
OPENCPS
ITEA3 Project no. 14018

D2.2
Interoperability of the standards
Modelica-UML-FMI

Access1: PU

Type2: Report

Version: 0.8

Due Dates3: M12, M24

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

At design time, a complex system is defined by a set of models which describe the different parts of
the system. These models can be formalized using different modelling languages. Hence, the overall
system is a set of heterogeneous artefacts that still need to be simulated altogether to assess the
global system behaviour on a set of well identified scenarios. FMI standards defines how these
artefacts can be combined in a simulation as a set of FMUs and also formalizes what the meaning of
a simulation step is on this model. UML models can be used in such a simulation process, however
the current set of language elements that have a formal semantics does not include state machines
although these latter are heavily used across a large set of domains to model the dynamic of software
applications. To make the usage of UML state machines possible in a simulation process, their
semantics must be formally described. This deliverable reports the work done to define a Precise
Semantics for UML state machines and normalize it at the OMG. In addition it also identifies how the
UML specification could be extended to allow execution of xtUML state machines which are especially
used at an industrial level by Ericsson and Saab and part of the xtUML (executable UML) language.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.

3 Due month(s) according to FPP.
4 It is mandatory to provide an executive summary for each deliverable.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 2 of 45

Deliverable Contributors:

 Name Organisation
Primary role
in project

Main

Author(s)5

Deliverable

Leader6
Jérémie TATIBOUET CEA T2.2 leader X

Contributing

Author(s)7

 Jérémie TATIBOUET CEA T2.2 leader X

Gergely DEVAI ELTE-Soft T2.2 member X

Bernhard THIELE LIU T2.2 member X

Ákos Horvath IQL T2.2 member X

Gergely Seres Ericsson T2.2 member X

Internal

Reviewer(s)8
Ákos Horvath IQL T2.2 member X

Document History:

Version Date Reason for Change Status9

0.1 29/10/2016 Initial version of the deliverable Draft

0.2 06/11/2016
Integration of the analysis of xtUML
state machines semantics specifics

Draft

0.3 06/11/2016
Integration of Modelica language
short description in clause 1.1

Draft

0.4 07/11/2016
Complete section 3 with description
on PSSM differences compared to
xtUML state machines.

Draft

0.5 10/11/2016
Add executive summary. Include
minor adjustments to conclusions.

Draft

5 Indicate Main Author(s) with an “X” in this column.
6 Deliverable leader according to FPP, role definition in PCA.

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.

8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9 Status = “Draft”, “In Review”, “Released”.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 3 of 45

0.6 10/11/2016
Complete review is done and some
minor adjustments are added to
certain sections

In Review

0.7 11/11/2016 Apply initial review suggestions. In Review

0.8 12/11/2016
Minor editorial improvements to
finalize the document for release.

Released

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 4 of 45

CONTENTS

ABBREVIATIONS ... 4
1 INTRODUCTION ... 6
1.1 Task Analysis ... 6

1.2 Problem Statement ... 7
1.3 Deliverable Content ... 7
2 PRECISE SEMANTICS OF UML STATE MACHINES 8
2.1 Scope of the specification .. 8
2.1.1 Overview .. 8

2.1.2 Conformance Levels .. 9

2.2 Specification Architecture ... 10

2.3 Specification Content ... 11
2.3.1 Syntax .. 11
2.3.2 Semantics ... 15
2.3.3 Test Suite and Semantic Requirements Coverage 26

2.3.4 Implementation .. 31
2.3.5 Specification Status .. 32
3 XTUML STATE MACHINES SEMANTICS AND PSSM 35

3.1 Basics of xtUML State Machines .. 35
3.2 State Machine Initialization ... 36

3.3 Unexpected events ... 38
3.4 Event Priorities ... 40
3.5 Polymorphic Event ... 41

3.6 Summary .. 43

4 CONCLUSIONS .. 44
REFERENCES .. 45

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

M&S Modelling and Simulation

N/A Not Applicable

SotA State of the Art

UML Unified Modelling Language

RFP Request for Proposal

FUML Semantics of a Foundational Subset for Executable UML Models

PSCS Precise Semantics of UML Composite Structures

PSSM Precise Semantics of UML State Machines

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 5 of 45

ALF Action Language for Foundational UML

RTC Run to Completion

OMG Object Management Group

EOO Equation-based Object-Oriented

MLS Modelica Language Specification

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 6 of 45

1 INTRODUCTION

1.1 Task Analysis

The task is entitled “Interoperability of the standards Modelica-UML-FMI”. Keywords of this

title are UML, Modelica and FMI.

 UML [1] is a standard modelling language that can be used to describe the structure

and the dynamic of a complex system. This modelling language is particularly well

suited to precisely describe the software parts of a system and partially the execution

platform (usually HW). The language has a precise semantics defined in its standard,

however, some of this semantics are still described in natural language (i.e., in English)

but a growing subset is now associated to a formal (i.e., operational) definition. The

subset that currently has a formal semantics includes classes, composite structures and

activities. These semantics are respectively described in fUML [2] and PSCS [3]

documents. Any model conforming to the aforementioned subset can be precisely

executed, thus also simulated.

 Modelica is language for describing the dynamic behavior of technical systems

consisting of mechanical, electrical, thermal, hydraulic, pneumatical, control and other

components. The behavior of models is described with ordinary differential equations

(ODEs), algebraic equations (AEs), event handling and recurrence relations (sampled

control). Object-oriented concepts are supported as a means of managing the

complexity inherent to modern technical systems. Modelica can therefore be called an

equation-based object-oriented (EOO) language. The most recent standard version is

the Modelica Language Specification (MLS) 3.3 [4]. A brief discussion on Modelica

semantics is further provided in the OPENCPS D3.2 report “Translation validation and

traceability concept from acausal hybrid models to generated code”.

 FMI defines an open tool independent standard enabling the combination of a set of

models (developed in different tools) describing the different parts of a complex system

in a single simulation model. Each artefact contributing to this model is described as an

FMU. An FMU is a box which exposes inputs that need to be provided for the

underlying simulation model as well as outputs produced by this latter. It exists two

types of FMU: model exchange and co-simulation. According to the FMI 2.0

specification [4], the kind model exchange means that the “FMU includes the model or

the communication to a tool that provides the model, and the environment provides the

simulation engines”. Conversely, the kind co-simulation means that “FMU includes the

model and the simulation engine, or a communication to a tool that provides the model

and the simulation engine, and the environment provides the master algorithm to run

coupled FMU co-simulation slaves together”.

The word linking the aforementioned keyword is Interoperability. FMI standard provides a way

to couple parts of a complex system that would have been specified using either with Modelica

or UML. The assumption to make this coupling possible is that tools enabling the definition of

models conforming to these languages are able to export FMUs for co-simulation. As a

reminder, tools involved in that part of the project are Papyrus and Open Modelica. Papyrus

provides the possibility to describe part of the system using UML while Open Modelica

provides the possibility to describe part of the system using the Modelica language.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 7 of 45

At simulation time, FMUs for co-simulation provided by these two tools interoperate thanks to

the semantics defined by the FMI standard. This semantics is captured by the master algorithm

implemented by the simulation environment in which FMUs are imported and connected. While

it is clear that FMI enables models specified in both languages to be involved in a co-simulation

process, it is not clear what does a master simulation step implies in terms of simulation

progress in models specified in UML. This problem is explained in the next section.

1.2 Problem Statement

UML provides the possibility to describe the dynamic of a system using state machines. This

formalism is very popular for modelling event-based reactive behaviours and is widely used in

industry. It is often used jointly with activities which are used to describe low-level

computations occurring when a state is entered, exited or when a transition is traversed. These

activities can be specified using the Alf textual notation [5]. The purpose of this standard

notation is to provide users with an easy way to implement and maintain complex activities in

their models.

Unlike for activities, classes and composite structures whose execution semantics are formally

defined in fUML and PSCS, state machines semantics remain specified in a natural language

(i.e., English). Hence:

1. It is not possible to use in simulation process models whose dynamic is specified using

UML state machines.

2. As the semantics is not formally defined it is not possible to clarify what are the

implications in terms of simulation progress between a step asked by the master

algorithm and run-to-completion steps performed in an executed state machine.

On way to resolve point 1 and to clarify point 2 is to provide a formal definition of UML state

machines semantics. One can argue that in the past many tools provided a semantics for UML

state machines. That is true, but it is not possible to say that semantics described by these tools

fully complied with the one described by UML since no reference model was developed to

assess this conformance. In addition, none of the defined semantics were standardized nor relied

on the standard describing semantics of a foundational subset for executable UML models:

fUML.

1.3 Deliverable Content

Two different releases are required for task 2.2 of work-package 2: M-12 and M24. The current

document corresponds to the M-12 release. Two main contributions are described:

1. The definition of a precise semantics for UML state machines. The resulting

specification document is very likely to be adopted as an official OMG standard. The

current document describes contributions to construct the PSSM specification (as a

response to the PSSM RFP [7]). It especially provides an overview of the core semantics

and it explains how the defined semantics was tested (via the test suite and the prototype

implementation of the semantics) to ensure it matches the one defined in the UML

standard.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 8 of 45

2. A preliminary analysis was conducted by Inc-Query, ELTE-Soft, Ericsson, Saab AB

and CEA to determine what are the semantics differences existing between UML state

machines and xtUML state machines. This analysis is based on the standard semantics

defined for UML state machines in response to the PSSM RFP [6]. Its purpose is to

evaluate the required effort to capture xtUML state machines semantics as an extension

of UML state machine semantics. The final goal of this work is to use such extension to

allow xTUML models to be executed and leverage the possibility to export such models

into FMUs.

These two contributions are respectively described in sections 2 and 3 of this document.

2 PRECISE SEMANTICS OF UML STATE MACHINES

The purpose of this section is to provide of an overview of the work done in response to the

PSSM RFP [6]. Clause 2.1 present the scope of the specification. Clause 2.2 describes the

specification architecture as well the methodology followed to build the specification. Clause

2.3 focus on the PSSM specification content. It especially provides details on the PSSM subset

and on the core part of the semantic model. In addition, this clause explains the test suite

architecture and provides a detailed explanations about the execution of two test cases. Note

that information about implementation of the semantic model and how the RFP requirements

are addressed are also provided in sub clauses 2.3.4 and 2.3.5.

2.1 Scope of the specification

This sub clause establishes the relationship of PSSM to the syntactic and semantic models from

fUML [2] and PSCS [3] specifications (see Figure 1). Thanks to this relationship it highlights

that by construction the way PSSM is defined complies with the way fUML and PSCS were

defined.

2.1.1 Overview

Figure 1 - Scope of this specification

The Precise Semantics of UML State Machines specification is an extension of the Semantics

of a Foundational Subset for Executable UML (known as “foundational UML” or “fUML”)

that defines the execution semantics for UML state machines.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 9 of 45

Syntactically, this specification extends fUML with a large subset of the abstract syntax of state

machines as given in UML (see chapter 14 for [1] and later versions). Semantically, this

specification extends the fUML execution model in order to specify the operational execution

semantics of the state machines abstract syntax subset.

In practice, the semantic model defined to capture UML state machines semantics is an

extension of the semantic model described in Precise Semantics of UML Composite Structures

(PSCS). The semantic model described in this standard is itself an extension of the one

described in fUML. The definition of PSSM semantic model on top PSCS semantic model

ensures that semantics given in this specification are compatible with the extensions defined in

PSCS.

2.1.2 Conformance Levels

Even though PSSM is built on top of PSCS, a tool implementing this specification is not

required to demonstrate a conformance to PSCS to also demonstrate a conformance to PSSM.

In order to make this possible the specification defines two levels of conformance:

1. PSSM-only. To demonstrate conformance to this level, a tool must implement fUML

and PSSM. In addition, it must be able to pass all tests described in the PSSM test suite

but not those defined in the PSCS test suite.

2. PSSM and PSCS. To demonstrate conformance to this level, a tool must implement

fUML, PSCS and PSSM. In addition, it must be able to pass all tests defined in both

PSCS and PSSM test suite.

In other words, if the level of conformance is PSSM-only that means the tool implementing the

specification is able to execute any model conforming to the abstract syntax subset covered by

both fUML and PSSM. However it will not be capable of executing models relying on concepts

provided by the PSCS subset. To achieve this a joint PSSM and PSCS conformance is required.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 10 of 45

2.2 Specification Architecture

Figure 2 - PSSM specification architecture

Architecture of this specification is depicted in Figure 2. It relies on four pillars:

1. PSSM Syntax. The subset of UML state machines for which a precise semantics is

described. This subset is a superset of fUML abstract syntax.

2. PSSM Semantic. The semantic model that captures the definition of the precise

semantics for state machines. This model is a class model describing a set of semantic

visitors and their associations, which are responsible for the definition of the precise

semantics of each syntactic element included in the PSSM syntax.

3. PSSM Test suite. The test suite is a model describing a set of test cases. Each test case

is designed to assess a particular part of the UML state machine semantics. These

“parts” are requirements that have been extracted from section 14 of [1] and referenced

in an excel file. PSSM test suite is a PSSM-only conformant model. Hence, it can by

construction be executed using the semantics captured by the semantic model. A tool

implementing the semantic model and passing all tests described in the test suite model

can say it correctly capture the UML state machine semantics.

4. Implementation. The specification is delivered with a proof of concept

implementation. This implementation is one possible implementation of the semantic

model that is defined for PSSM. It is used for the purpose of executing the test suite and

therefore validate that the expected semantics is correctly captured by the semantic

model.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 11 of 45

The complete development of this specification was driven by the tests and the identified

requirements. The methodology consists in the following steps:

1. Select a new requirement.

2. Refine the semantic model to capture the requirement.

3. Reverberate the semantic model changes to the implementation.

4. Add a test in the test suite to demonstrate support of the requirement.

5. Execute that test using PSSM implementation.

6. Check if the trace generated by the test is included in the set of expected traces.

If the test fails then the semantic model and the implementation are refined. Conversely, if the

test pass then a new requirement is selected and the same steps that those mentioned above are

applied. Note that the semantics attached to each requirement was discussed in details by the

PSSM submission team before proceeding to any change in the semantic model.

2.3 Specification Content

In the two previous sections, the scope of the specification was identified and the architecture

of this specification was described.

This section describes the content that was included in main parts of the specification. Clause

2.3.1 gives an overview of the abstract syntax for which a semantics is provided by PSSM as

well as the additional constraints that are added to the syntax. Clause 2.3.2 describes the

definition of the core state machine semantic visitors and explain how these extensions are used

at runtime to execute a model. Clause 2.3.3 describes the test suite architecture, the process to

describe new tests and how the tests are related to the identified requirements. Finally, clause

2.3.4 explains the implementation design, the integration of this latte into Moka (Papyrus model

execution platform) and the procedure to execute the PSSM test suite through this

implementation.

Note: The purpose of this section is not to fully describe the different parts of the specification.

Instead, for the syntax, the semantics, the test suite and the implementation it provides a

sufficient level of details to highlight the work done in the context of that task. In addition, it

refers to the different part of the specification that readers have to look at if they need more

detailed information.

2.3.1 Syntax

The definition of the PSSM syntax corresponds to the selection of the UML meta-classes

required to construct that subset and the addition of rules constraining usage of these meta-

classes. Both aspects are described sub clauses 2.3.1.1 and 2.3.1.2.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 12 of 45

2.3.1.1 Meta-classes

Figure 3 - PSSM Syntax Package

PSSM is based on UML 2.5. The subset of the metamodel that is covered by PSSM is captured

in the package PSSM_Syntax::Syntax (see in Figure 3). This package imports into its

namespace exactly the meta-classes included in the PSSM subset.

On the left hand side of Figure 3, all imported packages are those included meta-classes

supported by the fUML subset. On the right hand side, all imported packages contain meta-

classes that are specific to UML state machines. CommonStructure, Values and

CommonBehavior are imported in addition to StateMachines package. One can notice

that fUML already imports meta-classes available in these low level packages

(CommonStructure, Values and CommonBehavior). However, PSSM requires some

that are missing in fUML. This explains why such imports are required.

Examples justifying such imports are meta-classes Expression and OpaqueExpression.

Neither meta-classes are included in the fUML subset however, PSSM requires them. Indeed,

it must be possible:

1. To specify that a Transition is an else transition. This is materialized by the fact

that the guard specification is an Expression which has no operands but its

associated symbol is “else”.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 13 of 45

2. To specify the guard of Transition has an OpaqueExpression. In such

situation, the OpaqueExpression is always associated to a behaviour that defines

its specification. This behaviour can therefore be executed if specified as an Activity

and will provide the verdict corresponding to the guard evaluation.

Constraint from CommonStructure and CallEvent from CommonBehavior are

also imported following the same approach. Constraint is required since a guard on

Transition is specified as a constraint. CallEvent is required since synchronous

operations call on active objects are allowed by PSSM. This addition makes possible for a state

to declare a deferrable trigger for a CallEvent. Furthermore it also enables transition to be

reactive to dispatched CallEvents.

Nevertheless, the biggest addition in terms meta-classes remains by the import of the

PSSM_Syntax::StateMachines package.

Figure 4 - Behavior State Machines

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 14 of 45

Note that the capability for StateMachine redefinition actually does not require any other meta-

classes than those already included for behaviour state machines (see Figure 4).

2.3.1.2 Constraints

The package PSSM_Syntax::Constraints (see Figure 5) imports into its namespace all

constraints applying on the PSSM subset. The approach is exactly the same than the one that

was applied for the syntax. Constraints expressed for fUML subset and available in

StructuredClassifiers, Packages, Activities and Actions are imported

(which by construction also includes those defined in packages imported by these packages)

PSSM adds a significant number of constraints (see Figure 4). The added constraints have the

role to ensure that if a particular model conforming to the PSSM subset also meets the

constraints then this model can be executed using the semantics captured in the PSSM semantic

model. These constraints are defined in Object Constraint Language (OCL) [8] in the

specification document. These constraints can therefore directly be used by a tool implementing

PSSM to validate before execution that the model is statically valid.

Figure 5 - PSSM Constraints

An example of constraint is:

 A state machine may not be a method and if it has a context, it must be the classifier of

that context.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 15 of 45

 context UML::StateMachines::StateMachine inv:

self.specification = null and

self.context <> null implies

self.context.classifierBehavior = self

 The first part forbids the usage of a state machine as implementation of an

Operation. This is due to the fact that a StateMachine is a Behavior, a

behavior can have parameters but in the context of a state machine it is not clear how

values associated to these parameters can be used at runtime.

 The second part of the constraint makes mandatory the fact that a state machine with

a context must play the role of a classifier behavior for that context.

Most important constraints that are added by PSSM define the rules that signatures of

Behaviors placed on States (entry/doActivity/exit), on Transitions and playing the

role of a specification for an OpaqueExpression must conform to in order to let them

have access to the data owned by the dispatched signal event occurrence and call event

occurrence.

 If all the relevant Triggers of an entry, doActivity or effect Behavior are for

SignalEvents, then the Behavior may have exactly one Parameter of mode “in”,

multiplicity upper bound of 1 and a type that is a Signal that conforms to all the

Signals of the relevant Triggers. If all the relevant Triggers are for

CallEvents, such that the signatures of the Operations of the CallEvents are

consistent, then an entry or exit behavior Behavior may have a signature that

conforms to or input-conforms to all the signatures of the Operations of the

CallEvents and a doActivity Behavior may have a signature that input-conforms

to all the signatures of the Operations of the CallEvents. Otherwise, an entry,

doActivity or exit Behavior must have no Parameters.

 If all triggers of a Transition are for SignalEvents, then an effect Behavior

of the Transition may have exactly one Parameter of mode “in”, multiplicity

upper bound of 1 and a type that is a Signal that conforms to all the Signals of the

Transition triggers. If all the triggers are for CallEvents, such that the signatures

of the Operations of the CallEvents are consistent, then an effect Behavior

may have a signature that conforms to or input-conforms to all the signatures of the

Operations of the CallEvents. Otherwise, an effect Behavior must have no

Parameters.

2.3.2 Semantics

The previous section presented the definition of the PSSM subset and the addition of constraints

for meta-classes included in this latter. The objective here is not to provide a detailed overview

of all extensions defined in the specification. This section rather focus on the description of

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 16 of 45

core extensions defined by the PSSM semantic model. It provides the rationale for defining

these extensions and explain their roles.

This section is organized as follows. Clause 2.3.2.1 reminds the design patterns and principle

driving the construction of a semantic model. Clause 2.3.2.2 describes the root element for

specifying the execution semantics of state machines. Clause 2.3.2.5 explains what a state

machine configuration is and how this concept is used to determine the impact of the

dispatching of an event on the state machine. Finally, Clause 2.3.2.6 describes main semantic

visitors defined for capturing the general semantics of vertices, transitions and regions.

2.3.2.1 Semantic Model Definition Principles

A semantic model is a class model whose role is to capture through the structure and the defined

operations the semantics of a well identified subset of the UML syntax. Such model conforms

to the fUML subset. Hence by construction it is executable and its semantics is provided by the

one defined in fUML.

Elements defined in the semantic model can be classified into three categories:

1. Values. A value is the representation of an instance of a type. As an example, fUML

defines Object_ which is a specific type of value that enables the representation at

runtime the instance of a Class.

2. Visitors. A visitor captures the semantics of a particular meta-class. As an example,

fUML defines AcceptEventActionActivation, which is a specific semantic

visitor capturing semantics of an AcceptEventAction.

3. Others. All elements defined in the semantic model which are not values or visitors.

These elements usually capture internal logic of some visitors or are responsible to

instantiate the semantic visitors. As an example, fUML defines an

ExecutionFactory which is in charge of instantiating semantic visitors defined for

meta-classes included in the fUML subset.

Semantic models for fUML and PSCS have been designed using the aforementioned principles.

PSSM semantic model has been designed in a similar manner. Next section describes the root

element for specifying the execution semantics of state machines.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 17 of 45

2.3.2.2 State Machine Execution

Figure 6 - State Machine Execution

StateMachine is a specialization of Behavior (see Figure 6). In order to capture the

execution semantic of a Behavior the fUML semantic model provides the concept of

Execution. This concept is by the way specialized by ActivityExecution whose role

is to capture the execution semantics of an Activity.

The principal is similar to capture the execution semantic of a state machine. Hence a

StateMachineExecution class is defined. This class is a specialization of Execution.

The description of the dynamic corresponding to the execution of state machine is captured by

overriding the abstract operation execute provided by the Execution class.

2.3.2.2.1 Execution start-up

The execution of a state machine starts when the execute operation is called on a

StateMachineExecution. This call always occurs during the initial RTC step of the state

machine. Indeed PSSM only defines semantics for state machine, which are active or state

machine playing the classifier behaviour role.

 The first phase of the execution consists in instantiating visitors for all regions owned

by the executed state machine. These visitors are RegionActivation and capture

the execution semantics of Regions. Each activation instantiated for a region then

create (in cascade) semantic visitors for all their contained elements. At the end of the

instantiation phase, the execution for a state machine is the root element of tree like

structure including all of the created semantic visitors.

 The second phase consists in concurrently proceed to the entering of each Region.

Entered Regions are required to have an initial Pseudostate. If a Region has no

such Pseudostate then it is ignored by the execution. The initial RTC step ends

when the state machine has reached a stable configuration. This occurs when it exists

no Transition available for firing and all entry Behaviors of entered states have

completed their execution.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 18 of 45

2.3.2.3 Execution and State Machine Event Accepter

Each evolution (i.e. move from the current configuration to the next one) of the state machine

configuration is realized in a RTC step. A step is triggered by the fact that a state machine can

accept the event that is dispatched (i.e., removed from the event pool). In order to allow a state

machine to accept an event occurrence this latter must have registered an EventAccepter.

The EventAccepter concept is defined in fUML. It is specialized by activities to define an

ActivityEventAccepter. The principle in activities is that the execution of an activity

can suspends on AcceptEventAction. The semantics defined in fUML implies that an

ActivityEventAccepter is registered when the action gets executed. Hence when an

event will be dispatched, it may enable the trigger declared by the AcceptEventAction. In

such situation the accepter is said to match the dispatched event. The execution then restarts

from the action that registered the accepter.

PSSM defines a specialization of EventAccepter: StateMachineEventAccepter.

There two fundamental differences between this type of accepter and the one defined for

activities in fUML.

1. Conversely to activities where each AcceptEventAction register an accepter, a

state machine always has a single state machine event accepter registered. The reason

for this is that to determine how a state machine can respond to event a complete analysis

of the current state machine configuration is required. Hence it is not possible to have

separate event accepters for each individual transition.

2. The logic of matching and accepting a dispatched event is strongly different. Indeed, in

activities to say a registered event accepter matches a dispatched event it is sufficient

that the accept event action that registered the accepter declares a trigger for an event

that matches the type of the dispatched event. In the case of a state machine, an event

is said to match if in the current configuration the event can be deferred or it triggers

one or more transitions outgoing states registered in the configuration. The verdict of

the match operation is computed by analysing the overall state machine configuration.

This analysis account for priority rules existing between Transitions, conflict

resolutions, static analysis of paths leading to the next state machine configuration, etc.

If the dispatched event occurrence is deferred in the current state machine configuration then

this latter is accepted and placed in the deferred event pool. The deferred event occurrence will

only be released (i.e., returned to the regular event pool) when the state that provoked is deferral

leaves the state machine configuration.

If the dispatched event is not deferred and triggers one or more transition in the state machine

then this latter is also accepted. The acceptance of the event implies the functionality of the

semantic visitors associated with various elements of the state machine to be executed.

Execution of semantics related to these visitors lead the state machine to enter a new stable

configuration.

It is important to note that this latter case only occur if all Transitions that are selected to

fire lead the state machine to a valid state machine configuration. To ensure this, a static analysis

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 19 of 45

is always performed to check if the traversal of a Transition (possibly compound) leads to

enter a valid state machine configuration.

2.3.2.4 Execution Completion vs Execution Termination

A state machine execution completes when all Regions owned by the executed state machine

have completed. A Region is said to have completed its execution when the final state owned

by that Region is reached.

A state machine execution can also be terminated. This situation is different from the

completion. Indeed the termination of the execution of state machine is due to the execution of

a terminate Pseudostate. When such pseudo state is exited the execution state machine

stops immediately (i.e., no behaviours are executed in response to the termination), all visitors

instantiated for the state machine are destroyed and the execution context of the state machine

is destroyed.

Next section explains what the state machine configuration is and how this latter is used to

determine the response of an executed state machine to a dispatched event.

2.3.2.5 State Machine Configuration

A state machine configuration is the representation of the hierarchy of active States of an

executed state machine. The state machine configuration is stable before and after a RTC step

but not during a RTC step. When an event is accepted by the state machine and it triggers or

more transitions it always implies to move from the current state machine configuration to

another state machine configuration. Obviously, the target state machine configuration can be

the same than the source state machine configuration (e.g., case of self-Transition).

Figure 7 - State Machine Configuration

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 20 of 45

Figure 8 - Test Event 016 B

PSSM made the choice to explicitly represent during the execution of state machine. It provides

for this StateMachineConfiguration and StateConfiguration concepts (see

Figure 7). These two classes directly enter the “Others” category discussed in clause 2.3.2.1.

Indeed there are neither classes defined to represent values or state machine semantic visitors.

The StateMachineConfiguration class represents the overall state machine

configuration. It references a StateConfiguration, which represents the root element of

the state machine configuration. This StateConfiguration itself references a set of

StateConfiguration that materialize active states located in different regions owned by

the executed state machine.

Consider the state machine presented in Figure 8. Under the assumption that this state machine

has already performed its initial RTC step, it is in configuration wait. Wait is the active state of

the state machine. The configuration would be described as presented in Figure 9 by the PSSM

semantic model. The root state configuration (i.e., abstraction of the state machine) has only a

single child state configuration. This is perfectly fine since the executed state machine has only

one region and in this region the simple state wait is active.

Figure 9 - State machine configuration after the initial RTC step

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 21 of 45

When the Start event is dispatched the state machine configuration is evaluated. The verdict of

that evaluation is that the state machine can accept the event and this latter will trigger the

compound transition T2(T1.1, T2.1(T2.1.1, T2.2.2.1)) leading to reach the state machine

configuration described in Figure 10.

Figure 10 - State machine configuration after the step initiated by Start

When the Continue event is dispatched the state machine configuration is evaluated. The

evaluation starts from the innermost active states (i.e., leaf state). After having evaluated S2.1.1

and S2.2.1 two transitions are included in the set of fireable transitions: T2.1.2 and T2.2.2.

When S2.1 is evaluated one can notice that it has a transition that may fire using the Continue

event. However transitions with a higher priority have already been included to the set of

fireable transitions. Hence no transition outgoing S2.1 and reactive to a Continue event can be

included to the set. At the end of the analysis the set of fireable transitions contains T1.2, T2.1.2

and T2.2.2. All of these transitions will be fired concurrently in the next RTC step. Note that

conflicts between transitions are resolved during the evaluation of the state machine

configuration thanks to a semantic strategy that is provided in fUML.

In short, a StateMachineExecution is always associated to a

StateMachineConfiguration. The state machine configuration captures a sufficient

abstraction of the executed state machine to enable the computation of a verdict regarding what

the state machine shall do when an event is dispatched. Next section, describes the core state

machine semantic visitor defined in PSSM.

2.3.2.6 State Machine Semantic Visitors

PSSM defines four core state machine semantic visitors. These visitors are listed below:

1. StateMachineSemanticVisitor – see clause 2.3.2.6.1

2. VertexActivation – see clause 2.3.2.6.3

3. TransitionActivation - see clause 2.3.2.6.4

4. RegionActivation – see clause 2.3.2.6.2

fUML provides the concept of SemanticVisitor. This concept is specialized by PSSM as

a StateMachineSemanticVisitor (see Figure 11). A state machine semantic visitor is

the common type of all visitors defined for state machine elements. It adds three elements to

the SemanticVisitor concept provided by fUML:

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 22 of 45

Figure 11 - State Machine Semantic Visitors

2.3.2.6.1 StateMachineSemanticVisitor

1. A StateMachineSemanticVisitor is systematically associated with a

NamedElement. The named element which is referenced by this type of visitor is

always a state machine element.

2. A StateMachineSemanticVisitor is systematically associated with its parent

SemanticVisitor. The parent can be a StateMachineExecution or another

StateMachineSemanticVisitor. The overall set of state machine semantic

visitors instantiated to execute a state machine are organized as a tree-like structure.

This structure reflects the structure of the state machine.

3. The StateMachineSemanticVisitor class provides a set of utility operations

that can be used or shall be implemented by all concrete specializations (e.g. concrete

visitors StatActivation that captures the execution semantics of the State

concept). As examples:

a. getExecutionContext – returns the context object of the root state

machine execution

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 23 of 45

b. activate and activeTransition – intended to be overridden by the

specializations. Each specialization specifies the appropriate logic for

instantiating visitors for state machine elements it contains.

This base StateMachineSemanticVisitor is specialized by VertexActivation,

TransitionActivation and RegionActivation which are presented in next clauses.

2.3.2.6.2 Region Activation

A RegionActivation is a specialization of a StateMachineSemanticVisitor. It

captures semantics of Region. Hence the node referenced by a RegionActivation is

always a Region.

Semantics of a Region are mainly captured in enter and exit operations provided in the

RegionActivation class. Note that these operations are only called if the Region is either

entered or exited implicitly. An implicit entry occurs in the following situations:

1. The Region is owned by the StateMachine.

2. The Region is owned by a State and a Transition targets the edge of the State

that contains that Region.

3. The Region is owned by a State and the Transition targets an entry point with

no continuation Transition. The entry point must be owned by the State that

contains the entered Region.

Execution of a Region that is entered implicitly always starts from its initial Pseudostate.

The single outgoing Transition of the initial Pseudostate is traversed immediately and

its target is entered. In the case where no initial Pseudostate is available the Region is

ignored. The consequence might be that a composite State is treated a simple State or a

StateMachine execution terminates immediately since it only has single Region and this

latter has no initial Pseudostate.

An implicit exit of one or more Regions occurs when a Transition exits a composite

State. In that case, all Regions concurrently executed in that State are exited. This

implies active State of each Region are exited. The exiting sequence for each Region

starts by exiting the most nested active States.

Explicit entry and exit of Region is also supported in PSSM. An explicit entry occurs

when a Region is entered via a Transition with a source outside the Region and target

inside the Region. Conversely, an explicit exit of Region occurs when a Transition exits

a Vertex located in the Region and targets a Vertex located outside the Region.

When a Region is entered explicitly, the execution of this latter does not start from the initial

Pseudostate. The Region is considered as being entered when the target Vertex located

inside the Region is entered. Note that if the Region is located in a composite State

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 24 of 45

owning other Regions which are not entered explicitly then these latter are entered using the

implicit entry semantics.

When a Region is exited explicitly, then the source Vertex is exited (if the source is a

State that is composite then active States located within are exited). If the Region that is

exited is owned by a composite State that has additional Regions then these latter are exited

using the implicit exit semantics.

2.3.2.6.3 VertexActivation and the StateActivation Specialization

The state machine semantic visitor VertexActivation is abstract and captures the

common semantics of each kind of Vertex (i.e., State, FinalState and all kind of

Pseudostate). Hence the node referenced by a VertexActivation is always a

Vertex.

VertexActivation defines the common way to enter any kind of Vertex. To do so it

provides the operations enter and exit.

1. A Vertex can only be entered if its prerequisites (specific to each kind of Vertex,

based on the redefinition of the VertexActivation isEnterable operation)

have been fulfilled. In this case, and only in this case, the VertexActivation can

be entered (using the enter operation). The entry semantics are specific to each kind

of Vertex. Nevertheless, each specialized Vertex is entered using a given entering

Transition and knows about the common ancestor it shares with the source

VertexActivation. The entered VertexActivation always takes advantage

of the common ancestor (a RegionActivation) information to identify if the parent

VertexActivation must also be entered before.

2. A Vertex can only be exited if its prerequisites (specific to each kind of Vertex, based

on its redefinition of the VertexActivation isExitable operation) have been

fulfilled. In this case, and only this case, can the VertexActivation be exited

(using the exit operation). The exit semantics are specific to each kind of Vertex.

Nevertheless, each specialized Vertex is exited using a given exiting Transition and

knows about the common ancestor it shares with the target VertexActivation. The

exited VertexActivation always takes advantage of the common ancestor (a

RegionActivation) information to identify if the parent VertexActivation

must be exited after.

PSSM defines StateActivation which specializes VertexActivation in order to

capture the semantics of the State meta-class. This specialization defines the specific entry

and exit semantics of a State by completing the initial semantics defined in

VertexActivation.

1. The only prerequisite a State must fulfill to be entered is that it must not be already

active (i.e., it must not be part of the state machine configuration). If it can be entered,

then the common ancestor rule described by the semantics captured in

VertexActivation applies. As soon as this rule was applied, the remaining part of

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 25 of 45

the entry sequence is specific to a State. This sequence consists in referencing the

State in the state machine configuration, execute its entry Behavior (if any), invoke

(it will be executed asynchronously from the state machine) its doActivity (if any) and

enter concurrently its owned Regions (if the State is composite).7

2. The only prerequisite a State must fulfill to be exited is that it must already be active

(i.e., it must be part of the state machine configuration). If it can be exited, then the exit

sequence that is specific to a State is performed. This sequence consists in exiting all

regions owned by that State (if it is composite), aborting the doActivity (if any) that

has been invoked from State, updating the history of the Region owning that State

and removing the State from the state machine configuration. As soon as the exit

sequence specific to State was performed then the common ancestor rule described

by the semantics captured in VertexActivation applies.

2.3.2.6.4 TransitionActivation and the ExternalTransitionActivation specialization

The state machine semantic visitor TransitionActivation is abstract and captures the

common semantics of all kind of Transition: local, internal and external. This common

semantics is especially captured by the fire operation defined in this visitor. The firing sequence

consists in exiting the source Vertex, executing the effect behaviour (if any) and entering the

target Vertex. Although the firing sequence is common to all kind of Transition, this is

not the case of the sequences that respectively define what the impact of exiting the source and

entering the target is. These sequences are specific to the different kind of Transition. To

capture this, the semantic model defines three specializations of TransitionActivation.

ExternalTransitionActivation is one of the defined specialization. It captures the

semantics of an external Transition. To do so it redefines the operation exitSource and

enterTarget declared by TransitionActivation.

1. exitSource. It is only possible to exit the source Vertex using an external

Transition if the prerequisites to exit the Vertex are fulfilled. Note that these

prerequisites are specific to each Vertex. In the situation where the prerequisites to

exit the source are fulfilled as well as those to enter the target, then the common ancestor

existing between the source and the target is taken into account to perform the exit

sequence of the source. Conversely, if the target is not ready to be entered (i.e., the

prerequisites are not satisfied) then the source is exited, but the exit sequence does not

account for the common ancestor existing between the source and the target.

2. enterTarget. The general case occurs when the target Vertex can be entered. Its

entering sequence is executed and this latter accounts for the common ancestor existing

between the source and the target. It also exists a specific usage of external transition

that implies a different semantics than the one presented for the general case. Consider

the situation where an external Transition source is an internal (maybe deeply

nested) Vertex of the target. This assumption implies that the target is a composite

State and the Transition ends it inside edge. In this situation, the target cannot be

entered since it is already part of the state machine configuration. Nevertheless the

Region owned by the target State and which owns (directly or indirectly) the source

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 26 of 45

Vertex will be considered as being completed. Hence if this Region is the only one

owned by the target State then this latter completes.

To summarize, the firing of a Tansition can be viewed as chain of calls. These calls

represent the different sequence actions realized during the firing of the Transition. A RTC

step can be represented by a single chain of calls or set of chain of calls in the case where the

dispatched event implies the concurrent firing of multiple Transitions.

fire()

exit(exitingTransition, eventOccurrence, commonAncestor)

exit(exitingTransition, eventOccurrence, commonAncestor)

…

executeEffect(eventOccurrence)

enter(enteringTransition, eventOccurrence, commonAncestor)

enter(enteringTransition, eventOccurrence, commonAncestor)

…

End

Clauses 2.3.2.2, 2.3.2.3 and 2.3.2.6 provided the reader with an overview of PSSM core

semantic element. Next section describes the test suite structure, some tests and their

relationships to identified semantic requirements.

2.3.3 Test Suite and Semantic Requirements Coverage

Design of the PSSM semantic model was driven by semantic requirements that were identified

for UML state machines and testing of the validity of the implemented requirements. Clause

2.3.3.1 describes the role of the test suite model. Clause 2.3.3.2 explain how test cases are

described in this test suite. Finally clause 2.3.3.3 proposes a review of few test cases provided

in the test suite.

2.3.3.1 Test Suite Role

The test suite has three roles:

1. It defines a reference model that when executed provides a way to assess that

requirements implementation in the semantic model captures exactly the semantics

intended by the UML specification.

2. It defines a reference model that a tool trying to implement PSSM semantics can use to

evaluate if its implementation is effectively PSSM conformant. To claim such

conformance a tool must pass all tests defined in the test suite.

3. It provides a way to ensure that no regressions are introduced in new increments

introduced in the semantic model. Indeed each time a new part of the semantics is

described, all tests already defined in the test suite must still be passed.

2.3.3.2 Test Suite Architecture

The test suite model is separated in two distinct parts. The first part corresponds to the definition

of the abstract architecture of a test case. The second part is a set of packages where each

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 27 of 45

package refers to a particular test category. For example, one test category in the test suite

captures all tests related to transition semantics. Each test case in this category assert a specific

part of the transition semantics. This part has been previously identified in semantic

requirement.

Figure 12 - Test Suite Architecture

Figure 12 shows the abstract architecture of a test cases. This architecture is composed of three

elements:

1. Tester. The tester is an abstract active class which encodes in its classifier behaviour

the stimulation sequence (i.e., a set of events) that will be sent to the test target. The

classifier behaviour provided by the abstract tester is empty. Specializations of this class

are intended to provide a new classifier behaviour describing the user defined

stimulation sequence that must be sent.

2. Target. The target is an abstract active class. It receives the stimulation sequence sent

by the Tester. The received events will enable the classifier behaviour to realize RTC

steps. Throughout its execution the classifier behaviour generates an execution trace.

This trace is stored by the target (see traceBuilder in class Target in Figure 12).

The classifier behaviour of the abstract target is empty. Specialization of this class are

intended to provide a new classifier behaviour. In the context of PSSM the classifier

behaviour shall be a state machine.

3. SemanticTest. The semantic test acts as a controller for the tester and the target. It takes

into account the trace generated by the target and use it to compute the test verdict. The

verdict is either pass or fail. If the verdict is pass then it means the trace generated by

the target is included in the set of expected traces for the test. Conversely, if the verdict

is fail then the generated trace is not included in the set of expected traces. Note that

specializations of this class are not intended to provide a new classifier behaviour.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 28 of 45

Each tests declared within the PSSM test suite extends this abstract architecture. Some of the

tests defined in the test suite model are described in the next section.

2.3.3.3 Tests

Clause 2.3.3.3.1 explains how test description is build / organized in PSSM specification.

Finally clauses 2.3.3.3.2 and 2.3.3.3.3 explain in details two PSSM tests. These tests rely only

on semantic functionalities described in section 2.3.2.

2.3.3.3.1 Tests Description

All test are descriptions follow the exact same pattern.

1. The state machine under test is presented.

2. The stimulation sequence received by the state machine is described.

3. A trace that can be generated by the test is described.

4. Test purpose is reminded and the execution corresponding to the trace is described.

5. A table describing all RTC steps realized during the execution is provided.

6. If alternative execution traces can be generated, then these latter are listed.

Test described in clauses 2.3.3.3.2 and 2.3.3.3.3 will be described according to this pattern.

2.3.3.3.2 Test 1: Transition 007

Tested state machine

The state machine that is executed for this test is presented in Figure 13.

Figure 13 - Transition 007 Classifier Behavior

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 29 of 45

Test execution

Received event occurrence(s)

 AnotherSignal – received when in configuration S1.

 Continue – received when in configuration S3.

 Continue – received when in configuration S1.

Generated trace

 T1(effect)::T2(effect)::T3(effect)

Note. The purpose of this test is to validate that “A transition may own a set of triggers,

each of which specifies an Event whose occurrence, when dispatched, may trigger

traversal of the Transition” (see section 14.2.3.8 of [1]). Consider the state machine

presented in Figure 13 has already performed its initial RTC step. The current state

machine configuration is S1. When the completion event generated for that state is

dispatched it is lost since S1 does not have a completion transition. The next event to be

dispatched is AnotherSignal. It triggers T1 which has declared a trigger for this event

type and S3 is entered. As S3 does not have a completion transition, its completion event

is lost. When Continue is dispatched T2 is triggered. This is fine since T2 declares

triggers both for Continue and AnotherSignal. The state machine at the end of the steps

is back in configuration S1. The completion event generated for that state is lost. The

next event to be dispatched is a Continue evet occurrence. It triggers T3 and S2 is

entered. The completion event of S2 is used to trigger in the next RTC the transition T4.

When the final state is reached the region completes which implies that the state

machine execution also completes.

RTC steps

2.3.3.3.3 Test 2: Exiting 003

Tested state machine

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [InitialTransition]

2 [AnotherSignal, CE(S1)] [S1] []

3 [AnotherSignal] [S1] [T1]

4 [Continue, CE(S3)] [S3] []

5 [Continue] [S3] [T2]

6 [Continue, CE(S1)] [S1] []

7 [Continue] [S1] [T3]

8 [CE(S2)] [S2] [T4]

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 30 of 45

The state machine that is executed for this test is presented in Figure 14.

Figure 14 - Exit 003 Classifier Behavior

Test execution

Received event occurrence(s)

 Start – received when in configuration wait.

 Continue – received when in configuration S1[S1.1[S1.1.1, S1.2.1]].

Generated trace

 S1.1.1(exit)::S1.2.1(exit)::S1.1(exit)::S1(exit)

Note. The purpose of this test is to demonstrate that “When exiting from a composite

state, exit commences with the innermost state in the active state configuration. This

means that exit behaviors are executed in sequence starting with the innermost active

state” (see section 14.2.3.4.6 of [1]). Consider the state machine presented in Figure 14

has already realized its initial RTC step. The current state machine configuration is wait.

The completion event generated for the wait state is lost since it has no completion

transition. The next event to be dispatched is Start. It triggers the compound transition

T2(T1.1(T1.1.1, T1.2.1)). At the end of the of the RTC step the new state machine

configuration is S1[S1.1[S1.1.1, S1.2.1]]. Completion events generated by S1.1.1 and

S1.2.1 are both lost. The RTC initiated by the dispatching of the Continue event has a

great impact on the state machine configuration. Indeed, although the S1 is left by T3,

the semantics requires that before S1 is actually exited, its complete hierarchy of active

state must be exited. The exit sequence starts with the innermost active states so S1.1.1

and S1.2.1. Here consider that S1.1.1 exit behaviour is executed before the S1.2.1 exit

behaviour. A soon as both have been exited, S1.1 exit behaviour can be executed

followed by S1 exit behaviour. When the final state is reached the state machine

execution completes.

RTC steps

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 31 of 45

Step Event pool State machine configuration Fired transition(s)

1 [] [] - Initial RTC step [T1]

2 [Start, CE(wait)] [wait] []

3 [Start] [wait] [T2(T1.1(T1.1.1, T1.2.1))]

4 [Continue, CE(S1.2.1), CE(S1.1.1)] [S1[S1.1[S1.1.1, S1.2.1]]] []

5 [Continue, CE(S1.2.1)] [S1[S1.1[S1.1.1, S1.2.1]]] []

6 [Continue] [S1[S1.1[S1.1.1, S1.2.1]]] [T3]

Alternative execution steps

The presence of orthogonal regions in S1.1 enables the possibility to observe an alternative

execution trace for that test. This trace captures the situation in which the S1.2.1 exit behaviour

gets executed before S1.1.1 exit behaviour.

 S1.2.1(exit)::S1.1.1(exit)::S1.1(exit)::S1(exit)

2.3.4 Implementation

An implementation of the PSSM semantic model was developed. This implementation is

integrated as an execution engine in Moka (the Papyrus model execution platform)10. It can be

retrieved from the branch bugs/465888-SMExecPrototype available at the Papyrus repository11.

The implementation is capable of executing all tests that are described in the PSSM test suite

model. The process of setting up the environment to make possible the test suite execution is

described below.

1. Download the Mars version of Eclipse

2. Install Papyrus Mars

 http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars

3. Check out the Papyrus repository

 git clone https://git.eclipse.org/r/papyrus/org.eclipse.papyrus

4. Switch to the branch bugs/465888-SMExecPrototype

5. In your working directory move to extraplugins/moka and import the plugin

 org.eclipse.papyrus.moka.fuml.statemachines

10 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
11 https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars
https://git.eclipse.org/r/papyrus/org.eclipse.papyrus
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 32 of 45

6. Launch an Eclipse runtime

7. In the runtime instance import the PSSM test suite. This test suite is available under

resources/tests folder of the oep.moka.fuml.statemachines plugin.

8. Go to Window menu and select the Preferences item. A popup opens. In that popup you

must go to Papyrus category and select Moka item. In the displayed preference page

make sure that “StateMachines semantics [prototype]” execution engine is selected.

9. Create a new Moka launch configuration. This configuration must be similar to the one

shown in Figure 15.

Figure 15 - Run all tests

10. Click on the Debug button to launch the execution of all tests defined in the PSSM test

suite. By looking at the Moka console during the execution you shall observe that all

tests pass.

Note: The current version of this execution engine does not provide a connection with Moka

animation and debug framework. Hence the execution cannot be observed on the state machine

diagrams nor suspended for debug. State machines execution engine will only be integrated in

the official release of Moka when PSSM will have completed its finalization process.

2.3.5 Specification Status

The current version of the PSSM specification (i.e., Abstract syntax, semantic model, test suite

and implementation) provides support for all mandatory requirements (see clause 2.3.5.1)

defined in the PSSM RFP and some of the non-mandatory requirements (see clause 2.3.5.2).

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 33 of 45

2.3.5.1 Mandatory requirements

Requirement Response

6.5.1a Behavior state machine semantics

(excluding redefinition and submachines)

Support for all required elements and Call

events for synchronous operation call.

6.5.1b Event data passing

Achieved using a parameter-passing

approach for guard expressions and event

behaviours (see clause 2.3.1.2).

6.5.1c Standalone and classifier behaviour

execution.

Strict support for these two cases.

6.5.1d Consistency with PSCS

Achieved by defining PSSM execution

model as an extension of the PSCS model.

6.5.1e Relationship to fUML

Achieved by defining PSSM execution

model as an extension of the fUML model.

6.5.1f Extension of fUML base semantics (if

necessary)

This was not found to be necessary.

6.5.2a Semantic variabilities

Proposal does not define any additional

semantic variabilities.

6.5.2b Semantic variants

Proposal does not define any additional

semantic variants.

6.5.3a UML 2 conformance

Proposed PSSM syntax subsets UML 2.5

abstract syntax.

6.5.3b fUML conformance

Proposed PSSM semantics are based on

fUML 1.2.1.

6.5.3c PSCS conformance

Proposed PSSM semantics are based on

PSCS 1.0

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 34 of 45

6.5.3d Common Logic conformance Not applicable, proposal does not extend the

fUML base semantics.

6.5.4a Test suite

Proposal includes suite of 105 tests.

6.5.4b Test suite coverage

Current coverage is 100% of identified

functional requirements.

2.3.5.2 Non-mandatory requirements

Requirement Response

6.6.1 Submachine states

Not included in the proposal.

6.6.2 Protocol state machine

Proposal includes a non-normative annex on

protocol state machines

6.6.3 State machine redefinition

Proposal discusses the semantics of state

machine redefinition and includes its formal

specification in the semantic model.

6.6.4 Asynchronous operation call

Not included in the proposal.

6.6.5 Triggers with ChangeEvents

Not included in the proposal

6.6.6 Alf for action language concrete

syntax

Proposal uses Java as the action language

(Alf may be used in the future).

2.3.5.3 Specification milestones

PSSM RFP was issued by March 2015. The initial response to that RFP (aka. initial submission)

was provided by the PSSM team in March 2016. For that initial submission 80% of the semantic

requirements were covered (i.e., supported and tested). The revised submission will be provided

by the PSSM team on November 8th, 2016. This submission covers 100 % of the semantic

requirements and support for these latter is shown by the 103 test cases described in the PSSM

test suite.

For both submissions (i.e., initial and revised), a strong participation to the development of the

semantic model, the test suite and the prototype implementation was realized in the context of

the OpenCPS project. This assertion is also true for the editing of the specification.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 35 of 45

After the revised submission, PSSM 1.0 will enter in its finalization process. The objective will

be to fix all issues that may be discovered in the specification document as well as other

normative artefacts: PSSM semantic model, PSSM syntax and PSSM test suite.

3 XTUML STATE MACHINES SEMANTICS AND PSSM

xtUML is a modelling language that emerged from the Shlaer-Mellor method, realized by the

BridgePoint tool [7]. Up to our knowledge, it is widely used by Ericsson and Saab to design

large software applications.

xtUML is designed as a UML profile that defines the constraints and extensions required to

make UML executable and translatable. In xtUML the dynamic of a system can be described

using state machines. The semantics defined for these state machines is in some areas different

from the one defined by original UML. Nevertheless, it seems clear that both semantics for state

machines rely on a common base.

Recently the Executable UML working group has worked on the definition of a Precise

Semantics for UML State Machines (a.k.a, PSSM). The way the semantics is defined makes it

possible to be tailored to account for xtUML state machine semantics specific requirements.

The interest is that xtUML semantics will be based on the standard semantics defined for UML

state machines. That means all state machine concepts that do not have a specific semantics

defined in the context of xtUML will rely on the PSSM semantics. In addition, based on that

semantic definition, it will be possible to precisely define what the impact of a FMI master

simulation step is on a state machine defined using xtUML.

In order to define what the tailoring of the PSSM semantics should be, a preliminary analysis

of semantic differences existing between UML state machines and xtUML state machines was

realized within OpenCPS. Clause 3.2 provides the reader with basics on xtUML state machine

abstract syntax. Clauses 3.2, 3.3, 3.4 and 3.5 discuss specific aspects of xtUML state machines

for which a different semantics that the one defined in PSSM is intended.

3.1 Basics of xtUML State Machines

All xtUML state machines are flat. Hierarchy and multiple regions are not allowed. Therefore,

each object instance is in exactly one state in any point in time (if we think of state transitions

as instantaneous actions).

State transitions are triggered by signals arriving to the object that owns the state machine.

States can have entry actions. These are executed whenever the state machine enters the state.

Transitions can have effects, executed when the transition is used. A transition, including the

execution of the effect, updating the actual state, execution of the entry action, and all

synchronous operation calls from these, is a single run-to-completion step. Operation calls are

always synchronous, while signal sending is always asynchronous.

A typical xtUML state machine is shown on Figure 16.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 36 of 45

Figure 16 - An xtUML State Machine

PSSM

PSSM syntax enables definition of significantly more complex state machines than xtUML.

Indeed PSSM allows, for instance, state machines to be hierarchical and to have multiple

regions. Nevertheless it is incorrect to say that PSSM syntax is a superset of xtUML syntax for

state machines. Indeed, it exists information that can be added in an xtUML conformant state

machine model that cannot be recorded directly by a PSSM conformant model unless a profile

is used. For instance in xtUML the ID of a state is an information that is used to define what

the initial state of a state machine is. Another example is the specification that an event can’t

happen in particular state. UML does not provide concepts to record such information.

3.2 State Machine Initialization

States of xtUML state machines are numbered. The state with the lowest number is the initial

state. When an object is created, the initial state is the active one, but its entry action is not

executed.

The graphical elements that, in standard UML, denote an initial pseudostate and initial

transition, in xtUML denote a “creation transition”. There is a special signal sending operation

in the xtUML action language that creates a new instance of the given class and executes the

named creation transition in its state machine, additionally, it also executes the entry action of

its target state. In this case, the target state of the creation transition will be the active state of

the newly created object. There is no limit on the number of creation transitions in an xtUML

state machine.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 37 of 45

Figure 17 - State Machine with Creation Transitions

Figure 18 - Object Creation Transitions

Figure 17 shows a state machine with three states and two creation actions. Figure 18 shows

xtUML action code to create three object instances of the class owning the state machine in

Figure 17. The first line of action code creates instance1, which will be in state State1, because

that is the lowest numbered state. The next two lines of action code create instance2 and

instance3 respectively, by using the two creation transitions. For this reason, these two instances

will be in State2 and State3, respectively.

PSSM

xtUML provides two ways to define what the initial state is in a particular state machine. The

first approach consists in designating that state by its ID. The second approach consists in

designating the state using a creation transition. Both approaches can be combined in the same

state machine. At runtime, the way the container of the state machine is instantiated determines

which initialization approach is used (either implicit or explicit).

1. Implicit initialization.

 Syntax. UML does not provide a way to define a particular state as being the initial

state based on its ID. Hence PSSM syntax does not provide such capability.

 Semantics. In PSSM, if a region (which can either be owned by a state machine or

a composite state) does not have an initial pseudostate, then it is ignored by the

execution (see clause 14.2.3.2 of [1]). This means for instance that if a composite

state has a single region and this latter has no initial pseudostate then the composite

state is handled as a simple state. If we consider here the state machine shown in

Figure 16 where the initial state is defined as being unplugged, it will not be possible

to execute this latter without an extension to the PSSM semantic model. Indeed, as

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 38 of 45

it is, the main state machine region would be ignored in the execution and the

execution would have completed.

As an additional difference, in PSSM if the state that is entered by an initial

transition has an entry behavior then this behavior is always executed.

2. Explicit initialization.

 Syntax. UML does not allow a region to have more than one initial pseudostate (see

clause 14.5.8.6 of [1]). In addition, a transition that leaves a pseudostate is not

allowed to declare a trigger (see clause 14.5.11.8 of [1]). These two constraints must

be relaxed in order to allow definition of xtUML models based on UML. They can

be defined using the approach defined in clause 2.3.1.2.

 Semantics. The instantiation of a class having a state machine as its classifier

behavior is not enough to make this state machine to be initialized (i.e., perform its

initial RTC step). To do so, the classifier behavior of the class must explicitly be

started using a StartClassifierBehaviorAction. The semantics to

capture the starting of a classifier behavior is defined in UML. It consists in placing

an InvocationEventOcurrence (see clause 8.4.3.2.6 of [2]) to the event pool

and register an accepter for this event occurrence. When accepted the event

occurrence, triggers the execution of the Execution (see clause 8.4.2.2.1 of [2])

corresponding to the classifier behavior. If the classifier behavior is a state machine

with a single region, then the transition (maybe compound) outgoing the initial

pseudostate is traversed and the target state is entered. Although the initial RTC step

is initiated by the acceptance of an event occurrence, this latter does not trigger the

initial transition. In other words, the initial transition does not have a trigger

matching the dispatched event. This particular point of the semantics is different

from what xtUML specifies. Indeed, in xtUML, the event occurrence that initiates

the first RTC step might be used to trigger one particular initial transition among the

set of initial transitions available in the state machine model (see Figure 17). The

transition elected to be fired is the one with a trigger matching the creation event. In

its current status, if PSSM was used to execute the model specified in Figure 17, one

of the two initial transition would have been traversed during the initial RTC step

and triggers placed on this transition would have been ignored.

3.3 Unexpected events

There are two different reasons for not having a transition with a given signal from a given

state:

 “Can’t happen” means that the modeled domain does not allow that particular signal to

arrive in that state. If it indeed happens, that signals an error. This allows the developer

of the state machine to specify ill-behavior of the system that requires a runtime error

to be signaled.

 “Event Ignored” means that the given signal may arrive in that state as part of the normal

operation of the system, but there is no action or state change to take, therefore the event

is silently ignored.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 39 of 45

Figure 19 - State Event Matrix

Figure 19 shows the “State Event Matrix” of the state machine on Figure 16. For example, a

“Plug” event in the state when the machine is “On” cannot happen (because the machine is

already plugged in). On the other hand, a “ButtonPress” event can arrive even if the machine

is “Unplugged”, but it cannot start the machine, therefore it is ignored.

PSSM

In fUML, a classifier behavior can register event accepters for a well identified set of event

types. If such accepter is registered and the dispatched event occurrence matches an accepter

then the event occurrence is accepted (i.e. it initiates a RTC step). Otherwise, if no accepter

match then the event occurrence is lost. Hence no RTC is initiated

1. Can’t happen

 Syntax. In UML, there is no way to specify that an event is not allowed to occur

in particular state. Note that UML offers the possibility for an event to be

deferred by a state but the purpose is different.

 Semantics. In xtUML, when an event occurrence is lost because it is specified

as can’t happen an exception must be raised. Unfortunately, fUML, PSCS and

PSSM do not provide semantics for exceptions. Support for exception raising

capability is not intended to be part of PSSM but rather part of further fUML

versions.

2. Event ignored

 Syntax. In UML, there is no way to specify that an event will be explicitly

ignored in a particular state machine configuration. However if no reaction is

intended for an event in particular state then not any transition declaring a trigger

for that event should be specified.

 Semantics. In PSSM, if in the current state machine configuration the event

occurrence cannot be deferred and it triggers no transition then it is lost.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 40 of 45

3.4 Event Priorities

When dispatching an event from the event queue of an object, signals sent by that object to

itself have higher priority than signals from other sources. This enables splitting complex

actions into multiple states: If the entry action sends a signal to self, that signal will be processed

before other signals from different sources, so that the entry action can determine the next state.

Control structures, like sequences, branches and loops can be explicitly visualized in the state

machine this way. When the object stops sending events to itself, other signals in the event

queue will be dispatched.

Figure 20 - State Machine with Self Event

Figure 21 - Action Code for Event Priority Testing

For example, in State2 of the state machine of Figure 20 a signal is sent to self. The actions in

Figure 21 first create an instance, which is in State1. Then Signal1 is sent to the object two

times. The first signal makes the object move from State1 to State2, where the entry action

sends a Signal2 to the object. Even if this message arrives later, it will take priority over the

second Signal1 still in the queue. For this reason, State4 will be active instead of State3.

PSSM

In PSSM, events sent by a state machine to itself do not have the priority over other events

already existing in the pool. Assuming, it exits a transition between an initial pseudostate and

State1, the execution of the state machine presented in Figure 20, through the PSSM semantic

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 41 of 45

model would be different than the one performed using xtUML semantics. Indeed, when the

first EventPrioTestClass1 is dispatched the transition between State1 and State2 is fired. The

current configuration is now State2 and new event occurrence of type EventPrioTestClass2 was

added to the pool. The next event to be dispatched is of type EventPrioTestClass1 and when

accepted makes the state machine to enter State3. It only now remains one event in the pool.

This event occurrence of type EventPrioTestClass2. When dispatched it is lost since it cannot

be used to trigger any transition.

It is important to note that in PSSM some events are generated implicitly on state completions.

These events are called completion event. They are typically generated for simple state when

the entry behavior (if any) and the doActivity behavior (if any) have completed their executions.

Note that if no behavior is defined the state completes when entered. Completion events have

the priority over other event available at the pool. When a completion event is dispatched it can

trigger a completion transition outgoing the state from which it was generated. Completion

events are not considered in xtUML semantics.

3.5 Polymorphic Event

The semantics of xtUML generalization relation is different from standard UML. The notation,

however, is the same, see Figure 22.

Figure 22 - Generalization Relation

The Parent and Child classes have to be instantiated separately, and explicitly linked across the

generalization relation R2. See the first three lines of the action code in Figure 23.

Figure 23 - Instantiation of Classes in Generalization Relation

The two instances exist and work separately, they can have separate state machines. In this

respect, generalization relations are similar to simple associations, with an extra restriction: An

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 42 of 45

instance of the super type can be related to at most one subtype instance (even if there more

than one subtypes).

There is no inheritance: Child instances do not have the attributes and operations of Parent.

However, events are polymorphic. Signals sent to a Parent instance but not used in its state

machine are automatically propagated to the related Child instance.

Figure 24 - State Machine of the Parent Class

Figure 25 - State Machine of the Child Class

Figure 24 and Figure 25 shows the state machines of the Parent and Child classes respectively.

Signal1 is used in Parent’s state machine, while Child’s state machine uses Signal2. There is

mutual exclusion in using the signals: signals used in the state machine of a supertype cannot

be used in the state machines of subtypes and vice versa.

The last two lines of action code in Figure 23 send Signal1 and Signal2 to the Parent instance.

The first one will be processed by parent’s state machine, while the second signal will be

automatically propagated to and then processed by child’s state machine.

PSSM

 Syntax.

o UML and PSSM place no constraints on the events that can be received by the

classifier behaviors. Hence if Parent and Child classes define classifier

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 43 of 45

behaviors that can both receive the same signal, the model is still syntactically

and semantically correct.

o In UML the existence of a generalization relationship between two classes

denotes that all features (i.e., behavioral and structural) which can be inherited

will be available at the specializing class. Hence if the Parent class as an

attribute then this latter can be used in the classifier of the Child class.

 Semantics.

o When an instance of Child class is created no classifier behavior is started. It

must be started explicitly using a StartClassifierBehaviorAction.

The classifier behavior that is started is the one associated to the type of object

pin of the action. Hence if the type is Child then the classifier behavior started

is the one presented in Figure 25. To also have the classifier behavior of the

Parent class running at the object activation associated to the instance of the

Child class, it must also be started explicitly using the aforementioned approach.

At runtime, the two classifier behaviors share the same event pool.

o Consider that two event occurrences of type Parent1 and Parent2 are placed in

the pool. When the first event occurrence is dispatched it triggers a RTC step in

the classifier behavior of the Parent class. The other event occurrence triggers a

RTC in the Child class classifier behavior.

o Although the execution of the model specified in Figure 22 and receiving the

stimulation sequence specified in Figure 23 is the same when the PSSM

semantics or the xtUML semantics are used, the runtime structure is

fundamentally different. Indeed, when executed through PSSM a single instance

handles the two classifier behaviors. Conversely, when the model is executed

through xtUML semantics two instances are created. Each instance handle the

execution of a state machine. The semantics of the generalization relationship

defines that both instance are related in the sense that classifier behaviors they

execute share the same event pool. It also defines that executed classifier

behaviors never compete for an event. Indeed, first the parent instance tries to

accept the event and then if it is not accepted the child instance tries to accept it.

In fUML this works differently since all classifier behaviors compete to accept

an event occurrence.

3.6 Summary

Within this first evaluation of the differences between the original UML (as captured in PSSM)

and the xtUML state machines we have identified 4 main categories of differences: state

machine initialization, handling of unexpected events, event priorities and polymorphic events

that are described in sections 3.2 3.3 3.4 and 3.5, respectively.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 44 of 45

4 CONCLUSIONS

This document reports progress made on task T2.2 “Interoperability of the standards Modelica-

UML-FMI” over the last twelve months. Two contributions are presented.

1. First contribution, is the participation to the definition of a Precise Semantics for UML

State Machines. This definition has been proposed at the OMG by the PSSM team as a

response to the PSSM RFP issued in March 2015. This document provides an overview

of the specification architecture, highlights key points of the defined semantics and

explains how this semantics was tested to ensure its was consistent with the one

described in UML 2.5 [1]. This first contribution was a required step to ensure the

possibility to use UML models with behaviours defined as state machines in a

simulation process.

2. Second contribution is the analysis of the semantic differences existing between the

semantics captured by PSSM and semantics of xtUML state machines. With the

identification of these differences it is now possible to estimate which extensions would

be required to the PSSM semantic model to be able to capture the semantics specific

requirements of xtUML state machines. If such extensions to PSSM are defined, then

xtUML models built using UML and a profile will be also usable in a simulation

process.

Now that we have a precise semantics for UML state machines, the next step of the test is to

clarify what an FMI simulation step implies in terms of execution in a state machine executed

as the classifier behaviour of an FMU. This work will be reported in the next deliverable.

D2.2 Interoperability of the standards Modelica-UML-FMI

OPENCPS, ITEA3 Project no. 14018 Page 45 of 45

REFERENCES

[1] OMG, "OMG Unified Modeling Language (UML)," 2015.

[2] OMG, "Semantics of a Foundational Subset for Executable (fUML)," 2016.

[3] OMG, "Precise Semantics of UML Composite Structures (PSCS)," 2015.

[4] M. Association, "Modelica - A Unified Object-Oriented Language for Systems

Modeling," 2014.

[5] MODELISAR Consortium / Modelica Association Project, "Functional Mock-up

Interface for Model Exchange and Co-Simulation," 2014.

[6] OMG, "Action Language for Foundational UML (Alf)," 2013.

[7] OMG, "Precise Semantics of UML State Machines Request For Proposal (PSSM RFP),"

2015.

[8] OMG, "Object Constraint Language (OCL)," 2014.

[9] OneFact, "Executable, translatable UML with BridgePoint," [Online]. Available:

https://xtuml.org/.

