
OPENCPS 
ITEA3 Project no. 14018 

 
 

 
 

 

D2.2 
Interoperability of the standards 
Modelica-UML-FMI 

Access1: PU 

Type2: Report 

Version: 0.8 

Due Dates3: M12, M24 

 

Open Cyber-Physical System Model-Driven Certified Development 

Executive summary4: 

At design time, a complex system is defined by a set of models which describe the different parts of 
the system. These models can be formalized using different modelling languages. Hence, the overall 
system is a set of heterogeneous artefacts that still need to be simulated altogether to assess the 
global system behaviour on a set of well identified scenarios. FMI standards defines how these 
artefacts can be combined in a simulation as a set of FMUs and also formalizes what the meaning of 
a simulation step is on this model. UML models can be used in such a simulation process, however 
the current set of language elements that have a formal semantics does not include state machines 
although these latter are heavily used across a large set of domains to model the dynamic of software 
applications. To make the usage of UML state machines possible in a simulation process, their 
semantics must be formally described. This deliverable reports the work done to define a Precise 
Semantics for UML state machines and normalize it at the OMG. In addition it also identifies how the 
UML specification could be extended to allow execution of xtUML state machines which are especially 
used at an industrial level by Ericsson and Saab and part of the xtUML (executable UML) language. 

 
  

                                                 
1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP. 
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report. 

3 Due month(s) according to FPP. 
4 It is mandatory to provide an executive summary for each deliverable. 



 
 

D2.2 Interoperability of the standards Modelica-UML-FMI 

 

OPENCPS, ITEA3 Project no. 14018 Page 2 of 45 

 

Deliverable Contributors: 

 Name Organisation 
Primary role 
in project 

Main 

Author(s)5 

Deliverable 

Leader6 
Jérémie TATIBOUET CEA T2.2 leader X 

Contributing 

Author(s)7 

 

 

 Jérémie TATIBOUET  CEA T2.2 leader X 

Gergely DEVAI ELTE-Soft T2.2 member X 

Bernhard THIELE LIU T2.2 member X 

Ákos Horvath IQL T2.2 member X 

Gergely Seres Ericsson T2.2 member X 

    

    

    

    

    

    

Internal 

Reviewer(s)8 
Ákos Horvath IQL T2.2 member X 

     

     

     

 
Document History: 

Version Date Reason for Change Status9 

0.1 29/10/2016 Initial version of the deliverable Draft 

0.2 06/11/2016 
Integration of the analysis of xtUML 
state machines semantics specifics 

Draft 

0.3 06/11/2016 
Integration of Modelica language 
short description in clause 1.1   

Draft 

0.4 07/11/2016 
Complete section 3 with description 
on PSSM differences compared to 
xtUML state machines.  

Draft 

0.5 10/11/2016 
Add executive summary. Include 
minor adjustments to conclusions.  

Draft 

                                                 
5 Indicate Main Author(s) with an “X” in this column. 
6 Deliverable leader according to FPP, role definition in PCA. 

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP. 

8 Typically person(s) with appropriate expertise to assess deliverable structure and quality. 
9 Status = “Draft”, “In Review”, “Released”. 



 
 

D2.2 Interoperability of the standards Modelica-UML-FMI 

 

OPENCPS, ITEA3 Project no. 14018 Page 3 of 45 

 

0.6 10/11/2016 
Complete review is done and some 
minor adjustments are added  to 
certain sections 

In Review 

0.7 11/11/2016 Apply initial review suggestions. In Review 

0.8 12/11/2016 
Minor editorial improvements to 
finalize the document for release. 

Released 

  



 
 

D2.2 Interoperability of the standards Modelica-UML-FMI 

 

OPENCPS, ITEA3 Project no. 14018 Page 4 of 45 

 

 

CONTENTS 

ABBREVIATIONS ............................................................................................. 4 
1 INTRODUCTION ................................................................................... 6 
1.1 Task Analysis ........................................................................................... 6 

1.2 Problem Statement ................................................................................... 7 
1.3 Deliverable Content ................................................................................. 7 
2 PRECISE SEMANTICS OF UML STATE MACHINES ....................... 8 
2.1 Scope of the specification ........................................................................ 8 
2.1.1 Overview .................................................................................................. 8 

2.1.2 Conformance Levels ................................................................................ 9 

2.2 Specification Architecture ..................................................................... 10 

2.3 Specification Content ............................................................................. 11 
2.3.1 Syntax .................................................................................................... 11 
2.3.2 Semantics ............................................................................................... 15 
2.3.3 Test Suite and Semantic Requirements Coverage ................................. 26 

2.3.4 Implementation ...................................................................................... 31 
2.3.5 Specification Status ................................................................................ 32 
3 XTUML STATE MACHINES SEMANTICS AND PSSM ................. 35 

3.1 Basics of xtUML State Machines .......................................................... 35 
3.2 State Machine Initialization ................................................................... 36 

3.3 Unexpected events ................................................................................. 38 
3.4 Event Priorities ....................................................................................... 40 
3.5 Polymorphic Event ................................................................................. 41 

3.6 Summary ................................................................................................ 43 

4 CONCLUSIONS .................................................................................... 44 
REFERENCES .................................................................................................. 45 
 

 

ABBREVIATIONS 

List of abbreviations/acronyms used in document: 

 

Abbreviation  Definition 

FMI   Functional Mock-up Interface 

FMU   Functional Mock-up Unit 
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PSSM   Precise Semantics of UML State Machines 
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MLS   Modelica Language Specification    
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1 INTRODUCTION 

1.1 Task Analysis 

The task is entitled “Interoperability of the standards Modelica-UML-FMI”. Keywords of this 

title are UML, Modelica and FMI. 

 

 UML [1] is a standard modelling language that can be used to describe the structure 

and the dynamic of a complex system. This modelling language is particularly well 

suited to precisely describe the software parts of a system and partially the execution 

platform (usually HW). The language has a precise semantics defined in its standard, 

however, some of this semantics are still described in natural language (i.e., in English) 

but a growing subset is now associated to a formal (i.e., operational) definition. The 

subset that currently has a formal semantics includes classes, composite structures and 

activities. These semantics are respectively described in fUML [2] and PSCS [3] 

documents. Any model conforming to the aforementioned subset can be precisely 

executed, thus also simulated. 

 Modelica is language for describing the dynamic behavior of technical systems 

consisting of mechanical, electrical, thermal, hydraulic, pneumatical, control and other 

components. The behavior of models is described with ordinary differential equations 

(ODEs), algebraic equations (AEs), event handling and recurrence relations (sampled 

control). Object-oriented concepts are supported as a means of managing the 

complexity inherent to modern technical systems. Modelica can therefore be called an 

equation-based object-oriented (EOO) language. The most recent standard version is 

the Modelica Language Specification (MLS) 3.3 [4]. A brief discussion on Modelica 

semantics is further provided in the OPENCPS D3.2 report “Translation validation and 

traceability concept from acausal hybrid models to generated code”.  

 FMI defines an open tool independent standard enabling the combination of a set of 

models (developed in different tools) describing the different parts of a complex system 

in a single simulation model. Each artefact contributing to this model is described as an 

FMU. An FMU is a box which exposes inputs that need to be provided for the 

underlying simulation model as well as outputs produced by this latter. It exists two 

types of FMU: model exchange and co-simulation. According to the FMI 2.0 

specification [4], the kind model exchange means that the “FMU includes the model or 

the communication to a tool that provides the model, and the environment provides the 

simulation engines”. Conversely, the kind co-simulation means that “FMU includes the 

model and the simulation engine, or a communication to a tool that provides the model 

and the simulation engine, and the environment provides the master algorithm to run 

coupled FMU co-simulation slaves together”. 

 

The word linking the aforementioned keyword is Interoperability. FMI standard provides a way 

to couple parts of a complex system that would have been specified using either with Modelica 

or UML. The assumption to make this coupling possible is that tools enabling the definition of 

models conforming to these languages are able to export FMUs for co-simulation. As a 

reminder, tools involved in that part of the project are Papyrus and Open Modelica. Papyrus 

provides the possibility to describe part of the system using UML while Open Modelica 

provides the possibility to describe part of the system using the Modelica language.  
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At simulation time, FMUs for co-simulation provided by these two tools interoperate thanks to 

the semantics defined by the FMI standard. This semantics is captured by the master algorithm 

implemented by the simulation environment in which FMUs are imported and connected. While 

it is clear that FMI enables models specified in both languages to be involved in a co-simulation 

process, it is not clear what does a master simulation step implies in terms of simulation 

progress in models specified in UML. This problem is explained in the next section.   

1.2 Problem Statement 

UML provides the possibility to describe the dynamic of a system using state machines. This 

formalism is very popular for modelling event-based reactive behaviours and is widely used in 

industry. It is often used jointly with activities which are used to describe low-level 

computations occurring when a state is entered, exited or when a transition is traversed. These 

activities can be specified using the Alf textual notation [5]. The purpose of this standard 

notation is to provide users with an easy way to implement and maintain complex activities in 

their models. 

 

Unlike for activities, classes and composite structures whose execution semantics are formally 

defined in fUML and PSCS, state machines semantics remain specified in a natural language 

(i.e., English). Hence:  

 

1. It is not possible to use in simulation process models whose dynamic is specified using 

UML state machines. 

2. As the semantics is not formally defined it is not possible to clarify what are the 

implications in terms of simulation progress between a step asked by the master 

algorithm and run-to-completion steps performed in an executed state machine. 

 

On way to resolve point 1 and to clarify point 2 is to provide a formal definition of UML state 

machines semantics. One can argue that in the past many tools provided a semantics for UML 

state machines. That is true, but it is not possible to say that semantics described by these tools 

fully complied with the one described by UML since no reference model was developed to 

assess this conformance. In addition, none of the defined semantics were standardized nor relied 

on the standard describing semantics of a foundational subset for executable UML models: 

fUML. 

1.3 Deliverable Content 

Two different releases are required for task 2.2 of work-package 2: M-12 and M24. The current 

document corresponds to the M-12 release. Two main contributions are described: 

 

1. The definition of a precise semantics for UML state machines. The resulting 

specification document is very likely to be adopted as an official OMG standard. The 

current document describes contributions to construct the PSSM specification (as a 

response to the PSSM RFP [7]). It especially provides an overview of the core semantics 

and it explains how the defined semantics was tested (via the test suite and the prototype 

implementation of the semantics) to ensure it matches the one defined in the UML 

standard.  
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2. A preliminary analysis was conducted by Inc-Query, ELTE-Soft, Ericsson, Saab AB 

and CEA to determine what are the semantics differences existing between UML state 

machines and xtUML state machines. This analysis is based on the standard semantics 

defined for UML state machines in response to the PSSM RFP [6]. Its purpose is to 

evaluate the required effort to capture xtUML state machines semantics as an extension 

of UML state machine semantics. The final goal of this work is to use such extension to 

allow xTUML models to be executed and leverage the possibility to export such models 

into FMUs. 

 

These two contributions are respectively described in sections 2 and 3 of this document. 

2 PRECISE SEMANTICS OF UML STATE MACHINES 

The purpose of this section is to provide of an overview of the work done in response to the 

PSSM RFP [6]. Clause 2.1 present the scope of the specification. Clause 2.2 describes the 

specification architecture as well the methodology followed to build the specification. Clause 

2.3 focus on the PSSM specification content. It especially provides details on the PSSM subset 

and on the core part of the semantic model. In addition, this clause explains the test suite 

architecture and provides a detailed explanations about the execution of two test cases. Note 

that information about implementation of the semantic model and how the RFP requirements 

are addressed are also provided in sub clauses 2.3.4 and 2.3.5. 

2.1 Scope of the specification 

This sub clause establishes the relationship of PSSM to the syntactic and semantic models from 

fUML [2] and PSCS [3] specifications (see Figure 1). Thanks to this relationship it highlights 

that by construction the way PSSM is defined complies with the way fUML and PSCS were 

defined. 

2.1.1 Overview 

 
Figure 1 - Scope of this specification 

 

The Precise Semantics of UML State Machines specification is an extension of the Semantics 

of a Foundational Subset for Executable UML (known as “foundational UML” or “fUML”) 

that defines the execution semantics for UML state machines. 
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Syntactically, this specification extends fUML with a large subset of the abstract syntax of state 

machines as given in UML (see chapter 14 for [1] and later versions). Semantically, this 

specification extends the fUML execution model in order to specify the operational execution 

semantics of the state machines abstract syntax subset. 

 

In practice, the semantic model defined to capture UML state machines semantics is an 

extension of the semantic model described in Precise Semantics of UML Composite Structures 

(PSCS). The semantic model described in this standard is itself an extension of the one 

described in fUML. The definition of PSSM semantic model on top PSCS semantic model 

ensures that semantics given in this specification are compatible with the extensions defined in 

PSCS. 

2.1.2 Conformance Levels 

Even though PSSM is built on top of PSCS, a tool implementing this specification is not 

required to demonstrate a conformance to PSCS to also demonstrate a conformance to PSSM. 

In order to make this possible the specification defines two levels of conformance: 

 

1. PSSM-only. To demonstrate conformance to this level, a tool must implement fUML 

and PSSM. In addition, it must be able to pass all tests described in the PSSM test suite 

but not those defined in the PSCS test suite.  

 

2. PSSM and PSCS. To demonstrate conformance to this level, a tool must implement 

fUML, PSCS and PSSM. In addition, it must be able to pass all tests defined in both 

PSCS and PSSM test suite. 

 

In other words, if the level of conformance is PSSM-only that means the tool implementing the 

specification is able to execute any model conforming to the abstract syntax subset covered by 

both fUML and PSSM. However it will not be capable of executing models relying on concepts 

provided by the PSCS subset. To achieve this a joint PSSM and PSCS conformance is required. 
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2.2 Specification Architecture 

 
Figure 2 - PSSM specification architecture 

 

Architecture of this specification is depicted in Figure 2. It relies on four pillars: 

 

1. PSSM Syntax. The subset of UML state machines for which a precise semantics is 

described. This subset is a superset of fUML abstract syntax. 

 

2. PSSM Semantic. The semantic model that captures the definition of the precise 

semantics for state machines. This model is a class model describing a set of semantic 

visitors and their associations, which are responsible for the definition of the precise 

semantics of each syntactic element included in the PSSM syntax. 

  

3. PSSM Test suite. The test suite is a model describing a set of test cases. Each test case 

is designed to assess a particular part of the UML state machine semantics. These 

“parts” are requirements that have been extracted from section 14 of [1] and referenced 

in an excel file. PSSM test suite is a PSSM-only conformant model. Hence, it can by 

construction be executed using the semantics captured by the semantic model. A tool 

implementing the semantic model and passing all tests described in the test suite model 

can say it correctly capture the UML state machine semantics.  

 

4. Implementation. The specification is delivered with a proof of concept 

implementation. This implementation is one possible implementation of the semantic 

model that is defined for PSSM. It is used for the purpose of executing the test suite and 

therefore validate that the expected semantics is correctly captured by the semantic 

model. 
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The complete development of this specification was driven by the tests and the identified 

requirements. The methodology consists in the following steps:  

 

1. Select a new requirement. 

2. Refine the semantic model to capture the requirement. 

3. Reverberate the semantic model changes to the implementation. 

4. Add a test in the test suite to demonstrate support of the requirement. 

5. Execute that test using PSSM implementation. 

6. Check if the trace generated by the test is included in the set of expected traces. 

 

If the test fails then the semantic model and the implementation are refined. Conversely, if the 

test pass then a new requirement is selected and the same steps that those mentioned above are 

applied. Note that the semantics attached to each requirement was discussed in details by the 

PSSM submission team before proceeding to any change in the semantic model. 

2.3 Specification Content 

In the two previous sections, the scope of the specification was identified and the architecture 

of this specification was described.  

 

This section describes the content that was included in main parts of the specification. Clause 

2.3.1 gives an overview of the abstract syntax for which a semantics is provided by PSSM as 

well as the additional constraints that are added to the syntax. Clause 2.3.2 describes the 

definition of the core state machine semantic visitors and explain how these extensions are used 

at runtime to execute a model. Clause 2.3.3 describes the test suite architecture, the process to 

describe new tests and how the tests are related to the identified requirements. Finally, clause 

2.3.4 explains the implementation design, the integration of this latte into Moka (Papyrus model 

execution platform) and the procedure to execute the PSSM test suite through this 

implementation. 

 

Note: The purpose of this section is not to fully describe the different parts of the specification. 

Instead, for the syntax, the semantics, the test suite and the implementation it provides a 

sufficient level of details to highlight the work done in the context of that task. In addition, it 

refers to the different part of the specification that readers have to look at if they need more 

detailed information. 

2.3.1 Syntax 

The definition of the PSSM syntax corresponds to the selection of the UML meta-classes 

required to construct that subset and the addition of rules constraining usage of these meta-

classes. Both aspects are described sub clauses 2.3.1.1 and 2.3.1.2. 
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2.3.1.1 Meta-classes 

 
Figure 3 - PSSM Syntax Package 

 

PSSM is based on UML 2.5. The subset of the metamodel that is covered by PSSM is captured 

in the package PSSM_Syntax::Syntax (see in Figure 3). This package imports into its 

namespace exactly the meta-classes included in the PSSM subset. 

 

On the left hand side of Figure 3, all imported packages are those included meta-classes 

supported by the fUML subset. On the right hand side, all imported packages contain meta-

classes that are specific to UML state machines. CommonStructure, Values and 

CommonBehavior are imported in addition to StateMachines package. One can notice 

that fUML already imports meta-classes available in these low level packages 

(CommonStructure, Values and CommonBehavior). However, PSSM requires some 

that are missing in fUML. This explains why such imports are required. 

 

Examples justifying such imports are meta-classes Expression and OpaqueExpression. 

Neither meta-classes are included in the fUML subset however, PSSM requires them. Indeed, 

it must be possible: 

 

1. To specify that a Transition is an else transition. This is materialized by the fact 

that the guard specification is an Expression which has no operands but its 

associated symbol is “else”. 
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2. To specify the guard of Transition has an OpaqueExpression. In such 

situation, the OpaqueExpression is always associated to a behaviour that defines 

its specification. This behaviour can therefore be executed if specified as an Activity 

and will provide the verdict corresponding to the guard evaluation. 

 

Constraint from CommonStructure and CallEvent from CommonBehavior are 

also imported following the same approach. Constraint is required since a guard on 

Transition is specified as a constraint. CallEvent is required since synchronous 

operations call on active objects are allowed by PSSM. This addition makes possible for a state 

to declare a deferrable trigger for a CallEvent. Furthermore it also enables transition to be 

reactive to dispatched CallEvents. 

 

Nevertheless, the biggest addition in terms meta-classes remains by the import of the 

PSSM_Syntax::StateMachines package. 

 

 
Figure 4 - Behavior State Machines 
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Note that the capability for StateMachine redefinition actually does not require any other meta-

classes than those already included for behaviour state machines (see Figure 4). 

2.3.1.2 Constraints 

The package PSSM_Syntax::Constraints (see Figure 5) imports into its namespace all 

constraints applying on the PSSM subset. The approach is exactly the same than the one that 

was applied for the syntax. Constraints expressed for fUML subset and available in 

StructuredClassifiers, Packages, Activities and Actions are imported 

(which by construction also includes those defined in packages imported by these packages)  

 

PSSM adds a significant number of constraints (see Figure 4). The added constraints have the 

role to ensure that if a particular model conforming to the PSSM subset also meets the 

constraints then this model can be executed using the semantics captured in the PSSM semantic 

model. These constraints are defined in Object Constraint Language (OCL)  [8] in the 

specification document. These constraints can therefore directly be used by a tool implementing 

PSSM to validate before execution that the model is statically valid. 

 

 
Figure 5 - PSSM Constraints 

 

An example of constraint is: 

 

 A state machine may not be a method and if it has a context, it must be the classifier of 

that context. 
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 context UML::StateMachines::StateMachine inv: 

self.specification = null and 

self.context <> null implies 

self.context.classifierBehavior = self 

 

 The first part forbids the usage of a state machine as implementation of an 

Operation. This is due to the fact that a StateMachine is a Behavior, a 

behavior can have parameters but in the context of a state machine it is not clear how 

values associated to these parameters can be used at runtime. 

 

 The second part of the constraint makes mandatory the fact that a state machine with 

a context must play the role of a classifier behavior for that context. 

 

Most important constraints that are added by PSSM define the rules that signatures of 

Behaviors placed on States (entry/doActivity/exit), on Transitions and playing the 

role of a specification for an OpaqueExpression must conform to in order to let them 

have access to the data owned by the dispatched signal event occurrence and call event 

occurrence. 

 If all the relevant Triggers of an entry, doActivity or effect Behavior are for 

SignalEvents, then the Behavior may have exactly one Parameter of mode “in”, 

multiplicity upper bound of 1 and a type that is a Signal that conforms to all the 

Signals of the relevant Triggers. If all the relevant Triggers are for 

CallEvents, such that the signatures of the Operations of the CallEvents are 

consistent, then an entry or exit behavior Behavior may have a signature that 

conforms to or input-conforms to all the signatures of the Operations of the 

CallEvents and a doActivity Behavior may have a signature that input-conforms 

to all the signatures of the Operations of the CallEvents. Otherwise, an entry, 

doActivity or exit Behavior must have no Parameters. 

 If all triggers of a Transition are for SignalEvents, then an effect Behavior 

of the Transition may have exactly one Parameter of mode “in”, multiplicity 

upper bound of 1 and a type that is a Signal that conforms to all the Signals of the 

Transition triggers. If all the triggers are for CallEvents, such that the signatures 

of the Operations of the CallEvents are consistent, then an effect Behavior 

may have a signature that conforms to or input-conforms to all the signatures of the 

Operations of the CallEvents. Otherwise, an effect Behavior must have no 

Parameters. 

2.3.2 Semantics 

The previous section presented the definition of the PSSM subset and the addition of constraints 

for meta-classes included in this latter. The objective here is not to provide a detailed overview 

of all extensions defined in the specification. This section rather focus on the description of 
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core extensions defined by the PSSM semantic model. It provides the rationale for defining 

these extensions and explain their roles. 

 

This section is organized as follows. Clause 2.3.2.1 reminds the design patterns and principle 

driving the construction of a semantic model. Clause 2.3.2.2 describes the root element for 

specifying the execution semantics of state machines. Clause 2.3.2.5 explains what a state 

machine configuration is and how this concept is used to determine the impact of the 

dispatching of an event on the state machine. Finally, Clause 2.3.2.6 describes main semantic 

visitors defined for capturing the general semantics of vertices, transitions and regions. 

2.3.2.1 Semantic Model Definition Principles 

A semantic model is a class model whose role is to capture through the structure and the defined 

operations the semantics of a well identified subset of the UML syntax. Such model conforms 

to the fUML subset. Hence by construction it is executable and its semantics is provided by the 

one defined in fUML. 

 

Elements defined in the semantic model can be classified into three categories: 

 

1. Values. A value is the representation of an instance of a type. As an example, fUML 

defines Object_ which is a specific type of value that enables the representation at 

runtime the instance of a Class. 

2. Visitors. A visitor captures the semantics of a particular meta-class. As an example, 

fUML defines AcceptEventActionActivation, which is a specific semantic 

visitor capturing semantics of an AcceptEventAction. 

3. Others. All elements defined in the semantic model which are not values or visitors. 

These elements usually capture internal logic of some visitors or are responsible to 

instantiate the semantic visitors. As an example, fUML defines an 

ExecutionFactory which is in charge of instantiating semantic visitors defined for 

meta-classes included in the fUML subset. 

 

Semantic models for fUML and PSCS have been designed using the aforementioned principles. 

PSSM semantic model has been designed in a similar manner. Next section describes the root 

element for specifying the execution semantics of state machines. 
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2.3.2.2 State Machine Execution 

 
Figure 6 - State Machine Execution 

 

StateMachine is a specialization of Behavior (see Figure 6). In order to capture the 

execution semantic of a Behavior the fUML semantic model provides the concept of 

Execution. This concept is by the way specialized by ActivityExecution whose role 

is to capture the execution semantics of an Activity. 

 

The principal is similar to capture the execution semantic of a state machine. Hence a 

StateMachineExecution class is defined. This class is a specialization of Execution. 

The description of the dynamic corresponding to the execution of state machine is captured by 

overriding the abstract operation execute provided by the Execution class. 

2.3.2.2.1 Execution start-up 

The execution of a state machine starts when the execute operation is called on a 

StateMachineExecution. This call always occurs during the initial RTC step of the state 

machine. Indeed PSSM only defines semantics for state machine, which are active or state 

machine playing the classifier behaviour role. 

 

 The first phase of the execution consists in instantiating visitors for all regions owned 

by the executed state machine. These visitors are RegionActivation and capture 

the execution semantics of Regions. Each activation instantiated for a region then 

create (in cascade) semantic visitors for all their contained elements. At the end of the 

instantiation phase, the execution for a state machine is the root element of tree like 

structure including all of the created semantic visitors. 

 

 The second phase consists in concurrently proceed to the entering of each Region. 

Entered Regions are required to have an initial Pseudostate. If a Region has no 

such Pseudostate then it is ignored by the execution. The initial RTC step ends 

when the state machine has reached a stable configuration. This occurs when it exists 

no Transition available for firing and all entry Behaviors of entered states have 

completed their execution. 
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2.3.2.3 Execution and State Machine Event Accepter 

Each evolution (i.e. move from the current configuration to the next one) of the state machine 

configuration is realized in a RTC step. A step is triggered by the fact that a state machine can 

accept the event that is dispatched (i.e., removed from the event pool). In order to allow a state 

machine to accept an event occurrence this latter must have registered an EventAccepter. 

 

The EventAccepter concept is defined in fUML. It is specialized by activities to define an 

ActivityEventAccepter. The principle in activities is that the execution of an activity 

can suspends on AcceptEventAction. The semantics defined in fUML implies that an 

ActivityEventAccepter is registered when the action gets executed. Hence when an 

event will be dispatched, it may enable the trigger declared by the AcceptEventAction. In 

such situation the accepter is said to match the dispatched event. The execution then restarts 

from the action that registered the accepter. 

 

PSSM defines a specialization of EventAccepter: StateMachineEventAccepter. 

There two fundamental differences between this type of accepter and the one defined for 

activities in fUML.  

1. Conversely to activities where each AcceptEventAction register an accepter, a 

state machine always has a single state machine event accepter registered. The reason 

for this is that to determine how a state machine can respond to event a complete analysis 

of the current state machine configuration is required. Hence it is not possible to have 

separate event accepters for each individual transition. 

2. The logic of matching and accepting a dispatched event is strongly different. Indeed, in 

activities to say a registered event accepter matches a dispatched event it is sufficient 

that the accept event action that registered the accepter declares a trigger for an event 

that matches the type of the dispatched event.  In the case of a state machine, an event 

is said to match if in the current configuration the event can be deferred or it triggers 

one or more transitions outgoing states registered in the configuration. The verdict of 

the match operation is computed by analysing the overall state machine configuration. 

This analysis account for priority rules existing between Transitions, conflict 

resolutions, static analysis of paths leading to the next state machine configuration, etc. 

If the dispatched event occurrence is deferred in the current state machine configuration then 

this latter is accepted and placed in the deferred event pool. The deferred event occurrence will 

only be released (i.e., returned to the regular event pool) when the state that provoked is deferral 

leaves the state machine configuration. 

If the dispatched event is not deferred and triggers one or more transition in the state machine 

then this latter is also accepted. The acceptance of the event implies the functionality of the 

semantic visitors associated with various elements of the state machine to be executed. 

Execution of semantics related to these visitors lead the state machine to enter a new stable 

configuration. 

It is important to note that this latter case only occur if all Transitions that are selected to 

fire lead the state machine to a valid state machine configuration. To ensure this, a static analysis 
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is always performed to check if the traversal of a Transition (possibly compound) leads to 

enter a valid state machine configuration. 

2.3.2.4 Execution Completion vs Execution Termination 

A state machine execution completes when all Regions owned by the executed state machine 

have completed. A Region is said to have completed its execution when the final state owned 

by that Region is reached. 

 

A state machine execution can also be terminated. This situation is different from the 

completion. Indeed the termination of the execution of state machine is due to the execution of 

a terminate Pseudostate. When such pseudo state is exited the execution state machine 

stops immediately (i.e., no behaviours are executed in response to the termination), all visitors 

instantiated for the state machine are destroyed and the execution context of the state machine 

is destroyed. 

 

Next section explains what the state machine configuration is and how this latter is used to 

determine the response of an executed state machine to a dispatched event.  

2.3.2.5 State Machine Configuration 

A state machine configuration is the representation of the hierarchy of active States of an 

executed state machine. The state machine configuration is stable before and after a RTC step 

but not during a RTC step. When an event is accepted by the state machine and it triggers or 

more transitions it always implies to move from the current state machine configuration to 

another state machine configuration. Obviously, the target state machine configuration can be 

the same than the source state machine configuration (e.g., case of self-Transition).  

 

 
Figure 7 - State Machine Configuration 
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Figure 8 - Test Event 016 B 

 

PSSM made the choice to explicitly represent during the execution of state machine. It provides 

for this StateMachineConfiguration and StateConfiguration concepts (see 

Figure 7 ). These two classes directly enter the “Others” category discussed in clause 2.3.2.1. 

Indeed there are neither classes defined to represent values or state machine semantic visitors. 

The StateMachineConfiguration class represents the overall state machine 

configuration. It references a StateConfiguration, which represents the root element of 

the state machine configuration. This StateConfiguration itself references a set of 

StateConfiguration that materialize active states located in different regions owned by 

the executed state machine. 

 

Consider the state machine presented in Figure 8. Under the assumption that this state machine 

has already performed its initial RTC step, it is in configuration wait. Wait is the active state of 

the state machine. The configuration would be described as presented in Figure 9 by the PSSM 

semantic model. The root state configuration (i.e., abstraction of the state machine) has only a 

single child state configuration. This is perfectly fine since the executed state machine has only 

one region and in this region the simple state wait is active. 

 

 
Figure 9 - State machine configuration after the initial RTC step 
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When the Start event is dispatched the state machine configuration is evaluated. The verdict of 

that evaluation is that the state machine can accept the event and this latter will trigger the 

compound transition T2(T1.1, T2.1(T2.1.1, T2.2.2.1)) leading to reach the state machine 

configuration described in Figure 10. 

 

 
Figure 10 - State machine configuration after the step initiated by Start 

 

When the Continue event is dispatched the state machine configuration is evaluated. The 

evaluation starts from the innermost active states (i.e., leaf state). After having evaluated S2.1.1 

and S2.2.1 two transitions are included in the set of fireable transitions: T2.1.2 and T2.2.2. 

When S2.1 is evaluated one can notice that it has a transition that may fire using the Continue 

event. However transitions with a higher priority have already been included to the set of 

fireable transitions. Hence no transition outgoing S2.1 and reactive to a Continue event can be 

included to the set. At the end of the analysis the set of fireable transitions contains T1.2, T2.1.2 

and T2.2.2. All of these transitions will be fired concurrently in the next RTC step. Note that 

conflicts between transitions are resolved during the evaluation of the state machine 

configuration thanks to a semantic strategy that is provided in fUML. 

 

In short, a StateMachineExecution is always associated to a 

StateMachineConfiguration. The state machine configuration captures a sufficient 

abstraction of the executed state machine to enable the computation of a verdict regarding what 

the state machine shall do when an event is dispatched. Next section, describes the core state 

machine semantic visitor defined in PSSM. 

2.3.2.6 State Machine Semantic Visitors 

PSSM defines four core state machine semantic visitors. These visitors are listed below: 

 

1. StateMachineSemanticVisitor – see clause 2.3.2.6.1 

2. VertexActivation – see clause 2.3.2.6.3 

3. TransitionActivation -  see clause 2.3.2.6.4 

4. RegionActivation – see clause 2.3.2.6.2 

 

fUML provides the concept of SemanticVisitor. This concept is specialized by PSSM as 

a StateMachineSemanticVisitor (see Figure 11). A state machine semantic visitor is 

the common type of all visitors defined for state machine elements. It adds three elements to 

the SemanticVisitor concept provided by fUML: 
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Figure 11 - State Machine Semantic Visitors 

2.3.2.6.1 StateMachineSemanticVisitor 

1. A StateMachineSemanticVisitor is systematically associated with a 

NamedElement. The named element which is referenced by this type of visitor is 

always a state machine element. 

 

2. A StateMachineSemanticVisitor is systematically associated with its parent 

SemanticVisitor. The parent can be a StateMachineExecution or another 

StateMachineSemanticVisitor. The overall set of state machine semantic 

visitors instantiated to execute a state machine are organized as a tree-like structure. 

This structure reflects the structure of the state machine. 

 

3. The StateMachineSemanticVisitor class provides a set of utility operations 

that can be used or shall be implemented by all concrete specializations (e.g. concrete 

visitors StatActivation that captures the execution semantics of the State 

concept). As examples: 

 

a.  getExecutionContext – returns the context object of the root state 

machine execution 
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b. activate and activeTransition – intended to be overridden by the 

specializations. Each specialization specifies the appropriate logic for 

instantiating visitors for state machine elements it contains. 

 

This base StateMachineSemanticVisitor is specialized by VertexActivation, 

TransitionActivation and RegionActivation which are presented in next clauses. 

2.3.2.6.2 Region Activation 

A RegionActivation is a specialization of a StateMachineSemanticVisitor. It 

captures semantics of Region. Hence the node referenced by a RegionActivation is 

always a Region. 

 

Semantics of a Region are mainly captured in enter and exit operations provided in the 

RegionActivation class. Note that these operations are only called if the Region is either 

entered or exited implicitly. An implicit entry occurs in the following situations: 

 

1. The Region is owned by the StateMachine. 

 

2. The Region is owned by a State and a Transition targets the edge of the State 

that contains that Region. 

 

3. The Region is owned by a State and the Transition targets an entry point with 

no continuation Transition. The entry point must be owned by the State that 

contains the entered Region. 

 

Execution of a Region that is entered implicitly always starts from its initial Pseudostate. 

The single outgoing Transition of the initial Pseudostate is traversed immediately and 

its target is entered. In the case where no initial Pseudostate is available the Region is 

ignored. The consequence might be that a composite State is treated a simple State or a 

StateMachine execution terminates immediately since it only has single Region and this 

latter has no initial Pseudostate. 

 

An implicit exit of one or more Regions occurs when a Transition exits a composite 

State. In that case, all Regions concurrently executed in that State are exited. This 

implies active State of each Region are exited. The exiting sequence for each Region 

starts by exiting the most nested active States. 

 

Explicit entry and exit of Region is also supported in PSSM. An explicit entry occurs 

when a Region is entered via a Transition with a source outside the Region and target 

inside the Region. Conversely, an explicit exit of Region occurs when a Transition exits 

a Vertex located in the Region and targets a Vertex located outside the Region. 

 

When a Region is entered explicitly, the execution of this latter does not start from the initial 

Pseudostate. The Region is considered as being entered when the target Vertex located 

inside the Region is entered. Note that if the Region is located in a composite State 
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owning other Regions which are not entered explicitly then these latter are entered using the 

implicit entry semantics.  

 

When a Region is exited explicitly, then the source Vertex is exited (if the source is a 

State that is composite then active States located within are exited). If the Region that is 

exited is owned by a composite State that has additional Regions then these latter are exited 

using the implicit exit semantics. 

2.3.2.6.3 VertexActivation and the StateActivation Specialization 

The state machine semantic visitor VertexActivation is abstract and captures the 

common semantics of each kind of Vertex (i.e., State, FinalState and all kind of 

Pseudostate). Hence the node referenced by a VertexActivation is always a 

Vertex. 

 

VertexActivation defines the common way to enter any kind of Vertex. To do so it 

provides the operations enter and exit. 

 

1. A Vertex can only be entered if its prerequisites (specific to each kind of Vertex, 

based on the redefinition of the VertexActivation isEnterable operation) 

have been fulfilled. In this case, and only in this case, the VertexActivation can 

be entered (using the enter operation). The entry semantics are specific to each kind 

of Vertex. Nevertheless, each specialized Vertex is entered using a given entering 

Transition and knows about the common ancestor it shares with the source 

VertexActivation. The entered VertexActivation always takes advantage 

of the common ancestor (a RegionActivation) information to identify if the parent 

VertexActivation must also be entered before. 

2. A Vertex can only be exited if its prerequisites (specific to each kind of Vertex, based 

on its redefinition of the VertexActivation isExitable operation) have been 

fulfilled. In this case, and only this case, can the VertexActivation be exited 

(using the exit operation). The exit semantics are specific to each kind of Vertex. 

Nevertheless, each specialized Vertex is exited using a given exiting Transition and 

knows about the common ancestor it shares with the target VertexActivation. The 

exited VertexActivation always takes advantage of the common ancestor (a 

RegionActivation) information to identify if the parent VertexActivation 

must be exited after. 

PSSM defines StateActivation which specializes VertexActivation in order to 

capture the semantics of the State meta-class. This specialization defines the specific entry 

and exit semantics of a State by completing the initial semantics defined in 

VertexActivation. 

1. The only prerequisite a State must fulfill to be entered is that it must not be already 

active (i.e., it must not be part of the state machine configuration). If it can be entered, 

then the common ancestor rule described by the semantics captured in 

VertexActivation applies. As soon as this rule was applied, the remaining part of 
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the entry sequence is specific to a State. This sequence consists in referencing the 

State in the state machine configuration, execute its entry Behavior (if any), invoke 

(it will be executed asynchronously from the state machine) its doActivity (if any) and 

enter concurrently its owned Regions (if the State is composite).7 

2. The only prerequisite a State must fulfill to be exited is that it must already be active 

(i.e., it must be part of the state machine configuration). If it can be exited, then the exit 

sequence that is specific to a State is performed. This sequence consists in exiting all 

regions owned by that State (if it is composite), aborting the doActivity (if any) that 

has been invoked from State, updating the history of the Region owning that State 

and removing the State from the state machine configuration. As soon as the exit 

sequence specific to State was performed then the common ancestor rule described 

by the semantics captured in VertexActivation applies. 

2.3.2.6.4 TransitionActivation and the ExternalTransitionActivation specialization 

The state machine semantic visitor TransitionActivation is abstract and captures the 

common semantics of all kind of Transition: local, internal and external. This common 

semantics is especially captured by the fire operation defined in this visitor. The firing sequence 

consists in exiting the source Vertex, executing the effect behaviour (if any) and entering the 

target Vertex. Although the firing sequence is common to all kind of Transition, this is 

not the case of the sequences that respectively define what the impact of exiting the source and 

entering the target is. These sequences are specific to the different kind of Transition. To 

capture this, the semantic model defines three specializations of TransitionActivation. 

 

ExternalTransitionActivation is one of the defined specialization. It captures the 

semantics of an external Transition. To do so it redefines the operation exitSource and 

enterTarget declared by TransitionActivation. 

 

1. exitSource. It is only possible to exit the source Vertex using an external 

Transition if the prerequisites to exit the Vertex are fulfilled. Note that these 

prerequisites are specific to each Vertex. In the situation where the prerequisites to 

exit the source are fulfilled as well as those to enter the target, then the common ancestor 

existing between the source and the target is taken into account to perform the exit 

sequence of the source. Conversely, if the target is not ready to be entered (i.e., the 

prerequisites are not satisfied) then the source is exited, but the exit sequence does not 

account for the common ancestor existing between the source and the target. 

 

2. enterTarget. The general case occurs when the target Vertex can be entered. Its 

entering sequence is executed and this latter accounts for the common ancestor existing 

between the source and the target. It also exists a specific usage of external transition 

that implies a different semantics than the one presented for the general case. Consider 

the situation where an external Transition source is an internal (maybe deeply 

nested) Vertex of the target. This assumption implies that the target is a composite 

State and the Transition ends it inside edge. In this situation, the target cannot be 

entered since it is already part of the state machine configuration. Nevertheless the 

Region owned by the target State and which owns (directly or indirectly) the source 
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Vertex will be considered as being completed. Hence if this Region is the only one 

owned by the target State then this latter completes. 

 

To summarize, the firing of a Tansition can be viewed as chain of calls. These calls 

represent the different sequence actions realized during the firing of the Transition. A RTC 

step can be represented by a single chain of calls or set of chain of calls in the case where the 

dispatched event implies the concurrent firing of multiple Transitions.  

fire() 

exit(exitingTransition, eventOccurrence, commonAncestor) 

exit(exitingTransition, eventOccurrence, commonAncestor) 

… 

executeEffect(eventOccurrence) 

enter(enteringTransition, eventOccurrence, commonAncestor) 

enter(enteringTransition, eventOccurrence, commonAncestor) 

… 

End 

Clauses 2.3.2.2, 2.3.2.3 and 2.3.2.6 provided the reader with an overview of PSSM core 

semantic element. Next section describes the test suite structure, some tests and their 

relationships to identified semantic requirements. 

2.3.3 Test Suite and Semantic Requirements Coverage 

Design of the PSSM semantic model was driven by semantic requirements that were identified 

for UML state machines and testing of the validity of the implemented requirements. Clause 

2.3.3.1 describes the role of the test suite model. Clause 2.3.3.2 explain how test cases are 

described in this test suite. Finally clause 2.3.3.3 proposes a review of few test cases provided 

in the test suite. 

2.3.3.1 Test Suite Role 

The test suite has three roles: 

 

1. It defines a reference model that when executed provides a way to assess that 

requirements implementation in the semantic model captures exactly the semantics 

intended by the UML specification. 

 

2. It defines a reference model that a tool trying to implement PSSM semantics can use to 

evaluate if its implementation is effectively PSSM conformant. To claim such 

conformance a tool must pass all tests defined in the test suite. 

 

3. It provides a way to ensure that no regressions are introduced in new increments 

introduced in the semantic model. Indeed each time a new part of the semantics is 

described, all tests already defined in the test suite must still be passed.  

2.3.3.2 Test Suite Architecture 

The test suite model is separated in two distinct parts. The first part corresponds to the definition 

of the abstract architecture of a test case. The second part is a set of packages where each 
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package refers to a particular test category. For example, one test category in the test suite 

captures all tests related to transition semantics. Each test case in this category assert a specific 

part of the transition semantics. This part has been previously identified in semantic 

requirement. 

 

 
Figure 12 - Test Suite Architecture 

 

Figure 12 shows the abstract architecture of a test cases. This architecture is composed of three 

elements: 

 

1. Tester. The tester is an abstract active class which encodes in its classifier behaviour 

the stimulation sequence (i.e., a set of events) that will be sent to the test target. The 

classifier behaviour provided by the abstract tester is empty. Specializations of this class 

are intended to provide a new classifier behaviour describing the user defined 

stimulation sequence that must be sent. 

 

2. Target. The target is an abstract active class. It receives the stimulation sequence sent 

by the Tester. The received events will enable the classifier behaviour to realize RTC 

steps. Throughout its execution the classifier behaviour generates an execution trace. 

This trace is stored by the target (see traceBuilder in class Target in Figure 12). 

The classifier behaviour of the abstract target is empty. Specialization of this class are 

intended to provide a new classifier behaviour. In the context of PSSM the classifier 

behaviour shall be a state machine. 

 

3. SemanticTest. The semantic test acts as a controller for the tester and the target. It takes 

into account the trace generated by the target and use it to compute the test verdict. The 

verdict is either pass or fail. If the verdict is pass then it means the trace generated by 

the target is included in the set of expected traces for the test. Conversely, if the verdict 

is fail then the generated trace is not included in the set of expected traces. Note that 

specializations of this class are not intended to provide a new classifier behaviour. 
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Each tests declared within the PSSM test suite extends this abstract architecture. Some of the 

tests defined in the test suite model are described in the next section. 

2.3.3.3 Tests 

Clause 2.3.3.3.1 explains how test description is build / organized in PSSM specification. 

Finally clauses 2.3.3.3.2 and 2.3.3.3.3 explain in details two PSSM tests. These tests rely only 

on semantic functionalities described in section 2.3.2. 

2.3.3.3.1 Tests Description 

All test are descriptions follow the exact same pattern. 

 

1. The state machine under test is presented. 

2. The stimulation sequence received by the state machine is described. 

3. A trace that can be generated by the test is described. 

4. Test purpose is reminded and the execution corresponding to the trace is described. 

5. A table describing all RTC steps realized during the execution is provided. 

6. If alternative execution traces can be generated, then these latter are listed. 

 

Test described in clauses 2.3.3.3.2 and 2.3.3.3.3 will be described according to this pattern.  

2.3.3.3.2 Test 1: Transition 007 

Tested state machine 

 

The state machine that is executed for this test is presented in Figure 13. 

 

 
Figure 13 - Transition 007 Classifier Behavior 
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Test execution 

 

Received event occurrence(s) 

 

 AnotherSignal – received when in configuration S1. 

 Continue – received when in configuration S3. 

 Continue – received when in configuration S1. 

 

Generated trace 

 T1(effect)::T2(effect)::T3(effect) 

 

Note. The purpose of this test is to validate that “A transition may own a set of triggers, 

each of which specifies an Event whose occurrence, when dispatched, may trigger 

traversal of the Transition” (see section 14.2.3.8 of [1]). Consider the state machine 

presented in Figure 13 has already performed its initial RTC step. The current state 

machine configuration is S1. When the completion event generated for that state is 

dispatched it is lost since S1 does not have a completion transition. The next event to be 

dispatched is AnotherSignal. It triggers T1 which has declared a trigger for this event 

type and S3 is entered. As S3 does not have a completion transition, its completion event 

is lost. When Continue is dispatched T2 is triggered. This is fine since T2 declares 

triggers both for Continue and AnotherSignal. The state machine at the end of the steps 

is back in configuration S1. The completion event generated for that state is lost. The 

next event to be dispatched is a Continue evet occurrence. It triggers T3 and S2 is 

entered. The completion event of S2 is used to trigger in the next RTC the transition T4. 

When the final state is reached the region completes which implies that the state 

machine execution also completes.  

 

RTC steps 

 

2.3.3.3.3 Test 2: Exiting 003 

Tested state machine 

Step Event pool State machine configuration Fired transition(s) 

1 [] [] - Initial RTC step [InitialTransition] 

2 [AnotherSignal, CE(S1)] [S1] [] 

3 [AnotherSignal] [S1] [T1] 

4 [Continue, CE(S3)] [S3] [] 

5 [Continue] [S3] [T2] 

6 [Continue, CE(S1)] [S1] [] 

7 [Continue] [S1] [T3] 

8 [CE(S2)] [S2] [T4] 
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The state machine that is executed for this test is presented in Figure 14. 

 

 
Figure 14 - Exit 003 Classifier Behavior 

 
Test execution 

 

Received event occurrence(s) 

 

 Start – received when in configuration wait. 

 Continue – received when in configuration S1[S1.1[S1.1.1, S1.2.1]]. 

 

Generated trace 

 S1.1.1(exit)::S1.2.1(exit)::S1.1(exit)::S1(exit) 

 

Note. The purpose of this test is to demonstrate that “When exiting from a composite 

state, exit commences with the innermost state in the active state configuration. This 

means that exit behaviors are executed in sequence starting with the innermost active 

state” (see section 14.2.3.4.6 of [1]). Consider the state machine presented in Figure 14 

has already realized its initial RTC step. The current state machine configuration is wait. 

The completion event generated for the wait state is lost since it has no completion 

transition. The next event to be dispatched is Start. It triggers the compound transition 

T2(T1.1(T1.1.1, T1.2.1)). At the end of the of the RTC step the new state machine 

configuration is S1[S1.1[S1.1.1, S1.2.1]]. Completion events generated by S1.1.1 and 

S1.2.1 are both lost. The RTC initiated by the dispatching of the Continue event has a 

great impact on the state machine configuration. Indeed, although the S1 is left by T3, 

the semantics requires that before S1 is actually exited, its complete hierarchy of active 

state must be exited. The exit sequence starts with the innermost active states so S1.1.1 

and S1.2.1. Here consider that S1.1.1 exit behaviour is executed before the S1.2.1 exit 

behaviour. A soon as both have been exited, S1.1 exit behaviour can be executed 

followed by S1 exit behaviour. When the final state is reached the state machine 

execution completes.  

 

RTC steps 
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Step Event pool State machine configuration Fired transition(s) 

1 [] [] - Initial RTC step [T1] 

2 [Start, CE(wait)] [wait] [] 

3 [Start] [wait] [T2(T1.1(T1.1.1, T1.2.1))] 

4 [Continue, CE(S1.2.1), CE(S1.1.1)] [S1[S1.1[S1.1.1, S1.2.1]]] [] 

5 [Continue, CE(S1.2.1)] [S1[S1.1[S1.1.1, S1.2.1]]] [] 

6 [Continue] [S1[S1.1[S1.1.1, S1.2.1]]] [T3] 

 

Alternative execution steps 

 

The presence of orthogonal regions in S1.1 enables the possibility to observe an alternative 

execution trace for that test. This trace captures the situation in which the S1.2.1 exit behaviour 

gets executed before S1.1.1 exit behaviour. 

 

 S1.2.1(exit)::S1.1.1(exit)::S1.1(exit)::S1(exit) 

 

2.3.4 Implementation 

An implementation of the PSSM semantic model was developed. This implementation is 

integrated as an execution engine in Moka (the Papyrus model execution platform)10. It can be 

retrieved from the branch bugs/465888-SMExecPrototype available at the Papyrus repository11. 

The implementation is capable of executing all tests that are described in the PSSM test suite 

model. The process of setting up the environment to make possible the test suite execution is 

described below. 

 

1. Download the Mars version of Eclipse 

 

2. Install Papyrus Mars 

 

 http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars  

 

3. Check out the Papyrus repository 

 

 git clone https://git.eclipse.org/r/papyrus/org.eclipse.papyrus 

 

4. Switch to the branch bugs/465888-SMExecPrototype 

 

5. In your working directory move to extraplugins/moka and import the plugin 

 

 org.eclipse.papyrus.moka.fuml.statemachines 

                                                 
10 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution   
11 https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/  

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars
https://git.eclipse.org/r/papyrus/org.eclipse.papyrus
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/
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6. Launch an Eclipse runtime 

 

7. In the runtime instance import the PSSM test suite. This test suite is available under 

resources/tests folder of the oep.moka.fuml.statemachines plugin. 

 

8. Go to Window menu and select the Preferences item. A popup opens. In that popup you 

must go to Papyrus category and select Moka item. In the displayed preference page 

make sure that “StateMachines semantics [prototype]” execution engine is selected. 

 

9. Create a new Moka launch configuration. This configuration must be similar to the one 

shown in Figure 15. 

 

 
Figure 15 - Run all tests 

 

10. Click on the Debug button to launch the execution of all tests defined in the PSSM test 

suite. By looking at the Moka console during the execution you shall observe that all 

tests pass. 

 

Note: The current version of this execution engine does not provide a connection with Moka 

animation and debug framework. Hence the execution cannot be observed on the state machine 

diagrams nor suspended for debug. State machines execution engine will only be integrated in 

the official release of Moka when PSSM will have completed its finalization process.  

2.3.5 Specification Status 

The current version of the PSSM specification (i.e., Abstract syntax, semantic model, test suite 

and implementation) provides support for all mandatory requirements (see clause 2.3.5.1) 

defined in the PSSM RFP and some of the non-mandatory requirements (see clause 2.3.5.2). 
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2.3.5.1 Mandatory requirements 

Requirement Response 

 

6.5.1a Behavior state machine semantics 

(excluding redefinition and submachines) 

 

 

Support for all required elements and Call 

events for synchronous operation call. 

 

 

6.5.1b Event data passing 

 

 

Achieved using a parameter-passing 

approach for guard expressions and event 

behaviours (see clause 2.3.1.2). 

 

 

6.5.1c Standalone and classifier behaviour 

execution. 

 

 

Strict support for these two cases. 

 

6.5.1d Consistency with PSCS 

 

Achieved by defining PSSM execution 

model as an extension of the PSCS model. 

 

 

6.5.1e Relationship to fUML 

 

 

Achieved by defining PSSM execution 

model as an extension of the fUML model. 

 

 

6.5.1f Extension of fUML base semantics (if 

necessary) 

 

 

This was not found to be necessary. 

 

6.5.2a Semantic variabilities 

 

 

Proposal does not define any additional 

semantic variabilities. 

 

 

6.5.2b Semantic variants 

 

 

Proposal does not define any additional 

semantic variants. 

 

 

6.5.3a UML 2 conformance 

 

 

Proposed PSSM syntax subsets UML 2.5 

abstract syntax. 

 

 

6.5.3b fUML conformance 

 

 

Proposed PSSM semantics are based on 

fUML 1.2.1. 

 

6.5.3c PSCS conformance 

 

 

Proposed PSSM semantics are based on 

PSCS 1.0 
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6.5.3d Common Logic conformance Not applicable, proposal does not extend the 

fUML base semantics. 

 

 

6.5.4a Test suite 

 

Proposal includes suite of 105 tests. 

  

 

6.5.4b Test suite coverage 

 

Current coverage is 100% of identified 

functional requirements. 

 

2.3.5.2 Non-mandatory requirements 

Requirement Response 

 

6.6.1 Submachine states 

 

 

Not included in the proposal. 

 

6.6.2 Protocol state machine 

 

Proposal includes a non-normative annex on 

protocol state machines 

  

 

6.6.3 State machine redefinition 

 

Proposal discusses the semantics of state 

machine redefinition and includes its formal 

specification in the semantic model. 

 

 

6.6.4 Asynchronous operation call 

 

Not included in the proposal. 

 

 

6.6.5 Triggers with ChangeEvents 

 

 

Not included in the proposal 

 

6.6.6 Alf for action language concrete 

syntax 

 

 

Proposal uses Java as the action language 

(Alf may be used in the future). 

2.3.5.3 Specification milestones 

PSSM RFP was issued by March 2015. The initial response to that RFP (aka. initial submission) 

was provided by the PSSM team in March 2016. For that initial submission 80% of the semantic 

requirements were covered (i.e., supported and tested). The revised submission will be provided 

by the PSSM team on November 8th, 2016. This submission covers 100 % of the semantic 

requirements and support for these latter is shown by the 103 test cases described in the PSSM 

test suite.  

 

For both submissions (i.e., initial and revised), a strong participation to the development of the 

semantic model, the test suite and the prototype implementation was realized in the context of 

the OpenCPS project. This assertion is also true for the editing of the specification. 
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After the revised submission, PSSM 1.0 will enter in its finalization process. The objective will 

be to fix all issues that may be discovered in the specification document as well as other 

normative artefacts: PSSM semantic model, PSSM syntax and PSSM test suite. 

3 XTUML STATE MACHINES SEMANTICS AND PSSM 

xtUML is a modelling language that emerged from the Shlaer-Mellor method, realized by the 

BridgePoint tool [7]. Up to our knowledge, it is widely used by Ericsson and Saab to design 

large software applications.  

 

xtUML is designed as a UML profile that defines the constraints and extensions required to 

make UML executable and translatable. In xtUML the dynamic of a system can be described 

using state machines. The semantics defined for these state machines is in some areas different 

from the one defined by original UML. Nevertheless, it seems clear that both semantics for state 

machines rely on a common base. 

 

Recently the Executable UML working group has worked on the definition of a Precise 

Semantics for UML State Machines (a.k.a, PSSM). The way the semantics is defined makes it 

possible to be tailored to account for xtUML state machine semantics specific requirements. 

The interest is that xtUML semantics will be based on the standard semantics defined for UML 

state machines. That means all state machine concepts that do not have a specific semantics 

defined in the context of xtUML will rely on the PSSM semantics. In addition, based on that 

semantic definition, it will be possible to precisely define what the impact of a FMI master 

simulation step is on a state machine defined using xtUML. 

 

In order to define what the tailoring of the PSSM semantics should be, a preliminary analysis 

of semantic differences existing between UML state machines and xtUML state machines was 

realized within OpenCPS. Clause 3.2 provides the reader with basics on xtUML state machine 

abstract syntax. Clauses 3.2, 3.3, 3.4 and 3.5 discuss specific aspects of xtUML state machines 

for which a different semantics that the one defined in PSSM is intended.  

3.1 Basics of xtUML State Machines 

All xtUML state machines are flat. Hierarchy and multiple regions are not allowed. Therefore, 

each object instance is in exactly one state in any point in time (if we think of state transitions 

as instantaneous actions). 

 

State transitions are triggered by signals arriving to the object that owns the state machine. 

States can have entry actions. These are executed whenever the state machine enters the state. 

Transitions can have effects, executed when the transition is used. A transition, including the 

execution of the effect, updating the actual state, execution of the entry action, and all 

synchronous operation calls from these, is a single run-to-completion step. Operation calls are 

always synchronous, while signal sending is always asynchronous. 

 

A typical xtUML state machine is shown on Figure 16. 
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Figure 16 - An xtUML State Machine 

 
PSSM 

 

PSSM syntax enables definition of significantly more complex state machines than xtUML. 

Indeed PSSM allows, for instance, state machines to be hierarchical and to have multiple 

regions. Nevertheless it is incorrect to say that PSSM syntax is a superset of xtUML syntax for 

state machines. Indeed, it exists information that can be added in an xtUML conformant state 

machine model that cannot be recorded directly by a PSSM conformant model unless a profile 

is used. For instance in xtUML the ID of a state is an information that is used to define what 

the initial state of a state machine is. Another example is the specification that an event can’t 

happen in particular state. UML does not provide concepts to record such information. 

3.2 State Machine Initialization 

States of xtUML state machines are numbered. The state with the lowest number is the initial 

state. When an object is created, the initial state is the active one, but its entry action is not 

executed. 

 

The graphical elements that, in standard UML, denote an initial pseudostate and initial 

transition, in xtUML denote a “creation transition”. There is a special signal sending operation 

in the xtUML action language that creates a new instance of the given class and executes the 

named creation transition in its state machine, additionally, it also executes the entry action of 

its target state. In this case, the target state of the creation transition will be the active state of 

the newly created object. There is no limit on the number of creation transitions in an xtUML 

state machine. 
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Figure 17 - State Machine with Creation Transitions 

 

 
Figure 18 - Object Creation Transitions 

 

Figure 17 shows a state machine with three states and two creation actions. Figure 18 shows 

xtUML action code to create three object instances of the class owning the state machine in 

Figure 17. The first line of action code creates instance1, which will be in state State1, because 

that is the lowest numbered state. The next two lines of action code create instance2 and 

instance3 respectively, by using the two creation transitions. For this reason, these two instances 

will be in State2 and State3, respectively. 

 
PSSM 
 

xtUML provides two ways to define what the initial state is in a particular state machine. The 

first approach consists in designating that state by its ID. The second approach consists in 

designating the state using a creation transition. Both approaches can be combined in the same 

state machine. At runtime, the way the container of the state machine is instantiated determines 

which initialization approach is used (either implicit or explicit). 

 

1. Implicit initialization. 

 

 Syntax. UML does not provide a way to define a particular state as being the initial 

state based on its ID. Hence PSSM syntax does not provide such capability. 

 

 Semantics. In PSSM, if a region (which can either be owned by a state machine or 

a composite state) does not have an initial pseudostate, then it is ignored by the 

execution (see clause 14.2.3.2 of [1]). This means for instance that if a composite 

state has a single region and this latter has no initial pseudostate then the composite 

state is handled as a simple state. If we consider here the state machine shown in 

Figure 16 where the initial state is defined as being unplugged, it will not be possible 

to execute this latter without an extension to the PSSM semantic model. Indeed, as 
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it is, the main state machine region would be ignored in the execution and the 

execution would have completed. 

 

As an additional difference, in PSSM if the state that is entered by an initial 

transition has an entry behavior then this behavior is always executed.  

 

2. Explicit initialization. 

 

 Syntax. UML does not allow a region to have more than one initial pseudostate (see 

clause 14.5.8.6 of [1]). In addition, a transition that leaves a pseudostate is not 

allowed to declare a trigger (see clause 14.5.11.8 of [1]). These two constraints must 

be relaxed in order to allow definition of xtUML models based on UML. They can 

be defined using the approach defined in clause 2.3.1.2. 

 

 Semantics. The instantiation of a class having a state machine as its classifier 

behavior is not enough to make this state machine to be initialized (i.e., perform its 

initial RTC step). To do so, the classifier behavior of the class must explicitly be 

started using a StartClassifierBehaviorAction.  The semantics to 

capture the starting of a classifier behavior is defined in UML. It consists in placing 

an InvocationEventOcurrence (see clause 8.4.3.2.6 of [2]) to the event pool 

and register an accepter for this event occurrence. When accepted the event 

occurrence, triggers the execution of the Execution (see clause 8.4.2.2.1 of [2]) 

corresponding to the classifier behavior. If the classifier behavior is a state machine 

with a single region, then the transition (maybe compound) outgoing the initial 

pseudostate is traversed and the target state is entered. Although the initial RTC step 

is initiated by the acceptance of an event occurrence, this latter does not trigger the 

initial transition. In other words, the initial transition does not have a trigger 

matching the dispatched event. This particular point of the semantics is different 

from what xtUML specifies. Indeed, in xtUML, the event occurrence that initiates 

the first RTC step might be used to trigger one particular initial transition among the 

set of initial transitions available in the state machine model (see Figure 17). The 

transition elected to be fired is the one with a trigger matching the creation event. In 

its current status, if PSSM was used to execute the model specified in Figure 17, one 

of the two initial transition would have been traversed during the initial RTC step 

and triggers placed on this transition would have been ignored. 

3.3 Unexpected events 

There are two different reasons for not having a transition with a given signal from a given 

state: 

 “Can’t happen” means that the modeled domain does not allow that particular signal to 

arrive in that state. If it indeed happens, that signals an error. This allows the developer 

of the state machine to specify ill-behavior of the system that requires a runtime error 

to be signaled. 

 “Event Ignored” means that the given signal may arrive in that state as part of the normal 

operation of the system, but there is no action or state change to take, therefore the event 

is silently ignored. 
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Figure 19 - State Event Matrix 

 

Figure 19 shows the “State Event Matrix” of the state machine on Figure 16. For example, a 

“Plug” event in the state when the machine is “On” cannot happen (because the machine is 

already plugged in). On the other hand, a “ButtonPress” event can arrive even if the machine 

is “Unplugged”, but it cannot start the machine, therefore it is ignored. 

 
PSSM 
 

In fUML, a classifier behavior can register event accepters for a well identified set of event 

types. If such accepter is registered and the dispatched event occurrence matches an accepter 

then the event occurrence is accepted (i.e. it initiates a RTC step). Otherwise, if no accepter 

match then the event occurrence is lost. Hence no RTC is initiated 

 

1. Can’t happen 

  

 Syntax. In UML, there is no way to specify that an event is not allowed to occur 

in particular state. Note that UML offers the possibility for an event to be 

deferred by a state but the purpose is different. 

 

 Semantics. In xtUML, when an event occurrence is lost because it is specified 

as can’t happen an exception must be raised. Unfortunately, fUML, PSCS and 

PSSM do not provide semantics for exceptions. Support for exception raising 

capability is not intended to be part of PSSM but rather part of further fUML 

versions. 

 

2. Event ignored 

  

 Syntax. In UML, there is no way to specify that an event will be explicitly 

ignored in a particular state machine configuration. However if no reaction is 

intended for an event in particular state then not any transition declaring a trigger 

for that event should be specified. 

 

 Semantics. In PSSM, if in the current state machine configuration the event 

occurrence cannot be deferred and it triggers no transition then it is lost. 
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3.4 Event Priorities 

When dispatching an event from the event queue of an object, signals sent by that object to 

itself have higher priority than signals from other sources. This enables splitting complex 

actions into multiple states: If the entry action sends a signal to self, that signal will be processed 

before other signals from different sources, so that the entry action can determine the next state. 

Control structures, like sequences, branches and loops can be explicitly visualized in the state 

machine this way. When the object stops sending events to itself, other signals in the event 

queue will be dispatched. 

 

 
Figure 20 - State Machine with Self Event 

 

 
Figure 21 - Action Code for Event Priority Testing 

 

For example, in State2 of the state machine of Figure 20 a signal is sent to self. The actions in 

Figure 21 first create an instance, which is in State1. Then Signal1 is sent to the object two 

times. The first signal makes the object move from State1 to State2, where the entry action 

sends a Signal2 to the object. Even if this message arrives later, it will take priority over the 

second Signal1 still in the queue. For this reason, State4 will be active instead of State3. 

 
PSSM 
 

In PSSM, events sent by a state machine to itself do not have the priority over other events 

already existing in the pool. Assuming, it exits a transition between an initial pseudostate and 

State1, the execution of the state machine presented in Figure 20, through the PSSM semantic 
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model would be different than the one performed using xtUML semantics. Indeed, when the 

first EventPrioTestClass1 is dispatched the transition between State1 and State2 is fired. The 

current configuration is now State2 and new event occurrence of type EventPrioTestClass2 was 

added to the pool. The next event to be dispatched is of type EventPrioTestClass1 and when 

accepted makes the state machine to enter State3. It only now remains one event in the pool. 

This event occurrence of type EventPrioTestClass2. When dispatched it is lost since it cannot 

be used to trigger any transition. 

 

It is important to note that in PSSM some events are generated implicitly on state completions. 

These events are called completion event. They are typically generated for simple state when 

the entry behavior (if any) and the doActivity behavior (if any) have completed their executions. 

Note that if no behavior is defined the state completes when entered. Completion events have 

the priority over other event available at the pool. When a completion event is dispatched it can 

trigger a completion transition outgoing the state from which it was generated. Completion 

events are not considered in xtUML semantics. 

3.5 Polymorphic Event 

The semantics of xtUML generalization relation is different from standard UML. The notation, 

however, is the same, see Figure 22. 

 

 
Figure 22 - Generalization Relation 

 

The Parent and Child classes have to be instantiated separately, and explicitly linked across the 

generalization relation R2. See the first three lines of the action code in Figure 23. 

 

 
Figure 23 - Instantiation of Classes in Generalization Relation 

 

The two instances exist and work separately, they can have separate state machines. In this 

respect, generalization relations are similar to simple associations, with an extra restriction: An 
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instance of the super type can be related to at most one subtype instance (even if there more 

than one subtypes). 

 

There is no inheritance: Child instances do not have the attributes and operations of Parent. 

However, events are polymorphic. Signals sent to a Parent instance but not used in its state 

machine are automatically propagated to the related Child instance. 

 

 
Figure 24 - State Machine of the Parent Class 

 

 
Figure 25 - State Machine of the Child Class 

 

Figure 24 and Figure 25 shows the state machines of the Parent and Child classes respectively. 

Signal1 is used in Parent’s state machine, while Child’s state machine uses Signal2. There is 

mutual exclusion in using the signals: signals used in the state machine of a supertype cannot 

be used in the state machines of subtypes and vice versa. 

 

The last two lines of action code in Figure 23 send Signal1 and Signal2 to the Parent instance. 

The first one will be processed by parent’s state machine, while the second signal will be 

automatically propagated to and then processed by child’s state machine. 

 
PSSM 
 

 Syntax.  

o UML and PSSM place no constraints on the events that can be received by the 

classifier behaviors. Hence if Parent and Child classes define classifier 
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behaviors that can both receive the same signal, the model is still syntactically 

and semantically correct.  

 

o In UML the existence of a generalization relationship between two classes 

denotes that all features (i.e., behavioral and structural) which can be inherited 

will be available at the specializing class. Hence if the Parent class as an 

attribute then this latter can be used in the classifier of the Child class.  

 

 Semantics.  

 

o When an instance of Child class is created no classifier behavior is started. It 

must be started explicitly using a StartClassifierBehaviorAction. 

The classifier behavior that is started is the one associated to the type of object 

pin of the action. Hence if the type is Child then the classifier behavior started 

is the one presented in Figure 25. To also have the classifier behavior of the 

Parent class running at the object activation associated to the instance of the 

Child class, it must also be started explicitly using the aforementioned approach. 

At runtime, the two classifier behaviors share the same event pool.  

 

o Consider that two event occurrences of type Parent1 and Parent2 are placed in 

the pool. When the first event occurrence is dispatched it triggers a RTC step in 

the classifier behavior of the Parent class. The other event occurrence triggers a 

RTC in the Child class classifier behavior. 

 

o Although the execution of the model specified in Figure 22 and receiving the 

stimulation sequence specified in Figure 23 is the same when the PSSM 

semantics or the xtUML semantics are used, the runtime structure is 

fundamentally different. Indeed, when executed through PSSM a single instance 

handles the two classifier behaviors. Conversely, when the model is executed 

through xtUML semantics two instances are created. Each instance handle the 

execution of a state machine. The semantics of the generalization relationship 

defines that both instance are related in the sense that classifier behaviors they 

execute share the same event pool. It also defines that executed classifier 

behaviors never compete for an event. Indeed, first the parent instance tries to 

accept the event and then if it is not accepted the child instance tries to accept it. 

In fUML this works differently since all classifier behaviors compete to accept 

an event occurrence. 

3.6 Summary 

Within this first evaluation of the differences between the original UML (as captured in PSSM) 

and the xtUML state machines we have identified 4 main categories of differences: state 

machine initialization, handling of unexpected events, event priorities and polymorphic events 

that are described in sections 3.2 3.3 3.4 and 3.5, respectively. 
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4 CONCLUSIONS 

This document reports progress made on task T2.2 “Interoperability of the standards Modelica-

UML-FMI” over the last twelve months. Two contributions are presented. 

 

1. First contribution, is the participation to the definition of a Precise Semantics for UML 

State Machines. This definition has been proposed at the OMG by the PSSM team as a 

response to the PSSM RFP issued in March 2015. This document provides an overview 

of the specification architecture, highlights key points of the defined semantics and 

explains how this semantics was tested to ensure its was consistent with the one 

described in UML 2.5 [1]. This first contribution was a required step to ensure the 

possibility to use UML models with behaviours defined as state machines in a 

simulation process.  

 

2. Second contribution is the analysis of the semantic differences existing between the 

semantics captured by PSSM and semantics of xtUML state machines. With the 

identification of these differences it is now possible to estimate which extensions would 

be required to the PSSM semantic model to be able to capture the semantics specific 

requirements of xtUML state machines. If such extensions to PSSM are defined, then 

xtUML models built using UML and a profile will be also usable in a simulation 

process. 

 

Now that we have a precise semantics for UML state machines, the next step of the test is to 

clarify what an FMI simulation step implies in terms of execution in a state machine executed 

as the classifier behaviour of an FMU. This work will be reported in the next deliverable.  
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