
OPENCPS
ITEA3 Project no. 14018

D3.3 Concept for customizing code gen-
eration including flexible adapta-
tion to different target systems

Access1: PU

Type2: Report

Version: 1.0

Due Dates3: M12

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

This deliverable describes a concept for code generation from the Modelica language, particularly
aiming for allowing a flexible adaptation of the generated code to different target systems. The
concept aims at using the Functional Mock-up Interface standard (FMI v2.0) for the interface of the
generated code. It discusses code requirements due to targeting restricted embedded systems and
the necessity of real-time execution, as well as trade-offs which are related to the reusability of the
generated code.

1Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3Due month(s) according to FPP.
4It is mandatory to provide an executive summary for each deliverable.

D3.3 - Code generation

Deliverable Contributors:

Name Organisation Primary role in
project

Main
Author(s)5

Deliverable
Leader6

Bernhard Thiele SICSEast WP3 Leader X

François Beaude RTE T5.3 leader

Contributing
Author(s)7

Adrian Pop SICSEast WP5 leader

Magnus Eek Saab AB Project Coordi-
natorInternal

Reviewer(s)8

Document History:

Version Date Reason for change Status9

0.1 04/11/2016 First Draft Draft

0.2 08/11/2016 Integrated improvements by François Beaude In Review

1.0 09/11/2016 Integrated comments by reviewers Released

5Indicate Main Author(s) with an “X” in this column.
6Deliverable leader according to FPP, role definition in PCA.
7Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9Status = “Draft”, “In Review”, “Released”.

OPENCPS, ITEA3 Project no. 14018 Page 2 of 25

D3.3 - Code generation

Contents
Acronyms 4

1 Introduction 5

2 Background 6
2.1 Software Architecture . 6
2.2 Functional Mock-up Interface (FMI) . 6
2.3 Code Generation in OpenModelica . 7

2.3.1 Code Generation Phases . 7
2.3.2 Template Language Driven Code Generation 8

2.4 Relation to the State-of-the-Art . 9

3 Concept for Code Generation 9
3.1 Interface of Generated Code . 9
3.2 Structure of Generated Code . 10
3.3 Variable Dependencies and Calling Sequences 11

3.3.1 Running Example . 11
3.3.2 Straight-Forward Sequential Code-Generation 12
3.3.3 Current Approach in OpenModelica 15
3.3.4 Reusability Optimized Code-Generation 16

4 Conclusion 22

References 25

OPENCPS, ITEA3 Project no. 14018 Page 3 of 25

D3.3 - Code generation

Acronyms

ACG Acyclic Causality Graph.

CPS Cyber-Physical Systems.

DAE Differential Algebraic Equation.
DLL Dynamic Link Library.

FMI Functional Mock-up Interface.
FMU Functional Mock-up Unit.
FPU Floating-Point Unit.

MBD Model-Based Development.
MBSE Model-Based Systems Engineering.

OMC OpenModelica Compiler.

SW-C Software Component.

OPENCPS, ITEA3 Project no. 14018 Page 4 of 25

D3.3 - Code generation

1 Introduction

This deliverable describes a concept for code generation from the Modelica language. It will
be implemented in the OpenModelica tool. The deliverable is related to the OPENCPS D3.2
report “Translation validation and traceability concept from acausal hybrid models to generated
code” within the same work package [TS16]. Both deliverables describe (different) aspects of
the code generation from Modelica to C or C++.

Code generators transform a source language into a target language while preserving the se-
mantics of the source language. In this report the source language is Modelica and the target
languages are C and C++.

The OPENCPS project aims at improving methods and tools that support a Model-Based Sys-
tems Engineering (MBSE) approach for Cyber-Physical Systemss (CPSs). The envisioned
improvements include multi-disciplinary simulation for early integration and validation of im-
portant system behavior aspects at a high-level system level, and a seamless refinement of
high-level models until code for embedded systems can be generated. Going from a high-level
system description to generated code that can be executed on a real system is a complex process
involving multiple stages of various levels of abstraction which is depicted in Figure 1.

Figure 1: System modeling work-flow.

Modern control technology often uses a model of the physical process as part of advanced,
digitally implemented control strategies. Modelica’s excellent capabilities for physical mod-

OPENCPS, ITEA3 Project no. 14018 Page 5 of 25

D3.3 - Code generation

eling can be leveraged to synthesize such advanced controllers [AB06, TSGT08, TKOB05].
However, up to now there exists no qualified Modelica-based code generator that allows to
directly use the generated code in safety-related (production) systems. The OPENCPS D3.2
report [TS16] proposes a concept for translation validation of Modelica-generated code which
aims at increasing the confidence that can be placed in the generated code.

The goal of the present report is to propose a code generation concept that supports customiz-
able code generation, so that the generated code can be easily adapted and integrated into
different target systems. This concept is essentially orthogonal to the safety-related concepts
developed in [TS16], i.e., both concepts solve different problems but they can be (and will be)
used together. Naturally, both proposal share the same state-of-the-art for translating acausal
hybrid models which is already described in [TS16].

2 Background

This section presents selected background knowledge as a preparation for understanding the
code generation concepts proposed in the follow-up Section 3.

2.1 Software Architecture

The following definition for a software architecture is taken from Clements et al. [CBB+10]:

“The software architecture of a computing system is the set of structures needed
to reason about the system, which comprise software elements, relations among
them, and properties of both.”

Software architectures are typically tailored for their application domain and address aspects
that are sometimes referred to as non-functional requirements (e.g., communication, efficiency,
extensibility, maintainability, portability, reliability, scalability, scheduling, testability).

Generated code that is executed on an embedded system (in a CPS context) typically needs
to integrate into an existing software architecture. Consequently, the code generator has to
produce code that conforms, or is easily adaptable, to interfaces expected by the software ar-
chitectures.

2.2 Functional Mock-up Interface (FMI)

Functional Mock-up Interface (FMI) is a well received tool independent standard to support
both model exchange and co-simulation of dynamic models. While the FMI is primarily in-
tended to provide a standardized exchange format for physical simulation models, the intention
for being also usable for software components in embedded control systems was already stated
in the abstract of the first version of the standard [FMI10]. In FMI terminology a system model
that implements the interface defined by the FMI specification is called a Functional Mock-up
Unit (FMU).

OPENCPS, ITEA3 Project no. 14018 Page 6 of 25

D3.3 - Code generation

Thiele and Henriksson [TH11] explored the feasibility of using the initial version of FMI as
an intermediate format in an AUTOSAR10 software component development process. They
developed a transformations between the XML schemas of the two standards which they uti-
lized to automatically convert FMUs to AUTOSAR Software Component (SW-C). During the
prototype development they also identified several missing features that they found worth con-
sidering for future versions of the standard.

More recently Bertsch et al. [BNA+15] revisited the idea of utilizing FMUs as SW-Cs on auto-
motive embedded targets, by conducting an elaborate case study based on the current version of
the standard (FMI v2.0, [FMI14]). One of the results of their work is a list of current limitation
which they would like to address in a modified standard (which they term “FMI for automotive
embedded systems”).

For less restricted target hardware (PC compatible) FMI-based high-level process control op-
timization applications have already hit industrial production [Fra15]. The previous industrial
application serves as a good example for the benefits of an open-source product like Open-
Modelica — industry applications can build on provided base functionality of the open-source
product and extend it with desired specialized features [FWW+15].

Hence, despite current limitations in using FMUs for deeply embedded systems, experts believe
in the potential of using FMI not only for co-simulation purposes, but also as a standardized and
flexible means to integrate control-oriented SW-Cs into embedded software architectures.

2.3 Code Generation in OpenModelica

The foundations of translating Modelica models into simulation executables is already covered
in Section 2 “Foundations of Modelica” of the OPENCPS D3.2 report [TS16]. For the present
report it is expected that the reader is already familiar with the descriptions given there. The
following sections will exceed these earlier descriptions with details which are relevant in the
context of the present report.

2.3.1 Code Generation Phases

The translation of Modelica models in the OpenModelica Compiler (OMC) is divided in several
phases (cf. [TS16, Section 2.2]):

Flattening Lexical analysis and parsing, type checking, collapsing of the instance hierarchy
and generation of connection equations from connect equations. The result is a hybrid
Differential Algebraic Equation (DAE) denoted as Flat Modelica.

Equation Transformation This step encompasses transforming and manipulating the equa-
tion system into a representation that can be efficiently solved by a numerical solver11.
In OMC this representation is denoted as DAELow.

10AUTOSAR is an a development effort within the automotive industry with the goal of creating and establish-
ing an open and standardized software architecture for automotive electronic control units

11Performed symbolic transformations include index reduction, matching, equation sorting, causalization, alias
elimination, tearing, common subexpression elimination, etc.

OPENCPS, ITEA3 Project no. 14018 Page 7 of 25

D3.3 - Code generation

SimCode Generation The final system of equations is transformed into an independent sim-
ulation code structure denoted as SimCode.

Code Generation A template-based code generator called Susan [FPSP09] supports code gen-
eration from SimCode. The standard target language is C, other supported targets include
C++, JavaScript, and FMU.

Executable Generation The code is compiled and linked together with a corresponding sim-
ulation run-time. The simulation run-time is a library which is required to execute the
generated model code. It contains the numerical solver required for the model simulation.

Simulation Execution of the (compiled) model. During execution, the simulation results are
typically written into a file for later analysis.

2.3.2 Template Language Driven Code Generation

Figure 2 depicts OMC’s approach of using templates for adapting the generated code. The text
generation template language used in OMC is called Susan.

DAELow

Language1

SimCode

Language2
LanguageN

Generated Code

Data structures for representing
solved equation code

Template Engine

Runtime Language1
Runtime Language2
Runtime LanguageN

Linking

Executable

Figure 2: OpenModelica code generation using templates [FPSP09].

The Susan template language has been used for providing language support for different target
languages besides the standard target language C, like C++, JavaScript and Java. Except for
the C++ target the support for the alternative target languages is rather experimental.

Particularly the C++ target is an example for a code generation target which is strongly driven
and adapted by industrial partners for creating customized solutions for their respective use
cases [WM12, MKWM15, FWW+15].

OPENCPS, ITEA3 Project no. 14018 Page 8 of 25

D3.3 - Code generation

2.4 Relation to the State-of-the-Art

To the best of the authors’ knowledge current Modelica tools have no designated support for
exporting FMUs which are tailored for restricted embedded systems targets. Compared to the
State-of-the-Art (SotA), the code-generation concept outlined in this report aims to provide
designated support for producing FMUs which are optimized for restricted embedded systems
while also providing entry points for a user to customize the code-generation for different target
systems and use-cases.

3 Concept for Code Generation

This section describes a concept for providing improved code generation support from Open-
Modelica. The aim is

1. generating code in a format that can be easily integrated into existing software architec-
tures, and

2. allowing users of the code generator to customize the code generation to their needs in a
rather straight-forward manner.

3.1 Interface of Generated Code

The default interface for the code generator shall be FMI compatible. The FMI standard is
already supported by many tools which facilitates the development process since it allows to
import the generated code into already available tools for easy co-simulation with other systems
and for testing purposes. Furthermore, the FMI format is quite suitable for integration into an
existing software architecture since it provides a clean interface for which required wrapper
functions can be generated in an automated way. A brief discussion of the state-of-the-art of
using FMI in this context is provided in Section 2.2.

More specifically it is planned to generate code which uses the FMI v2.0, which specifies a
model exchange and a co-simulation interface [FMI14]. Compared to the model exchange
interface, the co-simulation interface has the advantage that it integrates more naturally into a
typical execution scheme in which a digital control function is activated within a periodic task.
The reason for this is that a co-simulation FMU basically contains everything which is needed
for its execution and it suffices to provide it its required input values, call its step function
fmi2DoStep(..), and retrieve the output values.

In contrast, model exchange based FMUs require that the embedding environment provides
suitable solvers, particularly for numerical integration of its continuous-time states. Hence,
integration of model exchange FMUs has higher demands on the embedding environment.
However, it has the advantage that it allows using solvers that have been optimized for a partic-
ular target platform. Another advantage of the model exchange interface is a clean execution
model for handling discrete-time events based on a super dense time description (see [TS16,
Section 2.5]). The handling of events is less safe if using co-simulation FMUs, because the
(simpler) interface doesn’t support more involved constellations.

OPENCPS, ITEA3 Project no. 14018 Page 9 of 25

D3.3 - Code generation

The differences between model exchange and co-simulation start to blur if inline integration
methods [EOC95] are used when generating model exchange FMUs. In that case, the FMU
will not expose any continuous-time states and thus the embedding environment does not need
to provide an integrator. Inline integration techniques are known to be well suited for real-
time simulation applications and their favorable real-time capabilities make them also suitable
choices for using them for real-time code on embedded targets. Indeed, standard methods
for discretization of continuous-time controllers are closely related to inline integration tech-
niques.

Despite the differences between the model exchange and the co-simulation interface, there are
also many elements which they share. This suggests to support both interfaces, so that the more
suitable option can be picked on an application specific basis.

3.2 Structure of Generated Code

Embedded target systems often have restriction that need to be considered when writing or
generating code for them:

• (hard) real-time requirements
=⇒ No algorithms with unpredictable upper execution time, e.g.,

– no dynamic allocation of memory,

– restrictions on event iteration,

– restriction on iterative numerical methods to solve nonlinear equations,

– restrictions on numerical solver methods,

• restricted amount of memory,

• restricted computational power,

• restricted availability of standard library functions (e.g., not all functions from math.h
might be available),

• restrictions on hardware support for floating point numbers (e.g., only single precision
support or no Floating-Point Unit (FPU) at all),

• cross-compiler specific restrictions and extensions,

• target specific low-level hardware aspects,

• code compliance to domain and project specific coding guidelines.

For the envisioned code generation it is neither the intention, nor is it feasible, to support
every possible use case and target architecture. Instead, the code generator should produce
real-time capable (language standard compliant) C/C++ code, which strives to be memory and
run-time efficient without resorting to target specific low-level optimizations. It is expected that
developers use the flexibility of the template language driven code generation to adapt the code
generation to target specific requirements (see Section 2.3.2).

OPENCPS, ITEA3 Project no. 14018 Page 10 of 25

D3.3 - Code generation

3.3 Variable Dependencies and Calling Sequences

Adapting an FMI (v2.0) compatible interface prescribes certain properties of the generated
code, but it allows quite different internal implementation and optimizations. An important
case is the implementation of the fmi2SetXXX and fmi2GetXXX functions. The implications
will be explained in the following section using an example which is introduced below.

3.3.1 Running Example

The following discussion will assume that acausal Modelica equations have already been partly
elaborated, so that a variable assignment has been made to every equation and an acyclic di-
rected graph (acyclic causality graph) of the equation system is internally available in the
tool12. Required algorithms are implemented in OMC (as well as in other Modelica tools).
Further information about involved algorithms can be found in [Fri14, Part IV. Technology and
Tools].

Figure 3: Running example FMU1: Internal variable dependencies.

Figure 3 gives an example for internal variable dependencies within an FMU with three inputs
(u1,u2,u3), two outputs (y1,y2) and internal variables (w1, · · · ,wn)13. We assume that these
dependencies have been derived from acausal Modelica equations by standard approaches as

12There are applications, e.g., in the domain of power-system simulation (see RTE’s use-cases and benchmark
problems [Bea16]), for which one would like to generate acausal equations and employ an internalDAE solver
which derives the causality internally. However, “DAE FMIs” are currently not supported by the FMI standard
and the necessary research and development is beyond the scope of the work discussed here.

13The example is structurally similar to the example used by Lublinermann et al. [LST09, Figure 4] which
facilitates the discussion and comparison to their work in Section 3.3.4

OPENCPS, ITEA3 Project no. 14018 Page 11 of 25

D3.3 - Code generation

(a) Feed-back composition 1 (b) Feed-back composition 2

Figure 4: Two compositions of FMU1 without algebraic loop.

mentioned above. These dependencies correspond to following equations:

y1 = fB(wn,u1) (1a)
w1 = fA1(u2) (1b)
w2 = fA2(w1) (1c)

...
wn = fAn(wn−1) (1d)
y2 = fC(wn,u3), (1e)

leading to following input and output dependencies on the FMU level

y1 = f (u1,u2), y2 = f (u2,u3). (2)

These dependencies allow reusing the FMU in feed-back compositions without introducing
an algebraic loop. Figure 4 shows the two possible algebraic-loop free feed-back configura-
tions.

From the viewpoint of equation dependencies, FMU1 can be reused in different algebraic-loop
free feed-back configurations as shown in Figure 4. Notice, that feed-back composition 1 from
Figure 4a will result in the input and output dependencies

y1 = f (u1,u2), y2 = f (u1,u2), (3)

while feed-back composition 2 from Figure 4b will result in the input and output dependencies

y1 = f (u2,u3), y2 = f (u2,u3). (4)

3.3.2 Straight-Forward Sequential Code-Generation

Code-generation needs to translate the equations into a sorted sequence of assignment state-
ments. Depending of the particular code-generation approach this has implications on actual
dependencies which may restrict the admissible compositions further than the theoretical de-

OPENCPS, ITEA3 Project no. 14018 Page 12 of 25

D3.3 - Code generation

pendencies. The following sequence of assignments is one valid sorting of system (1):

w1 := fA1(u2) (5a)
w2 := fA2(w1) (5b)

...
wn := fAn(wn−1) (5c)
y1 := fB(wn,u1) (5d)
y2 := fC(wn,u3). (5e)

Notice that sorting (5) allows for feed-back composition 1 (Figure 4a), but not for feed-back
composition 2 (Figure 4b). Hence, the sorting induces the dependencies

y1 = f (u1,u2), y2 = f (u1,u2,u3). (6)

Another valid sorting of system (1) is

w1 := fA1(u2) (7a)
w2 := fA2(w1) (7b)

...
wn := fAn(wn−1) (7c)
y2 := fC(wn,u3) (7d)
y1 := fB(wn,u1), (7e)

which induces the dependencies

y1 = f (u1,u2,u3), y2 = f (u2,u3) (8)

and allows for feed-back composition 2, but not for feedback composition 1.

The FMI standard allows to specify variable dependency information in its FMI Description
Schema (an XML file). The relevant element is named “modelStructure” [FMI14, p. 55].
For a straight-forward implementation [FMI14, p. 76] proposes to provide the dependency
information not according to the “real” functional dependency, but according to the sorted
equations in the generated code. For example, assuming sorting (5) we could generate the
pseudo C-code shown in Listing 1. For brevity only one internal variable w1 is considered,
error handling is omitted, initialization is omitted, etc.

Listing 1: Pseudo C-code for fmi2SetXXX and fmi2GetXXX calls.
1 /* value references ordered according to sorted sequence of

assignment statements */
2 #define FMU1_u1 0
3 #define FMU1_u2 1
4 #define FMU1_u3 2
5 #define FMU1_w1 3
6 #define FMU1_y1 4
7 #define FMU1_y2 5
8 #define FMU1_nvars 6

OPENCPS, ITEA3 Project no. 14018 Page 13 of 25

D3.3 - Code generation

9 #define FMU1_ninputs 3
10

11 typedef enum { fmi2OK, fmi2Warning, fmi2Discard, fmi2Error,
12 fmi2Fatal, fmi2Pending } fmi2Status;
13

14 typedef struct {
15 double time;
16 double v[FMU1_nvars]; /* Array of variable values */
17 /* Boolean condition array denoting if (cached) value of v[

index] is available */
18 int c[FMU1_nvars];
19 } FMU1;
20

21 fmi2Status FMU1_fmi2SetTime(FMU1* m, double time) {
22 if (abs(time - m->time) > eps) {
23 /* check whether time != m->time */
24 m->time = time;
25 /* re-initialize caching of variables */
26 for (int i=0; i<FMU1_nvars; i++) {
27 m->c[i] = 0;
28 }
29 }
30 return fmi2OK; /* omitting error checking */
31 }
32

33 fmi2Status FMU1_fmi2SetReal(FMU1* m, const unsigned int vr[],
34 int nvr, const double value[]) {
35 for (int i=0; i<nvr; i++) {
36 int vi = vr[i];
37 if (m->c[vi] == 1) {
38 /* re-setting of an already set input -> conservatively

invalidate all cached non-input variables */
39 for (int j=FMU1_ninputs; j<FMU1_nvars; j++) {
40 m->c[j] = 0;
41 }
42 }
43 m->v[vi] = value[i];
44 m->c[vi] = 1;
45 }
46 return fmi2OK; /* omitting error checking */
47 }
48

49 fmi2Status FMU1_fmi2GetReal(FMU1* m, const unsigned int vr[],
50 int nvr, double value[]) {
51 for (int i=0; i < nvr; i++) {
52 int vi = vr[i];
53 if (vi >= FMU1_w1 && c[vi] == 0) {
54 if (c[FMU1_u2] == 0) return fmi2Error;
55 m->v[FMU1_w1] = m->v[FMU1_u2];
56 m->c[FMU1_w1] = 1;
57 }

OPENCPS, ITEA3 Project no. 14018 Page 14 of 25

D3.3 - Code generation

58 if (vi >= FMU1_y1 && c[vi] == 0) {
59 if (c[FMU1_u1] == 0) return fmi2Error;
60 m->v[FMU1_y1] = m->v[FMU1_w1] + m->v[FMU1_u1];
61 m->c[FMU1_y1] = 1;
62 }
63 if (vi >= FMU1_y2 && c[vi] == 0) {
64 if (c[FMU1_u3] == 0) return fmi2Error;
65 m->v[FMU1_y2] = m->v[FMU1_w1] + m->v[FMU1_u3];
66 m->c[FMU1_y2] = 1;
67 }
68 value[i] = m->v[vi];
69 }
70 return fmi2OK; /* omitting most error checking */
71 }

Listing 1 uses a caching strategy to avoid re-evaluation of already computed values. The eval-
uation logic in the FMU1_fmi2GetReal function requires that the value references for the
variables are ordered according to the sorted sequence of assignment statements (5). The con-
dition array c in line 18 indicates whether the value of a variable is already available. The
array is re-initialized when the FMU time instant is different to the previous one (line 27). The
if-then constructs check whether a variable is already cached before computing it (lines 53, 58,
63). Lines 54, 59, 64 check if the input required at that instant is set.

The advantages of this code-generation approach are

• a rather straight-forward implementation, and

• a caching strategy which prevents re-evaluation of already performed computations.

Disadvantages are

• restricted reusability of the FMU, since variable dependencies for the generated FMU
are not necessarily equal to the dependencies that can be expected due to the equations,

• arbitrariness, since the utilized equation sorting algorithms will constrain the dependen-
cies of the FMU in a rather arbitrary way,

• extensive condition checking (compare lines 53, 58, 63) can have negative impact on
execution performance. A mitigation is to collect the computation of internal variables
wi into the branches of the output variables, e.g., merge branches 53 and 58.

3.3.3 Current Approach in OpenModelica

For OMC generated FMUs it is currently assumed that any output depends on every input.
Thus, no direct feed-back configuration as displayed in Figure 4 can be scheduled in a se-
quential calling sequence. Hence, every feed-back loop is either required to cross an explicit
delay, or it must be assumed that an algebraic loop needs to be solved using an iterative call-
ing sequence, e.g., the algebraic loop is solved by a Newton iteration as described in [FMI14,
p. 73].

The advantage of OMC’s current approach is its simplicity. However, the restricted reusability
is a disadvantage which motivates the investigation and development of more sophisticated

OPENCPS, ITEA3 Project no. 14018 Page 15 of 25

D3.3 - Code generation

approaches for handling variable dependencies and calling sequences.

3.3.4 Reusability Optimized Code-Generation

One considerable restriction in the straight-forward approach to code generation is the restricted
reusability due to equation sorting (see Section 3.3.2).

The problem is related to the well-known problem of modular code-generation for synchronous
data-flow languages. Lublinerman et al. provide a good discussion on implications of different
modular code-generation approaches on modularity, reusability, and code size [LT08, LST09].
The following paragraphs will define and explain this terms and illustrate the consequences
using the FMU1 example.

Modularity [LST09] defines modularity in terms of generated interface functions for a block
with inputs and outputs similar to the notation used in Figure 3. Their interface functions have
a signature that maps block inputs to function arguments and block outputs to return values,
e.g., if single (monolithic) interface function would be generated for FMU1, its signature in
their notation would read

FMU1.step(u1,u2,u3) returns (y1,y2) (9)

The smaller the number of interface functions, the higher the degree of modularity14.

Reusability [LST09] define reusability as the ability to embed generated code in any context.
In terms of the FMU1 example and associated terminology, this corresponds to maintaining the
theoretical composition flexibility as described by dependencies (2) as much as possible after
sequential code-generation. In this context, maximal reusability denotes that the composition
flexibility for the generated sequential code is equal to the theoretical composition flexibility as
described by (2).

Code size As will be illustrated later, increasing reusability may increase the resulting code
size. Hence, there is a potential trade-off between reusability and resulting code size which
needs to be considered, particularly, if code shall be generated for a more restricted embedded
system.

The introduced definition for reusability translates straight-forwardly into the FMI world. How-
ever, the modularity definition from above is not as directly transferable, since the FMI does
not have function signatures similar to (9).

14Lublinerman et al. [LST09] justify this definition by complexity considerations. They note that the number of
interface functions (within their framework) is related to the complexity of algorithms such as cycle detection or
clustering (used by their method). Hence, they argue that minimizing the number of interface functions is essential
for scalability.

OPENCPS, ITEA3 Project no. 14018 Page 16 of 25

D3.3 - Code generation

Causality graph oriented code-generation As mentioned when introducing the FMU1 ex-
ample in Section 3.3.1, the example is constructed in a way that it can be straight-forwardly be
interpreted as a causality graph. The construction of a causality graph from acausal equations
is part of the standard code-generation process in OpenModelica (as well as in other Modelica
tools), thus such a structure is internally available in OMC. In the following we assume that
this causality graph is available.

To enable a reusability optimized code-generation it suggests itself to utilize the causality graph
structure more directly instead of committing to a particular topological sorting during the
code generation (the “straight-forward” approach described in Section 3.3.2). Listing 2 adopts
that strategy by providing an internal function for every node in the (acyclic) causality graph
(lines 62, 70, 79). The cache invalidating strategy in the FMU1_fmi2SetReal(..) function
is conservative. It could be optimized by a more sophisticated implementation which invali-
dates only those cached variables that depend on the changed input. However, typical control
algorithms read each input only once during one sample period so that the simple approach of
Listing 2 should be sufficient for such use-cases. When the value of a variable is requested
(indiscriminate whether declared as output or local variable) a switch statement dispatches to
the respective internal node function. Every node function knows its causality dependencies
and calls the respective nodes. Caching ensures that nodes are not evaluated several times. The
pseudo code omits error handling, but hints it at some places (lines 51, 55, 59).

The approach allows maximal reusability of the generated code. Its disadvantage is the abun-
dance of generated functions (one for each node) which increase the code size and also impair
the readability of the generated code in case of larger systems (e.g., imagine that n� 1 internal
wi variables).

Listing 2: Causality graph oriented pseudo C-code with maximal reusability.
1 #define FMU1_u1 0
2 #define FMU1_u2 1
3 #define FMU1_u3 2
4 #define FMU1_w1 3
5 #define FMU1_y1 4
6 #define FMU1_y2 5
7 #define FMU1_nvars 6
8 #define FMU1_ninputs 3
9

10

11 typedef enum { fmi2OK, fmi2Warning, fmi2Discard, fmi2Error,
12 fmi2Fatal, fmi2Pending } fmi2Status;
13

14 typedef struct {
15 double time;
16 double v[FMU1_nvars]; /* Array of variable values */
17 /* Boolean condition array denoting if (cached) value of v[

index] is available */
18 int c[FMU1_nvars];
19 } FMU1;
20

21 fmi2Status FMU1_fmi2SetTime(FMU1* m, double time) {
22 if (abs(time - m->time) > eps) {

OPENCPS, ITEA3 Project no. 14018 Page 17 of 25

D3.3 - Code generation

23 /* check whether time != m->time */
24 m->time = time;
25 /* re-initialize caching of variables */
26 for (int i=0; i<FMU1_nvars; i++) {
27 m->c[i] = 0;
28 }
29 }
30 return fmi2OK; /* omitting error checking */
31 }
32

33 fmi2Status FMU1_fmi2SetReal(FMU1* m, const unsigned int vr[],
34 int nvr, const double value[]) {
35 for (int i=0; i<nvr; i++) {
36 int vi = vr[i];
37 if (m->c[vi] == 1) {
38 /* re-setting of an already set input -> conservatively

invalidate all cached non-input variables */
39 for (int j=FMU1_ninputs; j<FMU1_nvars; j++) {
40 m->c[j] = 0;
41 }
42 }
43 m->v[vi] = value[i];
44 m->c[vi] = 1;
45 }
46 return fmi2OK; /* omitting error checking */
47 }
48

49 void intern_u1(FMU1* m) {
50 if (m->c[FMU1_u1] == 0)
51 error("Input u1 required at instant when it was not set");
52 }
53 void intern_u2(FMU1* m) {
54 if (m->c[FMU1_u2] == 0)
55 error("Input u2 required at instant when it was not set");
56 }
57 void intern_u3(FMU1* m) {
58 if (m->c[FMU1_u3] == 0)
59 error("Input u3 required at instant when it was not set");
60 }
61

62 void intern_w1(FMU1* m) {
63 if (m->c[FMU1_w1] == 0) {
64 intern_u2(m);
65 m->v[FMU1_w1] = m->v[FMU1_u2];
66 m->c[FMU1_w1] = 1;
67 }
68 }
69

70 void intern_y1(FMU1* m) {
71 if (m->c[FMU1_y1] == 0) {
72 intern_u1(m);

OPENCPS, ITEA3 Project no. 14018 Page 18 of 25

D3.3 - Code generation

73 intern_w1(m);
74 m->v[FMU1_y1] = m->v[FMU1_w1] + m->v[FMU1_u1];
75 m->c[FMU1_y1] = 1;
76 }
77 }
78

79 void intern_y2(FMU1* m) {
80 if (m->c[FMU1_y2] == 0) {
81 intern_u3(m);
82 intern_w1(m);
83 m->v[FMU1_y2] = m->v[FMU1_w1] + m->v[FMU1_u2];
84 m->c[FMU1_y2] = 1;
85 }
86 }
87

88 fmi2Status FMU1_fmi2GetReal(FMU1* m, const unsigned int vr[],
89 int nvr, double value[]) {
90 for (int i=0; i < nvr; i++) {
91 int vi = vr[i];
92 switch (vi) {
93 case FMU1_w1:
94 intern_w1(m);
95 break;
96 case FMU1_y1:
97 intern_y1(m);
98 break;
99 case FMU1_y2:

100 intern_y2(m);
101 break;
102 }
103 value[i] = m->v[vi];
104

105 return fmi2OK; /* omitting error checking */
106 }

Optimal disjoint clustering Lublinerman et al. [LST09] propose a method that allows clus-
tering of nodes in a way that optimizes modularity while maintaining maximal reusability. The
clusters produced by applying their method on the FMU1 example is depicted in Figure 5.
For the code-generation they would synthesize one function for each of the determined cluster
(hence, a total of three interface function for the running example). As explained previously
their interface functions have no direct mapping into the FMI world. However, we can con-
sider a mapping to internal FMU functions to which we dispatch from the FMU1_fmi2GetXXX
functions.

In the pseudo code in Listing 3 each disjoint cluster is mapped to a internal functions (lines 56,
67, 77). The example code considers three local variables (w1,w2,w3) whose nodes are com-
bined in the “cluster function” intern_w1w2wn(..). A switch statement (line 91) dis-
patches to the respective “cluster function” in which the requested value is computed. Again,
the pseudo code omits error handling, but insinuates it at some places (lines 58, 69, 79).

OPENCPS, ITEA3 Project no. 14018 Page 19 of 25

D3.3 - Code generation

Figure 5: Clustering produced by optimal disjoint clustering [LST09].

Similarly to previous example (Listing 2), the optimal disjoint clustering approach allows max-
imal reusability of the generated code. In addition it reduces the amount of generated functions,
which reduces the code size and should allow for better readability of the generated code in case
of larger systems. Its disadvantage is the computation complexity for the clustering problem.
Lublinerman et al. [LST09] show that their optimal disjoint clustering approach is intractable
in the sense that it belongs to the family of NP-complete problems. However, they also report
that their experimental results on applying their method to real-world models gave encouraging
results (only a few seconds computation time) which indicated that the computation time may
be acceptable in practice. A similar observation is reported by Pouzet and Raymond [PR10]
who propose another computation approach for the same problem and validated it on several
industrial examples.

Listing 3: Optimal disjoint clustering pseudo C-code with maximal reusability.
1 #define FMU1_u1 0
2 #define FMU1_u2 1
3 #define FMU1_u3 2
4 #define FMU1_w1 3
5 #define FMU1_w2 4
6 #define FMU1_w3 5
7 #define FMU1_y1 6
8 #define FMU1_y2 7
9 #define FMU1_nvars 8

10 #define FMU1_ninputs 3
11 #define FMU1_nclusters 3
12

13

14 typedef enum { fmi2OK, fmi2Warning, fmi2Discard, fmi2Error,
15 fmi2Fatal, fmi2Pending } fmi2Status;
16

17 typedef struct {
18 double time;
19 double v[FMU1_nvars]; /* Array of variable values */
20 /* Boolean condition array denoting if (cached) value(s) are

available */
21 int c_inp[FMU1_ninputs];

OPENCPS, ITEA3 Project no. 14018 Page 20 of 25

D3.3 - Code generation

22 int c_clusters[FMU1_nclusters];
23 } FMU1;
24

25 fmi2Status FMU1_fmi2SetTime(FMU1* m, double time) {
26 if (abs(time - m->time) > eps) {
27 /* check whether time != m->time */
28 m->time = time;
29 /* re-initialize caching of variables */
30 for (int i=0; i<FMU1_ninputs; i++) {
31 m->c_inp[i] = 0;
32 }
33 for (int i=0; i<FMU1_nclusters; i++) {
34 m->c_clusters[i] = 0;
35 }
36 }
37 return fmi2OK; /* omitting error checking */
38 }
39

40 fmi2Status FMU1_fmi2SetReal(FMU1* m, const unsigned int vr[],
41 int nvr, const double value[]) {
42 for (int i=0; i<nvr; i++) {
43 int vi = vr[i];
44 if (m->c[vi] == 1) {
45 /* re-setting of an already set input -> conservatively

invalidate all cluster caching indicators */
46 for (int j=0; j<FMU1_nclusters; j++) {
47 m->c_clusters[j] = 0;
48 }
49 }
50 m->v[vi] = value[i];
51 m->c_inp[vi] = 1;
52 }
53 return fmi2OK; /* omitting error checking */
54 }
55

56 void intern_w1w2wn(FMU1* m) {
57 if (m->c[FMU1_w1w2w3] == 0) {
58 if (m->c[FMU1_u2] == 0)
59 error("Input u2 required at instant when it was not set");
60 m->v[FMU1_w1] = m->v[FMU1_u2];
61 m->v[FMU1_w2] = m->v[FMU1_w1];
62 m->v[FMU1_w3] = m->v[FMU1_w2];
63 m->c[FMU1_w1w2w3] = 1;
64 }
65 }
66

67 void intern_y1(FMU1* m) {
68 if (m->c[FMU1_y1] == 0) {
69 if (m->c[FMU1_u1] == 0)
70 error("Input u1 required at instant when it was not set");
71 intern_w1w2w3(m);

OPENCPS, ITEA3 Project no. 14018 Page 21 of 25

D3.3 - Code generation

72 m->v[FMU1_y1] = m->v[FMU1_w3] + m->v[FMU1_u1];
73 m->c[FMU1_y1] = 1;
74 }
75 }
76

77 void intern_y2(FMU1* m) {
78 if (m->c[FMU1_y2] == 0) {
79 if (m->c[FMU1_u3] == 0)
80 error("Input u3 required at instant when it was not set");
81 intern_w1w2w3(m);
82 m->v[FMU1_y2] = m->v[FMU1_w3] + m->v[FMU1_u2];
83 m->c[FMU1_y2] = 1;
84 }
85 }
86

87 fmi2Status FMU1_fmi2GetReal(FMU1* m, const unsigned int vr[],
88 int nvr, double value[]) {
89 for (int i=0; i < nvr; i++) {
90 int vi = vr[i];
91 switch (vi) {
92 case FMU1_w1:
93 case FMU1_w2:
94 case FMU1_w3:
95 intern_w1w2w3(m);
96 break;
97 case FMU1_y1:
98 intern_y1(m);
99 break;

100 case FMU1_y2:
101 intern_y2(m);
102 break;
103 }
104 value[i] = m->v[vi];
105

106 return fmi2OK; /* omitting error checking */
107 }

4 Conclusion

This report discussed a concept for code generation from the Modelica language, particularly
aiming for allowing a flexible adaption of the generated code to different target systems. The
interface of the generated code shall be FMI compatible (FMI v2.0 as implementation base,
but open for experimenting with extensions or version updates if needed during the project)
since it allows importing the generated code into already available tools for easy co-simulation
with other systems and for testing purposes. Furthermore, the FMI format seems quite suitable
for integration into existing software architecture since it provides a clean interface for which
required wrapper functions can be generated in an automated way.

OPENCPS, ITEA3 Project no. 14018 Page 22 of 25

D3.3 - Code generation

FMI already supports FMUs which are shipped with C source code (instead, or in addition, of
Dynamic Link Librarys (DLLs) or shared objects). In order to be adaptable to different target
systems (e.g., by cross-compilation) it is planned to generate exactly these source-code FMUs.
However, embedded target systems often have restrictions which require generating different
code than for desktop machines. Such restrictions have been identified and fixed in the report
so that they are kept in mind for the prototype development in task T3.2 and T3.3.

An interesting sub-problem for FMI compatible code is related to (input/output) variable depen-
dencies and calling sequences for maximizing the reusability of an FMU in different contexts.
This problem has been discussed in more detail, since it has interesting impacts on modular-
ity, reusability, and code size for which different trade-offs can be explored. Hence, several
code-generation approaches were presented (partly building on reported research results in the
area of modular code generation for synchronous block diagrams) and their trade-offs were
discussed. Due to different trade-offs, it is not clear which code-generation method suits best
and the follow-up prototype development might need to support several alternatives (task T3.2
and T3.3). Furthermore, it is expected that the standard FMU generation (i.e., export of bi-
nary FMUs for desktop simulation), will eventually benefit from the prototype development
within this work package (transfer of improvements concerning code efficiency and reusability
of FMUs).

To the best of the authors’ knowledge current Modelica tools have no designated support for
exporting FMUs which are tailored for restricted embedded systems targets. Compared to the
SotA, the code-generation concept outlined in this report aims to provide designated support
for producing FMUs which are optimized for restricted embedded systems while also providing
entry points for a user to customize the code-generation for different target systems and use-
cases.

OPENCPS, ITEA3 Project no. 14018 Page 23 of 25

D3.3 - Code generation

References

[AB06] J. Andreasson and T. Bünte. Global chassis control based on inverse vehi-
cle dynamics models. Vehicle System Dynamics, 44:321–328, 2006. doi:
10.1080/00423110600871459.

[Bea16] François Beaude. Benchmark network models. Technical Note D5.3, OPENCPS
project, ITEA3, Project 14018, December 2016.

[BNA+15] Christian Bertsch, Jonathan Neudorfer, Elmar Ahle, Siva Sankar Arumugham,
Karthikeyan Ramachandran, and Andreas Thuy. FMI for physical models on
automotive embedded targets. In Peter Fritzson and Hilding Elmqvist, editors,
11th Int. Modelica Conference, Versailles, France, September 2015. doi:10.
3384/ecp1511843.

[CBB+10] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2010.

[EOC95] Hilding Elmqvist, Martin Otter, and Françoise E. Cellier. Inline Integration:
A New Mixed Symbolic/Numeric Approach for Solving Differential-Algebraic
Equation Systems. In European Simulation Multiconference, 1995.

[FMI10] FMI development group. Functional Mock-up Interface for Model Exchange
v1.0. Modelica Association Project “FMI”, January 2010. Standard Specifica-
tion. URL: https://www.fmi-standard.org/.

[FMI14] FMI development group. Functional Mock-up Interface for Model Exchange
and Co-Simulation v2.0. Modelica Association Project “FMI”, October 2014.
Standard Specification. URL: https://www.fmi-standard.org/.

[FPSP09] Peter Fritzson, Pavol Privitzer, Martin Sjölund, and Adrian Pop. Towards a
Text Generation Template Language for Modelica. In Francesco Casella, editor,
7th Int. Modelica Conference, Como, Italy, September 2009. doi:0.3384/
ecp09430124.

[Fra15] Rüdiger Franke. Mathematical Optimization of Dynamic Systems with Open-
Modelica. OpenModelica Annual Workshop 2015, February 2015. Talk
at workshop. URL: http://www.modprod.liu.se/openmodelica-2015/1.620216/
OpenModelica2015-talk02-Franke_Optimization.pdf.

[Fri14] Peter Fritzson. Principles of Object Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach. Wiley IEEE Press, 2014.

[FWW+15] Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi Braun, and Bernhard
Bachmann. Model-based control with FMI and a C++ runtime for Modelica.
In Peter Fritzson and Hilding Elmqvist, editors, 11th Int. Modelica Conference,
Versailles, France, September 2015. doi:10.3384/ecp15118339.

[LST09] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. Modular code
generation from synchronous block diagrams: Modularity vs. code size. In ACM
SIGPLAN Notices, volume 44, pages 78–89. ACM, 2009. doi:10.1145/
1594834.1480893.

OPENCPS, ITEA3 Project no. 14018 Page 24 of 25

http://dx.doi.org/10.1080/00423110600871459
http://dx.doi.org/10.1080/00423110600871459
http://dx.doi.org/10.3384/ecp1511843
http://dx.doi.org/10.3384/ecp1511843
https://www.fmi-standard.org/
https://www.fmi-standard.org/
http://dx.doi.org/0.3384/ecp09430124
http://dx.doi.org/0.3384/ecp09430124
http://www.modprod.liu.se/openmodelica-2015/1.620216/OpenModelica2015-talk02-Franke_Optimization.pdf
http://www.modprod.liu.se/openmodelica-2015/1.620216/OpenModelica2015-talk02-Franke_Optimization.pdf
http://dx.doi.org/10.3384/ecp15118339
http://dx.doi.org/10.1145/1594834.1480893
http://dx.doi.org/10.1145/1594834.1480893

D3.3 - Code generation

[LT08] Roberto Lublinerman and Stavros Tripakis. Modularity vs. Reusability: Code
Generation from Synchronous Block Diagrams. In Proceedings of the Con-
ference on Design, Automation and Test in Europe, DATE ’08, pages 1504–
1509, New York, NY, USA, March 2008. ACM. doi:10.1145/1403375.
1403736.

[MKWM15] Nils Menager, Rüdiger Kampfmann, Niklas Worschech, and Lars Mikelsons.
Suitability of Different Real-Time Solvers for a Model-Based Engineering
Toolchain using Industrial Rexroth Controllers. In Peter Fritzson and Hilding
Elmqvist, editors, 11th Int. Modelica Conference, Versailles, France, September
2015. doi:10.3384/ecp15118883.

[PR10] Marc Pouzet and Pascal Raymond. Modular Static Scheduling of Synchronous
Data-flow Networks: An efficient symbolic representation. Journal of Design
Automation for Embedded Systems, 3(14):165–192, 2010. URL: http://www.
springerlink.com/content/0929-5585/14/3/.

[TH11] Bernhard Thiele and Dan Henriksson. Using the Functional Mockup Interface
as an Intermediate Format in AUTOSAR Software Component Development. In
Christoph Clauß, editor, 8th Int. Modelica Conference, Dresden, Germany, March
2011. doi:10.3384/ecp11063484.

[TKOB05] M. Thümmel, M. Kurze, M. Otter, and J. Bals. Nonlinear inverse models for
control. In 4th Int. Modelica Conference, pages 267–279, 2005.

[TS16] Bernhard Thiele and Per Sahlin. Translation validation and traceability concept
from acausal hybrid models to generated code. Technical Note D3.2, OPENCPS
project, ITEA3, Project 14018, December 2016.

[TSGT08] E. D. Tate, Michael Sasena, Jesse Gohl, and Micheal Tiller. Model embedded
control: A method to rapidly synthesize controllers in a modeling environment.
In 6th Int. Modelica Conference, pages 493–502, Bielefeld, Germany, March
2008.

[WM12] Niklas Worschech and Lars Mikelsons. A Toolchain for Real-Time Simulation
using the OpenModelica Compiler. In Martin Otter and Dirk Zimmer, editors, 9th

Int. Modelica Conference, pages 839–846, Munich, Germany, September 2012.
doi:10.3384/ecp12076839.

OPENCPS, ITEA3 Project no. 14018 Page 25 of 25

http://dx.doi.org/10.1145/1403375.1403736
http://dx.doi.org/10.1145/1403375.1403736
http://dx.doi.org/10.3384/ecp15118883
http://www.springerlink.com/content/0929-5585/14/3/
http://www.springerlink.com/content/0929-5585/14/3/
http://dx.doi.org/10.3384/ecp11063484
http://dx.doi.org/10.3384/ecp12076839

	Acronyms
	Introduction
	Background
	Software Architecture
	Functional Mock-up Interface (FMI)
	Code Generation in OpenModelica
	Code Generation Phases
	Template Language Driven Code Generation

	Relation to the State-of-the-Art

	Concept for Code Generation
	Interface of Generated Code
	Structure of Generated Code
	Variable Dependencies and Calling Sequences
	Running Example
	Straight-Forward Sequential Code-Generation
	Current Approach in OpenModelica
	Reusability Optimized Code-Generation

	Conclusion
	References

