.

Deliverable D5 Version 1.0 16

response time, execution time, sampling rates, etc. are used to
describe the dynamic behavior of the solution.

If several solutions are available, then each of those solutions is
annotated with timing information. And with regard to the dynamic –
temporal – behavior of the solutions there may be different critical
paths leading to different sets of timing properties and their values.

Analyze

Based on the solution and its timing properties the specific those
timing properties are assessed with regard to the target system. The
timing properties found so far are taken as basis for creating more
elaborate and comprehensive timing properties. These timing
properties are likely, but not necessarily, involved in some form of
design decisions. In order to perform the assessment the scope of
the analysis is broadened in order to include a larger part of the
system and all timing properties associated to that part of this system.

The methods applied to assess the values of the timing properties are
manifold and the most appropriate and suitable method should be
selected for this purpose. Such a method could be as simple as an
addition of values, or it could be more complex, like applying a
calculus on the given numbers. In addition, the methods being used
for analyses may vary depending on the phase: On higher levels of
abstractions other methods are used than on lower levels of
abstraction. For example, scheduling analysis is used on
implementation level, but not on abstraction levels like Vehicle Level.

At this point, several solutions (alternatives) may be available and in
this case the purpose of the task “Analyze” is to identify and quantify
the strengths of every solution with regard to the dynamic – temporal
– behavior. One can select the most appropriate and/or promising
solutions in order to proceed with the development.

Verify and Validate

Eventually, the timing properties are [“officially”] verified and
validated.

By and large the two primary questions are answered:

1. Has the specification of the timing properties’ values be done
right?

2. Have the right [values of the] timing properties be specified?
Are the given timing requirements be satisfied by the specified
timing properties?

During the course of this task the values of the timing properties are
compared against the values of the given timing constraints received
from the higher level of abstraction respectively previous phase. The
primary purpose of this task is to decide whether to continue
conducting the subsequent tasks in the development process, or to
repeat any or a sequence of previous tasks. In other words at this

Deliverable D5 Version 1.0 17

point it is decided “whether the numbers are good enough for
progressing”, or whether those numbers have to be revised
(iteration). It could also happen that the solution subject to timing
analysis must be revised, or even worse a new solution must be
searched. Essentially, this is the task which “compares the numbers
of timing properties with given timing constraints”.

When several solutions (alternatives) are available the purpose of the
task “Verify and Validate” is to verify and validate the timing
properties of every solution. One has to select the most appropriate
solution – one solution – in order to proceed with the development.

Milestone: Quality Gate

At a quality gate, which is not shown in the given figures, immediately
following the task “Verify and Validate” the results of the verification
and validation are checked. And a decision must be taken either to
continue or to repeat the phase. At this point one can decide whether
and if so how to repeat the phase. For example, sometimes it would
only be necessary to repeat a specific or a number of tasks, rather
than all tasks in the phase.

Specify Timing Requirements

Once the quality gate has been passed all or some of the obtained
timing properties are converted into corresponding timing
requirements.

The result of the task is not that all timing properties that were found
in the previous tasks are converted into timing requirements, but only
those of them which are important for respectively the basis for
design decision to be taken in subsequent steps.

These timing requirements are the basis for any design work being
conducted on the next level of abstraction respectively next phase.

Deliverable D5 Version 1.0 18

3.1 Example

This paragraph introduces a very simple example that is used to
explain how the Generic Method Pattern is applied respectively
utilized.

Example – Introduction

At the beginning of a phase the solution and the corresponding timing
requirements are available from the previous phase respectively
higher level of abstraction. This solution is shown in the upper part of
Figure 6. The solution is a function/component with one required and
one provided port. The function/component receives a signal from the
environment via its required port and emits a signal to the
environment via its provided port.
In the artifact “Timing Requirements” attached to the solution one
event chain is specified. This event chain and the timing constraint
are depicted by the blue colored event chain drawn above the
function/component called “Function” in Figure 7. The event chain
references an event and its occurrence can be observed at the
required port. The event is playing the role of the stimulus. The event
chain references a second event and its occurrence can be observed
at the provided port. The event is playing the role of the response. A
latency timing constraint (TC) is imposed on this event chain (EC)
and its value is 125 ms including a variation – jitter – of 30 ms
resulting in a time range of 110 ms to 140 ms.

Component Latency Timing Constraint Minimum Maximum

Function 125 ms, -15 ms, +15 ms 110 ms 140 ms

Example – Create Solution

On the current level of abstraction – in the current phase – a solution
is created by performing the task “Create Solution” that is supposed
to satisfy the given functional and non-functional requirements,
specifically the timing requirements. This solution is shown in the
lower part of Figure 6. It consists of two functional devices («FD»)
and two functions/components («AF»). One of the functional devices,
the one on the left-hand side in the figure, represents the sensor and
the other functional device, the one on the right-hand side in the
figure, represents the actuator. The purpose of the functional device
named “Sensor” is to provide data from the environment to the E/E
system subject to be developed; and the purpose of the functional
device called “Actuator” is to “control/impact” the environment. Two
functions/components («AF») called “F1” and “F2” processing the
data received from the environment via the functional device “Sensor”
and control/impact the environment via the functional device called
“Actuator”. The functional device “Actuator” provides additional data
to the function/component called “F1”.

Deliverable D5 Version 1.0 19

Figure 6 - A simple example to demonstrate the use of the TIMMO-2-USE Generic
Method Pattern

Example – Find Timing Properties

During the course of the task “Find Timing Properties” the solution is
annotated with events, event chains, and timing constraints as shown
in the lower part of Figure 7 – depicted by the red colored event chain
drawn above the functions/components called “Sensor”, “F1”, “F2”,
and “Actuator”. On this level of abstraction the given event chain
including its latency timing constraint is broken down into four
subsequent event chains, playing the role of event chain segments,
and latency timing constraints are imposed on those four event
chains respectively event chain segments. In addition a periodic
event triggering constraint is imposed on the event that is observed at
the provided port of the functional device called “Sensor”, because
the solution provides data for example periodically.

In this example, an event chain referring to the second provided port
of functional device called “Actuator” and the second required port of
the function/component called “F1” is not specified, because this path
is considered unimportant with regard to timing. Note that in other
cases this path could possibly have a significant impact on the
dynamic behavior of the system, e.g. in a control application, and
then must be considered accordingly.

Deliverable D5 Version 1.0 20

Figure 7 - The simple example to demonstrate the use of the TIMMO-2-USE Generic
Method Pattern annotated by timing information

Furthermore, an event chain can be specified referring to an event
that is observed at the required port of the functional device called
“Sensor” and an event that is observed at the provided port of the
functional device called “Actuator”. And a timing constraint is imposed
on this event chain. This timing constraint – the property and the
value – may be the same as the given one.

The values of all those timing properties are determined, too, and for
good reasons one could specify the following latency timing
constraints:

1. A latency timing constraint imposed on the functional device called
“Sensor” of 30 ms including a variation of -2 ms and +5 ms
resulting in a time range of 28 ms to 35 ms.

2. A latency timing constraint imposed on the function/component
called “F1” of 20 ms including a variation of -1 ms and +2 ms
resulting in a time range of 19 ms to 22 ms.

3. A latency timing constraint imposed on the function/component
called “F2” of 45 ms including a variation of -5 ms and +3 ms
resulting in a time range of 40 ms to 48 ms.

4. A latency timing constraint imposed on the functional device called
“Actuator” of 25 ms including a variation of -2 ms and +10 ms
resulting in a time range of 23 ms to 35 ms.

Deliverable D5 Version 1.0 21

The following table summarizes the values of all determined latency
timing constraints.

Component Latency Timing Constraint Minimum Maximum

Sensor 30 ms, -2 ms, +5 ms 28 ms 35 ms

F1 20 ms, -1 ms, +2 ms 19 ms 22 ms

F2 45 ms, -5 ms, +3 ms 40 ms 48 ms

Actuator 25 ms, -2 ms, +10 ms 23 ms 35 ms

 Totals: 110 ms 140 ms

Additionally, the value of the periodic event triggering constraint that
is imposed on the event observable at the provided port of the
functional device called “Sensor” is 10 ms including a variation – jitter
– of 2 ms resulting in a time range of 8 ms to 12 ms.

Example – Analyze

In this step – carrying out the task “Analyze” – the values of the timing
properties specified are scrutinized.

In the example, executable models that are available for every
component are used to perform simulations in order to analyze the
timing behavior of the given solution. During the simulations it turns
out that the function/component “F1” tends to have a slightly larger
response time than specified during the task “Find Timing Properties”
– typically 5 ms – which leads to a variation of +8 ms.

Further analyses show that the assumptions made during the task
“Find Timing Properties” with regard to the dynamic behavior of the
inter-connect between “Actuator” and “F1” were not correct. It turns
out that the variation of the response time is not as large as
presumed before. Continuing simulations lead to the fact that the
latency timing constraints can be adjusted accordingly; in this case
the variation is not more than +2 ms.

Table 1 summarizes the values of all determined latency timing
constraints.

Component Latency Timing Constraint Minimum Maximum

Sensor 30 ms, -2 ms, +5 ms 28 ms 35 ms

F1 20 ms, -1 ms, +8 ms 19 ms 28 ms

F2 45 ms, -5 ms, +3 ms 40 ms 48 ms

Actuator 25 ms, -2 ms, +2 ms 23 ms 27 ms

 Totals: 110 ms 138 ms

Table 1 - New values of the latency timing constraints after performing timing
analyses on the given solution

Deliverable D5 Version 1.0 22

Example – Verify and Validate

The obtained values of the timing properties are now compared
against the given timing constraint specified at the higher level of
abstraction. For this purpose, an event chain is specified that
references the event observable at the required port of the functional
device called ”Sensor”, playing the role “Stimulus”, and that
references the event observable at the provided port of the functional
device called “Actuator”, playing the role “Response”. This event
chain and the timing constraint imposed on it are depicted by the blue
colored event chain shown in the bottom part of Figure 7. A latency
timing constraint is imposed on this event chain and the value of this
latency timing constraint is as follows:

Latency Timing Constraint Minimum Maximum

120 ms, -10 ms, +18 ms 110 ms 138 ms

A comparison of this timing property of the solution with the given one
mentioned in the introduction of the example shows that the solution
satisfies the given timing constraint respectively latency timing
constraint: 110 to 138 ms versus 110 to 140 ms.

Example – Specify Timing Requirements

As a formal step the determined timing property – latency timing
constraint – and its value – 110 ms to 138 ms – are declared as
timing requirement/constraint which shall be considered in the next
phase, in particular when carrying out the task “Create Solution” in
the following phase. Note, that the timing properties, associated with
every functional device and function/component, are not converted
into timing requirements.

Deliverable D5 Version 1.0 23

3.2 Abstracting Timing Properties

This sub-section describes the idea of “Abstracting Timing Properties”
on a lower level of abstraction in order to use them on a higher level
of abstraction. The results of this abstraction are used as additional
(optional) input work product for the task “Find Timing Properties”.

Figure 8 shows a simplified view of the methodology with regard to
this approach. The task “Transform Timing Properties” on the lower
level of abstraction transforms the timing properties’ values of a
solution created on this level of abstraction into values of timing
properties that can be used at the higher level of abstraction. The
transformed timing properties, including their values, are an optional
input work product for the task “Find Timing Properties” conducted on
the higher level of abstraction. The idea behind this is that values of
timing properties that are obtained during later phases of the
development process can be used on higher levels of abstraction
respectively in earlier phases of the development process. This is an
important capability in order to support iterative development
processes.

Figure 8 - Abstracting Timing Properties

Deliverable D5 Version 1.0 24

4 Application of the Generic Pattern to Use Cases

In this chapter several specific use cases defined in Deliverable D1
are addressed. All of these methodology instances are based on the
Generic Methodology Pattern introduced in Section 3.

4.1 Integrate Re-useable Component

Problem statement

In the context of the automotive industry, an OEM offers a range of
vehicles marketed in different classes which provide different extents
of functionalities related to safety, comfort, or similar criteria. Caused
by marketing tendencies and proceedings in technology, vehicles are
being enriched by new functionalities either newly invented or taken
over from higher class vehicles. This use case also applies when new
platform generations are being developed. In that case new
functionalities are integrated step-wise during the development
phase.

Usually, new functionalities will not be introduced independent of the
existing system’s functionalities but will be integrated into the existing
system’s ECU(s) and communication topology.

Changing a system’s architecture necessarily changes its behavior
with respect to timing.

This use case addresses the challenges which arise during the
process of integration.

Overview

The integration may cover a single ECU, or even several ECUs
including their communication paths. In this use case, only one ECU
will be taken into account, and the focus will be on the Design phase.
In phase 2 of the TIMMO-2-USE project, this use case will be
elaborated describing the integration of a more sophisticated
functionality finally spanning more than one ECU.

Prior to the detailed integration process, an ECU (or several
alternative ECU candidates) has to be chosen which the design
function in question will be integrated on. There might be several
aspects to be considered when choosing an ECU, like the functional
domain which it belongs to (e.g. body controller), physical location
(e.g. near front wheels), availability of input signals (e.g. sensor
signals, buses), or availability of processor capacity (idle time).
However, the ECU selection process is not part of this methodology.

The investigations on the use case “Integrate Re-usable Component”
assume that the software system executed on the target ECU, which
the design function is to be integrated into, was developed according
to the Generic Methodology Pattern (see Section 3). Therefore, we
assume that it is described in an EAST-ADL model on design level
including timing information. This means, that the model contains all
components necessary for fulfilling the system’s functionality, and all
timing properties of the components are known and described, e.g.
WCET and activation periods of functions.

The use case considers two integration scenarios:

Deliverable D5 Version 1.0 25

A) adding a legacy design function

B) developing and adding a new design function

In scenario A, it is assumed that also for the legacy design function
an EAST-ADL model exists which contains TADL2 compliant timing
information.

For scenario B, there are two approaches how to start integration:

1) Developing the new design function stand-alone without taking
into account interactions with the target system. In this case a
separate EAST-ADL model is created for the new design function
including timing information. In a second step this new model is
merged into the existing one as in scenario A.

2) Developing the new design function directly into the existing
model explicitly taking into account interactions with the target
system.

The approach B1 starts identically to developing a new functionality
from scratch, that is, include treatment of timing information according
to the generic methodology resulting in a stand-alone solution. This
stand-alone solution would then have to be integrated into the
existing solution which is identical to scenario A, i.e. integrating a
legacy design function.

In this use case the scenarios A and B1 will be taken into account, so
this use case will deal with integration of one EAST-ADL model
into another, both models already containing timing information.

The further considerations basically reflect the Design phase. In the
Vehicle and Analysis phases, models consist of pure functional
components where end-to-end delays are composed by chaining
budget segments of the components, and resources are considered
to be infinite. Thus models can be investigated stand-alone. In
contrast to this, in the Design phase components are declared as to
be realized in hardware or software which results in a Hardware
Design Architecture (HDA) and a Functional Design Architecture
(FDA). On this level, and on the lower Implementation level, the
integration aspect can be investigated, i.e. the interference of
components due to competition for common resources.

Mapping to Generic Methodology Pattern

Figure 9 illustrates the integration process, and how it maps to the
generic methodology presented in section 3.

In the following paragraphs, the existing system which the design
function shall be integrated into is referenced with the suffix _EXIST
(e.g. Solution_EXIST) while the design function to be integrated is
referenced with the suffix _INTEG (e.g. Solution_INTEG). The final
system including both solutions is referenced with the suffix _BOTH
(e.g. Solution_BOTH).

Deliverable D5 Version 1.0 26

Figure 9 - Generic methodology applied on integration

Create Solution

When performing the task Create Solution, the components of
Solution_EXIST and Solution_INTEG have to be brought together to
become Solution_BOTH. From the functional perspective, the
solutions still may co-exist in the resulting model as long as no
functional synergy is detected. This also implies that both solution
topologies including inter-component communication may remain
unchanged. However, reuse of input (and output, if applicable) ports
is advised, e.g. in case both solutions use the same sensor signal.

It is assumed that the resulting model Solution_BOTH will contain the
same events like the previous models Solution_EXIST and

Create Solution

Analyze

Create new model
considering both
models

Analyze
Solution_BOTH

Solution_EXIST

Solution_INTEG

Find Timing Properties

Solution_BOTH

Analysis report

TimingProps_BOTH

Update
Solution_INTEG’s
timing properties

TimingProps_INTEG

TimingProps_EXIST

Update
Solution_EXIST’s
timing properties

Verify & Validate

V&V report

Check fulfillment of
Solution_INTEG’s
timing requirements

Check fulfilment of
Solution_EXIST’s
timing requirements

TimingReqs_INTEG

TimingReqs_EXIST

Deliverable D5 Version 1.0 27

Solution_INTEG, so that all timing requirements applied on the
models, specified in the level of abstraction above, persist in the
resulting model.

Find Timing Properties

The scope of the task Find Timing Properties is twofold and therefore
described in two subtasks.

1) Update _INTEG’s timing properties

2) Update _EXIST’s timing properties

The focus in subtask 1 is on updating the timing properties of
Solution_INTEG, like WCET of functions. This is necessary, since
usually the target system already accommodating Solution_EXIST is
different from the system which Solution_INTEG was developed on.

There might be different ways of updating the timing properties. For
instance, for execution times the following two approaches are
possible:

 Transforming Solution_INTEG’s timing properties from the old to
the new hardware/software design architecture.

o One possible method here is extrapolation, i.e. given an old
value of a timing property, the new value is computed by
applying an extrapolation formula. The most simple case is
linear extrapolation. For example, if the processor clock rate

changes, then the new WCET may be estimated as WCETnew

= WCETold * Clockold / Clocknew, where Clock is the number
of processor cycles per second. For this simple formula it is
assumed that the number of processor cycles for reading and
writing memory remains the same. Note, that extrapolation is
a kind of estimation, so it may be necessary to add a safety
margin to the new WCET and to classify it accordingly. One
advantage is that extrapolation can be supported by tools.

 Measuring execution times of Solution_INTEG’s components on
the new target – this follows a bottom-up approach and requires
the availability of the target processor and the possibility of easily
porting Solution_INTEG on the target processor before
integration.

The methodology will not give advice on how to update the necessary
timing properties; this is subject to the specific characteristics of a
particular project.

Subtask 2 deals with updating the timing properties of
Solution_EXIST. These timing properties might change in the
presence of the integrated design function. Examples of timing
properties subject to change are:

 WCET (e.g. due to caching effects, pipelining, etc.)

 Scheduling parameters (e.g. priorities, periods, runnable order,
etc.).

Analyze

In the task Analyze, the Solution_BOTH model is analyzed by means
of, for instance, simulation and/or static analysis. This will result in

Deliverable D5 Version 1.0 28

timing property values and metrics relevant for judging the timing
behavior of Solution_BOTH.

In particular, it is necessary to also re-analyze the timing behavior of
components originating from Solution_EXIST, because after
integration some of their timing property values may have changed.
For instance, response times (WCRT) may increase due to inter-
component interference from added components (see Figure 10).

Figure 10 - Timing behavior before and after integration

Figure 10 illustrates possible effects due to integration. Both
Solution_EXIST and Solution_INTEG have functions which are
activated with 10ms period. Fct_10ms_INTEG has been mapped into
the same 10ms task which contains Fct_10ms_EXIST. Certain
considerations led to the design decision that Fct_10ms_INTEG shall
be placed at the beginning of the task. Of course, this leads to an
increased response time of the 10ms task compared to before the
integration. Also the response time of function Fct_10ms_EXIST will
increase in the depicted scenario.

Verify & Validate

The task Verify & Validate compares the analysis results (timing
behavior of Solution_BOTH) with the requirements. It consists of two
parts:

Besides verifying the timing behavior of the integrated
Solution_INTEG also the timing behavior of the original system
Solution_EXIST, which is now a part of Solution_BOTH, has to be re-
verified.

Specify Timing Requirements

The scope of the task Specify Timing Requirements is to transform
the timing properties of Solution_BOTH into timing requirements for
the next (lower) level of abstraction. The activities to be done in the
task Specify Timing Requirements are not specific to this use case.
Therefore, this task is not described here in more detail.

Fct_10ms_EXIST

Task10ms Solution_EXIST

Fct_10ms_INTEG

Task10ms Solution_INTEG

Task10ms Solution_BOTH

Fct_10ms_EXIST Fct_10ms_INTEG

Deliverable D5 Version 1.0 29

Remark

On the Implementation Level similar tasks have to be performed as
described here for the Design Level, i.e. an existing AUTOSAR
Solution_EXIST has to be integrated into an AUTOSAR
Solution_INTEG. Additional complexity results from the re-use of
common software components, e.g. for basic software services.
Again, the timing properties of both solution parts will persist, but their
values may change and must be verified or validated against the
original requirements.

4.2 Specify timing budgets

Problem statement

A driver generally has certain expectations on the reactivity of the
vehicle he is driving. For example, it would not be acceptable to wait
for 5 seconds for the doors to unlock after he has pressed the key. A
more acceptable time limit would be 1 second. Such time limits,
hereafter called end-to-end delays, are specified based on a user’s
perception with respect to a certain functionality.

In a design, the data and control flow paths between a stimulus and a
response generally go through several components. These paths
from stimulus to response are called end-to-end event chains. The
components in the end-to-end event chain are to be implemented by
different suppliers or in-house development teams. It therefore has to
be clear for each such supplier or team exactly how big portion of the
total end-to-end delay is available for the component that they
implement.

Time budgeting is thus about how to divide an overall end-to-end
delay into smaller segments, in order to specify how big portion a
component (or subcomponent) in the path between stimulus and
response may take.

Overview

An end-to-end delay generally originates from an explicit or implicit
user requirement or expectation. Other sources of end-to-end delays
are legislation, standards or legacy. The methodology described here
focuses on how to distribute such an end-to-end latency over the
components and subcomponents in the end-to-end event chain.

At the same time with this top-down segmentation of the end-to-end
delay, another part of the development project starts with defining
hardware, software platforms and other low level details. Legacy
functions are also already being introduced. All this means that there
is already early in the development process detailed information
about the final solution that could be useful when assigning time
budgets. Thus, it is beneficial to also introduce a bottom-up flow of
timing information for the purpose of time budgeting. This will reduce
the number of design iterations. A major issue is how to handle this
mix of bottom-up and top-down information. Figure 11 illustrates the
main idea of time budgeting.

For example, on vehicle level, a requirement may postulate that “The
doors shall be unlocked not later than 1 second after a valid

Deliverable D5 Version 1.0 30

transponder key has been recognized”. This requirement specifies
the end-to-end delay that is to be segmented over the end-to-end
event chain on the various abstraction levels.

Since the operational level is the lowest abstraction level, time
budgeting is not performed at this level. It only serves to feed the
bottom-up flow with measured execution data, and to verify that no
task execution times in the final implementation exceed the time
budgets specified on implementation level.

Figure 11 - The principles of time budgeting

Mapping to generic methodology

Figure 12 presents the time budgeting process, and how it maps to
the generic methodology presented in section 3. The Find timing
properties and the Analyze timing properties tasks have been split
into two subtasks each in order to illustrate the activities to be
performed in these tasks in more detail. Moreover, the tasks Verify
timing properties and Specify timing requirements have been
renamed to better reflect their purposes in the context of this use
case. The following paragraphs will describe the figure in more detail.

125
ms

200
ms

400
ms

75
ms

25
ms

30
ms

100
ms

9
ms

33
ms

200
ms

75
ms

Time Budget
1s Vehicle

Analysis

Design

Implementation

Deliverable D5 Version 1.0 31

Figure 12 - Generic time budgeting methodology

Time budget properties

A time budget property is a property that has the potential to influence
the response time of a certain end-to-end event chain, and thereby
also the required time budget. The following properties with this
potential have been identified:

 Worst-case execution time (WCET)

 Communication delay

 Blocking time

 Interference time

 Invocation delay

o Event-triggered: Release delay

o Time-triggered: Task period

Slack vs. margin

Slack is a portion of an end-to-end delay that is not allocated to any
budget segment. Thus, there is only one slack per end-to-end delay.
Slack is generally not communicated to suppliers, but rather serves
as a reserve for interference from other not yet implemented
functionality.

Margin is a part of a budget segment that is excess to the WCET of
the corresponding component. There is thus at most one margin per
segment. Since margin is part of a budget segment, it is (at least
implicitly) communicated to suppliers.

Solution

Time budget
[Higher level]

F
ind tim

ing properties

A
nalyse tim

ing properties

Time budget
properties

[Lower level]

Create solution

Transform time
budget properties
from lower AL

Determine time
budget properties

Estimate influence from
future functionality

Create time budget
proposal

Verify time budget

Specify time budget

Estimated influence
from future functionality

Time budget
proposal

Time budget
verification report

Time budget

Extrapolate time
budget properties

Time budget properties

Product plan

Deliverable D5 Version 1.0 32

Create solution

The solution is created as specified in the generic methodology. It
should however be emphasized that this solution shall be created
while taking the input time budget requirements into account. This
means, for instance, that if the time budget over a series of
components is very tight, it may not be appropriate to allocate the
components on different ECUs scattered across the vehicle, so that a
large portion of the available budget is wasted on communication.
Measures must be taken to maximize the probability that the solution
meets the time budget requirements. In order to take sound decisions
about the distribution of components based on time budgets also
information about the amount of interference is needed. This
information can, for instance, be derived bottom-up from existing
parts of the solution.

Find timing properties

The task Find timing properties identifies time budget properties that
are a direct implication of the solution and its timing requirements.
These properties can be obtained using the following strategies:

1. Transformed from a lower abstraction level

2. Determined from the solution

3. Determined from an extrapolated solution at lower abstraction
level

Each of these strategies is represented by a separate task. All tasks
contribute to the same output work product Time budget properties.
The following paragraphs describe the tasks in more detail.

The purpose of the task Transform time budget properties from lower
abstraction levels is to reuse information that has already been
derived for the parts of the solution that has already been developed
bottom-up at a lower abstraction level. The lower-level properties
cannot directly be copied to the current abstraction level, since the
solution structure looks different and has less detail. The events on
the lower abstraction level therefore have to be mapped to events on
the current abstraction level. Once this is done, the delay constraint
itself can be copied and contain the same information as it did on the
lower abstraction level, with the difference that it is associated with
the current-level events.

The task Determine time budget properties analyses the solution and
its requirements for time budget properties that are a direct
implication of the solution and the requirements at the current
abstraction level. Typical techniques for obtaining such properties are
formal analysis and simulation. At operational level, the task performs
measurements on a physical running system, which a higher level
may transform and apply to its models in the Transform time budget
properties task of that abstraction level.

The task Extrapolate time budget properties addresses a problem
that occurs in particular at high abstraction levels. The information
needed for finding the sought time budget properties is not present at
that level, and it is not found among the transformed properties. In
such cases, it might be necessary to conduct rapid prototyping to
quickly obtain a temporary extrapolation of the system models that
will be developed in later development phases at lower abstraction

Deliverable D5 Version 1.0 33

levels. The analysis is then performed on these lower-level temporary
models in the same way as in the task Determine time budget
properties. The result is then transformed back to the model at the
original abstraction level and the temporary models are discarded.
Naturally, such an approach will not give 100% accurate results, but
will still give a hint on which values are reasonable. In order to make
this strategy feasible and efficient, it is important that all steps,
including the extrapolation, are automatic.

Analyze timing properties

In Analyze timing properties, the time budget properties are further
processed to obtain a time budget proposal. This is done in two
consecutive tasks:

1. Estimate influence from future functionality

2. Create time budget proposal

When making a time budget, not only the current solution (regardless
of abstraction level) needs to be considered, but also the influence of
future functionality. Future functionality refers to both functionality that
is planned but not yet implemented, and to still unknown functionality
that potentially is to be included in future generations of the system.
The task Estimate influence from future functionality compares the
solution and its time budget properties with the product plan to
identify which functionality is still to be added to the system, and also
makes an assessment of the influence of unknown functionality.
Based on this information, the developer needs to assess how much
the still missing functionality affects the end-to-end event chain
currently under investigation. This will eventually lead to introducing
slack in the final time budget. Typical properties that are affected are
communication delay (increased congestion) and task execution
periods (increased competition for computation power), which both
lead to a longer end-to-end delay. Unknown functionality that will be
included into the system in future generations of the system may also
be considered in this task.

A final time budget proposal is formed in the task Create time budget
proposal based on the identified time budget properties and the
estimated influence from future functionality. It should be noted that
this input information only serves as a guideline for the budgeting
process. It is, for instance, sometimes desired to add a margin to a
known WCET, in order to provide for more relaxed implementation.
However, it could even be the case that the resulting time budget for
a certain component is smaller than a WCET property over the same
component that was transformed from a lower abstraction level. In
such cases, the lower-level solution needs to be reworked to comply
with the (new) time budget.

The set of delay constraints in the identified time budget properties
cover, in general, only a part of the end-to-end event chain. A major
challenge in this task is to assign time budgets to segments for which
no time budget properties have been found. Since no information is
available, this has to be done based on behavioral models of the
concerned components with the help of the developer’s previous
experience.

Deliverable D5 Version 1.0 34

Verify time budget

The task Verify time budget compares the time budget proposal with
the initial requirements. The main criterion to be checked is that the
sum of the segments, including slack, does not exceed the end-to-
end delay requirement.

Specify time budget

The task Specify time budget makes a final revision of the time
budget proposal and documents this as a requirement for the next
phase. It should be noted that slack is not part of the requirements
that are handed over to the next phase/abstraction level, whereas
margins are included as part of the budget segment and thus is part
of the requirement.

Application of symbolic time expressions for time budgeting

The tasks in Find timing properties produce results that more or less
reflect properties that are inherent in the solution and input
requirements. The only way that a developer can influence these
properties is by either changing the solution or the requirements. On
the other hand, the tasks in Analyze timing properties appeal to a big
extent to the subjective judgment and experience of the developer.
Symbolic time expressions can be a powerful tool to navigate through
this freedom.

The concept will be illustrated on the example shown in Figure 13.
The figure shows an end-to-end delay of 1 second, which shall be
distributed over five components and communication links (A-E). The
delays of components A, B and D are assumed to be either
transformed, determined or extrapolated WCETs with values 200ms,
50ms and 100ms respectively. Each component has further been
assigned a margin, X, where X is the name of the component.
Margins of 10ms and 20ms have been added to the WCETs of
components A and D respectively, to create some additional space in
the resulting budget segments. This was, in this example, not found
necessary for the other components. These values cannot be further
elaborated unless the solution or input requirements are changed. A
slack, , has moreover been introduced. For the sake of the example,
the slack is assigned 100ms.

Figure 13 - Time budgeting example using symbolic time expressions

The only remaining unknowns are the WCETs of components C and
E. These values are to be filled in based on the developer’s
experience. The main idea behind the approach suggested here is to
evenly distribute the remainder of the end-to-end delay on the
components with unknown delay based on a weight. The weight shall
reflect the relative need for a long time budget. By inspecting the
behavioral models and other descriptions of the components, the
developer will get a feeling for how long time the component would
need to perform its task. In the example of Figure 13, component C is

E C D A B

1 second

200ms + A 100ms + D 50ms 3x 2x

Slack

Deliverable D5 Version 1.0 35

expected to need 50% longer execution time than component E. This
leads to the following equations:

200 + 10 + 50 + 3x + 100 + 20 + 2x + 100 = 1000

x = 104

This gives a budget of 312ms for component C and 208ms for
component E.

This approach can also be extended to include the slack and
margins. As a second example, we could assign 0.1x and 0.2x as the
margins of components A and D respectively, and x as slack. This
leads to the following equations:

200 + 0.1x + 50 + 3x + 100 + 0.2x + 2x + x = 1000

x = 103

Thus, A = 10.3, D = 20.6, = 103, and the budgets of components
C and E are assigned to 309ms and 206ms respectively.

The main advantage of using the symbolic time expression capability
of TADL instead of a pure equation solver is that the developer’s
underlying thoughts and intentions are saved in the model, and thus
can be elaborated by tools.

Instantiation on abstraction levels

The process outlined in Figure 12 is in general applicable on all
abstraction levels. However, some of the tasks in Find timing
properties and Analyze timing properties do not exist for all
abstraction levels, or are less important. Figure 14 illustrates this
relationship.

Figure 14 - The degree of presence of Find and Analyze timing properties tasks at
different abstraction levels

The task Transform time budget properties inherently requires that
there exists a lower abstraction level from which properties can be
transformed. For this reason, it is not present at the operational level.
Since the vehicle level primarily focuses on the user’s needs and
perception, the task is not very present at that level either, although it
sometimes makes sense to peak at results from early
implementation.

The task Determine time budget properties requires that there exists
at least a structural model, and preferably also a behavioral model, to
analyze. This does not exist at vehicle level. Although such models
do exist on analysis level, they often do not contain sufficiently
detailed information that it is possible to directly determine any time
budget properties. Such cases are better suited for the task

Vehicle

Analysis

Design

Impl.

Oper.

T
ransform

 T
B

P

from
 low

er A
L

D
eterm

ine T
B

P

E
xtrapolate

T
B

P

E
st. infl.

fr. future
 func.

C
reate tim

e
budget proposal

TBP = Time Budget Properties

Deliverable D5 Version 1.0 36

Extrapolate time budget properties. However, that task both requires
structural, and preferably also behavioral, models to start the
extrapolation from, as well as lower abstraction levels as target for the
extrapolation. These conditions do not hold for the vehicle and
operational levels.

Since the vehicle level only should reflect the user’s needs and
perception, possible influence from future functions should not affect
the vehicle level’s model. Moreover, the operational level does not
give rise to further time budget requirements. For these reasons, the
task Estimate influence from future functionality does not occur on
this abstraction level.

As time budgets are not specified on the operational level, the task
Create time budget proposal is not present at that level.

4.3 Specify synchronization timing constraints

Problem statement

A vehicle offers many different features such as braking, steering etc,
to the driver. Today, these features are typically implemented using
both mechanical and electronic components. The fact that the
electronic system of the vehicle is integrated with different
mechanical solutions implies that the vehicle electronic system
inherently contains a certain degree of parallelism. That is, the
system needs to monitor and control several simultaneous sources of
input and output. Quite often it is also the case that the input or output
needs to be synchronized in order to provide a notion of simultaneity.
For example, when braking, it is crucial that the brake forces that are
applied at each wheel also are applied at the same time. A correct
behavior is governed by the introduction of synchronization
constraints during the vehicle design. These constraints will then
have to be decomposed into smaller pieces. The purpose of the
decomposition is however primarily to simplify the fulfillment of the
constraint in the design rather than supporting different stakeholders
of the development process. Thus, this use case deals with the
formulation of synchronization constraints and how they are
decomposed into manageable pieces during the design.

Overview

As already mentioned, synchronization constraints can be imposed
on both input and output. Input synchronization means that for a
given response, there is a set of stimuli which should have occurred
within a certain time window prior to the response. Similarly, output
synchronization means that for a given stimulus, there is a set of
responses which should occur within a certain time window after the
stimulus. In addition, the constraint construct uses the notion of an
upper and lower bound on how near in time the window will have to
appear to the given response/stimulus. Thus, the braking example
illustrates the output synchronization where the pressing of the brake
pedal corresponds to the stimuli and the brake actuations are the
responses. The time window would in this case represent the

Deliverable D5 Version 1.0 37

maximum allowed skew in time among the actuations at the different
wheels, e.g., 20 ms. The upper bound would represent a delay
constraint on the time from the brake pedal is pressed until the
actuation is completed, e.g., 200 ms.

From an end-user (i.e. driver) perspective (vehicle level), only output
synchronization constraints are imposed as requirements on the
system. The reason is that it is not possible to place requirements on
how the environment affects the system. It is only possible to
constrain how the system affects the environment. Input
synchronization constraints are introduced on the analysis level when
the vehicle features are translated into functions with sensors and
actuators. The main challenge to address when formulating a
synchronization constraint is the identification of the events which
represent the stimuli/responses as well as finding concrete figures for
the parameters lower, upper and width (of the time window).

Figure 15 - Illustration of synchronization concepts

An illustration of the different concepts can be seen in Figure 15. The
figure shows an example of an ESC (Electronic Stability Control)
system modeled in EAST-ADL (analysis level). In the figure, the red
arrow represents the stimulus for the output synchronization and the
blue arrows are the corresponding responses that need to be
synchronized. In this example, this means that the control command
issued by the ESC function must be simultaneously acted upon by
the wheel actuators to ensure vehicle stability. (A maximum time
deviation of widthOut is allowed.) The stimuli events for the input
synchronization are illustrated using the light blue arrows and in this
case the red arrow represents the response. In the example this
means that the sensor values representing the wheel data needs to
simultaneously sampled in order for the ESC function to compute an
accurate control command. (Again, a sampling time difference of
widthIn is tolerable.)

Mapping to generic methodology

Figure 16 presents the generic process for formulating and
decomposing synchronization constraints including the mapping to

Deliverable D5 Version 1.0 38

the generic methodology. Since the generic methodology applies to
all EAST-ADL abstraction levels, some of the tasks may not be
possible or needed for a particular level. Typically the methodology
tasks involved in formulating the synchronization constraint are
performed at vehicle or analysis level, while the tasks concerning
decomposition of the synchronization constraint are applied at design
and implementation level. It is however still possible to formulate new
synchronization constraints also at the lower levels if needed by the
selected solution. The instantiation of the tasks at the different
abstraction levels is illustrated in Figure 17. The tasks will be
described in more detail in the following paragraphs.

Figure 16 - Generic methodology for formulating and decomposing synchronization
constraints

Figure 17 - The degree of presence of Find and Analyze timing properties tasks at
different abstraction levels

Deliverable D5 Version 1.0 39

Introduce synchronization means

The task Create solution is not part of the timing methodology since it
concerns the regular design activities involved when moving from a
higher abstraction level to a lower. It may however be the case, that
existing synchronization requirements call for the introduction of
certain technical solutions in order to meet these requirements. For
example, it may be necessary to use time triggered communication or
buffering to ensure the simultaneous arrival of distributed messages.

Define events (and event chains)

Before the synchronization constraint can be formulated (or
decomposed), it is necessary to identify and define the events
(stimuli/responses) that will be used in the constraint formulation and
that corresponds to the meaning of the requirement. On the vehicle
level, this typically means the events that are located at the interface
to the plant model since this represents the outer boundary of the
system. When moving from a higher abstraction level to a lower, it is
important to make sure that the mapping of events between the levels
is adequately done. For the events their occurrence pattern has to be
specified using the period parameter. This setting could be made
more or less beneficial concerning the synchronization requirement
and should be carefully selected.

Determine synchronization parameters

At vehicle level, the synchronization requirement will typically not be
expressed in terms of the parameters lower, upper and width but it
will rather be implied as a consequence of other requirements dealing
with human perception, laws of physics, etc. These requirements will
in turn in many cases be fuzzy and non-quantified. Derivation of
concrete figures for the mentioned parameters will therefore typically
be done based on experience or rules-of-thumb. At analysis level, the
behavior of the selected solution algorithms may result in certain
figures in order to fulfill the vehicle level requirement.

Create synchronization constraint proposal

This task addresses the formulation of a new synchronization
constraint in TADL format. Hence, when the events and
synchronization parameters are defined, it is possible to formulate the
actual constraint. However, as part of this task it is also important to
analyze how easy it will be to actually fulfill the constraint in the final
design. Normally there are several choices available for the
parameters and a suitable trade-off between desired synchronization
effect and design feasibility must be made. In particular, the relation
between width, lower, upper and the periodic behavior of the events
plays an important role. For example, if width is 20 ms and the events
occur periodically every 10 ms, the synchronization constraint will
always be satisfied. In contrast, if width is 10 ms and the event
periods 20 ms, the constraint may or may not be satisfied depending
on how the events actually occur in reality.

Decompose synchronization properties

In contrast to the previous task, this task addresses the
decomposition of an existing synchronization requirement. That is,

Deliverable D5 Version 1.0 40

when the synchronization requirement exists in TADL format, the task
is to decompose the constraint into a number of delay constraints and
a “shorter” synchronization constraint. For example, if lower=0 ms,
upper=100 ms and width=10 ms, involving stimuli A, B, C and
response D, this could be divided into a synchronization constraint
with width=10 ms, lower=0 ms, upper=50 ms involving A’, B’, C’ and
D plus three age constraints A’ to A’, B’ to B’ and C’ to C’ with
lower=0, upper=50 ms. To arrive at the figure 50 ms as a suitable
separation point, it is necessary to analyze the underlying timing
properties that are associated with the events. An example for when
the decomposition is feasible is shown in Figure 18 and Figure 19.
The purpose of the decomposition is to simplify the constraint
handling by minimizing the set of entities that each constraint affects.
The idea is that the decomposition maintains consistency. That is, if
the “local” constraints are satisfied, so is also the “global” constraint.
From a constraint point of view consistency is rather straight forward
to obtain. The difficulty lies in ensuring that the constraints also are
met by the solution.

Figure 18 - Original synchronization constraint

Deliverable D5 Version 1.0 41

Figure 19 - Decomposed synchronization constraint

Determine synchronization timing properties

To be able to perform any analysis of the timing properties related to
synchronization constraints, the timing properties affecting the validity
of the constraint must first be determined. This means any
information that can be obtained regarding the events and their timely
propagation through the system. This includes WCET,
communication delays, jitter, response times and offsets. These
properties will in most cases have to be estimated since concrete
figures typically are known only at the implementation level. In
principle, the same techniques as in the time-budgeting use case can
be applied to perform the estimation. Of course, if the system is
designed based on already existing components, the figures would
be available with a higher accuracy although they would probably still
need adaptations due to the new system setting.

Verify and validate synchronization (and delay) properties

When the constraints have been formulated (in TADL), the analysis
part of the tasks Create synchronization constrain proposal and
Decompose synchronization properties should also have ensured
that the constraints indeed are satisfied by the design constructs
within the abstraction level. It is the responsibility of this task to
actually make this check and report the result. What is also
performed here is the validation of the constraints compared to the
synchronization requirement from the higher abstraction level. That is,
to make sure that the formulated constraints indeed express the
intended meaning. This validation is perhaps most important at
vehicle and analysis level where the originating requirement is not
formalized in TADL but needs to be interpreted.

Specify synchronization (and delay) properties as requirements

This final step involves adding the modeling constructs necessary to
indicate that the formulated constraints indeed are to be considered
as requirements on the lower abstraction level.

Deliverable D5 Version 1.0 42

4.4 Develop Control Application

The main goal of this use case is to enable co-engineering between
control engineers and real-time engineers. This might be called
“resource constrained control”. In the following the necessity of this
co-engineering is explained and a methodology implementing it is
presented.

Problem Statement

Control design is usually performed assuming idealized timing
assumptions, including sampling without jitter and negligible delay
from controller input (sensing) to output (actuation), etc. Of course,
each ECU does not only execute a single control application but
performs several functionalities in parallel. Each of them is developed
under the above stated assumptions.

In the case of a single core ECU, these control applications compete
for processor time. Since only one controller application can be
executed at the same time, a real-time kernel arbitrates the access to
the processor according to a scheduling policy. This of course leads
to increased and varying response times for the control applications
due to preemptions, blocking effects, etc. Obviously, the idealized
assumptions stated above do not hold under such circumstances.

In Figure 20 the effects of scheduling that lead to varying input-output
delays are demonstrated.

Figure 20 - Effect of scheduling on control performance

On the left-hand side, an activation graph of 3 tasks executing control
applications is shown. As can be observed, the lowest priority task
executes very irregularly due to preemptions of the two higher priority
tasks.

On the right-hand side the impact on control quality is shown. The
input-output delay between sampling and control varies drastically
due to the preemptions. The executed control application does not
succeed in adjusting the plant output (y) to the desired control input
values (yref).

There are several possible solutions in such situations. Of course, the
priority of the task executing the critical control application could be
increased. But then, most certainly, another control application would
fail. Another possibility is to decrease the sampling periods of the
control applications. Then, however, the overall system load would

Deliverable D5 Version 1.0 43

increase and the deadlines of the control applications (which are
usually equal to the periods of the tasks executing them) would be
much harder to satisfy by the real-time kernel. Additionally, the
number of control applications that can be accommodated by a single
ECU would decrease using such an approach. This is not acceptable,
since this leads to bad hardware utilization and, thus, increased cost
per functionality.

Consequently, the question that is addressed by this use case is the
following: How can we systematically integrate several control
applications onto the same ECU while ensuring good control quality,
adherence to real-time constraints and system extensibility for future
features?

Co-Design Approach

The main idea of this use case is to perform co-design between
control engineering and real-time engineering. The starting point for
this approach is the following inherent conflict of goals:

1. For control engineering, short sampling intervals are ideal, since
they approximate best the idealized assumptions stated above.
This leads to better control quality.

2. For the real-time behavior of the global system, long sampling
intervals are ideal, since the same computations for the control
applications are repeated less often. This leads to less processor
load, translating into less resource sharing and making it easier
for the real-time kernel to satisfy all deadlines. Additionally, more
slack for additional functionality is available on the ECU.

The possible maximum and minimum sampling rates can be
determined analytically as follows. The minimum sampling rate for a
control application depends on the time constants of the plant that is
controlled. A rule of thumb is that the sampling rate of the controller
should be 10 times smaller than the smallest time constant of the
plant. But even higher sampling rates may be required if the
Eigenvalues of the plant are placed badly, or if the plant is nonlinear.
A control engineer may use an analysis model in MATLAB/Simulink
to investigate the necessary minimum the sampling rate.

The maximum sampling rate for a control application, here called
scheduling threshold, is bounded either

• by the computational capacity of the ECU executing the control
application, meaning that it shall not be overloaded, or

• by real-time constraints of other tasks, that are violated due to the
increased interference resulting from the higher sampling rate of
the control application.

This maximum sampling rate can, for instance, be determined using
scheduling analysis techniques. Please note that it might not make
sense for all kinds of control applications to fully exploit the
scheduling threshold, e.g. when the controlled system (aka plant) is
changing its state relatively slowly like, for instance, in cabin
temperature control. More precisely, in cases where the scheduling
threshold permits a shorter sampling rate than the time constant of
the plant, i.e. the response time of the plant to a control input, the
time constant must be taken as lower bound for the sought-after ideal
sampling rate rather than the scheduling threshold.

Deliverable D5 Version 1.0 44

Figure 21 shows the minimum and the maximum sampling rates that
span the search space, called co-design area, for the trade-off
exploration between good control performance and good real-time
behavior.

Figure 21 - Co-design area between control engineering and real-time engineering

Resource Constrained Control Application Development

In order to systematically explore the above explained design space a
new development paradigm for control applications is needed.

In the current state-of-practice, the controller design and
implementation is done independently of timing and integration
considerations. The system integrator takes the resulting software
implementations, and must cope with the overall system’s timing
behavior. Practically, he has no degrees of freedom, since sampling
rates, interdependencies between processes, etc. are inherently
incorporated in the controller designs, and are, thus, immutable.

This use case stresses that the overall timing behavior of a system,
comprising of several control applications, shall be considered as
explicit design goal.

To do so, a feedback loop between control design and system
integration, taking into account the overall system’s timing behavior,
is necessary. Only then it is possible to choose controller designs
offering at the same time

1. good control performance, and

2. good overall system timing behavior offering slack for future
functionalities.

Mapping to Generic Methodology Pattern

The co-design approach between control engineering and real-time
engineering targeted by this use case is performed during functional
design which is located at Design level.

Since some controller sampling rates may already be chosen at
Analysis level, Controller Timing Requirements determined at
Analysis level are taken as input for this use case. Thereby, the
sampling rates are typically not fixed. It is usually rather the case that
ranges for possible sampling rates are specified. The exact choice is
then taken at Design level based on the overall timing behavior of the
integrated system.

Deliverable D5 Version 1.0 45

Figure 22 shows the detailed methodology instance. In the following,
the different activities are explained.

Figure 22 - Application of TIMMO-2-USE Generic Methodology Pattern

Design Controller

The task Design Controller consists of splitting the different
calculations that are necessary for performing the control task into

1. N different execution units (i.e. processes) eu1, …, euN with

2. different repetition patterns (i.e. periods) p1,…, pN.

This activity is called control design through time structuring. For the
trade-off analysis between control quality and timing quality, the time
structures of all considered control applications represent the search
space that shall be explored.

In the following the simplest case of control design through time
structuring, assuming linear systems as shown in Figure 23, is
explained.

Figure 23 - Example Linear Control

We assume that N control applications shall be developed and
integrated onto the same ECU.

Deliverable D5 Version 1.0 46

For the simplest case of time structuring we assume that all
necessary calculations, i.e. the internal controller state r(k) and the
controller output u(k), for each of the N control applications are
performed in single processes that are repeated with fixed sampling
rates.

In the subsequent steps of the methodology, an exploration loop is
implemented that explores the trade-off formulated above:

What are the optimal sampling rates for the N given control
applications such that their individual control quality is sufficient AND
such that the overall timing behavior of the system is satisfactory?

Analyze Control Quality

This activity consists in evaluating the control quality of the created
solutions for the control application. Control quality metrics can either
quantify the transient performance or the steady state performance. A
possible measure for transient performance is Peak Overshot3.

A possible steady-state control quality metric can be defined using
the integral cost function of the tracking error e, denoting the
difference between the desired plant behavior yref and the actual plant
behavior y, at a given point in time t:

yyewheredttequality ref

,)(
0

2

Find Properties of Controller Design

This task consists in determining all timing properties that are
necessary to analyze the dynamic timing behavior of the overall
system implementing the control applications. The required timing
properties depend on the time structuring approach chosen during
the task Design Controller.

The minimum set of required timing properties for each considered
control applications consists of:

1. The estimated (worst-case) execution times for each of the
execution units

2. The sampling rates for each of the execution units

3. Mapping of the execution units into the runtime systems (task
mapping)

4. Precedence relations and data flow.

Analyze Timing Quality of Controller

During this task, the overall timing behavior of the ECU executing the
implemented control applications is evaluated. Of course, all timing
constraints of the system must be satisfied. However, for the trade-off
analysis between control quality and timing quality performed during
the task Verify and Assess Trade-off, we want to apply more

3 Compare R. C. Dorf and R. H. Bishop. Modern Control Systems. Addison Wesley, 1995.

Deliverable D5 Version 1.0 47

sophisticated timing metrics expressing the extensibility of the overall
system. A simple possible metric for extensibility is the load situation
on the ECU. More expressive metrics are based on sensitivity
analysis4.

Specify Timing Requirements

This task consists in defining timing requirements for the
implementation phase. These mainly consist in upper bounds for
execution times and finally chosen sampling rates translating into
task mapping constraints. Additionally, precedence constraints may
be necessary. Please note that this task is only performed if the task
Verify and Assess Trade-off has been successfully completed. Only
then it makes sense to proceed to the implementation level.

Verify and Assess Trade-off

In the first step of this task it is verified whether all real-time
constraints on the ECU executing the considered control applications
are satisfied. If this is not the case, the current solutions must be
modified, and the methodology iterates back to the task Design
Controller.

In the second step, the actual trade-off analysis between the control
quality metrics calculated during the task Analyze Control Quality and
the timing quality metrics calculated during the task Analyze Timing
Quality of Controller is performed.

If the control quality or the timing behavior is not satisfactory, the
methodology iterates back to the task Design Controller. More
precisely, another solution (i.e. time structure for one or several
control applications) that offers a more suitable trade-off is searched.

4 Arne Hamann, Razvan Racu, Rolf Ernst: Multi-dimensional Robustness Optimization in
Heterogeneous Distributed Embedded Systems. IEEE Real-Time and Embedded Technology
and Applications Symposium 2007.

Deliverable D5 Version 1.0 48

5 Conclusion & Outlook for the second year

During the first year work package 4 created a concept that puts the
results of WP2 (Timing Augmented Description Language) and WP3
(Algorithms & Tools) into the context of the software development
process in the automotive industry.

Therefore, work package 4 developed a Generic Timing Methodology
(GMP) that is now used as baseline for the technical work within
TIMMO-2-USE.

The GMP was designed such that it extends established software
system development methodologies, such as EAST-ADL and
AUTOSAR, with timing aspects. Thereby, the GMP supports both
Top-down and Bottom-up development scenarios, and allows
applying both in a combined manner. This plays an important role for
the daily development routine in the automotive industry.

Based on the GMP, work package 4 developed methodology
instances that are specialized for the use-cases described by D1.
Currently covered use-cases include:

 Integrate a Software Component into an existing System
 Develop Control Applications
 Specify Time Budgets in Collaborative Development Settings
 Specify Synchronization Constraints

In the second year of TIMMO-2-USE the GMP and the specific
methodology instances for the use cases will be refined and extended
according to the findings during validation in WP5. In parallel
additional specific methodology instances for currently not addressed
use cases will be developed.

Additionally, possible tool support for treating timing aspects in the
automotive software development process will be highlighted. In
particular, the application of WCET analysis techniques and
simulation will be in focus.

Deliverable D5 Version 1.0 49

6 EPF Model of the TIMMO-2-USE Methodology

The EPF model of the TIMMO-2-USE methodology can be found
under the following web-link:

http://www.timmo-2-use.org/

Deliverable D5 Version 1.0 50

7 References

[1] TIMMO Deliverable D7 Methodology Version 2,

http://www.timmo.org/pdf/D7_TIMMO_Methodology_Version_2_v10.pdf.

[2] ATESST 2 Deliverable Methodology.

[3] TIMMO-2-USE Deliverable D1.2 http://www.timmo-2-use.org/. Check for the latest version
of this deliverable.

[4] TIMMO-2-USE EPF Model, http://www.timmo-2-use.org/. Check for the latest version of this
deliverable.

[5] EAST-ADL Specification, http://www.atesst.org/. Check for the latest version of this
deliverable.

