
Building as a Service - BaaS

Deliverable

D05 – BaaS Reference Architecture

Editor:

Norbert Vicari, Siemens

May 20, 2016

ITEA 2 Project 12011

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 2

Document properties

Distribution Public

Version Version 2.0, May 20, 2016

Distribution changed to public as of November 2016

Editor Norbert Vicari, Siemens

Authors/
Contributors

Gunes Karabulut Kurt, Defne

Berna Ors Yalcin, Defne

Francisco de Borja Ortiz De la Orden, Everis

Christoph Fiehe, Materna

Anna Litvina, Materna

Darko Anicic, Siemens

Michael Bahr, Siemens

Sebastian Käbisch, Siemens

Christoph Niedermeier, Siemens

Jan Seeger, Siemens

Egon Wuchner, Siemens

Norbert Vicari, Siemens

Marc-Oliver Pahl, TUM

Benjamin Hof, TUM

Malte Burkert, TUDO

Andreas Müller, TWT

Martin Neubauer, TWT

Nacho Mansanet, UPV

Joan Fons, UPV

Björn Butzin, URO

Pages 144

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 3

Abstract
This document describes the second iteration of the BaaS reference architecture. Its main
purpose is to provide guidance for the development of architectures. In particular, the
reference architecture outlines the main functional groups and components and provides a
blue-print for the specification of concrete service platforms and the related services.

The BaaS project [1] is targeted to establish a generic service platform for commercial
buildings, that integrates traditional building automation and management systems with ICT
infrastructures. The BaaS reference architecture follows a service-oriented approach and
puts special focus on the definition, generation and deployment of novel building
automation services and the integration of legacy services.

The BaaS reference architecture is described following a set of 'views and perspectives'
approach. After a clarification of the terminology of the BaaS project in form of the BaaS
domain model and the BaaS platform, we address the functional requirements of the BaaS
architecture in four views:

· The Lifecycle View defines the activities in the different phases of the BaaS lifecycle,
the related artifacts (models, software,...) in each phase and the transitions from one
phase to the other.

· The Information View describes the information model used for the description of
the data points, related to the building automation domain and the BaaS services
which addresses the IT domain aspects.

· The Functional View defines functional building blocks of the reference architecture
and it specifies its responsibilities and relations to other functional building blocks.
The functional view captures the interactions of the functional building blocks as
triggered by the actors during the lifecycle.

· The Behavioral View focuses on the interaction and communication patterns of data
exchanged between BaaS services.

Finally, the qualitative requirements as cross-cutting issues are addressed in the Security,
Dependability, and Technical Management perspectives in order to cover all of the relevant
aspects of a BaaS system.

The second iteration of the BaaS reference architecture uses feedback from the
implementation of the BaaS platform for a major overhaul of the Information View,
consolidates the information provided on the Technical Management as perspective in a
single place and introduces several clarifications on the Lifecycle View and Security
Perspective.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 4

Table of Contents
D05 – BaaS Reference Architecture ..1

Abstract ..3

Table of Contents ...4

1 Motivation and Structure ..7

1.1 Why do we need a Reference Architecture? ...7

1.2 Description of the Approach ...7

1.3 Structure of the Deliverable ..8

2 Glossary...9

3 BaaS Domain Description ..13

3.1 Domain Model ..13

3.1.1 What is a Domain Model? ..13

3.1.2 Purpose of the BaaS Domain Model (BDM) ..13

3.1.3 General Overview on the BDM...14

3.1.4 Detailed Discussion of Selected Concepts ..16

3.2 BaaS Platform ...17

3.2.1 BaaS Framework ..18

3.2.2 BaaS Service Runtime ..18

3.2.3 Technical Management ..18

4 Architectural Views ...19

4.1 Lifecycle View ...19

4.1.1 Introduction ...19

4.1.2 BAS System Lifecycle Revisited...19

4.1.3 Activities throughout the BaaS Lifecycle ..21

4.2 Information View ..34

4.2.1 From Data Points in the Building Domain to BaaS Data Points34

4.2.2 Information Flow between BaaS Services...35

4.2.3 Information Model ..36

4.2.4 Ontology Modeling ..52

4.3 Functional View ..55

4.3.1 Motivation ...55

4.3.2 Types of Functional Building Blocks..55

4.3.3 Overview of Functional Building Blocks ..59

4.3.4 Functional View of the Development Phase ...60

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 5

4.3.5 Functional View of the Engineering Phase..73

4.3.6 Functional View of the Commissioning Phase ..78

4.3.7 Functional View of the Operation Phase ..80

4.3.8 Functional View of the Optimization Phase ..82

4.4 Behavioral View ..82

4.4.1 General Aspects of Communication and their Impact83

4.4.2 Analysis of Application Cases ...85

4.4.3 Identified Communication Patterns ...91

4.4.4 Composition of Communication Patterns to Application Patterns96

5 Perspectives .. 100

5.1 Security Perspective .. 100

5.1.1 Threat Model ... 100

5.1.2 Concept ... 100

5.1.3 Security During the Lifecycle .. 101

5.2 Dependability Perspective ... 102

5.2.1 Concept ... 103

5.3 Technical Management Perspective .. 104

5.3.1 Management Infrastructure ... 106

5.3.2 Management Tree ... 107

5.3.3 Overall View .. 110

6 Summary ... 112

6.1 Modifications in the Second Iteration ... 112

6.2 Requirements Mapping ... 113

7 List of Figures .. 116

8 References .. 117

Annex ... 119

A Heating System OWL representation ... 120

A.1 Basic Data Type definitions ... 120

A.1.1 Water Throughput ... 120

A.1.2 Temperature .. 120

A.2 Specified Features ... 120

A.2.1 Temperature Sensor .. 120

A.2.2 Flow Setpoint ... 124

A.3 Specified Data Point Types .. 127

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 6

A.3.1 Temperature Sensors ... 127

A.3.2 Boiler ... 131

A.3.3 Hot Water Cylinder .. 138

A.3.4 Pumps.. 141

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 7

1 Motivation and Structure
The main goal of the BaaS project [1] is to establish a generic service platform for
commercial buildings that integrates traditional building automation and management
systems with ICT infrastructures. This platform supports the development and deployment
of novel valued added services and applications that take advantage of an integrated model
of novel and legacy building systems and the data provided and consumed by those kinds of
systems.

In detail, BaaS targets four technical objectives aiming at conceptualizing and developing

· a flexible open building service platform that facilitates the generation and deployment
of value-added building services at a considerably lower cost compared to the state of
the art;

· a BaaS data model that provides additional meta-information to simplify the
engineering of value added services and applications for the BaaS system and the
integration of/with legacy systems;

· model-based mechanisms for analysis, aggregation and transformation of data
according to the meta-information provided in the BaaS data model;

· methods for the integration of existing and novel sources of information to create a
“building information sphere” considering all stakeholders of the building.

Among the expected outcomes of the project are (1) a reference architecture for an
implementation of the BaaS platform, (2) mechanisms to integrate with legacy building
systems, (3) a set of basic platform mechanisms for the generation, deployment and
composition of services, and (4) prototypical implementations of value-added services for
validating and demonstrating the BaaS service platform.

This deliverable targets the first objective of the BaaS project in describing the BaaS
reference architecture.

1.1 Why do we need a Reference Architecture?
The BaaS reference architecture is defined as an architectural design pattern that indicates
how an abstract set of mechanisms and relationships addresses the set of BaaS
requirements. The main purpose of a reference architecture is to provide guidance for the
development of architectures.

According to the definition, the BaaS reference architecture establishes the basic principles
of the BaaS concepts and describes the essential elements required for meeting the
architecture requirements [2]. These elements are described independently of specific
technologies. In particular, the reference architecture outlines the main functional groups
and components and provides a blue-print for the specification of concrete service platforms
and the related services.

1.2 Description of the Approach
The reference architecture is described based on the 'views and perspectives' approach as
presented in [3]. This approach allows separating the different important concerns regarding
the reference architecture, where views address the functional requirements of the
reference architecture while the perspectives address the cross-cutting qualitative aspects of
the system. In particular, we decided to describe the following views and perspectives:

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 8

· The Lifecycle View gives an overall overview of the lifecycle of a BaaS system. Since the
BaaS approach aims at model based generation of services for the building automation
domain, the development, engineering and commissioning phases are given special
attention besides the operation phase. The Lifecycle View defines the activities in the
phases, related artifacts (models, software,...) in each phase and the transitions from
one phase to the other.

· The Information View describes the information model used for the description of BaaS
services. These services represent data points which are the entities building
automation domain experts use to describe building automation systems. The
information model also describes the methodology for the semantic description of the
data points and BaaS services.

· The Functional View defines functional building blocks of the reference architecture
and it specifies its responsibilities and relations to other functional building blocks. The
functional view captures the interactions of the functional building blocks as triggered
by the actors during the lifecycle.

· The Behavioral View focuses on the interaction and communication patterns of data
exchanged between BaaS services. This description is based on an analysis of the BaaS
application cases by identifying communication patterns and requirements.

· The Dependability Perspective deals with the availability and reliability of the
underlying system that enables the BaaS services to work correctly and with the needed
performance.

· The Security Perspective describes the needed principles for confidentiality, integrity,
authentication and authorization in order to protect the assets of a BaaS system.

· The Technical Management Perspective describes mechanisms that monitor and
manage the deployed software components of a BaaS system in a way that the needed
reliability is achieved.

Overall, the reference architecture provides concepts and mechanisms how the following
aspects can be addressed:

· semantic models facilitating the description of functional and non-functional properties
of the data to be exchanged between data providers and consumers,

· models and model-based methods that facilitate the automated generation,
composition and deployment of value added building services,

· communication patterns covering the inherently massively distributed and usually
heterogeneous nature of building systems,

· models and mechanisms for the integration of legacy building automation systems (e.g.
BACnet),

· models on the management and reliability of the system.

1.3 Structure of the Deliverable
After the introduction, Chapter 2 lists the glossary of the BaaS project. The BaaS domain
model and an overview of the BaaS platform and its technical management system is given
in Chapter 3. The main part of the document is formed by Chapter 4 introducing the Views
and Chapter 5 describing the Perspectives. The deliverable is concluded by a summary.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 9

2 Glossary
The following table provides a glossary of specific terms used in the description of the BaaS
reference architecture.

Term Description

Application Case Description of an application scenario enabled by the BaaS platform. Breaks down into
a number of user stories. More details to be found in the BaaS Deliverable on use
cases [4].

Architecture View Principle: It is not possible to capture the functional features and quality properties of
a complex system in a single comprehensible model that is understandable by and of
value to all stakeholders. We need to represent complex systems in a way that is
manageable and comprehensible by a range of business and technical stakeholders. A
widely used approach - the only successful one we have found - is to face the problem
from different directions simultaneously. In this approach, the architecture document
is partitioned into a number of separate but interrelated views, each of which
describes a separate aspect of the architecture. Collectively, the views describe the
whole system.

Definition: A view is a representation of one or more structural aspects of an
architecture that illustrates how the architecture addresses one or more concerns
held by one or more of its stakeholders [3].

Automation Function An open-loop or closed-loop control function or a locking function acting upon a
process [5].

Artifact Artifacts are result of a specific step in the life cycle, e.g. a document/specification, a
concrete model at the end of modelling process, source code generated from the
model, or object code as a result of a compilation process.

Artifacts are used as basis for the development, engineering, commissioning,
operation and optimization of the services in a BaaS system.

BaaS Container BaaS containers provide an abstraction from the underlying hardware. BaaS services
are deployed in BaaS containers.

BaaS Data A set of data (values) together with a description of its type (e.g. array of integers)

BaaS Data Point A BaaS data point provides the semantics to exchange VALUES between services.

BaaS Device An entity that provides a hardware abstraction layer (HAL) to physical devices and
connected sensors/actuators.

BaaS Gateway A BaaS service that represents physical data points from legacy devices in the BaaS
system.

BaaS Interface The BaaS interface describes the access to BaaS data.

BaaS Ontology The BaaS ontology is a common vocabulary (semantic model) which formally
describes concepts in the BaaS system in machine interpretable and human
understandable form.

BaaS Constraint The BaaS Constraint is a mean to model certain qualities of non-functional

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 10

Term Description

requirements in the development phase. It consists of different qualities which can be
assigned to the BaaS Constraint and the corresponding management tasks and
measures to enforce the demanded quality at runtime. A BaaS Constraint can be
applied to BaaS services and BaaS platform services during the engineering phase.

BaaS Platform The BaaS platform consists of tools (DSL editors, model IDEs, runtime management
tools, etc.), artifacts (basic models & ontologies), a repository to maintain and query
these artifacts and a runtime to operate BaaS services. The platform is extendable in
the sense that it allows the creation and operation of BaaS services. This might include
the extension of the basic models and ontologies. The BaaS platform addresses
requirements from the BaaS reference architecture.

BaaS Reference
Architecture

The BaaS reference architecture is an architectural design pattern that indicates how
an abstract set of mechanisms and relationships realizes the set of BaaS requirements.
The main purpose of a reference architecture is to provide guidance for the
development of architectures.

BaaS Registry The BaaS registry is used to query/lookup BaaS services according their properties.

BaaS Semantics BaaS semantics is a placeholder for the semantic descriptions needed in the BaaS
system. These descriptions might be in different formats and tools, e.g. DSLs in a
modeling tool/editor or ontologies in RDF format.

BaaS Service A BaaS service executes building automation tasks. It is created and operated in the
context of the BaaS platform.

BaaS Platform
Service

A BaaS platform service is a service providing management capabilities, information
and semantics about BaaS data points, BaaS services, BaaS container and BaaS
devices. The BaaS platform services create an ecosystem without the operation of
BaaS services would be much harder if not impossible.

Behavioral View The process view describes the communication aspects of the BaaS system. These
communication aspects have to be taken into account by the design and
implementation of the BaaS platform. It refers to different communication
approaches (e.g. event-based versus data-centric communication), their respective
Quality-of-Service (QoS) aspects like reliability of delivery and relates these QoS
aspects to the respective Application Cases from D02.

Examples related to BaaS: communication of BaaS services over different
communication protocols (e.g. CoAP), communication using different communication
styles (e.g. request/reply, event-based communication, data-centric communication
triggered periodically) [6].

Component View Specifies the software components realizing the functional building blocks of the
Functional View.

Data Point A data point is an input/output function consisting of all assigned information
describing fully the point’s meaning (semantic). The data point’s information includes
the present value and/or state and parameters (properties and attributes), e.g. signal
type, signal characteristics, measured range, unit, and state texts. There are physical
and virtual data points. A physical data point is related to a direct or network
connected field device within a homogeneous system. A virtual data point can be
derived from the result of a processing function, or it is related to a device within a
different system as a shared (networked) data point. A parameter having its own user
address is also a virtual data point [7].

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 11

Term Description

Functional View Describes the system‘s functional elements, their responsibilities, interfaces, and
primary interactions. A Functional view is the cornerstone of most ADs and is often
the first part of the description that stakeholders try to read. It drives the shape of
other system structures such as the information structure, concurrency structure,
deployment structure, and so on. It also has a significant impact on the system‘s
quality properties such as its ability to change, its ability to be secured, and its runtime
performance.

Examples related to BaaS: domain-specific BaaS editors, repositories of semantic
descriptions of BaaS services, BaaS data points, BaaS SDK tools for code generation,
BaaS runtime libraries covering communication, service management, security, BaaS
BACnet gateway [3].

Information View Describes the way that the system stores, manipulates, manages, and distributes
information. The ultimate purpose of virtually any computer system is to manipulate
information in some form, and this viewpoint develops a complete but high-level view
of static data structure and information flow. The objective of this analysis is to
answer the big questions around content, structure, ownership, latency, references,
and data migration.

Examples related to BaaS: content and structure examples of the semantic description
of BaaS data points and services, data type examples of BaaS data points, etc. [3].

Lifecycle Phase The service lifecycle of the BaaS system consists of the following phases:
development, engineering, commissioning, operation, optimization, and
decommissioning.

Lifecycle View The Lifecyle View covers the user activities of each BaaS lifecycle phase of a BaaS
system. It also describes the transitions between the phases with respect to the
artifacts being exchanged from one phase to another. The Lifecylce View has to take
into consideration that the activities of the BaaS lifecycle phases do not make up a
linear sequence from one phase to the next. It also elaborates on the cycles of user
activities as soon as a BaaS system has been initially engineered and commissioned
and goes into operation. For example a BaaS system should enable stakeholders to
operate additional, newly developed BaaS services during the whole lifetime of a
building automation system.

Service Lifecycle Describes the lifecycle of a BaaS service consisting of a number of lifecycle phases.
More details to be found in common understanding of the lifecycle of a building
automation system and related aspects as defined by the BaaS project.

Set Point A set point is a special data point used to specify the desired process output that an
automatic control system is supposed to reach. For example, a boiler might have a
temperature set point, that is the temperature the control system aims to attain [8].

Use Case Description of the generic interaction between external actors and the system to
accomplish a certain generic goal. More details to be found in Terms and their
Relations for structuring and defining BaaS use cases.

User Story Detailed description of specific interaction steps (correct and complete) to achieve a
concrete goal. More details to be found in Terms and their Relations for structuring
and defining BaaS use cases.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 12

Term Description

Value Added Service A service that uses several basic services like sensors and actors or other value added
services to provide an added value to the installation. This especially includes the
combination of solutions of the different building domains (HVAC, lighting, building
management, safety, security).

Virtual Data Point see data point.

Table 2-1: BaaS Glossary

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 13

3 BaaS Domain Description

3.1 Domain Model
The BaaS domain model (BDM) consists of a collection of concepts that have been used
throughout the elaboration of the application cases as well as the derivation of the
requirements. Thus, the BDM provides the basis for the elaboration of the BaaS reference
architecture. It describes essential concepts from the building automation domain as well as
from service-oriented architectures and some relations between those concepts. In the
following, we will first explain the approach of domain modeling, and the relevance of the
BDM for the development of the BaaS reference architecture. Then, we will give an overview
of the concepts and relations described in the BaaS domain modeland have a closer look on
some of the most relevant concepts.

3.1.1 What is a Domain Model?
A domain model [9] in software engineering is a conceptual model of all the topics related to
a specific problem. It is used to represent and explain the vocabulary and key concepts of
the problem domain. Furthermore, it also describes the roles of entities and the
relationships among entities within the problem domain. In addition, important attributes of
the described entities may be modeled. Usually, the domain model does not describe
solutions to the problem. However, some aspects of possible solutions may be addressed.
The domain model provides a structural view of the domain. It may be complemented by
dynamic views. In particular, use case models are usually combined with a domain model.

A domain model is well suited to verify and to validate the understanding of the problem
domain among different stakeholders. Therefore, it provides a good starting point for any
kind of architectural analysis because it defines a common vocabulary and it may serve as a
communication tool. In domain-driven design, the domain model covers all layers involved in
modeling a business domain, including service layer, business layer, and data access layer.
Thus, it can ensure effective communication at all levels of engineering.

The ultimate purpose of domain modeling is to capture the semantics of a domain rather
than considering any technical details relevant for designing and implementing solutions.
The vocabulary that is identified during domain modeling is commonly used as input for the
definition of a glossary of terms which constitutes a useful tool throughout the architecture
design and software development process. In particular, the glossary provides a foundation
for the modeling of use cases.

3.1.2 Purpose of the BaaS Domain Model (BDM)
The BaaS domain model (BDM) has been initiated in the very beginning of the BaaS project,
even before the discussion on application cases and user stories was started. It was used to
identify some of the vocabulary that was needed for the specification of the application
cases and user stories described in deliverable D01 [4].

First of all, the BDM addresses an essential concept from the building automation domain,
the data point. According to ISO 16484-2 [10], a data point is “an input/output function
consisting of all assigned information”. A more detailed definition of “data point” can be
found in the version of the BaaS glossary (see Section 2). In the BDM, the concept of “data

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 14

point” is used as anchor towards the building automation domain; other concepts in the
model exhibit relationships with the data point and its specializations.

Among the most important concepts in the BDM are:

· Hardware entities (devices, servers) constituting the physical foundation of building
automation systems;

· Middleware components (containers, registries) providing the basis for deployment and
registration of building automation services;

· Building automation services (including services representing legacy devices) and
associated concepts as data and interfaces;

· Data points (physical and virtual data points) capturing the functions of building
automation systems;

· Semantic descriptions representing the meta-information characterizing the entities
and data in building automation systems.

The detailed meaning and relationships of these concepts is presented further below.

The purpose of the BaaS domain model is to provide the basis for the elaboration of the
BaaS reference architecture. In particular, the description of application cases and user
stories as well as the description of architectural requirements has been elaborated with
reference to terms and relationships from the BDM. Furthermore, the elaboration of the
architectural views (see Section 4) has been performed with regard to the concepts
described in the BDM.

The BaaS domain modelwas inspired by the domain modelof the IoT-A project that
elaborated an architecture reference model for the Internet of Things [11].

3.1.3 General Overview on the BDM
The BaaS domain model is represented by several views (a top-level view and several sub-
model views); not all of them being described in this document. In the following, a general
overview of the model is given. Furthermore, two sub-models, namely the data sub-model
and the ontology sub-model, are briefly described to give an insight into some more detailed
concepts.

The top level view of the BaaS domain model is depicted in Figure 3-1. In the model, data
points are used to describe input and output functions in the building automation domain.
According to EN ISO 16484-2 [10] such data points are semantically completely described.
This description may contain functionality, parameters, and variables representing current
state but also characteristic curves, units, and allowed ranges. Data points represent the
building automation entities in the BaaS domain model.

Data points may be physical data points or virtual data points. Physical data points are
related to existing hardware that is usually associated with physical sensors or actuators.
Virtual data points are derived or aggregated functions. In particular, virtual data points do
not need any direct relationship to physical sensors or actuators. Rather, they are usually
realized as a software function that may reside anywhere in the system, also on a server or
in the cloud.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 15

Figure 3-1: BaaS Domain Model - Top Level View

A core concept in BaaS is the BaaS service. A BaaS service contains virtual entities which are
a digital representation of building automation functions, i.e. virtual data points, in the BaaS
system.

A BaaS service is accessible and communicates via BaaS Interfaces, i.e. it provides BaaS
Interfaces to other BaaS services and uses (requires) BaaS Interfaces of other BaaS services.
A BaaS service is not necessarily a passive entity; it may also exhibit built-in active behavior
(i.e. at times communicate with other services without requiring an external trigger).

A virtual entity represents a building automation function implemented according to the
specification of the BaaS virtual data point associated with it. A virtual entity consumes and
provides BaaS data that is read or written via BaaS Interfaces.

A BaaS service has a semantic description, which is represented by the concept of BaaS
Semantics. BaaS Semantics are based on ontologies providing semantic concepts, properties
and relationships for the characterization of data points and virtual entities. Furthermore,
the ontologies also provide means to describe the semantics of BaaS data and the semantics
of BaaS Interfaces of a BaaS service.

BaaS services may have relationships to other BaaS services, i.e. may be used and may use
other BaaS services.

The physical world is reflected in the BaaS domain model by the concept of an “abstract”
node. Such node can be a device that is associated with a physical entity, i.e. a sensor or
actuator. Devices might take the form of legacy devices, e.g. BACnet or KNX devices, or the

BaaS Service BaaS Data BaaS Semantics

BaaS Gateway

BaaS Container

BaaS Registry

Physical Data
Point

Legacy Device

BaaS Interface

Device

Physical Entity Virtual Data Point

Server

«abstract»
Node

BaaS Device

Data Point

Virtual Entity

represents

*

*
registered

at

hosts

provides

*

accesses
describes

accesses

reads

*

*

registered at

describes

requires

*

connected to

accesses

manages

exposes

*
*

interacts with

*

hosts

0..*

accesses

*

describes
hosts

0..1

represents

hosts

*

consumes

*

writes

*

describes

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 16

form of native BaaS devices. A node can also be a server that hosts a BaaS container which
manages BaaS services, i.e. a BaaS service is deployed in a BaaS container. This approach
allows running BaaS services on sensors or actors if they have enough resources and
otherwise outsourcing them to more powerful systems that are not directly associated with
a physical entity. BaaS devices are always accessed via BaaS services. A BaaS device provides
the interface between real hardware, such as sensors, and BaaS services. A BaaS device has
associated BaaS Semantics that are based on a device ontology.

BaaS services and BaaS containers resp. BaaS devices are registered at a BaaS registry which
is hosted on a node. The BaaS registry is used to query and resolve BaaS entities in the
different phases of the BaaS lifecycle. The BaaS domain model does not limit the number of
BaaS registries and therefore both centralized and decentralized architectures can be
specified.

Legacy devices are accessed by a BaaS gateway which is a specific type of BaaS service. From
the view of another Baas service communicating with a BaaS gateway there is no difference
to any other BaaS service. From the view of a developer a BaaS gateway provides a
connector to legacy systems such as BACnet or KNX. Additionally the data obtained from the
legacy device will be associated with semantic descriptions by the system engineer in order
to be discoverable and interpretable by other BaaS services in the same way as all other data
in a BaaS system.

3.1.4 Detailed Discussion of Selected Concepts
In the following, two examples of deep dives on particular concepts are presented. The
description of these examples is non-exhaustive and is intended to provide guidance for the
elaboration of the architectural views.

Figure 3-2: BaaS Domain Model - Data Sub-Model

In Figure 3-2, the data sub-model of the BDM is shown. It describes properties and concepts
related with BaaS data. In particular, the concept of a BaaS data type is introduced, and
specializations of this concept are provided. The concept simple data type represents a
number of elementary data types (Boolean, Integer, Float, String) commonly used in type
systems of programming languages. The concept composite data type is based on the simple
data types and represents complex data types. As examples for those, the oBIX data types
Point, Contract and Alarm are given. The data sub-model is just an example how a type

BaaS Data Item BaaS Data Type

Simple Data Type Complex Data Type

Boolean Integer Float String Contract

Data Properties

Point Alarm

based on

describes

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 17

system could be constructed; a more detailed elaboration of this is performed as part of the
Information View.

Figure 3-3: BaaS Domain Model - Ontology Sub-Model

Figure 3-3 shows the ontology sub-model of the BDM. The diagram shows that BaaS
Semantics are based on BaaS Ontologies. Several examples of BaaS Ontologies are provided,
among them a

· Location ontology providing concepts for the semantic description of locations in
buildings;

· Data ontology providing concepts for the semantic description of (building automation)
data;

· Authorization ontology providing concepts of the semantic description of authorization
related concepts as roles and permissions;

· Data point ontology providing concepts for the semantic description of physical and
virtual data points.

Each of these ontologies has a generic part and a custom part. The term “generic ontology”
denotes a standardized ontology that is the basis for extensions that are performed ad-hoc
by vendors or installers of building automation systems without prior standardization. These
extensions are denoted as “custom ontology”.

The ontology sub-model is just an example which ontologies may be needed for BaaS; the
actual decision on specification and implementation in the project is subject to further study.

3.2 BaaS Platform
The goal of the reference architecture is to provide guidance for the proper planning and
implementation of a specific BaaS platform. So the question arises what a BaaS platform is
and what it does.

The platform itself consists of three parts that can be separated. The first is the BaaS
framework consisting of several tools and methodologies that deals with the design time of
the BaaS building automation system. The second part is the runtime environment that
provides the capabilities needed to run BaaS services. The third part is the technical
management system, which monitors the running services and assures the services are
running properly.

BaaS Semantic
Description

BaaS Ontology

Automation
Ontology

Location
Ontology

Data Ontology

Generic Location
Ontology

Custom Location
Ontology

Authorization
Ontology

Generic Data
Ontology

Custom Data
Ontology

Datapoint
Ontology

Generic
Authorization

Ontology

Custom
Authorization

Ontology

Generic
Datapoint
Ontology

Custom Datapoint
Ontology

Generic
Automation

Ontology

Custom
Automation

Ontology

extendsextendsextends

based on

*

extendsextends

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 18

3.2.1 BaaS Framework
During the design time phases: development, engineering and commissioning, the platform
is responsible for the support of the stakeholders to achieve their tasks while designing a
building automation installation. Every component, tool or methodology in these phases is
part of the platform. Those help for example to create and modify data points which are
already mentioned in the domain model section and to store them into a repository. The
tools and methodologies also try to ensure that the generated interfaces of the created
services always match the standards of the BaaS architecture and therefore ensuring
compatibility between the services of different parties. Furthermore the security and privacy
aspects of the target installation can be modeled and integrated. The tools are constructed
not to collaborate together at the same time and thus they exchange their data in a
document based manner.

3.2.2 BaaS Service Runtime
At runtime not everything that is present in the BaaS installation is also part of the platform.
Only components that are required to run services like registries, container or devices
belong to the platform. They are used to provide the basic mechanisms to start, stop and
monitor services as well as to discover and bind them.

More detailed information about the platform its components, functions and behavior can
be found in the architectural views section of this document.

3.2.3 Technical Management
The technical management maintains availability, stability and performance of the software
components and IT infrastructure of a building automation system. It enforces the Quality of
Service (QoS) and ensures that all the Service Level Agreements (SLAs) are met. This
approach requires that applications, services, communication networks, field buses, devices
and computing systems of the BAS are closely monitored in order to provide an efficient and
dependable environment. The management process must be highly automated so that
deviations in the predefined system behavior can be detected and compensated in a timely
manner without any need for human intervention.

Further insight into the technical management, its challenges and its implementation is
provided as perspective, c.f. Section 5.3.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 19

4 Architectural Views
The reference architecture is described based on the 'views and perspectives' approach as
presented in [3]. In the following chapter, the views addressing the functional requirements
of the reference architecture are described. In particular, we decided to describe the
following views:

· The Lifecycle View gives an overall overview of the lifecycle of a BaaS system.
· The Information View describes the information model used for the description of BaaS

services.
· The Functional View defines functional building blocks of the reference architecture

and it specifies its responsibilities and relations to other functional building blocks.
· The Behavioral View focuses on the interaction and communication patterns of data

exchanged between BaaS services.

4.1 Lifecycle View

4.1.1 Introduction
The Chapter on the BaaS Lifecycle View describes the different lifecycle phases of the design
time and runtime of a BaaS building automation system. It defines the activities in the
different phases, related artifacts (models, software, ...) in each phase and the transitions
from one phase to the other.

4.1.2 BAS System Lifecycle Revisited
In the following we recapitulate the lifecycle as given in D01 [4]. In difference to the former
document we split the development phase into a design phase and the implementation
related development phase.

Design

In the design phase data points are defined as the central structure in the BaaS system.
Since data points are the entities used in the building automation domain language to
describe building automation systems, the lifecycle starts with the definition of data point
types, which include the semantic description of its own capabilities in a specified format.
This semantic description includes the kind of data that will be exposed by the service, the
control options it supports, the value characteristics (e.g. frequency and accuracy of the
data), operational requirements (e.g. the minimum network bandwidth it needs in order to
operate as expected). A more detailed modeling of data points and their features is
described in the Information View, c.f. Section 4.2.1.

Development

During the development phase a new service type is created based on specified
requirements and constraints. A service type is always based on a data point type. In case of
dependencies, the new service type also specifies which other service types and semantic
properties it requires in order to provide its own functionality. The data point types and
service types (which include their semantic descriptions) are made available for the
engineering phase.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 20

BaaS constraints describe the demanded quality of services at runtime, e.g. reliability and
availability. The BaaS constraints that will be applied in the engineering phase are (at least
partially) specified in the development phase. This includes the corresponding qualities and
the respective measures. As the result of the development phase, the system engineer
creating/modifying the model of the BaaS building automation system has to be able to
apply the demanded constraints and qualities to the respective BaaS services or to the whole
model without any knowledge about the enforcement.

Engineering

In the engineering phase BaaS service types are instantiated and wired according to their
specified semantic descriptions and in compliance to the input/output relations of the data
point instances contained in the corresponding BaaS service instances. The engineering of
BaaS services potentially makes use of the information about the building structure and
relevant parts of the automation concept of the traditional/legacy building automation
system. Engineering yields a partial functional model of the installation of the building
automation system and the overall functional model of the additional BaaS services to be
used in the commissioning phase.

In order to achieve BaaS services running within defined constraints the system engineer
needs to specify them in the engineering phase. The constraints and corresponding qualities
have been defined in the development phase. The system engineer creates the system
model of the BaaS building automation system and applies the requested constraints
accordingly. Consistency checks determine whether dependencies between services violate
the modeled constraints.

Management rules are derived from the demanded constraints for the technical
management system as input for the commissioning phase. The management rules are
derived according to the measures for each constraint and quality defined in the
development phase.

They are executed by the technical management system at operation time through a rule
engine.

Commissioning

In the commissioning phase, the deployment of services to BaaS containers and their setup
in the building is determined and performed based on a functional model. The
commissioning phase might use the information from the development phase about the
operational requirements and BaaS constraints of BaaS services. The relationships between
the services identified in the engineering stage are mapped to configurations of
traditional/legacy services, BaaS services, traditional/legacy automation devices and BaaS
devices. Commissioning yields to a deployment model of the installation of the
traditional/legacy building automation system and the additional BaaS services.

Different artifacts generated in the foregoing phases are integrated into the BaaS system in
order to deploy, distribute, and configure BaaS services and BaaS platform services.

Operation

In the operation phase, the BaaS building automation system performs the configured
functionalities. In addition, the BaaS services and BaaS containers are monitored to ensure
their correct operation. In case of failures or anomalies, corrective and/or maintenance
actions are performed either automatically by the technical management system or

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 21

manually by the operator. Status information of BaaS services and BaaS containers and
performance indicators are captured in the operational model.

Furthermore, new BaaS services and/or BaaS devices can be added in an ad-hoc manner
during operation. This results in applying methods of other phases and updating of the
models of the corresponding phases. The changes can be applied while the BaaS system is
running and operating.

Analysis/Optimization

Buildings require adjustment of their operational qualities on a regular basis. This is achieved
on the basis of performance indicators obtained by the analysis of monitoring data. In
addition, changes in the BaaS building integration system or the building structure itself have
to be taken into account. Adjustment of the qualities requires a modification of the
engineering model resulting in changes of the deployment model. This is either achieved by
the application of automated diagnosis and optimization procedures or manually by
engineering experts. New BaaS services might be developed based on the results delivered
by the operation of BaaS Monitoring and Analysis services. Other value-added BaaS services
like the optimization of the energy consumption of the building according to the varying
costs of energy provisioning (e.g. during different times of the day) could be devised and
developed based on BaaS Monitoring and Analysis services.

Figure 4-1: BaaS System Lifecycle

4.1.3 Activities throughout the BaaS Lifecycle

4.1.3.1 From BaaS Data Point Types to BaaS Service Instances

This section gives a brief overview of the metamorphosis of the basic artifact through the
lifecycle phases as illustrated in Figure 4-1. The description in this section is useful
background knowledge, which helps in more quickly understanding the structured textual
description of the BaaS lifecycle phases starting in Section 4.1.3.4 with the design phase.

System
Modification & New

Configuration

Control Information
& Operation Data

Deployment &
Configuration,

Container

Composed Service
Instances

Service Model &
Implementation

Data Point
Definition

Optimization

Operation Commissioning

Engineering

DevelopmentDesign

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 22

Figure 4-2: From BaaS Data Point Types to BaaS Service Instances

The building domain provides all information related to the description and modeling of the
data points, i.e. the functional features, input/output relations and the semantic building
automation function description (cf. Figure 4-2, left).

The IT domain provides all information necessary for a processing and handling of the data
and information of the building domain by the information technology. The artifacts of the IT
domain represent the corresponding artifacts of the building domain: The BaaS service
implements the data point (cf. Figure 4-2, right).

The development is concerned with the specific concepts (or types) of the building
automation and the IT domain. The domain engineer can concentrate on the concepts of the
building domain in the BaaS development (see also Section 4.1.3.4). The software engineer
implements and integrates the building domain-specific concepts (data point types) in the
respective concepts of the IT domain (BaaS service types) (see also Section 4.1.3.5) (cf.
Figure 4-2, top).

The engineering generates the instances from the concepts of the development and adds
instance-specific information such as identifier, location, and network addressing. Note, only
BaaS service instances are generated in the BaaS engineering. The information and data of
data points are instantiated implicitly by the BaaS service instances. The information and
data of the data point are contained and represented by the BaaS service instance (cf. Figure
4-2, bottom).

The data point type is the basic artifact at the beginning of the BaaS development. It is
located in the building domain since it describes the building automation function (cf. Figure
4-2, top left).

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 23

The data point type is implemented in the IT domain through the BaaS service type. A BaaS
service type represents the corresponding data point type. It contains the data point type
besides additional information for a BaaS service type, and especially, the BaaS service type
implements the represented data point type (cf. Figure 4-2, top right).

In the engineering, the instances are created from the developed types. It is important to
understand, that only BaaS services are instantiated in the BaaS engineering. The BaaS
service instance contains all necessary information from both the building domain (data
point) and IT domain (cf. Figure 4-2, bottom).

The data point is only instantiated implicitly by the instantiation of the BaaS service type.
The BaaS service instance contains all information of a data point instance (cf. Figure 4-2,
bottom left).

4.1.3.2 Artifacts Provided by the BaaS Platform

The BaaS platform provides the runtime, tools, and models needed for the implementation
of a BaaS building automation system (see Section 3.2 for further information on BaaS
platform). Regarding the lifecycle view, the platform provides artifacts that are used as basis
for the development, engineering, commissioning, operation and optimization of the
services in a BaaS system. The following artifacts are provided:

· Basic data point types and selected BaaS ontologies that provide a basic vocabulary for
the description of data points. These are partially based on external knowledge artifacts
(standards and community accepted knowledge artifacts, e.g., parts of the SSN ontology
or of Haystack, etc.). They might also represent basic functional patterns, such as
sensor, actuator, or history.

· Information storages, registries and the related lookup (if needed reasoning)
mechanisms.

· BaaS containers/BaaS devices
· Technical management system. The technical management system is described in detail

in Section 3.2.3.
· Basic service skeletons, that define the structure of services and needed interfaces

towards the containers and the technical management system
· Deployment Interfaces

4.1.3.3 Artifacts Provided by Customer Solution Specification

The term “Customer Solution Specification” has to be interpreted in a very broad meaning. It
contains ideas, considerations, requirements, and results of all pre-design/development
phases, i.e. requirements of the solution /installation before entering the lifecycle. It covers
all input external to the BaaS system that guides the stakeholders of the BaaS LiveCycle
phases in the selection of the corresponding elements.

The customer solution specification provides the following artifacts to the BaaS lifecycle
phases

· List of needed data point types
· List of needed service types
· List of requirements on BaaS services

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 24

4.1.3.4 Design Phase – Domain Engineer

This section describes the tasks of the domain engineer in the development phase. See
Section 4.1.2 for an overview of the design phase.

The main task of the domain engineer in the design phase is the definition of an initial
description of the data point types. This description is based on semantic concepts and
models provided by the BaaS platform. The description might be extended or refined during
the BaaS lifecycle. In the design phase, the focus is on a functional description of data point
types from the perspective of the building automation domain. This description will use the
specific information model of the building automation context, which is contained in the
information view/information model and is described in detail in Section 4.2.

The goal is to provide all the necessary information for the software engineer in the
development phase. The software engineer must be able to provide all libraries and models
so that the executable code for the BaaS services can be generated after the instantiation
and parameterization of the services (representing their contained data points) by the
system engineer in the engineering phase.

Required Artifacts

The following artifacts are required:

from the BaaS platform (The BaaS platform is described in detail in Section 3.2, the artifacts
provided by the BaaS platform are listed in 4.1.3.2.):

· Semantic concepts and models, including
o Generic data point skeleton, i.e. the definition what belongs to a data point
o Building automation ontology, that describes the common building automation

functions

from the customer solution specification:

· List of needed data point types

from the optimization phase:
· List of data point types to be changed or added (only used in development phase for

optimization by domain engineer; see also Section 4.1.3.9 on optimization phase)

Tasks

The domain engineer performs the following tasks in the design phase:

Specification of data point types and their properties: The data point types and their
properties are specified in a description which covers all elements as given in the
information view / information model for the data point type in Section 4.2. The description
of the data point types and their properties contains the following specifications and
assignments:

· building automation functionality of the data point type in a semantic way
· values provided by the data point types
· value characteristics, that is, the data type, the unit, etc. of the values of the data point

type. The data type defines the structure of the value (data type description) and is
globally defined for reuse between different data point types.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 25

· input relation to needed input values from other data point types: This might be a
simple reference (which is also a semantic query) to a data point type or might be a
complex semantic query that contains several criteria in order to determine during
runtime the set of data points instances being part of the input relation.

· output relation to other data point types: The other data point types use the value of
this data point type as input value. The output relation might be a simple reference
(which is also a semantic query) to a data point type or might be a complex semantic
query that contains several criteria in order to determine during runtime the set of data
point instances being part of the output relation.

· "processing mechanism" describing how the output value is derived from the input
values in the building automation functionality: A description of the processing
mechanism is needed for the software engineer to implement the service representing
the data point type and can be provided in plain text (no ontology or programming code
needed).

· configuration properties of instances of the data point type (e.g. time to keep the stored
data in a history database)

· gateway properties: They are needed if instances derived from a data point type are
represented by a BaaS service with gateway functionality. This is the case if the original
source is in a (domain-) specific protocol and behind a gateway (protocol translator).

Remark: Probably, there will be the need to develop some specific software for this kind
of BaaS gateway. If information on the original source is not available to the software
engineer during the development phase and it is not possible to automate / generate
the needed implementation in the engineering phase, the lifecycle might go back from
the engineering phase to the development phase for this BaaS gateway.

· assign qualitative requirements for dependability (e.g. measure of a system's
availability, reliability, maintainability, safety)

· assign generic security needs, e.g. encryption, authorization, or confidentiality levels

Remark: The actual use and specific rights/roles might be decided at the engineering
phase.

Remark: The requirements and security needs might create constraints for the general
hardware selection. The hardware selection and installation is outside the BaaS scope.

Check consistency of the data point type descriptions: The resulting set of data point type
descriptions has to be consistent. For instance, data point types of an input relation have to
be compatible. The consistency check is presumably a feature of the editor and might be
done automatically and tool-supported.

Artifacts

The following artifacts are the result of the work of the domain engineer in the design phase:

· Set of data point type descriptions that describe the different available data point types
in the system.

The structure and the content of a data point type description is given in the
Information View in Section 4.2.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 26

Remark: At this point, the description does not refer to services and specifies only
logical input/output relations to other data point types or sets of data point instances
during runtime from which to retrieve or to which to provide values. However, real
connectivity will be established by means of services.

· Set of data type descriptions that are reusable for the definition of data point value
types and interfaces.

4.1.3.5 Development Phase – Software Engineer

This section describes the tasks of the software engineer in the development phase of the
BaaS lifecycle. See Section 4.1.2 for an overview of the development phase.

The software engineer in the development phase provides all libraries and models so that
the executable code for the BaaS services can be generated after the instantiation and
parameterization of the services representing the data points by the system engineer in the
engineering phase. Furthermore, the software engineer in the development phase specifies
which qualities in terms of constraints could be applied to service type instances in the
engineering phase. This so called BaaS constraint includes the name of the constraint (e.g.
availability), the qualities the constraint could have (e.g. 99.99%, 99.999%) and the measures
enforcing the respective qualities in the form of Event-Condition-Action rules (e.g. on service
lifecycle change – if service has fallen out - deploy service to another computing node, start
the service, repair the former service instance, try to set the former service instance to cold
standby).

Required Artifacts

The following artifacts are required

from the domain engineer in the design phase (see 4.1.3.4):

· Data point type descriptions from the information storage
· Data types

from the customer solution specification:

· List of needed services types for access of data point types
· List of requirements on BaaS services

from the optimization phase:
· List of BaaS service types to be changed or added (only used in development phase for

optimization by software engineer; see also Section 4.1.3.9 on optimization phase)

Tasks

The software engineer performs the following tasks in the development phase:

Creation of BaaS service types in a model driven way: The creation of the Baas service types
is done in a model-driven way by the software engineer. It is based on the available data
point types and data types in the corresponding information storages and on the needs of
the customer solution specification, that is, the list of needed service types (see paragraph
Required Artifacts).

Note, the BaaS service types are specific to the data point types they represent.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 27

The following has to be defined, specified, or implemented during the creation of a BaaS
service type:
· define data structures for the values of the represented data points based on the given

data types in the information storage
· implement processing code. This processing code implements the building automation

function in executable software.
· define interfaces

o specify access to the provided values of data points represented by the BaaS
services

o specify reception of the required values of (other) data points. (‘Understand’ the
interface of the BaaS service types providing input; this may depend on the used
communication pattern.)

o specify exchange of authorization information
· Implement “glue code” for security, communication, etc. The decisions on specific

mechanisms for security, communication, and so on are done at the engineering phase.

Remark: the communication patterns are decided during the engineering phase. The
implementation of the service model must allow generating the software artifacts
expressing all patterns as needed.

· Specify resource requirements of service types. An update might be required if code
generation or decisions in the engineering phase significantly change the requirements.

· Definition of BaaS constraints consisting of name, acceptable qualities and automatic
measures being executed at runtime through the technical management system on
occurrence of certain system changes (e.g. network down, device offline, service failure,
etc.). The measures can be defined through patterns given by the platform. The
measures have the form of the aforementioned Event-Condition-Action-Rules

Artifacts

The following artifacts are the result of the work of the software engineer in the
development phase:

· Set of service types available in an information storage.
The service types are model-based and should allow to create executable code on the
target device and follows a well-defined formal structure.

· Libraries needed by model in order to generate compiled code
· Additional resource files needed for BaaS service (html files, java script files, etc.)
· BaaS Constraints describing the acceptable qualities of constraints and respective

behaviors enforced by the technical management system

All artifacts, including their semantic descriptions, should be available in an information
storage.

Remark: The artifacts in the information storages are a data point centric
representation/description of concepts that are partially contained in the BaaS ontology.
This means that the BaaS ontology is represented in the information storage. A tool is
needed to show this information in human-readable form.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 28

4.1.3.6 Engineering Phase – System Engineer

This section describes the tasks of the different stakeholders in the engineering phase of the
BaaS lifecycle. The system engineer is involved in the engineering phase. See Section 4.1.2
for an overview of the engineering phase.

The main task of the system engineer in the engineering phase is the instantiation of the
BaaS services (representing their contained data points). This includes the parameterization
of the BaaS services and their contained data points. The system engineer completes the
model of the BaaS building automation system, so that it is deployable after the final code
generation. All the still missing, necessary extensions and refinements to the description of
the BaaS services and their contained data points will be done. In the engineering phase, the
focus is on a the design of the actual BaaS building automation system from the set of
provided BaaS service types in order to provide the final model of the actual BaaS building
automation system.

The goals are to instantiate and parameterize the BaaS services (representing their
contained data points) and to provide all the executable code, in terms of a model of the
actual BaaS building automation system, for the BaaS services for the commissioning phase.

Required Artifacts

The following artifacts are required

from the development phase (see 4.1.3.5):

· Service types in a model-driven way and available in an information storage (the model
should allow to create executable code on the target device and follows a well-defined
formal structure)

· Libraries needed by the modeled service types in order to generate compiled code
· Additional resource files needed for BaaS services (html files, java script files, images,

etc.)
· BaaS Constraints defined by the software engineer

The service types have available all information of their represented data point types.

from the optimization phase:
· Parts of the model of the BaaS building automation system to be changed or added,

such as lists of installation-wide parameters and BaaS service instances and technical
management system configuration (only used in engineering phase for optimization by
system engineer; see also Section 4.1.3.9 on optimization phase).

Tasks

The system engineer performs the following tasks in the engineering phase

for the BaaS services:

· Definition of installation-wide parameters such as encryption method, authorization
method, communication protocol, and access roles.

· Creation of BaaS service instances by model-driven methodology and by using the
service types available in the information storage.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 29

· Specification of bindings between BaaS service instances. The meta-information of the
BaaS data point types is accessible via the BaaS service instances and guides the wiring
of BaaS service instances.

· Assign communication patterns and activity model to the BaaS service instances. Active
BaaS services have an internal activity loop or timer and can trigger other BaaS services.

· Specification of values of configuration parameters
· Parameterization of BaaS service instances: The BaaS service instances are

parameterized in a way that takes the dependability constrains into account.
· Configuration of BaaS gateway service instances: BaaS gateway service instances have

to be configured with the address of the corresponding legacy automation object.
· Assigning BaaS Constraints with particular parameters to BaaS services instances,

groups of BaaS service instances or the whole BaaS service landscape
· Consistency check of constrained BaaS service instances that have dependencies with

other BaaS service instances.

for the technical management system:

· Generation of management artifacts for configuration, monitoring, service distribution,
tests, and adaptation to system changes. This includes
o Specification of QoS requirements of BaaS service instances
o Specification of management agents and technical management system managers
o Specification of the technical management system manager hierarchy, if required

· Derivation of management rules in accordance with the constraints and requirements of
the BaaS building automation system

Artifacts

The following artifacts are the result of the work of the system engineer in the engineering
phase:

Model of BaaS building automation system, deployable after final code generation. The
model of the BaaS building automation system contains
· Installation-wide parameters such as encryption method, authorization method,

communication protocol, and access roles.
· BaaS service instances. The BaaS service instances have been configured with

o bindings between BaaS service instances
o all needed configuration values as provided during the tasks by the system

engineer
o communication pattern and activity model
o BaaS constraints applied to BaaS service instances
o resource requirements of BaaS service instances
o addresses of the legacy automation objects, if the BaaS service instance is a BaaS

gateway service instance.
Configuration for the technical management system containing
· set of management agents
· set of technical management system managers
· Management rules for the technical management system

Remark: During the operation and optimization phases, new BaaS services might be defined
(delta engineering). This will lead to new BaaS service instances added to the overall model.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 30

Only these changes to the artifacts will be deployed in the commissioning phase succeeding
the definition of new BaaS services during the operation and optimization phases. The BaaS
system might be running and operating during the application of these (delta) changes.

4.1.3.7 Commissioning Phase – System Installer

This section describes the tasks of the different stakeholders in the commissioning phase of
the BaaS lifecycle. The system installer is involved in the commissioning phase. See Section
4.1.2 for an overview of the commissioning phase.

The system installer in the commissioning phase deploys the executable and configured
software from the model of the BaaS building automation system to the actual hardware of
the BaaS building automation system.

Required Artifacts

The following artifacts are required

from the BaaS platform (The BaaS platform is described in detail in 3.2, the artifacts provided
by the BaaS platform are listed in 4.1.3.2.):

· BaaS containers/BaaS devices

from the engineering phase (see 4.1.3.6):

· Model of BaaS building automation system, containing amongst others
o BaaS service instances and their bindings
o Configuration values for BaaS service instances

· Configuration for the technical management system, containing
o Management agents and technical management system managers
o Management rules

from the development phase (see 4.1.3.5):

· Libraries and additional resource files organized as service bundles

from the BaaS platform (The BaaS platform is described in detail in 3.2, the artifacts provided
by the BaaS platform are listed in 4.1.3.2.):

· Deployment interfaces

Tasks

The system installer performs the following tasks in the commissioning phase:

· Generation of final, executable code from model of BaaS building automation system.
This includes the deployment of the BaaS containers and the final, executable code of
the BaaS service instances (the BaaS service software packages).

· Assignment of BaaS service instances to BaaS containers (possibly there are suggestions
from the engineering phase)

· Deployment of BaaS service software packages on BaaS containers using the
deployment interfaces provided by the BaaS platform

· Connect BaaS gateway services to the corresponding legacy automation objects
· Initial software/BaaS service test in order to check whether the BaaS service is running

correctly

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 31

· Configuration of technical management system: The technical management system is
described in more detail in Section 3.2.3. The configuration of the technical
management system includes the following tasks:
o Deploying the technical management system managers: The specified technical

management system managers are instantiated and deployed in the technical
management system.

o Deploying the management agents: The corresponding management agents are
instantiated and deployed in the monitored BaaS building automation system.

o Application of corresponding technical management system configurations to
technical management system managers and management agents

o Deploying the management rules to the technical management system managers

Artifacts

The following artifacts are the result of the work of the system installer in the
Commissioning phase:

Commissioned BaaS building automation system containing

· Configured BaaS containers
· Executable, configured software of BaaS service instances deployed on BaaS containers
· BaaS gateway services connected to legacy automation objects
· Configured technical management system with management rules

4.1.3.8 Operation Phase – Facility Manager/Service Technician

This section describes the tasks of the different stakeholders in the operation phase of the
BaaS lifecycle. The facility manager/service technician is involved in the operation phase. See
Section 4.1.2 for an overview of the operation phase.

The facility manager/service technician is operating, monitoring, and maintaining the
running, i.e. operating, deployed BaaS building automation system in the operation phase.

Required Artifacts

The following artifacts are required

from the commissioning phase (see 4.1.3.7):

· Commissioned BaaS building automation system

Tasks

The facility manager/service technician operating the BaaS building automation system
performs the following tasks in the operation phase

for the BaaS building automation system:

· Operating the BaaS building automation system
· Application of adjustments to configuration parameters of the BaaS building automation

system. In order to determine the necessary adjustments, the facility manager/service
technician interacts with the BaaS services and the BaaS devices.

· Accounting of used BaaS services towards the inhabitants of the building. Only a few
BaaS services are applicable for a monetary accounting, e.g. heating. This monetary
accounting might be outsourced to third party service companies. Monetary accounting
of used BaaS services is not part of this stage of the BaaS project.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 32

· Monitoring of devices: The status of devices (e.g. sensors and actuators) and other
information relevant for detecting aging, malfunctioning, or failing devices needs to be
monitored (condition monitoring) so that the facility manager/service technician can act
accordingly (predictive/ proactive and reactive maintenance).

· Repairing of devices: Malfunctioning and failing devices need to be repaired or sub-
stituted.

· Tracking of maintenance actions: The maintenance tasks follow specified maintenance
processes that need to be obeyed. Maintenances actions and issues need to be tracked
according to the defined maintenance processes, for instance, in log files, maintenance
forms, and tracking tools.

for the technical management system

· Monitors BaaS nodes, Baas containers and BaaS services in order to keep track of critical
parameters

· Collection of relevant information from the nodes, BaaS containers and BaaS services
that are relevant for the technical management system

· Checks compliance against constraints and thresholds
· Reconfigures and adapts system behavior in case of violations via management rules

for the inhabitants of the building

· Obtain information about the environment, e.g. status of sensors and relevant
information for them

· Pay your bills: The inhabitants of the building have to check and pay their bills for
certain building management services such as heating.

Remark: The operation phase contains some tasks, such as adjustments to configuration
parameters, which can be seen as tasks of the optimization phase conceptually. In a practical
deployment of a building automation system, such optimizations or adjustments are rather
obvious and are rather simple in their complexity. They may be done immediately by the
facility manager/service technician who is the stakeholder of the operation phase. In fact,
many people naturally see the adjustment of configuration parameters of building
automation functions as part of the operation of a building automation system.

Artifacts

The following artifacts are the result of the work of the facility manager/service technician in
the operation phase:

Running BaaS building automation system (leading to happy inhabitantsJ¡)
from the BaaS building automation system:
· Logs of configuration changes and errors
· Protocols of operation, errors, and notifications of BaaS services
· Measurements of sensors
· Status data (reports) of operation of the building (e.g. temperature, energy usage)
· Usage numbers and statistics for monetary accounting information for billing (e.g.

heating costs)

for the technical management system

· Status data (reports) reflecting performance and QoS indicators
· Logs of Notifications representing relevant system state changes

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 33

· Adjusted configurations of BaaS nodes, Baas containers and BaaS services

4.1.3.9 Optimization Phase

The optimization phase of the BaaS Lifecycle View is a special phase, since it is a post-
operation lifecycle phase with feedback loops to pre-operation lifecycle phases. The
optimization phase requires an operating BaaS building automation system and has a
feedback loop to the design time lifecycle phases (development phase and engineering
phase) as well as to the operation phase.

The goal of the optimization phase is to optimize, but also to extend the deployed and
operating BaaS building automation system based on the collected logs, protocols, and
reports of measurements and status data. The collected logs, protocols, and reports of
measurements and status data come from the BaaS building automation system and
corresponding technical management system and are artifacts of the operation phase (see
4.1.3.8).

Note: The extension of a BaaS building automation system can be seen as an optimization
with respect to the building. In any case, both, optimization and extension of the BaaS
building automation system require changes to the model of the BaaS building automation
system and follow the same feedback processes of the lifecycle view and use the same
methods.

The optimization phase requires

· a deployed and running BaaS building automation system from the operation phase
(with the facility manager or some inhabitants being at least a little bit unhappy K! so
that some improvement is needed).

· logs, protocols, and reports of measurements and status data from the deployed and
running BaaS building automation system and its corresponding technical management
system, so that the optimization can be determined and specified.

An optimization phase is needed, if

· some BaaS services or devices have insufficient performance and a performance
improvement is needed in order to fulfill the requirements.

· energy efficiency is to be improved.
· devices are replaced by newer generations with more and improved functionality.
· the building is going to be refurbished or renovated.
· the BaaS building automation system is extended to further parts of the building or the

site.
· Baas building automation functions of BaaS services are optimized.
· improvements of the relationships between the BaaS services are done.
· new added-value services are added to the BaaS building automation system.
· anything is done that requires a change to the BaaS model of the building automation

system.

In the optimization phase, the to-be-done optimization is determined and specified based on
the analyzed logs, protocols, and reports of measurements and status data from the
deployed and running BaaS building automation system and its corresponding technical
management system. This means, the optimization phase can be done in parallel to the

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 34

operation phase – the BaaS building automation system can operate as usually while the
tasks of the operation phase are performed.

The actual optimization is implemented by the corresponding stakeholders of the design
time phases with the corresponding methods of these phases. The optimization phase has
lifecycle feedback loops to the design time phases. Whether a feedback loop to the
development, engineering, or operation phase is sufficient depends on which artifacts are
optimized. In any case, the optimization has to pass through all lifecycle phases from the
starting phase of the optimization to the operation phase. For example, if some artifacts of
the development phase are going to be optimized (data point types or BaaS service types),
the optimization phase gives feedback to the development phase and the development,
engineering, and commissioning phase need to be passed through by the optimization in this
order before it can enter the operation phase, again.

It depends on the degree of the optimization whether the whole model of the BaaS building
automation system or only parts, even only small, minor parts of it need to be modified. So,
the whole design process of the BaaS building automation system may be redone as an
optimization, but often the optimization makes only changes to parts of an existing BaaS
building automation system.

During the optimization, the deployed BaaS building automation system can operate as
usual. Only the commissioning phase is critical in this respect: The amount of changes and
the available tool support determine whether on the fly changes to the deployed and
operating BaaS building automation system are possible.

4.2 Information View
Data plays a central role in BaaS. Data elements are exchanged between BaaS services and
their functions. Structuring data is beneficial for different reasons, including the
interoperability of services and the discovery of specific data, functions and services. The
information view section describes how BaaS structures data, functions and services. The
conceptual design can be mapped to different concrete data formats. Examples are the
eXtended Modeling Language (XML) or the JavaScript Object Notation (JSON).

The central information model of BaaS is called BaaS data point. It refers to the term data
point that is used to describe a functional entity in the building automation domain (see
4.2.1). This section explains the structure und elements of a BaaS data point.

The section starts with an overview on how data is structured in BaaS. Five information
models for the BaaS data, the BaaS feature type, the BaaS data point type, the BaaS service
type, and the BaaS service instance are introduced.

4.2.1 From Data Points in the Building Domain to BaaS Data Points
A data point is the central entity in the planning and engineering of building automation
systems. The term is defined according to [10], 3.61 as: “A data point is an input/output
function consisting of all assigned information describing fully the points meaning (semantic).
The data points’ information includes the present value and/or state and parameters
(properties and attributes), e.g. signal type, signal characteristics, measured range, unit, and
state texts. There are physical and virtual data points. A physical data point is related to a
direct or network connected field device within a homogeneous system. A virtual data point
can be derived from the result of a processing function, or it is related to a device within a

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 35

different system as a shared (networked) data point. A parameter having its own user
address is also a virtual data point.”

In a BaaS system, BaaS data points are implemented by BaaS services.

From the BaaS point of view, the following aspects are pointed out:

· BaaS data points represent (building automation) functionality.
· BaaS data points use data of other BaaS data points as input and/or provide data as

output.
· BaaS data points and their functions and data have semantics1.

More details about BaaS data points are given in this part.

4.2.2 Information Flow between BaaS Services
This section gives an overview on how data is exchanged in BaaS.

The BaaS reference architecture comprises distributed services that offer different
functionality such as providing a Hardware Abstraction Layer (HAL) for physical devices (BaaS
device, BaaS gateway), or implementing workflows for managing devices in physical spaces
(see Figure 3-1).

Figure 4-3 illustrates the communication between two BaaS services. Services can run on
different machines. They communicate over a network. Each service offers an interface for
remote access to a so-called resource tree. The interface can be implemented in different
ways, e.g. using inter-service communication such as CoAP or DPWS. The methods of the
interface are specified in the Functional View (Sec. 4.3). The resource tree allows addressing
the data provided by a service.

The BaaS reference architecture targets interoperability of services. Interoperability
especially includes that data offered by one BaaS service can be consumed and understood
by another service. As defined in Section 4.3.2.2.3, all services use the same kind of interface
for inter-service communication to access their data.

BaaS data is organized within so called BaaS features that represent functional elements of a
BaaS service. Multiple features can be composed into a BaaS data point type. The BaaS data
point and its contained BaaS features determine a major part of the resource tree. The BaaS
data point specifies the data and functionality that a BaaS service implements. Additional
specification information is represented in the so-called BaaS service type. It determines
most of the information required to implement a service.

The description shows that each shell in Figure 4-4 adds more meta data. In the following
subsections, the different kinds of meta data of a BaaS service are described more in detail.

1 One of the research challenges of BaaS is the fact, that the semantics of a data point is only
available in the know-how of the system engineer. A formal description is in most cases not available.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 36

Figure 4-3: Interaction of BaaS Services by Exchanging Data via Resources

4.2.3 Information Model
To structure the information that is offered by a data point, the BaaS information model
comprises different layers as shown in Figure 4-4. The upper two layers (basic data types,
BaaS data type) model data. They define how data specified in a BaaS data point is
structured.

The BaaS service type models a service. It defines which data a service implementing a BaaS
data point exposes to other services.

The layers are described in more detail next.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 37

Figure 4-4: Different Abstraction Layers of the BaaS Information Model for Data

The BaaS information model consists of five layers of abstraction: BaaS data types, BaaS
features, BaaS data point types, and BaaS services and BaaS service instances. Each layer
composes one or multiple entities of the previous layer. The previous layer is shown as more
inner layer in Figure 4-4.

In the following, the different layers from Figure 4-4 are introduced. First a description of the
functional purpose of each layer is given. Then the additional semantic properties that the
layer introduces are listed and explained. Then it is described if members of the layer can be
derived () or composed (). Finally the multiplicity of the composition relationship is
described (1, *), giving information how the layers are interconnected.

The following description starts from the basic data types in the inside of Figure 4-4 and
proceeds towards its outside to the BaaS service instance.

4.2.3.1 Basic Data Types

The name basic data type is used for the types that are provided by the data description
language that is used for implementing a concrete data model. As the eXtended Markup
Language (XML)/XML Schema languages provide a rich set of data types, it was decided to
use the following subset as BaaS basic types:

· Integral numbers
· Fractional numbers
· Strings
· Booleans
· Date, Time and Duration values
· Binary values

Additionally, these types can be combined, renamed and constrained to create simple or
complex types when the included basic types are not sufficient.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 38

Some possible constraints on basic types are specifying minimum and maximum values, a
regular expression that the value has to match, or a set of values that may be set.

The basic data types are used in the definitions of the BaaS data types. A basic data type can
be used in many different BaaS data types (composition multiplicity *).

4.2.3.2 BaaS Data Types

The definition of BaaS data types is based on the basic data types described in the previous
section They are augmented with semantic meta data, that describe the data as physical
quanities with various properties (e.g. a unit and a range) and in addition specify whether
the data are readable or writable (or both).

Figure 4-5: BaaS Data Information Model

The definition of BaaS data, shown in Figure 4-5, introduces the following semantic
properties:

Data Name Each data item has a globally unique name.

Data Data is specified in a hierarchical manner: complex data is
composed of other data (simple or complex) and have a
complex data type. Simple data have a value and a simple data
type that refers to a basic data type.

Data

Simple Data

Complex Data

Data Name

Writeability

Unit

Quantity

Simple Data Type

Simple Value

Range

Complex Data Type

Readability

Value
Characteristics

Basic Data Type

0..1

1

based on

1

1

1

1

1

1

0..1

1

1..*

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 39

Value Characteristics The value characteristics define how a value should be
interpreted and which restrictions it has. Members of the value
characteristics are

· Unit: Defines the Unit of the value, e.g. °C.
· Quantity: Defines the Quantity of the value, e.g.

Temperature.
· Range: Defines the Range of the value, e.g. 0-100.
· Readability and Writeability: Whether the value can be

read or written.

Link to external ontology The BaaS information model defines an ontology that describes
only a part of the semantic concepts used in the model.
Additional concepts from other ontologies might be used as
well. A Link to external ontology refers to the specification of a
semantic concept that is external to the BaaS information
model. For instance, units and quantities are semantic
concepts that are adopted from the QUDT ontologies defined
by NASA.

A complex data type can be based on multiple basic data types. Exactly one kind of BaaS
data type is used as exposed value in a BaaS feature.

4.2.3.3 BaaS Feature Type

BaaS feature types package functionality provided by building automation components or
software. Each feature uses a particular kind of BaaS data as so-called exposed value, and
contains additional meta-information about the building automation functionality
represented by the feature. In addition, a feature may specify parameters that can be used
for configuring the feature at engineering time. Similar to an exposed value, each parameter
is described as a particular kind of BaaS data.

Figure 4-6: BaaS Feature Information Model

Parameter

Building
Automation

Function

Exposed Value

BAF Context

BAF Domain

BAF Type

Feature Type Data

Feature Name

*1

is

*

1

is

*

*

1

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 40

A BaaS feature has the following properties:

A simple example for a feature would be a temperature sensor, which exposes a
temperature. It would contain a read-only value of type Temperature, together with the BAF
tags “temperature” and “sensing”. Additionally, a configuration parameter could be used to
describe a sensor-specific control parameter, such as sensor gain.

4.2.3.4 BaaS Data Point Type

A BaaS data point type contains a collection of features. It may optionally be derived from
another BaaS data point type. Data points describe a collection of functionalies that may
either be provided by a physical device, or may be entirely virtual, i.e. being provided by an
algorithm only and not (at least not directly) representing a physical quantity. An example
for a virtual functionality is a feature providing an average room temperature that a service
computes out of several physical data that are available via BaaS data points representing
thermometers.

Feature Name Each BaaS feature has a globally unique name.

Exposed Value The exposed value characterizes the data that a feature
exposes towards other services

Parameters Parameters allow specifying configuration information
required by the feature. Parameters are instantiated at
engineering time.

Building Automation
Function (BAF)

A tag-based semantic description of the functionality
represented by this feature. The BAF contains three kinds of
elements that may occur repeatedly: BAF Domain, BAF Type
and BAF Context.

Link to external ontology The BaaS information model defines an ontology that describes
only a part of the semantic concepts used in the model.
Additional concepts from other ontologies might be used as
well. A Link to external ontology refers to the specification of a
semantic concept that is external to the BaaS information
model. For instance, the semantic tags used in a Building
Automation Function (BAF) may be adopted from elsewhere
(e.g. from Project Haystack).

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 41

Figure 4-7: BaaS Data Point Information Model

Data Point Type

Input Relation

Output Relation

Building
Automation

Function

Property

BAF Context

BAF Domain

BAF Type

Property Type

Property Content

Data Point Name

Feature Type

Dependency

Feature Usage

*

*

*

*

0..1

1

*

*

1

0..1

1

uses

*

Data Point Name Each BaaS data point has a globally unique name.

Dependency Dependencies describe the communication relations this BaaS
data point has with other data points. Input relations
characterize the data points this data point takes input from,
while output relations characterize the data points that this
data point sends data to.

Feature Usage A BaaS data point type can implement one or several features.

Building Automation
Function (BAF)

The BAF of the data point may contain additional semantic
descriptions that apply to all contained feature alike. The BAF
of a feature usage can extend the BAF of the used feature if
necessary. The BAF contains three kinds of elements that may
occur repeatedly: BAF Domain, BAF Type and BAF Context.

Properties The properties contain additional semantic information that
applies to the data point. An example for such a property
would be a location. Properties must specify from which
ontology the semantic concepts used for the property are
adopted.

Link to external ontology The BaaS information model defines an ontology that describes
only a part of the semantic concepts used in the model.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 42

As an example for a BaaS data type that implements multiple features, a single sensor that
contains several integrated temperature sensors and a light sensor can be represented by a
single data point containing several temperature sensing features and a single light sensor
feature. The data point BAF can be used to describe the sensor and functionality in detail,
while Properties can be added to describe extra semantic properties, such as the location or
size of the referenced device.

4.2.3.5 BaaS Service Type

The BaaS service type describes the interaction between data points. This is done by means
of exposing values (taken from features) in the form of a resource tree.

Figure 4-8: BaaS Service Information Model

Service Type

Data Point Type

Activity Pattern

Communication
Pattern

Data
Exposed Value

Dependency

Resource Pattern

Authorization Rule

Relative URI

Query Pattern

Service Name

1..*

1 1

communicate

guides

*

*

accesses

triggers

*

*

1

Additional concepts from other ontologies might be used as
well. A Link to external ontology refers to the specification of a
semantic concept that is external to the BaaS information
model. For instance, the semantic tags used in a Building
Automation Function (BAF) may be adopted from elsewhere
(e.g. from Project Haystack).

Service Name Each BaaS service has a unique name.

Resource Pattern A Resource Pattern describes how an element of an exposed
value is mapped to an element of the resource tree of the
service. The collection of all resource patterns provides the
specification of the part of the resource tree that represents all
exposed values of the service. There are also other parts of the
resource tree, e.g. those representing the parameters of the
features of the service. These parts do not have to be
described by resource patterns as there mapping can be
automatically derived from the feature models. A resource
pattern contains the following elements: a relative URI;
optional query patterns (specifying sets of query parameters

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 43

4.2.3.6 BaaS Service Instance

A BaaS service instance describes the attributes of an instantiation of a BaaS service. Those
attributes include specific values for configuration parameters as well as implementation-
specific properties such as Technology Bindings.

Figure 4-9: BaaS Service Instance Information Model

Data
Parameter

Service Type

Encryption
Mechanism

Communication
Protocol

Authorization
Mechanism

Service
UUID

Service
Instance

Service
Configuration

Technology
Binding

1

1

0..1

1

1

1

0..1

*

that may be used when reading or writing the respective
resource); optional authorization rules that describe how
access to the resource is authorized.

Activity Pattern An Activity Pattern describe in which manner a service
executes an associated communication pattern:

· Periodically: The service will regularly execute the
respective communication pattern.

· Event-triggered: The service will execute a
communication pattern only if a specified event occurs,
i.e. if a certain element of an exposed value changes or
if another service delivers particular data.

Communication Pattern A Communication Pattern defines how communication on an
associated element of an exposed value is performed:

· Pull: Communication is initiated by the data sink.
· Push: Communication is initiated by the data source.

Service UUID Each service instance has a unique identifier.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 44

4.2.3.7 Modelling a Heating System - a Concrete Example

The next section gives a concrete example on modeling a real technical system. It describes
the data types, features and data point types needed to represent a basic heating system
with BaaS concepts.

The entire heating system (shown in Figure 4-10), encompassing both a hot-water and a
heating circuit, consists of the following parts:

Figure 4-10: Overview of a Heating Circuit.

Service Type The service type refers to the BaaS service type this service
implements.

Service Configuration The configuration values are the concrete values of the
parameters defined in the respective BaaS features. Those
parameters are either set in the commissioning phase or at run
time.

Technology Binding The technology binding describes the implementation specific
technologies that were used. Examples are:

· Communication Protocol describing the protocols used
such as HTTPS, HTTP, or CoAPS, CoAP.

· Encryption Mechanism describes the concrete
encryption mechanisms provided such as Advanced
Encryption Standard (AES).

· Authorization Mechanism describes the supported
authentication mechanism such as OAuth.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 45

· Gas boiler (system boiler)
o This type of boiler works together with a hot water cylinder, but doesn’t

require a cold water tank, as the system can be filled directly from the water
mains. As the heating circuit is closed, the water in the heating system is not
lost and will be pumped in circles all the time.

o The gas boiler consists of several parts:
§ The gas burner is included in the device and is used to heat up the

heating water.
§ Three temperature sensors are used to get information about the

current system status: Feed flow, return flow, outside air temperature.
§ A controller is used to gather the collected temperature data and use

them together with the configuration settings to control the gas
burner.

· Hot water cylinder
o The hot water cylinder is mainly heated by the heating water circuit, but can

also use an integrated electric immersion heater. To control the temperature
within the cylinder there is a temperature sensor and a small controller.

o This type of system benefits from having an electric immersion heater within
the cylinder which means you can still have hot water even if your boiler
breaks down.

· Water pump (3x)
o Three water pumps are installed throughout the system.
o The first one (UPS 25-40) is used to pump the water between the gas boiler

and the hot water cylinder.
o The second (UPS 25-60) is used to pump the water up to the heating radiators

in the first and second floor.
o The third (Star Z-15) is used to pump the hot water to the taps on the first and

second floor.
· Expansion vessels

o Expansion vessels are used to keep the hydronic balance in the system

In this example a water pump is modeled. The pump used is a “Grundfos UPS 25-60”. It is
shown in Figure 4-11.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 46

Figure 4-11: A Grundfos UPS 25-60.

In the following the required BaaS data models are defined for the instrumentation
described above. For later use it can be expected that many data models are already defined
and can be reused.

For the basic data types, definitions for both flow rate (for the pumps) and temperature (for
temperature sensors) need to be defined. The OWL definition of these data types can be
found in the Annex in Section A.1.

Using these data types, we define several features and data point types, beginning with the
features.

4.2.3.7.1 Defined Features

We define a feature for each element of the system, taking care to not reimplement similar
features multiple times. For the heating system, our required features are:

· A temperature sensor
· A temperature setpoint
· A flow sensor
· A flow setpoint

These features will then be used by data point types to implement functionality. The
following tables show the representation of these features in the BaaS information model.
We omit the description of the temperature setpoint and the flow sensor, since these
features are very similar to each other (barring some different semantic tagging).

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 47

As is visible from Table 2, the temperature sensor feature exposes a single readable value
which is tagged as containing a temperature value in degree Celsius.

Additionally, the feature is annotated with the BAF type “Sensing”.

A very similar feature is created for flow sensing, with a different unit for the exposed value.

The description of a setpoint is shown in Table 3. Here, the setpoint exposes a single value
that is readable as well as writeable. Additionally, the setpoint is tagged with the BAF type
“SetPoint” instead of “Sensing”.

Name FlowSetpoint

DescriptionDescribes the desired
throughput of some water-
processing device, such as a
valve or a pump.

Exposed
Value

Name throughput

Data Type troughputType

Unit CubicMeterPerHour

Quantity VolumePerTimeUnit

Writability true

Readability true

BAF TypesSetPoint

Table 3: Flow Setpoint Feature

Name TemperatureSensor

DescriptionMeasures a temperature.

Exposed

Value

Name temperature

Data Type temperatureValueType

Unit DegreeCelsius

Quantity TemperatureUnit

Writability false

Readability true

BAF TypesSensing

Table 2: Temperature Sensor Feature

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 48

4.2.3.7.2 Defined Data Point Types

Now, for every distinct element of the heating system, we define a data point type using the
features described in the previous Section.

These features are:

· A boiler
· Three kinds of temperature sensors (feed, return, outside)
· A pump
· A hot water cylinder

The temperature sensors are implemented as three different types, since they differ in their
semantic tagging. Since they differ only in a few semantic tags, we will only show the data
point type of a single temperature sensor.

Since it is the simplest data point type, we will show the model of the temperature sensor
first. As can be seen in Table 4, the feed temperature sensor data point type references the
TemperatureSensor feature, adding additional semantic tagging.

The added tags are BAF domains (Heating, Water), and a “FeedTemperatureSensor” BAF
type. Additionally, to locate the sensor, a “HeatingSystem#1” context is given to the sensor.
The return and outside sensors are very similar, but annotated with a
“ReturnTemperatureSensor” and “OutsideTemperatureSensor” BAF types respectively.

Data Point
Name

FeedTemperatureSensor

Description A temperature sensor connected to the
heating system feed pipe.

Features Feature FeedTemperature

ReferenceTemperatureSensor

BAF

DomainsHeating; Water

BAF Types FeedTemperatureSensor; Sensor

Contexts HeatingSystem#1

Table 4: Feed Temperature Sensor Model

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 49

A pump is modeled referencing a flow sensor for showing the current flow rate, and a flow
setpoint for setting the desired flow rate.

 Additionally, we specify a BAF type “Device” (since each Pump data point corresponds to a
single device), “Heating” and “Water” domains (since the pump is part of a heating system
and is pumping water), and finally, the “HeatingSystem#1” context for localization.

The hot water cylinder contains a temperature controller for controlling the temperature of
the contained hot water, which requires both a sensor and an input for setting the desired
temperature. The temperature sensor is accessible to allow monitoring of the current
temperature of the water.

Data Point
Name

HotWaterCylinder

Description A hot water storage cylinder with embedded
electric heating system and controller.

Features Feature CurrentTemperature

ReferenceTemperatureSensor

BAF DomainsWater

Feature desiredTemperature

ReferenceTemperatureSetpoint

BAF Types Device

DomainsHeating

Contexts HeatingSystem#1

Table 6: Hot Water Cylinder Data Point Type

Data Point
Name

Pump

Description A water pump including a controller
and a flow sensor, allowing setting a
desired flow rate.

Features Feature currentFlow

ReferenceFlowSensor

Feature desiredFlow

ReferenceFlowSetpoint

BAF Types Device

DomainsHeating; Water

Contexts HeatingSystem#1

Table 5: Pump Data Point Type

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 50

Predictably, the hot water cylinder is modeled as shown in Table 6, referencing a
temperature sensor (augmenting it with the “water” BAF domain) and a temperature
setpoint. Additionally, the BAF type “Device” is added to show that the object is modeling a
concrete physical device. The “Heating” domain indicates the device is part of a heating
system, and the “HeatingSystem#1” context localizes the cylinder in a specific heating
system.

The data point type defined for the boiler is shown in Table 7. The boiler is a bit more
complex than the data point types defined previously, but it serves well to display a benefit
gained by semantic tagging: Using input relations, the boiler can locate the correct sensors in
the heating system, and take them as input for temperature regulation. This is done by
specifying a semantic query for all devices in “HeatingSystem#1” that have correct BAF type
(Outside-, Return- and FeedTemperatureSensor, respectively). These sensors then provide

Data Point
Name

Boiler

Description A boiler and heating controller, taking input from three temperature
sensors (feed, return, outside). A desired input temperature is settable via
a temperature setpoint.

Features Feature DesiredTemperature

ReferenceTemperatureSetpoint

BAF DomainsWater

Input
Relations

Name OutsideTemperatureInput

Query hasBAFContext = HeatingSystem#1 AND hasBAFType =
OutsideTemperatureSensor

Data Type
Filter

temperatureRootType

Name ReturnTemperatureInput

Query hasBAFContext = HeatingSystem#1 AND hasBAFType =
ReturnTemperatureSensor

Data Type
Filter

temperatureRootType

Name FeedTemperatureInput

Query hasBAFContext = HeatingSystem#1 AND hasBAFType =
FeedTemperatureSensor

Data Type
Filter

temperatureRootType

BAF Types Device

DomainsHeating

Contexts HeatingSystem#1

Table 7: Boiler Data Point Type

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 51

input to the boiler. Additionally, the boiler references a “TemperatureSetpoint” feature for
setting the desired water temperature.

Semantic tagging is added to specify the boiler is a physical device, participating in a heating
system, and localize the boiler in “HeatingSystem#1”.

4.2.3.7.3 Defined Service Types

Finally, each of the defined data types will be referenced in a service. On deployment, these
services will be instantiated to correspond to the actual elements of the heating system: One
boiler service instance, one hot water cylinder service instance, one of each temperature
sensor type and three pump instances.

Since these services simply reference the defined data point types and add no additional
semantic tagging, their description will not be shown in this document.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 52

4.2.4 Ontology Modeling
BaaS ontologies describe Information View concepts in a formal and machine interpretable
way. They consist of BaaS data point (DP) ontology, location ontology, Quantity Kinds and
Units (QU) ontology (e.g. QUDT from NASA) and semantic tags from a chosen building
automation (BA) ontology (e. g. from Project Haystack), see Figure 4-12.

The DP ontology covers the concepts introduced by the BaaS information model. The
ontology has been implemented in the W3C (OWL) language [20].

Figure 4-12: BaaS Ontologies, Key Concepts and Relations.

The DP ontology, shown in Figure 4-12, formalizes the specification of a BaaS data point. A
data point is composed of BaaS features, which represent functionalities of building
automation systems. Furthermore, a BaaS data point uses data of other BaaS data points as
input and/or provides data as output. Therefore the DP ontology defines input relations and
output relations. Finally, a data point may have properties for example, location information
(i.e., information about physical location of a data point). This information is provided in a
location ontology (marked in yellow in Figure 4-12 and Figure 4-13). Ontologies for other
kinds of properties may be added.

A BaaS feature exposes a particular set of BaaS data. Furthermore, it can be configured via
parameters, and contains additional meta-information describing a Building Automation
Function (BAF).

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 53

There are different types of data. Basic data is data as defined with XSD Schema (e.g.,
integer, float, boolean etc.), and depicted in Figure 4-12 with one blue circle. Simple data
defines BaaS data types in the ontology (e.g., Temperature, Illuminance etc.), and complex
data are a combination of data (i. e. simple data and complex data). These types are
subclasses of the class data. There exist ontologies that already define various data types.
For example, for this purpose in our DP ontology we have reused the ontology for Quantity
Kinds and Units (QU) [21]. In this sense DP ontology has been designed to enhance
interoperability by reusing existing ontologies. For the same reason we employ BA
vocabulary in the form of semantic tags because there exist common vocabularies for
building automation (BA) systems (e. g. Project Haystack) that can be reused. The
interoperability between the BaaS DP ontology and other existing ontologies used in the
domain of BA is an important aspect since the BaaS project should offer a BA platform that is
extensible from other domains (e.g., energy domain, industry domain etc.). Actually, the
general concepts behind BAF are not specific for building automation systems. By defining
vocabularies for other domains, the BaaS approach can be applied to those domains as well.

Data is described by value characteristics (e.g., value range or measurement range, defined
together with units, data types etc.). Later in this section an example is presented that shows
how value characteristics are defined for concrete cases.

The BAF contains three kinds of meta-information: BAF Domain, BAF Type and BAF Context.

Parameters of a feature define how a particular data point is configured (e.g., the sampling
rate according to which the data point will deliver its data etc.). The class parameter is used
for this purpose (see Figure 4-12).

Figure 4-13: BaaS Location Ontology

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 54

A more detailed version of location ontology is depicted in Figure 4-13. Apart from the main
concept “BuildingElements”, it also provides relation between them (e.g., hasFloor,
hasRoom, hasWing etc.). Figure 4-13 shows also how each “BuildingElement” can be
subclassed (e.g., an Office is a type of Room). The basic concept of direction is specified and
used in a relation with the concept of wing. Direction is defined as an enumeration class,
which containes a set of directions (e.g., east, west, south, north etc.). We have specified
few data type relations to demonstrate how basic data types can be used the cocept of
room (e.g., hasRoom, hasRoomNo, and hasFloorLevel).

Finally, let us present an example with the above described BaaS ontologies. Figure 4-14
shows the feed temperature data point. feed temperature dp is a data point with a feed
temperature sensing feature. It is located in room 4. The feature provides temperature as
data. The data point may be used for measuring water feed temperature in a boiler as
described with Haystack tags in the DP Context, Domain, and Type. It is of type temperature
sensor that samples data every second, used in the Domain water heating and in context
feed flow circut. Minimum and maximum value range for the temperature data has been
defined (i.e., -50 and +100, respectively). These values are provided as float numbers (f), and
the unit of measure is degree Celsius. (see Figure 4-14).

Figure 4-14: Ontology Example: A Feed Temperature Data Point

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 55

4.3 Functional View

4.3.1 Motivation
The functional view of the reference architecture aims at the following goals:

· Each functional building block specifies its responsibilities and relations to other
functional building blocks.

· The functional view captures the interactions of the functional building blocks. Each
lifecycle activity triggered by an actor is be covered by an interaction scenario between
functional building blocks.

· Each lifecycle phase of a BaaS system is dealt with separately.
· Finally, an overview of all functional building blocks across all lifecycle phases is

presented.

4.3.2 Types of Functional Building Blocks
Section 3.2 introduces the concepts of a BaaS framework and a BaaS runtime environment.
This section intends to introduce and give an overview of the different types of functional
building blocks being either part of the BaaS framework or the BaaS runtime environment.
The terms BaaS framework and BaaS SDK are used in an exchangeable way in this section.
The term SDK rather indicates that the BaaS framework also consists of different kind of
tools.

4.3.2.1 BaaS Framework/SDK

This section lists the main types of functional building blocks that are used at design time
(during the development and engineering phases).

4.3.2.1.1 Editors to Specify BaaS Entities

· are either based on
o one or more domain-specific languages of the BaaS SDK,
o existing tools and their respective editors (e.g. using the Protégé tool to express

data point descriptions in an ontology format),
· do not have to replace existent IDEs or other development tools (e.g. the manually

implemented BaaS service core can be done by any means used by the respective
developer),

· allow creating/modifying/deleting certain entities and their relationships according to
certain rules and constraints, e.g.
o BaaS data point types, their properties and their relation to other data points,
o BaaS services (service types) and their relation to the BaaS data point types they

expose,
o BaaS Constraints, their forms/quality and realization at runtime

· allow choosing from a certain set of pre-defined options (e.g. entities from external
ontologies to refer to when creating a BaaS data point type),

· transform the entities to other representation formats (e.g. storage format like rdf for
BaaS data point types),

· use BaaS entities from other BaaS information storages (e.g. when specifying a BaaS
service the editor uses the BaaS data point information storage),

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 56

· generate code according to the selected options (e.g. generate the BaaS service core
code skeleton and the glue code to cover the call interaction of the core and the
automatically generated code).

· store BaaS entities to one or more BaaS information storages, e.g.
o the BaaS information storage of data point types,
o the BaaS information storage of BaaS service types,
o the BaaS information storage of the BaaS service core implementation,

· specify queries to a BaaS information storage (e.g. to specify the set of BaaS data points
a certain BaaS data point has an input/output relation to),

· perform queries to a BaaS information storage (e.g. to retrieve a set of existing BaaS
data points according to some criteria)

4.3.2.1.2 Tools to Engineer a BaaS system

· are based on one or more domain-specific languages (DSLs) of the BaaS SDK (rather
graphical DSLs),

· use the information of BaaS information storages filled during the development phase,
e.g.
o browse the developed and available BaaS service types
o browse the defined and available BaaS Constraints on reliability quality options for

BaaS services
o perform queries to retrieve a set of BaaS service instances meeting certain BaaS

data point (instance) criteria
· allow creating a functional model of a BaaS system by creating/modifying/deleting

certain entities and their relationships according to certain composition rules and
constraints, e.g.
o create BaaS service instances (and indirectly their contained BaaS data point

instances),
o wire BaaS service instances to each other according to its BaaS data point

(input/output) relations,
o specify dependability qualities of BaaS service instances. A system engineer

specifies the demand of a service composition being available at least for 99.99%.
He should not necessarily know how this requirement can be fulfilled. The BaaS
Constraint availability is defined at the development phase with the qualities
99.9%, 99.99%, 99.999% and 99.9999%. Besides the definition of different qualities
of availability the concrete measures to fulfill these qualities is defined in the
development phase as well. E.g. one measure could be: constraint services with a
requested availability of 99.999% need to be run in BaaS containers with at least
an availability of 99.999%. The services with a demand for availability of "5 nines"
can only be redistributed in BaaS containers in compliance with the constraint of
the service in case of breakdown.

o check the consistency of dependability quality constraints across services instances
(e.g. a highly-available services instance cannot depend on values from less-
available service instances)

· allow to choose from a set of pre-defined options to specify properties of BaaS service
instances, e.g.
o the communication protocol of a BaaS service type (e.g. CoAP, REST, DPWS) to be

instantiated,

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 57

o the communication pattern of a BaaS service type with respect to its exposed data
points (e.g. get/set, publish/subscribe, unsolicited set),

o the activity model of the BaaS service type, e.g.
o active (the value computation of a data point is triggered on a regular basis

independently from any specific request),
o passive (the value computation is triggered on demand by the request of another

BaaS service)
o the cryptogrphic protection of values exchanged by the BaaS service type
o the access control model for BaaS service instances and their exposed data points

(e.g. by specifying the required role(s) in order to get access to a data point of a
BaaS service)

o the constraints describing the dependability qualities of service instances. The kind
of constraints could have been defined during the development phase.

· generate service adaptor(s) and glue code to integrate adaptors with the service core of
a BaaS service type. adaptors bind the BaaS service type to a certain
o communication protocol (e.g. a CoAP resource tree of a BaaS service of BaaS data

point resources)
o communication pattern, e.g.

§ a BaaS service requiring values from another one gets subscribed if the other
BaaS service supports a publish/subscribe communication pattern,

§ a BaaS service just requests the value from a BaaS service instance supporting
the request/reply pattern (only)

o activity type, e.g.
§ an active adaptor including a scheduler/timer to trigger the current value

processing of a data point exposed by a BaaS service and the storage of the
latest value

o security mechanism, e.g.
§ to encrypt/decrypt the incoming/outgoing values of a BaaS service instance
§ to use a certain authorization mechanism like OAuth in order control the

access of requests to a data point of a BaaS service (after having to identified
the originator of a request by some other authentication mechanism)

· generate deployable BaaS service packages to deploy the BaaS service instances during
commissioning. Such a package contains
o the executable program of the BaaS service instance
o the configuration of a BaaS service instance, e.g. specifying the (relative) address

(e.g. URI) of the BaaS service
· generate management rules for the technical management system according to

service/system constraints
o rules follow the ECA paradigm (Event-Condition-Action)
o detected system changes (events) and related fulfilled conditions (condition) lead

to automatic reconfiguration and adaptation of the runtime system (action) to
assure the demand system quality in terms of BaaS Constraints

· fill up the BaaS service instance registry with the BaaS service software packages and
BaaS service instance descriptions

· allow to bind BaaS data points to BAS legacy systems and their endpoints

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 58

4.3.2.1.3 Tools to Commission a BaaS system

· allow creating a deployment/system model of a BaaS system by
creating/modifying/deleting certain entities and their relationships according to certain
composition rules and constraints, e.g.
o create BaaS containers with certain properties like resource capacities,
o deploy BaaS devices/container software packages,
o create BaaS container/device instances,
o assign BaaS service instances to BaaS containers/devices according to matching

resource requirements and capacities,
o deploy BaaS service software packages on BaaS container
o specify computing nodes,
o assignment of BaaS container/device/gateway instances to computing nodes

4.3.2.2 BaaS Framework/SDK and BaaS Runtime Environment

This section lists the main types of functional building blocks that are used at
runtime/operation time. Some of them (e.g. the BaaS information storages) are also already
used at design time.

4.3.2.2.1 BaaS Information Storage

· a stored collection of certain BaaS entity types (e.g. the collection of all BaaS data point
descriptions)

· the data of an information storage can be used (imported/queried and/or filled) by a
BaaS editor/tool during the design phases

4.3.2.2.2 BaaS Registries

· a stored collection of BaaS entity type instances to be used at installation time and
runtime

· the data of a BaaS registry can be queried during the runtime phases, e.g.
· the BaaS registry of BaaS service instances (i.e. the deployable bundles) and their

descriptions
· the BaaS registry of the addresses (e.g. the URL) of all running BaaS service instances

4.3.2.2.3 BaaS Software Libraries to be used by Code Generation Mechanisms when
Developing and Engineering BaaS Services

· communication protocol bindings/adaptors (e.g. CoAP, DPWS)
· communication pattern adaptors
· activity model adaptors (e.g. active by regularly calculating the values of the data point,

or passive by calculating values on request)
· security adaptors (e.g. adaptors based on OAuth, DTLS and an access control model of

roles, permissions and role assignments)
· management libraries
· BAS legacy system access/query libraries

4.3.2.2.4 BaaS Software Packages to be used when Engineering a BaaS System

· BaaS container packages
· BaaS gateway packages (e.g. a BaaS BACnet gateway library)

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 59

4.3.2.2.5 Technical Management of a BaaS System

When talking about technical management we are talking about management agents
monitoring and/or controlling resources or managed objects. In the context of BaaS these
resources are BaaS nodes, BaaS containers and BaaS services. These resources need to
provide a pre-defined interface to be accessible by the technical management agents. The
interface defines both functions to be implemented by the resources and management
information like variables for actual resource properties.

All resources providing the management interface can then be monitored and configured
homogeneously and independently of the resource type. This results in a highly
maintainable and extendable feature which can deal with newly introduced resources or
resource types without changing the management agents or structure. Only for resource
type specific management capabilities the agents need to be updated accordingly.

As BaaS nodes, containers and services may be quite numerous within a building it needs to
be possible to divide the resources into several management domains. This means that
resources can be put into one or more management domains and within each domain
specific management rules are applied (e.g. for lighting control other management behavior
is used than for building security). To further improve the scalability the management agents
can be organized in an hierarchy which also raises the overall stability of the management
system.

Altogether the technical management system can be used to adapt the system to changing
use cases. For instance, when different customers share the same (meeting) room, each
customer has specific needs on lighting and heating. Even these preferences can change in
the course of the meeting. These can be reflected by the technical management and
therefore the behavior of the building installation. Another example would be a multi
tenancy access control where each customer is represented by a tenant. It must be ensured
that management data cannot be accessed across tenant boundaries. The technical
management system will ensure that access to the management data is only granted to
authorized users.

In terms of the functional view there are some facts that need to be respected:

· Management agents are distributed depending on the infrastructure of the BaaS
system. Therefore they are not deployed together with BaaS nodes or containers by
default.

· Engineering has not to be considered, because the management is controlled/
parameterized by the management rules, which are automatically derived from the
runtime model.

Further detail regarding the technical management in the BaaS reference architecture is
described in the dependability perspective in Section 5.2.

For further details on technical management in general have a look at Section 5.3.

4.3.3 Overview of Functional Building Blocks
There are the following functional building blocks used per and across phases.

· Functional View of the Development Phase
o BaaS Data Point Editor

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 60

o BaaS Data Point Information Storage
o Query Wizard
o BaaS Service Editor
o BaaS Dependability Editor
o BaaS Service Information Storage
o IDE for Implementing the BaaS Service (and Legacy Protocols)
o BaaS Legacy Profile as Software
o BaaS Legacy Profile Tool

· Functional View of the Engineering Phase
o BaaS Engineering Tool
o Query Wizard
o BaaS Service (Instance) Registry
o BaaS Software Libraries
o BaaS Legacy Analysis Tool

· Functional View of the Commissioning Phase
o BaaS Commissioning Tool
o Technical Management System
o BaaS Service Instance Registry
o BaaS Container Software Packages

· Functional View of the Operation Phase
o BaaS Service Instance Registry
o BaaS Container/Device
o Technical Management System
o BaaS Legacy Gateway
o BaaS Service Instance

· Functional View of the Optimization Phase
o The Analysis/Optimization phase will be covered during the second iteration of

specifying the BaaS reference architecture.

4.3.4 Functional View of the Development Phase
This section describes the functional building blocks of the BaaS SDK during the development
of BaaS data points and BaaS services. It also covers some of the collaboration scenarios of
these building blocks.

4.3.4.1 BaaS Data Point Editor

This editor provides means for the domain engineer to specify data point types according to
a certain structural description (Section 4.2), rules and constraints how to specify BaaS-
specific data point types.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 61

Responsibilities Actor Collaborations

Create/modify/delete a BaaS-specific data point type and specify
its properties (e.g. temperature data point).

domain engineer none

Specify the building automation functionality in a semantic way
(possibly using only a set of keywords/tags from the Haystack
project).

“ “

Specify the value(s) and whether it(these) are read-only or read-
write

“ “

Specify the input relations to needed input values of other data
point types. This might be a simple reference to one or more data
point types or it might be a complex semantic query that contains
several criteria in order to resolve the set of data points
compliant to the input relation at engineering time.

“ “

Specify the output relations to data point types the values of
which are derived based on the value of this data point. This
might be a simple reference to one or more data point types or
might be a complex semantic query that contains several criteria
in order to resolve the set of data points compliant to the output
relation at engineering time.

“ “

Specify the "processing mechanism" of the value computation.
This is needed for the software engineer to implement the
functionality and can be provided in plain text. There is no need
of a computer readable form.

“ “

Specify the configuration properties / parameter of the data
point type (e.g. time to keep the stored data in a history
database).

“ “

Select defined data types provided/required by the data point

Specify the selective or extendible options of each data point
type property from which to choose or which to extend later on
during the lifecycle.

For example a temperature data point type is specified in a way
that the unit of the value (as part of the value characteristic) can
be chosen from Celsius or Fahrenheit later. This is also an
example that a property might be linked to a set of entities from
other ontologies like the “units.owl” ontology. This ontology
captures all kind of units (as Celsius, Kelvin or Fahrenheit).

“ “

Define data types including their characteristics domain engineer,
software engineer

none

Possibly the BaaS platform SDK introduces an own mechanism of
high-level data types like (numeric, alphabetic, enumerations) to
be used by the BaaS editors of the development phase. Those
can be refined (eg. Numeric->float), restricted (minimum,
maximum, regular expression), structured and named to be
reusable.

“ “

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 62

Responsibilities Actor Collaborations

Specify the value characteristics (e.g. semantic meaning, unit) of
the value(s) of the data point type.

“ “

Define data type bindings for each programming language
supported by the BaaS platform. These data type bindings are
implemented by the code generation mechanism of the BaaS
service editor.

software engineer “

Use a pre-defined sub-set of entities from external ontologies for
certain data point properties.

domain engineer

The editor provides support of using entities from certain pre-
defined external ontologies in order to specify some properties of
a data point type. There are two options:

“ none

1. Import whole external ontology could be imported as own
entities into the editor.

“ external ontology,
external ontology
tool

2. Query and select the used entities to be imported from an
external ontology into the editor

“ external ontology
tool

Store/load/search/query data point types. domain engineer

Store/load all (or a subset of) data point types to/from the BaaS
information storage of data point types.

“ data point
information storage

Search/browse the existing collection of BaaS data point types. “ data point
information storage

Express a query against the existing collection of BaaS data point
types and along certain criteria. Such queries are possibly needed
to specify the input/output relations of a data point type to other
data points.

“ query wizard

Perform the query and present the results. “ data point
information storage

Check consistency and constraints of data point types (e.g.
naming conventions, missing data point relations). There are two
options: Or the domain engineer triggers global consistency
checks across all data point types.

editor and domain
engineer

constraint/
consistency checker

1. Local constraints on one or several data point types can be
checked on the fly in an automated way by the editor displaying
"errors" to the domain engineer.

““” “

2. Or the domain engineer triggers global consistency checks
across all data point types.

““ “

The BaaS data point editor could be a tool (and its editor) to specify Ontologies (e.g.
Protégé). Such tools allow performing queries over the set of data point types. In addition,
using external ontologies might also be supported by an ontology tool. But checking the

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 63

consistency and constraints of individual data point types or across all data point types is
normally not supported by ontology tools.

4.3.4.2 BaaS Data Point Information Storage

Responsibilities Actor Collaborations

Store data point types. BaaS data point
editor

none

Perform the search on/browse/query the set of existing data
point types.

BaaS data point
editor

“

The BaaS data point information storage could be an ontology (concepts, individuals, rules
stored as e.g. RDF or turtle format files) combined with a semantic database, or a set of
domain-specific models (as files) or a repository. An ontology with a semantic database
supports semantic queries (e.g. SPARQL). Both of them could be combined with a reasoning
mechanism. Queries and reasoning are not supported by domain-specific models. Domain-
specific frameworks allowing building domain-specific language editors often offer support
of constraints/consistency checking. A repository also adds versioning support to data point
type descriptions.

4.3.4.3 Query Wizard

Responsibilities Actor Collaborations

Supports the user in specifying queries on a BaaS information
storage

BaaS editor

Support the user in specifying a query on the BaaS data point
information storage

BaaS data point
editor

domain engineer,
software developer

Support the user in specifying a query on the BaaS service
information storage

BaaS service editor software developer

The query wizard of data points / services could be a separate domain-specific language to
construct, trigger and present the result of a data point / service query.

4.3.4.4 BaaS Service Editor

This editor provides means for a software developer to specify (and possibly develop) BaaS
service types.

Responsibilities Actor Collaborations

Create/modify/delete BaaS service types. software developer

Specify the BaaS data point types to be provided by a BaaS
service type.

“ BaaS data point
information
storage.

Decide on the selectable or extendible data point type properties. “ ontology

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 64

Responsibilities Actor Collaborations

For example, the service type computes temperature values of its
exposed temperature data point type in Celsius only.

Optionally select dependability qualities for all instances of this
service type per default. These could be overridden at
engineering time. The dependability qualities are specified and
provided by the BaaS dependability editor. This also implies the
generation of skeletons implementing certain managed object
Interfaces suiting the respective dependability quality.

“ BaaS dependability
editor

Specify any need to protect the access to certain provided data
points (either by authentication/authorization and/or
confidentiality levels). (The actual protection is specified and
realized at engineering time.)

“ none

Load/search/query BaaS data point types. software developer

Search/browse the existing collection of BaaS data point types. “ data point
information storage

Express a query against the existing collection of BaaS data point
types and along certain criteria. Such queries are possibly needed
to specify the data point types provided by a BaaS service.

“ query wizard

Perform the query of data point types and present the result. “ data point
information storage

Store/load/search/query BaaS service types. software developer

Store/load all (or a subset of) service types to/from the BaaS
information storage of service types.

“ data service
information storage

Search/browse the existing collection of BaaS service types. “ data service
information storage

Express a query against the existing collection of BaaS service
types and along certain criteria in order to identify other
implemented services (already exposing certain data
points/dependability/security qualities etc).

“ query wizard

Perform the query of service types and present the result. “ data point
information storage

Bind a BaaS service to a BAS legacy system. software developer

 Use the code generation hooks provided by the BaaS legacy
profile tool.

“ BaaS legacy profile
tool

Generate the needed BaaS service type skeleton and the hook
skeletons to be implemented by the software developer.
Different service hooks could also be implemented at different
times. Each of the hook implementation could be stored as
different packages to be re-used for the implementation of
different service type skeletons.

software developer

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 65

Responsibilities Actor Collaborations

Generate the BaaS service type skeleton containing the hook
skeletons below to be implemented.

Generate the BaaS service core hook skeletons for each
supported data point of the service Such a core hook gets the
input values (of the respective input relations) as input
parameters and returns the value of the data point. Its
implementation is a realization of the processing mechanism
specified by the data point.

“ code generator
(including
programming
language bindings
for the value types)

Generate the BaaS service management adaptor hook skeleton
(i.e. from a pre-defined set of possible BaaS managed object
interfaces). This hook has to be implemented manually. It is
called by the management adaptor of the service in order to
monitor and manage the service instance.

The code generation rules are specified as part of the BaaS
dependability editor and used by the BaaS service editor as part
of the code generation.

“ BaaS dependability
editor

A BaaS service editor actually could be a domain-specific language and a (generated) editor
for it. Since it is about software development the domain-specific language should rather be
a textual one. Ideally, the domain-specific language can be embedded into a set of
programming languages supported by BaaS (e.g. Java, C/C++). The domain-specific language
framework should include a model transformation language and engine which could be used
for code generation purposes. It could also be used for BaaS specific language bindings of
data point value types to programming language types. In addition, it should allow using the
API of any other library of supported languages in order to trigger queries to the BaaS data
point information storage and present the results.

4.3.4.5 BaaS Dependability Editor

The BaaS dependability editor allows creating dependability qualities to be used by other
functional building blocks like the BaaS service editor and the BaaS engineering tool. Each
dependability quality and its possible values are linked to a set of transformation rules.
These support the creation of management rules for each BaaS service type specification
using any of the supported dependability qualities.

Responsibilities Actor Collaborations

Specify BaaS dependability qualities/constraints. software
developer

BaaS service editor

Specify the BaaS dependability quality/constraint set which could
be used for the specification of BaaS service types and instances.

“ none

Specify the value set of each dependability/quality constraint. “ “

Provide the dependability quality/constraint set to the BaaS
service editor.

BaaS service editor

Specify the managed object interfaces. BaaS service editor

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 66

Specify the managed object interface(s) for each BaaS
dependability quality/constraint. This interfaces have to be
implemented if a BaaS service type uses such a dependability
quality as part of its specification.

“ none

Provide the code generation rules to the BaaS service editor.
These rules are used to generate the managed object skeletons of
a BaaS service using a respective dependability quality.

“ BaaS service editor.

Specify the transformation rule(s) to generate management rules. software
developer

BaaS technical
management system,
BaaS engineering tool

Specify the transformation rule(s) for each BaaS dependability
quality/constraint to generate management rules for each.

“ BaaS technical
management system
(Management Rules)

Provide the transformation rules to the BaaS engineering tool. “ BaaS engineering tool

Specify the BaaS resource types to be used for BaaS service and
BaaS container specifications.

software
developer

BaaS service editor,
BaaS legacy profile tool,
BaaS commissioning tool

Specify the kind of resources and their value types to be used. “ none

Provide the resource types to the BaaS service editor, the BaaS
legacy profile tool and the BaaS commissioning tool.

BaaS service editor,
BaaS legacy profile tool,
BaaS commissioning tool

A BaaS dependability editor actually could be a domain-specific language and a (generated)
editor for it. The underlying framework to build domain-specific languages and editors
should support the integration of different domain-specific languages across the generated
editors. This functionality could be used to integrate the artifacts of the BaaS dependability
editor with the BaaS service editor and the BaaS engineering tool.

4.3.4.6 BaaS Service Information Storage

The BaaS service information storage aims at providing some persistent means to store and
query BaaS service types.

Responsibilities Actor Collaborations

Store BaaS service types. BaaS service editor

Store the specification of each BaaS service type (e.g. the set of
provided data points).

“ none

Store the manually implemented code (i.e. the BaaS service core
hook implementation and its BaaS managed object hooks) of
each BaaS service type. Alternatively, store the implementation
of the service core hook separately in order to re-use is for
several service type implementations.

“ “

Perform the search/browse/query on the set of existing service
types. Or perform the search/browse/query on the set of existing

BaaS service editor

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 67

service core hook implementations of a data point.

Control the access to BaaS service types. BaaS service editor

Control the access of a BaaS service Provider (company or
person) to its BaaS service type implementations only.

“ none /
Authentication
instance

The BaaS service information storage could be a repository (including versioning support)
like current configuration management systems. The repository would contain the service
specification as a domain-specific file, the generated and the manually implemented code
files for each BaaS service type (and possibly build files to generate the software package for
a BaaS service). In addition, the BaaS service information storage could store hook
implementations only (and their build files to generate a software library out of it to be used
by different service implementations).

On top the BaaS SDK would need to provide the query support described above. Access
control is also a common feature of repository implementations.

4.3.4.7 IDE for Implementing the BaaS Service (and Legacy Protocols)

Responsibilities Actor Collaborations

Implement the BaaS service core hook(s) along the processing
mechanism description(s) of its exposed data points.

software developer none

Implement the BaaS management adaptor hook as a BaaS
managed object.

“ “

Implement the BAS legacy protocol stack (if not available). “ “

The selected IDEs (Integrated Development Environment) depends on the programming
languages supported by the BaaS platform. But an IDE does not have to be used by the BaaS
software developer. It is an optional building block. In addition, the BaaS platform does not
prescribe the usage of any specific IDEs.

4.3.4.8 BaaS Legacy Profile as Software Package

The binding between BaaS services and a legacy technology (like an existent building
automation system) is very dependent on the legacy technology to be used. In most cases
this requires the development of individual software packages to achieve that goal. To
support the development of a legacy technology mapping there should be a common
abstract interface between BaaS and the legacy systems. For example, in the context of the
JMEDS framework the assumption is that each technology can be separated into three
logical groups: entities which contain/host services, services and functions provided by
services. All technologies are then mapped to this schema. A mapping to the BaaS schema is
called a profile in this section. Support for the mapping of a legacy technology to BaaS data
points (e.g. BACnet objects to BaaS data points) has to be implemented and provided as
software libraries.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 68

Responsibilities Actor Collaborations

Map the legacy communication protocol to the BaaS
communication protocol. Implement the mapping.

software developer Used by BaaS
legacy profile tool
(and BaaS service
editor),

Uses existent legacy
stack library.

Map the legacy communication patterns to BaaS communication
patterns. Implement the mapping.

“ “

Map BaaS addressing schema of BaaS service communication
endpoints to legacy communication addressing schema.

“ “

Map legacy security mechanisms to BaaS mechanisms
(encryption, authentication, authorization). Implement the
mapping.

“ “

4.3.4.9 BaaS Legacy Profile Tool

Besides having to implement BaaS legacy profile libraries, a BaaS legacy profile tool is also
needed. It allows writing code generation mechanisms to be used by the BaaS service editor
for creating BaaS services which map exposed data point(s) to legacy technologies entities.

These code generation rules could be used by several hooks of the BaaS service core code
generator to introduce legacy specific implementation details making use of the supportive
BaaS mapping software packages.

Another responsibility of the profile tool is the specification of requirements to be used
during the engineering phase to find suitable Baas devices / containers for the deployment
of the gateway.

Responsibilities Actor Collaborations

Specify a BaaS legacy profile software developer

Specify resource requirements of the profile implementation on a
hosting BaaS legacy gateway (e.g. computing power, RAM/ROM,
phys. connectors). The kinds of resources that can be specified
are defined by the BaaS dependability editor.

“ BaaS dependability
editor

Specify code generation rules that can be hooked into BaaS
generators to generate legacy specific core code for BaaS service
types.

“ IDE

4.3.4.10 Collaborations at Development Time

This section contains two exemplary collaborations of the functional building blocks at
development time.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 69

4.3.4.10.1 Browse/Create/Modify/Delete BaaS Data Points

The following Figure 4-15 shows the collaboration of functional building blocks in order to
browse existent data point types and to create a new one.

Figure 4-15: Collaborations on Data Points

The first collaboration is about the domain engineer browsing the existent set of data point
types by using the BaaS data point editor. The data point editor uses the BaaS data point
query wizard to support the domain engineer in expressing a data point query. The data
point editor uses the BaaS data point information storage to perform the query and presents
the query results to the domain engineer.

The second collaboration captures the creation of a new data point type on a high-level. The
domain engineer uses the BaaS data point editor to create a new data point type and to
specify all its properties. For instance, she also uses the query wizard to express a data point
query as the input or output relation of the new data point type to other data point
(instances). This query is not performed on the BaaS data point information storage at
development time. It is rather applied at engineering time on the data points of BaaS service
instances. Thus, the query might already refer to context information of the data point like
information on the location (e.g. a query to retrieve all Light Switch data points on a certain
office/floor of the building).

Similar collaborations apply when modifying or deleting an existent data point type.

4.3.4.10.2 Specifying and Implementing a Service type

The following Figure 4-16 shows the collaborations of functional building blocks in order to
browse existent BaaS service types and to create a new service type by specifying and
implementing it.

The first collaboration is about the software developer browsing the existent set of service
types by using the BaaS service editor. The service editor uses the BaaS service query wizard
to support the software developer in expressing a service query. The service editor uses the

sd Creating/modifying/deleting Data Points

:BaaS Data Point
Editor

:BaaS Data Point
Information

Storage

:BaaS Data Point
Query Wizard

:Domain
Engineer

1: Browse/search Data Point types()

1.1: Create data point query()1.2: Perform Data Point Query()

2: Create new Data Point type()

2.1: Create new Data Point type()

2.2: Specify the data point properties()

2.2.1: Specify the input/output relation to other Data Points()

2.2.1.1: Create a data point query as input/output relation()

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 70

BaaS service information storage to perform the query and presents the query results to the
software developer.

The second iteration sketches the specification of a new BaaS service type. The software
developer determines the data point type(s) to be exposed by the new service type by using
the service editor. In turn, the service editor uses the data point query wizard to compose a
data point query to be performed by the BaaS data point information storage. The service
editor supports the software developer in specifying all service properties (e.g. the
dependability qualities created by the BaaS dependability editor and used by the service
editor). As a third step the same or some other software developer triggers the code
generation of the service editor to create the service, service core and service managed
object skeletons. The software developer uses the generated artifacts to implement the
skeletons, creates the implementation artifacts manually by using his favorite IDE and stores
adds these to the BaaS service type description of the BaaS service information storage.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 71

Figure 4-16: Collaborations about BaaS Service Types

4.3.4.10.3 Specify Dependability Qualities and Transformation Rules

The following Figure 4-17 shows the collaborations of functional building blocks in order to
specify dependability qualities and resource types. It also shows how these means of
specifying a BaaS service and its instances are made available to the functional building
blocks of the engineering and commissioning phases.

sd Specifying and implementing a Serv ice type

:BaaS Serv ice
Editor

:BaaS Code
Generator

(from Actors)

:BaaS Data Point
Information

Storage

:BaaS Serv ice
Information

Storage

:BaaS Serv ice
Query Wizard

:Integrated
Development

Env ironment (IDE)

:BaaS Data Point
Query Wizard

Generated
Serv ice

sekeletons

:Software
developer

:Softw are
developer

Serv ice
Implementation

Artifacts

1: Browse/query the set of BaaS service types()

1.1: Create Service query()

1.2: Perform the Service query()

2: Create a new BaaS Service type()

2.1: Specify the exposed Data Point types()

2.1.1: Create Data Point type query()

2.1.2: Perform Data Point type query()

2.2: Specify dependabili ty qualities()

2.3: Specify all other properties of the Service type()

2.4: Store the BaaS Service type()

3: Trigger code generation of a certain Service type()

3.1: Generate the Service, Service Core and Managed Object skeletons()

3.2: Use a favourite IDE to implement the skeletons()

3.3: Store the Service skeleton implementations()

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 72

Figure 4-17: Collaborations of the BaaS Dependability Editor

Figure 4-17 illustrates the impact of the software developer using the BaaS dependability
editor on other BaaS functional building blocks and their usage. The dependability editor
enables the software developer to create a set of dependability quality attributes to be used
when specifying or modifying a new service type at development time by using the BaaS
service editor. This implies that the set of supported dependability quality attributes is made
available to the BaaS service editor. In addition, this set is also integrated into the BaaS
engineering tool, thus allowing the system engineer to override and tune the dependability
quality attribute settings on service instance level. (This collaboration between the BaaS

sd Specifying dependability qualities and their transformation rule

Development

Engineering

Commissioning

:BaaS
Dependability

Editor

:BaaS Engineering
Tool

:BaaS Legacy
Profile Tool

:BaaS Serv ice
Editor

:BaaS
Commissioning

Tool

:BaaS Technical
Management

System

:Software
dev eloper

:BaaS Code
Generator

(Development)

Dependability
qualities

Resource
types.

Code
generation

rules

Managed
Obj ect

interface(s)
per quality

Transformation
rules (to create

management
rules)

:BaaS Code
Generator

(Engineering)

Management
Rules

«use»

«use»

Create rules to generate Managed Object skeletons of a Service type

Create resource types.

Create rules to generate management rules for a dependabil i ty quality of
a BaaS Service instance

«use»

Create management rules for each BaaS Service
instance.

«use»

«use»
Create set of dependabi li ty quali ties

«use»

«use»

«use»

«use»

«use»

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 73

dependability editor and the BaaS engineering tool is omitted due to figure layout reasons
only).

Each dependability quality attribute implies a set of managed object interfaces for any
service type using the respective quality attribute as part of their specification. The set of
managed object interfaces of a dependability quality attribute has to be manually
implemented for each service type having specified the respective quality attribute. Thus,
the BaaS code generator of the BaaS service editor has to include the respective code
generation rules to generate the managed object implementation skeletons of a service
type. The BaaS code generator uses the managed object interfaces in turn to generate their
respective implementation skeletons.

Each dependability quality attribute also implies a set of management rules for each service
instance using it. (This occurs either by inheriting the specified quality attribute of the
service type or by overriding it at service instance level or by using it on instance level only).
Thus, the BaaS dependability editor has to generate transformation rules to be leveraged by
the BaaS engineering tool (and its code generator called BaaS code generator (engineering)).
It uses the transformation rules in order to create the respective management rules for each
service instance which has to be managed by the BaaS technical management system by
taking these service instance-specific management rules as input.

The last collaboration of the BaaS dependability editor is about allowing the software
developer to create a set of resource types to be used by several other tools across the
phases. Resource types are used by the BaaS service editor to optionally specify the
resource requirements of a BaaS service type at development time. They are also integrated
They are also integrated into the BaaS legacy profile tool. The BaaS commissioning tool also
makes use of them to specify the resource capabilities of BaaS containers.

4.3.5 Functional View of the Engineering Phase
This section describes the functional building blocks of the BaaS SDK during the engineering
of BaaS service instances and the wiring of them. It also covers some of the collaboration
scenarios of these building blocks.

4.3.5.1 BaaS Engineering Tool

The BaaS engineering tool is used to create a functional model of a BaaS system of service
instances and their wiring. In addition it generates all artifacts like the BaaS service software
packages and their specific management rules and stores them for later usage during the
commissioning and operation phases.

Responsibilities Actor Collaborations

Use the information of the BaaS service information storage system
engineer

BaaS service information
storage, query wizard

Search/browse for (complex) value types and the BaaS services
behind.

“ BaaS service information
storage

Search/browse/query and load the developed and available BaaS
service types.

“ query wizard

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 74

Responsibilities Actor Collaborations

Search/browse the defined and available BaaS Constraints of BaaS
services (e.g. their specified dependability quality properties).

“ BaaS service information
storage

Use the available engineering information of the BaaS service
instance registry of the current BaaS system installation.

system
engineer

Baas service instance
registry

Specify queries to retrieve a set of BaaS service instances meeting
certain BaaS data point (instance) criteria or certain BaaS
Constraints.

“ “

Create and specify BaaS service instances according to the
following pre-defined options supported by the engineering tool.
Store the BaaS service instances.

system
engineer

BaaS service instance
registry

Select the communication protocol of a created BaaS service
instance (e.g. CoAP, REST, DPWS).

“ none

Select the communication pattern of a BaaS service instance with
respect to its exposed data points (e.g. from the options like
get/set, publish/subscribe, unsolicited set).

“ “

Select the activity model of the BaaS service type (e.g. active (i.e.
the value computation of a data point is triggered on a regular
basis independently from any specific request) or passive (i.e. the
value computation is triggered on demand on serving the request
of another BaaS service instance).

“ “

Select the security options (e.g. encryption of values,
authentication, replay protection (e.g. by using challenge-
response)).

“ “

Specify the security access model to the BaaS service instance and
its exposed data points (e.g. by specifying the required role(s) in
order to get access to a data point of the BaaS service instance.

“ “

Select the supported constraints specifying the dependability
qualities of service instances.

“ “

Set the configuration properties/parameters of a BaaS service
instance.

“ “

Store the BaaS service instances. “ BaaS service instance
registry

Create a functional model of the whole BaaS system according to
certain composition rules and constraints. Store the functional
model.

system
engineer

constraint checker, BaaS
service instance registry

Wire BaaS service instances to each other according to their BaaS
data point (input/output) relations.

“ none

Check the consistency of communication patterns of wired BaaS
service instances.

“ constraint/ consistency
checker

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 75

Responsibilities Actor Collaborations

Check the consistency of dependability constraints across services
instances (e.g. a highly-available services instance cannot depend
on values from less-available service instances)

“ constraint/ consistency
checker

Store the information about the wiring of BaaS service instances. “ BaaS service instance
registry

Add and store additional context information to the data points of
BaaS service instances. (e.g. location)

“ BaaS service instance
registry

Generate the software package of each BaaS service instance. system
engineer

code generator, software
build system

Generate the service adaptor(s) and glue code to integrate
adaptors with the service core of a BaaS service type.

“ code generator

Generate the communication protocol adaptor for a BaaS service
instance and integrate it with the service core of a BaaS service
type (e.g. the CoAP resource tree of the BaaS service of BaaS data
point resources).

“ “

Generate the communication pattern adaptor of a BaaS service
instance to provide its values.

“ “

Generate the communication pattern adaptor of a BaaS service
instance to consume the required values.
For example the BaaS service instance requiring values from
another one gets subscribed if the other BaaS service supports a
publish/subscribe communication pattern. Or it just requests the
value from a BaaS service instance supporting the request/reply
pattern (only).

“ “

Generate the activity adaptor of a BaaS service instance (e.g.
generate an active adaptor including a scheduler/timer to trigger
the current value processing of a data point exposed by a BaaS
service and the storage of the latest value).

“ “

Generate the security adaptor (covering encryption/decryption
(e.g. DTLS) and authentication protocols (e.g. OAuth)).

“ “

Generate the configuration of each BaaS service instance. “ “

Build the service instance software packages. “ software build system

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 76

Responsibilities Actor Collaborations

Generate the management rules for the BaaS system. system
engineer

BaaS dependability editor,
technical management tool

Generate management rule(s) for each BaaS service instance and
possibly for subsets of service instances. This is done by using the
transformation rules of the BaaS dependability editor as
transformation hooks.

“ BaaS dependability editor

Store the management rules as part of the technical management
tool.

“ technical management tool

Bind to an installed BAS legacy systems system
engineer

legacy profile-analysis tool

Bind BaaS data points of BaaS services to BAS legacy systems. “ “

A BaaS engineering tool captures a domain-specific language and associated with a
constraint/consistency checker and code generation and model transformation mechanisms.
Being used by system installers graphical languages seem to be a natural fit. The exchange
artifact (and storage format) among domain-specific languages like a BaaS service editor and
the BaaS service instance registry could be ECore of the Eclipse Modeling framework.

4.3.5.2 Query Wizard

Responsibilities Actor Collaborations

Supports the user in specifying queries on a BaaS service
(instance) registry system engineer BaaS engineering

tool

Supports the user in specifying queries on a BaaS service instance
registry according to certain criteria (e.g. data point
characteristics, service types and their properties like the value
type)

“ “

The query Wizard for BaaS service instance queries could be an own domain-specific
language to construct, trigger and present the result of a BaaS service instance query. It is
used by the BaaS engineering tool which takes the query specification to perform it on the
BaaS service instance registry.

4.3.5.3 BaaS Service (Instance) Registry

Responsibilities Actor Collaborations

Store the functional model of a BaaS system. BaaS engineering
tool

Store the specification of each BaaS service instance and their
wiring.

“ none

Store the generated BaaS software packages for each BaaS
service instance.

“ “

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 77

Responsibilities Actor Collaborations

Perform the search/browse/query on the set of existing service
instances.

“ “

Control the access to BaaS functional model. “ “

Control the access of a BaaS service provider (company or
person) to the whole BaaS functional model of a BaaS system.

“ “

4.3.5.4 BaaS Software Libraries

This section lists the BaaS software libraries to be used by code generation mechanisms
when engineering BaaS services.

Responsibilities of separate software libraries Actor Collaborations

BaaS libraries supporting the usage of BaaS Communication
protocol bindings (e.g. CoAP, DPWS).

BaaS libraries supporting the usage of certain BaaS
communication pattern.

Libraries supporting the usages of different activity models (e.g.
active by regularly calculating the values of the data point, or
passive by calculating values on request).

Libraries for certain security options (e.g. adaptors based on
OAuth, DTLS and an role-based access control model

none Used by the BaaS
engineering tool

4.3.5.5 BaaS Legacy Analysis Tool

The legacy analysis tool is used to collect information about a legacy system to integrate to.
This information can then be used to find a suitable gateway services capable of making the
legacy system available in the BaaS domain. As this task is highly depending on the legacy
technology it needs to be implemented individually for each.

Responsibilities Actor Collaborations

Analyze software components of a legacy system to get an
automated overview about APIs. system engineer none

4.3.5.6 Collaborations at Engineering Time

4.3.5.6.1 Creating a Functional Model

The following Figure 4-18 shows the collaborations of functional building blocks in order to
create a functional model at engineering time.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 78

Figure 4-18: Collaborations of the BaaS Engineering Tool

The first collaboration captures the creation of a service instance. It is straightforward by
letting the system engineer use the BaaS engineering tool to search the BaaS service
information storage for certain service type she wants to create instances of by using a
query. The system engineer uses the engineering tool to specify the properties of the newly
created service instance (like the communication protocol and pattern, its activity model, its
configuration properties and dependability quality attributes).

The second collaboration is about wiring matching service instances. Wired service instances
have to match according to their input/output relations, along their communication patterns
and their dependability quality attributes. Resolving service instances matching the
input/output relation of a certain service instance is also performed by queries on the set of
existent BaaS service instances stored by the BaaS service instance registry. The BaaS
constraint checker of the BaaS engineering tool supports checking constraints and the
consistency of the whole functional model, e.g. by checking whether the dependability
quality attribute settings of wired service instances are consistent to each other.

4.3.6 Functional View of the Commissioning Phase
The commissioning phase covers the deployment, the installation and the update of a BaaS
system. The first step of installing a BaaS system is to create a deployment/system model. It
specifies which BaaS containers have to be installed on which computing nodes. In addition,
BaaS service instances have to be assigned to BaaS containers. Subsequently, the

sd Create a functional model

:BaaS Engineering
Tool

:BaaS Serv ice
Information

Storage

:BaaS Serv ice
Instance Registry

:System
engineer

:BaaS Serv ice
Query Wizard

:BaaS Constraint
Checker

(Engineering)

1: Create a Service instance()

1.1: Create a Service type query() 1.2: Perform the query()

1.3: Specify communication options (protocol, pattern) of the service instance

1.4: Specify the activity model of the service instance()

1.5: Specify the configuration settings()

1.6: Specify optional properties (e.g. security, data point location)

1.7: Set dependabil i ty quality attributes()

1.8: Store the service instance()

2: Wire service instances()

2.1: Create a service instance query()

2.2: Search for certain service instances()

2.3: Resolve input/output relation queries of a service instance()

2.4: Wire service instances()

2.5: Check dependabili ty consistency betweem wired instances ()

2.6: Store the information about wired instances()

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 79

deployment model has to be realized by deploying BaaS container software packages to the
computing nodes and installing them. All software packages (including their configuration) of
the BaaS service instances a BaaS container hosts to have to be deployed and installed as
well.

Similarly, deploying any additional BaaS container instance or BaaS service instances after
the initial BaaS system has been setup has to follow the same steps, i.e. updating the
deployment/system model and performing the additional deployments and installations.

4.3.6.1 BaaS Commissioning Tool

The commissioning tool allows creating the deployment/system model according to certain
composition rules.

Responsibilities Actor Collaborations

Create a deployment/system model. system installer BaaS dependability
editor,
BaaS service instance
registry,
constraint/consistency
checker

Create BaaS container instances and specify their resource
capabilities.

“ BaaS dependability
editor

Specify existing computing nodes and their IT properties (e.g.
the IP addresses) and assign the BaaS container instances to
them.

“ none

Load BaaS service instances of the functional model and assign
all service instances to BaaS containers. Resource requirements
of BaaS service instances and resource capabilities of BaaS
containers must be met in a compliant way.

“ BaaS service instance
registry,
constraint/consistency
checker

Set the address of BaaS service instances. Store the information
as part of the BaaS service instance registry.

automatically BaaS service instance
registry

Resolve the address of the service instances a certain BaaS
service instance is wired to. Get the service instance address
from the BaaS service instance registry.

automatically BaaS service instance
registry

Realize the deployment/system model. system installer BaaS container,
computing node

<authorized> Transfer BaaS container software packages to the
computing nodes. Install the software.

“ computing node

<authorized> Transfer the software packages (including the
configuration) of BaaS service instances to the BaaS
container(s). Install the software

“ BaaS container
software package

<authorized> Transfer BaaS software library binaries to the BaaS
container(s).

“ BaaS container
software package

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 80

Responsibilities Actor Collaborations

Install the technical management system. “ technical
management system,
computing node

Deploy the software of the technical management system to
computing node(s).

“ “

Deploy the management rules for BaaS service instances to the
technical management system.

“ “

4.3.6.2 Technical Management System

Responsibilities Actor Collaborations

Start and activate the management functionality according to
deployed configuration and management rules of BaaS services.

system installer BaaS
commissioning tool

4.3.6.3 BaaS Service Instance Registry

The BaaS service instance registry stores the information added to the BaaS service instance
descriptions at commissioning time. The communication address of BaaS service instances is
such an example. This information is needed at commissioning time for wiring BaaS services.
But it is also used and might be updated at operation time. This is also the rationale why it is
kept as part of the BaaS service instance registry.

Responsibilities Actor Collaborations

Serve location and query requests for BaaS service instance
descriptions and communication details (e.g. service address)

BaaS
commissioning tool

none

4.3.6.4 BaaS Container Software Packages

Responsibilities Actor Collaborations

Lifecycle Management of the hosted BaaS service instances of a
running BaaS container.

BaaS
commissioning tool

none

Status monitoring of the hosted BaaS service instances of a
running BaaS container.

“ “

Enforcement of management rule actions (e.g. the activation of a
redundant service instance).

“ “

4.3.7 Functional View of the Operation Phase
At runtime all functional building blocks like BaaS containers, BaaS services, BaaS legacy
gateways, the technical management system and the BaaS instance registry have to start,
get initialized and run. The following sections contain the responsibility of each of them at
operation time.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 81

4.3.7.1 BaaS Service Instance Registry

Responsibilities Actor Collaborations

Serve location and query requests for BaaS service instance
description and communication details (e.g. communication
address)

BaaS service
instances

none

Serve updates of BaaS service instance descriptions (e.g. the
update of the communication address in case a BaaS service
instance is replaced by another instance on another computing
node).

BaaS container technical
management
system

Allow (de-)registering of running BaaS service instances. BaaS container none

4.3.7.2 BaaS Container/Device

Responsibilities Actor Collaborations

 Lifecycle Management and monitoring (start, stop, update, get
status) of BaaS service instances.

automatically technical
management
system

Registration of hosted and running BaaS service instances. De-
registration of stopped BaaS service instances.

Automatically BaaS service
instance registry

 Enforcement of management rule actions (install, uninstall,
update, get information)

technical
management
system

none

<authorized> Access to transfer new versions of software
packages of service instances to the container

system installer BaaS
commissioning tool

4.3.7.3 Technical Management System

Responsibilities Actor Collaborations

Monitor the quality of service (QoS) and compliance of service
level agreements (SLAs) of service instances.

automatically BaaS container

Dynamically reconfigure BaaS containers and BaaS service
instances according to the actions of management rules.

automatically BaaS container

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 82

4.3.7.4 BaaS Legacy Gateway

Responsibilities Actor Collaborations

Start and stop running. triggered by the
BaaS
container/device

none

Send periodic keep-alive messages to the hosting BaaS container. automatically BaaS container

Find and bind required service instances automatically BaaS service
instance registry

find and bind legacy systems system installer legacy analysis tool
(e.g. installation
plan)

4.3.7.5 BaaS Service Instance

Responsibilities Actor Collaborations

Start and stop running. triggered by the
BaaS
container/device

none

Send periodic keep-alive messages to the hosting BaaS container. automatically BaaS container

Find and bind required services automatically BaaS service
instance registry

4.3.8 Functional View of the Optimization Phase

All previous phases have to facilitate some monitoring of the BaaS system in order to able to
do some analysis and optimization later. Normally, optimization results in adapted
configurations of operating BaaS services or the development/engineering/commissioning of
new BaaS services (or even a new version of a BaaS service).

This section will be added as part of the second iteration of the reference architecture
specification.

4.4 Behavioral View
The Behavioral View focuses on the technical communication with virtual data points and
BaaS services. The communication with physical data points depends on and is delegated to
the used underlying field bus, such as KNX, BACnet or any bus developed in future.
Furthermore, the communication is analyzed and described from inside a virtual
communication layer and thereby abstracted from requirements specific to particular
applications. This also means that the established results exhibit the characteristics of
reusable components. This will become evident in Section 4.4.4, where typically usages from
the perspective of an application are composed into more complex application patterns.

The Behavioral View applied the following methodology for the identification of
communication patterns: First, general aspects of communication relevant for BaaS were

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 83

identified and analyzed with respect to their impact. Impacts are mainly consequences with
negative side effects. For example, an impact can be increased effort for implementation,
need for more powerful hardware and the like. These general aspects and impacts are
addressed in Section 4.4.1. Second, the Application Cases from deliverable D02 are taken as
a basis and analyzed with respect to the implied communication by the respective project
partner. Already in this analysis step the general aspects were considered. The results of this
step are Application Case specific tables containing identified need for communication,
including the purpose and the required characteristics. These tables are documented in
Section 4.4.2. Third, the tables were discussed and updated until a unified understanding
was achieved. Afterwards, multiple occurrences of communication with same characteristics
were identified and proposed as communication patterns needed in a BaaS reference
architecture and any BaaS platform implementation respectively. This major outcome of the
Behavioral View is documented in Section 4.4.3. Last but not least, the Behavioral View used
these identified communication patterns to compose more or less complex communication
patterns from the application point of view. These can be regarded as recommendations, i.e.
a developer may lookup whether an application pattern is proposed that matches his needs
and then adopt it.

4.4.1 General Aspects of Communication and their Impact
Before the Application Cases as documented in deliverable D01 [4]are analyzed with respect
to communication requirements, general aspects of communication and their impact on the
operation must be understood and considered. This is of major importance, because such
requirements imply design decisions on a conceptual level and these have to be followed by
any realization of the BaaS reference architecture. Further, certain design decisions can
result in considerable additional implementation efforts, additional expenses for more
powerful building automation hardware, reduced performance in the operation phase or
even limited scalability.

In the following, general aspects are grouped into areas of interest. Each area introduces its
scope, explains the respective impacts of design alternatives in the context of building
automation systems and, if possible, indicates a favorable design alternative. Any concrete
implementation of the BaaS reference architecture may arrive at a different trade-off and
may deviate from these recommendations.

State and Session Management: This area focuses on two closely related aspects. The first
aspect is whether the communication requires management of state information, i.e.
whether the entities involved in the communication have to create, maintain, synchronize
and cleanup information that is only required to enable the communication at all. The
second aspect is whether the communication provides a session concept, i.e. whether it is
connection-oriented or connectionless. It is well-known that connection-oriented protocols
such as TCP actually manage state information. For example, during connection setup the
state information is allocated and initialized by the entities, during communication phase it is
implicitly synchronized and updated by adding data to exchanged messages and this state is
finally cleaned up in the connection teardown phase. In essence this means that
communication providing a session concept often relates to connection-oriented and
stateful communication. This potentially includes a delay imposed by the connection setup
phase before communication of business data can start. Further, the additional teardown
messages are necessary to clean up and avoid indefinite allocation of resources. Both of
these impacts must be balanced with the total volume of business data to be transmitted

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 84

and the resources available at the entities, especially if these are building automation
components with hardware constraints. However, any secure communication will require
management of state information at the endpoints, which may be realized on higher layers,
e.g. by BaaS services.

An alternative to connection-oriented is connectionless communication. This is also known
as datagram based communication. In this type of communication there is neither a
connection setup nor teardown phase; any business data is directly communicated between
the entities. In essence, it allows immediate communication between entities in a, at least
potentially, stateless fashion. However, lack of reliability on the communication layer may
impose higher implementation efforts for all services, which can be mitigated or even
balanced by a model-based service development approach which is followed by BaaS.
Whether the communication can be truly stateless depends on design decisions in other
areas as well as on decisions made during implementation of concrete BaaS services.

In the context of building automation systems where small to medium volumes of business
data is expected to dominate the communication between constrained hardware
components, connectionless communication in stateless fashion seems favorable. If
enforcing statelessness on communication layer implies management of state information
on higher layers, e.g. by BaaS value-added services then these should favor a soft-state
approach. This means, any information about state is maintained for limited period and
must be explicitly kept alive by some “heart-beat”. Otherwise the state is automatically
reclaimed and the respective resource can be freed. Such a principle is adopted, for
example, by both, BACnet and CoAP.

Temporal Dependency: This aspect mainly questions whether the initiator of a
communication will strictly depend on the finally established result. For example, an initiator
may not be in position to continue its work without a response to its sent request, e.g.
sensing the current feed-flow temperature. In such cases a dependency exists, which
mandates for an adapted handling of messages on the communication layer in terms of
time. In BaaS, such dependencies are related with the concept of synchronous
communication in order to reflect the fact that the initiator is blocked until the
communication succeeds. If no such dependency exists, the communication can take place in
the background, which also means that it can be asynchronous.

Reliability of Delivery: This aspect typically relates to the State and Session Management
area above. This is because messages lost due to transmission failures, distortions or even
hardware outages need to be repeated to achieve reliable delivery. This repetition typically
implies numbering of messages, caching of sent messages that are yet not confirmed to be
successfully delivered, additional messages and network load for confirmation of reception
etc. To summarize, it typically implies management of state including the respective impacts.
Further, it must be noted that it is impossible to establish absolute reliability over a best-
effort communication network.

In the context of building automation systems with its constrained resources it is, therefore,
favorable to use reliable communication where necessary and otherwise use unreliable
communication; the capability to cope with failures is anyhow required. In BaaS, the
principle to opt for reliable or unreliable communication as appropriate for the respective
application is named selective reliability. This principle is detailed below.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 85

The following cases of selective reliability are distinguished. The two major characteristics of
selective reliability are the reliability style and confirmation style as summarized by the
following tables.

Reliability Style Description

Mandatory unreliability Any message sent must not be confirmed. This means that there is
no possibility foreseen by the communication layer to check and
confirm delivery. This style implied no overhead at all.

First off, this style is mainly mentioned for sake of completeness.
No communication pattern identified by the Behavioral View uses
this style.

Mandatory reliability Any message sent must be unconditionally confirmed by some
mechanism. This means that it is not foreseen by the
communication layer to disable the confirmation; even not for
some messages. This style can imply overhead on the
communication network.

Optional reliability Any message sent may be confirmed or not. This means that the
communication layer provides an interface to enable and disable
confirmation of delivery. This may be provided on a per message
or session basis.

In BaaS, the mandatory and optional reliability styles are favored.

Confirmation Style Description

Implicit confirmation This style applies if an involved entity “naturally” must react to a
received message by sending a return-message. The reception of
the return-message can be interpreted as a confirmation of
delivery for the initial message. Thus, there is no need for any
additional messages and the confirmation of delivery happens
implicitly. This style avoids unnecessary overhead.

Explicit confirmation This style applies if implicit confirmation cannot be used. This
means, if an entity receiving a message needs not to send a
return-message as a “natural” reaction then additional efforts
have to be taken for confirmation of delivery. In essence, this
entity is forced to send a message solely to confirm delivery,
which implies overhead.

In BaaS, both confirmation styles are equally favorable. However, the implicit confirmation
style should be applied where possible to reduce the load on the communication network.

4.4.2 Analysis of Application Cases
In the following tables we concisely document the communication requirements from the
application case point of view as described above.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 86

The column with the header “Multi.” describes the multiplicity of the communication, i.e.
whether the communication is unicast (UC), multicast (MC), broadcast (BC) or even geocast
(GC).

AC1 - Smart Meeting Room

Description Purpose Type Multi. Requirements

1 Discover required sensors discovery Request/re
sponse

UC or BC Discovery mechanism,
asynchronous, reliable

2 Query required sensors get Request/re
sponse

UC Unique data point
addresses, asynchronous,
reliable

3 Set required actuators set Request/re
sponse

UC Unique data point
addresses, asynchronous,
reliable

4 Event subscription (e.g.
"Notify me when person
enters room")

subscribe request
(Subscribe)

UC or BC Unique data point
addresses, asynchronous,
reliable

5 Event notification (e.g.
"Person entered room")

notify response
(Publish)

UC or BC Unique data point
addresses, asynchronous,
reliable

6 Keep-alive (status of virtual
data points)

continuous
data tracking

request/re
sponse

UC or BC
or MC

Unique data point
addresses, asynchronous,
reliable

AC2 - Predictive Automation

Description Purpose Type Multi. Requirements

1 discover 'meeting room
booking service'

discovery request/re
sponse

UC or BC depends on
implementation-detail

2 Discover sensors and
actuators (temperature, room
heating, electro mechanic
window etc.)

discovery request/re
sponse

UC or BC see above

3 resolve to address name-address
resolution

request/re
sponse

UC or BC depends on
implementation-detail

4 read data point (e.g. sensor
value / temperature)

on demand
data query

request/re
sponse

UC synchronous with timeout,
connectionless,
implicitly acknowledged =
selective reliability

5 write set point (e.g. actuator
value / temperature set value

on demand
data query

request/re
sponse

UC synchronous with timeout,
connectionless,
explicitly acknowledged =

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 87

AC2 - Predictive Automation

of heating) selective reliability

6 register for COV at data point
(e.g. temperature)

registration or
subscription,
continuous
data tracking

request/re
sponse
(with aim
soft-state
publish-
subscribe)

UC synchronous with timeout,
connectionless, explicitly
acknowledged = selective
reliability

7 keep-alive for COV
(e.g. temperature)

registration or
subscription,
continuous
data tracking

request/re
sponse
(with aim
soft-state
publish-
subscribe)

UC asynchronous,
connectionless, explicitly
acknowledged = selective
reliability

8 COV/data point value
(e.g. temperature)

continuous
data tracking

announce
ment (with
aim soft-
state
publish-
subscribe)

UC asynchronous,
connectionless,
unacknowledged =
selective reliability

9 deregister from COV at data
point
(optional, data-point-
friendliness)

deregistration
or un-
subscription,
continuous
data tracking

announce
ment (with
aim soft-
state
publish-
subscribe)

UC asynchronous,
connectionless,
unacknowledged =
selective reliability

10 service shutdown
announcement (e.g. heating
goes down for maintenance +
dependent-service-
friendliness)

deregistration
or
unsubscriptio
n

announce
ment

UC or
MC

asynchronous,
connectionless,
unacknowledged =
selective reliability

AC3 - Detection of anomalies of a central water heating

Description Purpose Type Multi. Requirements

1 discover all service instances
of the monitoring service that
provide needed data points:

discovery request/re
sponse

UC or BC depends on
implementation-detail

2 ambient temperature sensor subscription request/re
sponse

UC asynchronous,
acknowledged

3 feed flow water temperature
sensor

publishing publish UC asynchronous ,
acknowledged

4 return flow water
temperature sensor

on demand
data query

request/re
sponse

UC synchronous with timeout,
acknowledged

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 88

AC3 - Detection of anomalies of a central water heating

5 register for notifications from
discovered data points

on demand
data query

request/re
sponse

UC or
MC

asynchronous,
acknowledged

6 publish notification unsubscribe announce
ment

UC or
MC

asynchronous,
unacknowledged

AC4 - Detecting how heating or cooling behave in contrast to the scheduled temperature set points of a
room

Description Purpose Type Multi. Requirements

1 discover service instances that
offer needed data points i.e.
valve positions of the
heating/cooling fan-coil,
indoor temperature and
temperature schedule

discovery request/re
sponse

UC or BC depends on
implementation-detail

2 subscribe for notification from
needed data point

subscription subscribe UC asynchronous ,
acknowledged

3 publish notification publishing publish UC asynchronous ,
acknowledged

4 read data point on demand
query of data
point

request/re
sponse

UC synchronous,
acknowledged

5 keep-alive check for
notifications

subscription request/re
sponse

UC or
MC

asynchronous,
acknowledged

6 unregister from notifications unsubscriptio
n

announce
ment

UC or
MC

asynchronous,
unacknowledged

AC5 - Adjustment of heating schedule taking into account user presence and feedback

Description Purpose Type Multi. Requirements

1 discover service instances that
offer needed data points i.e.
room temperature,
temperature schedule, room
occupancy, booking
information, user interactions
etc.

discovery request/re
sponse

UC or BC depends on
implementation details

2 subscribe for notification from
needed data points

subscription publish/su
bscribe

UC asynchronous,
acknowledged

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 89

AC5 - Adjustment of heating schedule taking into account user presence and feedback

3 publish notification publishing publish UC asynchronous,
acknowledged

4 write set point set request/re
sponse

UC asynchronous,
acknowledged

5 read data point on demand
data query

request/re
sponse

UC asynchronous,
acknowledged

6 keep-alive check for
notifications

subscription request/re
sponse

UC or
MC

asynchronous,
acknowledged

7 unregister from notifications unsubscriptio
n

announce
ment

UC or
MC

asynchronous,
unacknowledged

AC6 - Energy monitoring for tenants and lessors

Description Purpose Type Multi. Requirements

1 Get devices offering the wanted data
point. In the context of this AC it is used
to find temperature sensors and
metering devices for gas, water and
electricity metering. Additionally it will
be used to identify devices that
authenticate the current user in a
shared room.

Discovery
(centralized)

request
/respo
nse

UC connection-based,
synchronous, reliable

2 Get devices offering the wanted data
point. In the context of this AC it is used
to find temperature sensors and
metering devices for gas, water and
electricity metering. Additionally it will
be used to identify devices that
authenticate the current user in a
shared room.

Discovery
(decentralized
)

request
/respo
nse

BC connection-less,
synchronous,
unreliable

3 Get the latest data from already
discovered devices. This is used to get
the latest data triggered either by a
scheduler (time based) or at the
beginning of a room rental (user enters
room)

request data request
/respo
nse

UC connection-based,
synchronous, reliable

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 90

AC6 - Energy monitoring for tenants and lessors

4 (Un-)Subscribe for a change of value
event. This is used by a monitoring
service to provide a fine granular set of
data related to the consumption of gas,
water and electricity by a certain tenant
or lessor.

(un-)subscribe request
/respo
nse

UC connection-based,
synchronous, reliable

5 Send notice about changed/new values.
This is used by meters to send changed
values to the monitoring service

publish
COV/next
Value notice

publish MC connection-less,
synchronous,
unreliable

AC7 - Building Evacuation Based on Generated Alarm

Description Purpose Type Multi. Requirements

1 Discover all service instances of the
monitoring service that provide needed
data points, e.g. smoke sensor
monitoring, occupancy monitoring,
alarm monitoring, wearable device
monitoring.

discovery request
/respo
nse

UC or
BC

depends on
implementation
details

2 (Un)Register for notifications from
discovered services instances

(un)subscripti
on

request
/respo
nse

UC synchronous with
timeout,
acknowledged

3 Read data point on demand
data query

request
/respo
nse

UC synchronous with
timeout,
acknowledged

4 Keep-alive check for notifications subscription request
/respo
nse

UC asynchronous,
acknowledged

5 Write data point (e.g. fire alarm,
location)

report
incident

announ
cement

GC asynchronous,
unacknowledged,
connectionless

6 Publish notification (for evacuation
service to notify output devices i.e.
speakers, wearable devices etc.)

publishing publish UC asynchronous,
acknowledged

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 91

4.4.3 Identified Communication Patterns

4.4.3.1 CPAT-01: Request Response to GET Data From a Node

Entities Packets Purpose Multi. Properties

CPAT-01 service instance,
virtual data point

request:
GET
information;
response:
business
information

on demand
data query,
discovery,
name-address
resolution

UC · synchronous
with timeout

· connectionless
· implicit ACK

Pattern used to query a data point (e.g. a sensor) by providing a source and destination address. In return to
the query the "business information" is delivered, which can be a sensor value or, e.g. a discovered address.

Examples: - node (A) wants to get a value from a sensor (B), the response is the value
 - node (A) queries a centralized registry (B) to receive information

Figure 4-19: CPAT-01: Request Response to GET Data from a Node

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 92

4.4.3.2 CPAT-02: Request Response to SET Data to a Node

Entities Packets Purpose Multi. Properties

CPAT-02 service instance,
virtual data point

request: virtual
data point;
response: ACK

on demand
data query,
registration or
subscription,
continuous
data tracking

UC · synchronous
with timeout

· connectionless
· explicit ACK

Pattern used to SET a value of a data point, e.g. an actuator value, a subscription or a notification.
B needs to acknowledge all packets. Reliability needs to be implemented at the initiator.

Examples: - node A sets a value at actuator B. An ACK is sent back as a response
 - node A subscribes to a service B, e.g. for a COV node B ACKs the subscription
 - A sends a notification to B, e.g. a deregistration and needs it ACKed

Figure 4-20: CPAT-02: Request Response to SET Data to a Node

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 93

4.4.3.3 CPAT-03: Asynchronous Request Response

Entities Packets Purpose Multi. Properties

CPAT-03 service instance,
virtual data point

request: virtual
data point;
response: ACK

registration or
subscription,
continuous
data tracking

UC · asynchronous
· connectionless
· explicit ACK

Pattern used to send a request to a node in a non-blocking way. Receiver needs to ACK all packets

Examples: - A sends a notification to B, e.g. a keep-alive packet

Figure 4-21: CPAT-03: Asynchronous Request Response

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 94

4.4.3.4 CPAT-04: Asynchronous Notification

Entities Packets Purpose Multi. Properties

CPAT-04 service instance,
virtual data point

Announcement:
virtual data
point

Optional
response: ACK

deregistration
or
unsubscription,
continuous
data tracking

UC · asynchronous
with timeout

· connectionless
· optional ACK

Non-blocking pattern used for sending a notification to a node. ACK is optional

Examples: - Sensor (A) sends changed value to subscribed nodes (B)
 - Node (A) sends deregister to sensor (B)

Figure 4-22: CPAT-04: Asynchronous Notification

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 95

4.4.3.5 CPAT-05: Asynchronous Message to a Group of Receivers

Entities Packets Purpose Multi. Properties

CPAT-05 service instance, all
service instances

message to:
subscribers
multicast group

deregistration
or
unsubscription,
announcement,
continuous
data tracking

MC · asynchronous
· connectionless
· explicit ACK

Pattern used to asynchronously send a messageto a group of receivers. It comes in two flavors (see figures
below): 1) IP Layer MC and 2) AL Multicast

Examples: - Gracefully deregister via Multicast/broadcast in order to notify a whole group
 about you leaving.

Figure 4-23: CPAT-05: Asynchronous Announcement to a Group of Receivers (1)

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 96

Figure 4-24: CPAT-05: Asynchronous Announcement to a Group of Receivers (2)

4.4.3.6 CPAT-06: Broadcast to all Nodes

Entities Packets Purpose Multi. Properties

CPAT-06 service instance, all
service instances

request to:
virtual data
point semantic
filter
expression;
response:
virtual data
point

discovery BC · synchronous
with timeout

· connectionless
· explicit ACK

Pattern used to synchronously send data to all other hosts

Examples: - node A needs to discover other services

4.4.4 Composition of Communication Patterns to Application Patterns
In this section application patterns are composed from the identified communication
patterns as described in Section 4.5.3.

4.4.4.1 APAT-01: On Demand Data Point Query / Get Value Request

It is assumed that the service initiating the query depends on the result, i.e. the service waits
until the value is successfully queried or the query finally and entirely fails.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 97

This application pattern is realized by one step and covered by the following communication
pattern.

Step No. Used CPAT Step Description Comments and Rational

1 CPAT-01 This communication
pattern is made for such
applications and
completely covers the
application pattern.

This communication pattern directly matches all
requirements of the application pattern. It operates
synchronously with timeouts, which covers the
aspect "the service waits until". Further, there is an
implicit confirmation of success, because the
reception of the value in response to the query
indicates success. However, if there are serious
problems, e.g. on the communication layer and the
query times out then it is up to the service to decide
how to proceed. For example, the service can decide
that the query entirely failed and escalate the
problem to a more abstract level, or start to retry
the query (which may just delay the final failure of
the query).

4.4.4.2 APAT-02: Reliably Set a Value at a Data Point / Set Value Request

It is assumed that the data point written controls some building automation actuator. Thus,
it is essential to the service initiating the write that the write is reliably performed. This
means, the service expects a confirmation that the write was executed and the service waits
until either a confirmation is available or the write finally and entirely fails.

This application pattern is realized by one step and the covered by the following
communication pattern.

Step No. Used CPAT Step Description Comments and Rational

1 CPAT-02 This communication
pattern is made for such
applications and
completely covers the
application pattern.

This communication pattern directly matches all
requirements of the application pattern. It operates
synchronously with timeouts, which covers the
aspect "the service waits until". Further, there is an
explicit confirmation of success by means of an
acknowledgement message. This additional message
is required, because there is no necessity for the
actuator to respond to the write request other than
to explicitly indicate success. However, if there are
serious (communication) problems (e.g., write
request or acknowledgement message gets lost), the
write request times out and it is up to the service to
decide how to proceed. Possibilities to proceed are
already indicated in the context of APAT-01.

4.4.4.3 APAT-03: Publish/Subscribe for Change-of-Value Notifications

A service wants to monitor the temperature of, e.g. a room and timely react to changes. To
avoid high network loads, the service subscribes at the respective data point for so called
change-of-value (COV) notifications. As the service depends on the successful subscription,
the subscription must be performed reliably. Because the subscription is realized in a soft-

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 98

state manner, i.e. it automatically times out unless it is explicitly kept alive by the service,
the service periodically sends “keep-alives” as a background task.

This application pattern is composed of the following steps and communication patterns.

Step No. Used CPAT Step Description Comments and Rational

1 CPAT-02 This communication
pattern covers the
subscription for COV-
notifications.

Because the service depends on the subscription and
as there is no necessity for the respective data point
to respond to the subscription request other than to
confirm success, a synchronous communication
pattern with timeouts and explicit acknowledgement
is required. In essence, CPAT-02 exactly fulfils these
core requirements.

2 CPAT-03 This communication
pattern covers the keep-
alive of COV-
subscriptions.

After the subscription is established, it must be kept
alive to indicate the data point that the service is still
operational. The keep-alive of the subscription can
be performed as a background task and does not
depend on very timely responses. However, the
service should be enabled to identify when the data
point is no longer operational, which mandates for
explicit confirmation that a keep-alive message was
received. Therefore, an asynchronous
communication pattern with explicit
acknowledgements is appropriate; CPAT-03 perfectly
fulfils the stated needs.

3 CPAT-04 This communication
pattern covers the COV-
notification of the
service.

Once the data point detects a changed value, it
needs to notify all subscribers about this COV.
Dependent on the service requirements, the delivery
can be unreliable or reliable. Irrespective of
reliability, the notification of the subscribers can be
performed concurrently and asynchronously. The
CPAT-04 fulfils these requirements as it is an
asynchronous communication pattern that
selectively supports reliability. This means,
acknowledgements to be sent by the subscribed
service can be optionally required (turned on). If
reliability is activated then the retry-limits for the
COV-notification must have been agreed on at
subscription point in time.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 99

Step No. Used CPAT Step Description Comments and Rational

4 CPAT-04 This communication
pattern covers the
friendly unsubscription
from COV-notifications.

As introduced above, the subscriptions are soft-
state, i.e. that the data point automatically
unsubscribes any service from which no keep-alive
was recently received. However, the service behaves
very nicely and explicitly unsubscribes from COV-
notifications, which gives the data point the
opportunity to promptly free resources. As the
service neither depends on the success of the
unsubscription nor on any timely unsubscription, it
can be performed asynchronously and unreliably.
COV-notifications that are already in transit or
transmitted due to failed unsubscription can be
identified and silently ignored by the service (if still
operational at all). In case the explicit unsubscription
fails, a fallback to the implicit soft-state-based
unsubscription is sufficient. The CPAT-04 with
acknowledgements disabled matches the described
requirements.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 100

5 Perspectives
Perspectives serve to bring considerations into the architecture that have implications across
different, but not necessarily all, architectural views. The insights gained in this process can
be used to refine and modify the views. Perspectives can act as a store of knowledge, guide
and memory aid. [3]

5.1 Security Perspective
The security perspective is concerned with the security and privacy implications in the BaaS
reference architecture. In the following, we will consider information and communications
security. In this context, privacy refers to the protection of information about natural
persons only.

We do not consider operational security. Additionally, we will assume the physical security
of the BaaS components. Communication over unsecured networks will be examined.

For implementations of this reference architecture, varying preconditions could result in
diverging requirements and security ambitions.

5.1.1 Threat Model
There are various reasons for introducing security mechanisms into the reference
architecture.

As the BaaS system will operate on data capable of identifying individuals, a possibility to
enforce privacy mechanisms is required. Security systems can also help in enforcing safety
properties, e.g., by providing appropriate access authorization on sensitive interfaces.

On the business side, BaaS operators may want to protect data access as a business model.
The protection of investment, e.g., regulating access to interfaces, may also be considered.

As we allow communication over unsecured networks, active and passive attacks on
network traffic need to be mitigated. Also, the possibility of unauthorized access to network
facing interfaces needs to be addressed.

5.1.2 Concept
The access to the information and functionality of a building automation system system has
to be authorized. This authorization happens at the access to the exposed value of data
points – those are the interface of the service offering of data points.

services are the active components in BaaS. Therefore, we need to authenticate services in
order to make an authorization decision when a service accesses the data point value of
another service.

To achieve this access control, data point values and services need to be augmented with
permission information. When a service accesses a data point, the permissions of the service
will be checked against the access control rule defined for this data point value. Since data
points themselves are offered by services, a service building block, the security adapter, is
used perform this permission check. Due to the security adapter, services are not required to
implement authorization logic themselves.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 101

The authorization mechanism should support the delegation of authorization. This allows a
service B to request a resource on behalf of another service A or a user. The authorization
decision will then be taken according to the permissions of service A or the user respectively.
The delegation pattern allows cascading the access to data and its authorization. Cascading
is used in scenarios where the data access traverses multiple abstraction layers.

The authorization permissions should be designed early in the lifecycle (c.f. Section 4.1.) to
facilitate a security-aware design process. In order to achieve reusability and simplification,
the permissions should be identifiable and stored in a repository.

5.1.3 Security During the Lifecycle
We will show what steps have to be taken during the different phases in the lifecycle in
order to define and achieve security goals.

5.1.3.1 Development Phase

During the development of a data point, default access rights should be set on the data point
values in order to establish access control. This allows providing a secure default access
policy, while reducing burden in the later phases. This default may be modified during the
engineering phase. The access permissions are referenced by data point descriptions and
contain the following information:

· Unique ID
The ID is used to identify and reuse permissions in different data point descriptions.

· Read-or-write
Specifies if this permission controls read or write access

· Description text for human understanding
This description explains the intended use of the permission.

· [Reference to data point values]
The permission may reference the data point values it is used for in order to simplify
searching for and reusing existing permissions.

· [Reference to services]
The permission may reference the services it is used for in order to simplify searching
for and reuse existing permissions.

 A repository of these permissions allows reusing them and simplifying the permissions
structure.

Additionally, services can be grouped by their security and privacy properties. The
description of this behavior in machine readable form allows reusing that information to
create segregated information domains during the engineering of authorization permissions.

5.1.3.2 Engineering Phase

In the engineering phase the configuration of permissions takes place. The exact access
rights have to be determined and configured. The default values may be modified to specify
appropriate access control rights.

For example, reusing the service privacy properties of the development phase allows
building collections of services, which share data only with other certified services. This way,
service groups of privacy preserving services can be created and privacy goals can be
achieved.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 102

A security adapter provides functionalities such as authorization for use by services, in order
to not to require each service to implement access control correctly. This module will also to
be able to handle revocation of access rights. Additionally, the security adaptor includes a
security protocol facility providing encryption and message authentication capability for use
in the operation phase.

5.1.3.3 Commissioning Phase

During commissioning, the security adapters are provisioned with credentials such as
certificates. These credentials may be used during operation for authentication,
authorization and encryption.

5.1.3.4 Operation Phase

In the operation phase, several components need to fulfill security related functionality.

The security adapter needs to be available to service instances in order to perform access
control of data points. Revoking access rights is possible.

Service instances are authenticated in order to allow secure access control by the security
adapter. Using these mechanisms, access control can be enforced at virtual data points.

End-to-end secure communication between service instances, via the interface offered by
data points, is available. This allows services to be run on arbitrary BaaS devices without
further security considerations. Secure communication is achieved by authenticated
encryption with replay protection. Authenticated encryption is the secure combination of
message authentication and encryption. It provides integrity protection, authentication and
confidentiality.

Any security properties are bootstrapped by the credentials provisioned during
commissioning. Access rights can be revoked by revoking the credentials of a service.
Communication with legacy devices may be unsecured.

Service instances provide audit and logging interfaces.

5.2 Dependability Perspective
Due to the fact that different devices and components are spread across buildings, it is
obvious to think of building automation systems (BAS) as distributed systems. In context of
the BaaS project devices and components are assumed to be represented by services.

Due to services controlling the environment where people live respectively work, it is
necessary to impose requirements on the behavior and quality of the underlying system –
the BaaS platform and the services run in its context. For the reason that applying a service
system in the field of building automation leads to high complexity and dependency
between various services combined to control respective parts of buildings, dependability is
a required aspect which needs to be considered within the BaaS project. Without any
constraints and requirements on the involved services, it is not possible to assure certain
qualities of the complex service system.

The dependability can be summarized by the well known abbreviation RAMS defined in the
norm EN 50126 [16]. RAMS stands for reliability, availability, maintainability and safety.
Reliability is generally a property of a system, which describes how reliable a given
functionality is provided by a system in a particular interval of time free of failures. [17] The

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 103

availability of a technical system is in contrast to the reliability a calculable measure
describing the proportion of time the system was available to the total observed amount of
time [18], [19]. The maintainability describes the required effort to solve a systems
functional issue and can be quantified through the time needed to fix a problem and how
difficult/complex the troubleshooting is. In the context of BaaS we want to focus on
reliability, availability and maintainability. Safety is an important property of distributed
systems too, but in the field of building automation safety critical parts in buildings (e.g. fire
alarm and evacuation systems) are usually regulated and controlled by legal authorities
already.

The dependability in the field of building automation can approximately be considered and
supported on the abstraction levels hardware (computing nodes and network), platform
services and building automation services. The platform and the building automation
services need the physical hardware to be executed and physical networks to communicate
in the distributed environment. The building automation services require a platform to be
managed and run inside the context of building automation, e.g. to access information about
available data points and other services. In the BaaS project we consider dependability in the
context of platform services and building automation services called BaaS platform services
and BaaS services.

The dependability of BaaS services can only be ensured when the BaaS platform services run
dependably. Therefore we consider both levels of abstraction in the investigations of the
BaaS project to enable dependable building automation systems.

5.2.1 Concept
As already stated in the previous section we want to focus on the dependability of BaaS
platform services and the BaaS services. We describe the different concepts for these parts
in the following. The following subsections describe an approach to accomplish
dependability in regard to reliability and availability, whereas the aspect of maintainability is
described in the sections covering the functional view. The defined interfaces and services
help to detect anomalies in the operation of the building automation system and enable the
reconfiguration and adaptation of services in order to ensure a high level of dependability.

5.2.1.1 BaaS Services

BaaS services are executed in the context of the BaaS platform providing among others the
technical management system. The BaaS services need to provide interfaces to the
management system for the following operations in order to be properly managed:

· Monitoring/Alerting
· Configuration/Repair
· Diagnosis
· Self-test

These interfaces have to be implemented and considered along the BaaS lifecycle. Therefore
the BaaS platform should for instance provide skeletons for BaaS services including the
interface definition. The utilization is described more in detail in the functional and lifecycle
view.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 104

5.2.1.2 BaaS Platform Services

The BaaS platform services provide basic utilities and functions in order to support the
operation of BaaS services. Generally, as BaaS services, BaaS platform services have to
provide interfaces for the management operations monitoring, configuration, repair,
diagnosis and self-test. In principle, BaaS platform services should be managed as well (by
using the mentioned interfaces) in order to apply another level of fault-tolerance.
Otherwise, in case of a failure of a BaaS service and a failure of platform service at the same
time, the platform service cannot react/avoid damage as result of the failure of the BaaS
service. We are able to provide a much more dependable system by being able to manage
platform services too.

5.2.1.3 Management Services

The management services are BaaS platform services and form the management system,
which monitors, configures, repairs and distributes the components of a BaaS system. The
technical management system manages BaaS services and BaaS platform services amongst
other managed objects like BaaS container and BaaS devices.

Thus, important management services are:

· Monitoring services,
· Configuration services,
· Deployment and Distribution services,
· Rule Engine services.

We especially want to use the technical management system (see Subsection 3.2.3) to
realize and enable the development, engineering and operation of dependable BaaS
services.

System changes are observed and can be detected by monitoring services covering the
lifecycle of the managed objects in order to (re-)configure, (re-)deploy, repair, analyze and
test these. These system adaptations are enforced by management rules which are executed
and interpreted by a rule engine service after evaluation of defined conditions. The rule
engine service is provided by the technical management system. The execution of particular
rules is triggered by certain events which consist of the observed system changes. Therefore
management rules are defined by a set of corresponding (Event, Condition, Action)-triples.

5.3 Technical Management Perspective
Adapting its behavior to changing conditions and requirements as well as reacting on system
intrusions and faults are targeted key qualities of a BaaS system. From the dependability and
security perspective, it should be equipped with corresponding self-managing capabilities,
which include configuring, reconfiguring, tuning, protecting, and recovering itself constantly
and at the same time keeping the complexity of these tasks hidden from users and
administrators. Thus, a comprehensive automated technical management is required.

Essentially, the management performs an intelligent control loop: automated methods
collect the needed details from the system; these details are analyzed in order to determine
if something needs to be changed; a plan and/or sequence of actions which specify the

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 105

required changes is worked out; and finally the plan is executed. A common knowledge in
form of management information is a basis for the whole management process.

Figure 5-1: Management Control Loop

Thus, in accordance with IBM autonomic computing model (Figure 5-1) [12], the architecture
dissects the management loop into four functional parts sharing common knowledge:

The monitor function provides the mechanisms that collect, aggregate, filter and report
details (such as metrics and topologies) collected from the monitored resources.

The analyze function provides the mechanisms that correlate and model complex situations
(for example, time-series forecasting and queuing models). These mechanisms allow
discovering the IT environment and help predict future situations.

The plan function provides the mechanisms that construct the actions needed to achieve
goals and objectives.

The execute function provides the mechanisms that control the execution of a plan with
considerations for dynamic updates.

While providing the management functions mentioned above, we stick to the rule-driven
management paradigm depicted in Figure 5-2. According to it, the management logic,
carrying out the management process in the operation phase, is established by a set of
exchangeable management rules. These rules contain the management knowledge and are
derived from the system model for a particular BaaS system in accordance with its
constraints and requirement specifications during the engineering phase. A rule storage is
used for storing the derived rules, which are deployed during the commissioning phase.

Figure 5-2: ECA Rules Paradigm

A management rule is structured as an event-condition-action (ECA) construct, which states
the desired management behavior. On a certain event, in case a stated condition is fulfilled,
a corresponding action should be executed. Rule engine is responsible for the evaluation and

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 106

execution of the rules. It receives events generated due to condition changes, evaluates
related rules and triggers respective actions.
Since maintaining dependability of the management system is essential, self-managing
capability is one of the key features of the BaaS system. For this purpose, in order to make
the management process monitorable and controllable, a set of specific management rules
is introduced. These rules are supposed to fire when management actions fail.
The following subsections describe the design and implementation details of these rule-
driven management functions within the BaaS architecture.

5.3.1 Management Infrastructure
The BaaS management infrastructure is depicted in Figure 5-3. It is to distinguish between
the managing and the managed system. The managing system hosts managing processes,
managers, while the managed system is resided by management agents. A manager is the
part of the management process that takes decisions based on collected management
information. The manager monitors and configures the managed system by communicating
with the management agent residing there. Managers can be arranged in a hierarchical
structure when required by the system structure.

A management agent is an entity that collects management information and makes this
information available to the manager. It executes received management commands and
sends notifications. Managers and agents communicate via protocols at the application
layer. The manager-agent relationship adheres to the well-known client-server paradigm.

Figure 5-3: Management Infrastructure

From the management point of view the BaaS system components can be classified into
managed and unmanaged resources.

Unmanaged resources do not directly participate in the BaaS management process, but can
provide valuable information to other managed resources.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 107

Managed resources are the main subject of interest. In practice, they are BaaS nodes, BaaS
containers and BaaS services. Introducing agents means in technical terms that all managed
resources are equipped with a dedicated software application that implements the
management agent functions. A managed resource is classified by a set of predefined types
or classes. This ensures that the management is scalable and allows the seamlessly
integration of new managed resources in the management process.

The actual resources to be managed are represented by managed objects (MOs). Each of
them is identified by an Object Identifier (OID) that is unique and constant throughout its
lifetime. A managed object comprises a set of management variables that can be further
subdivided into status variables and configuration variables. Status variables represent the
management relevant state of a managed resource and can only be read from the
management system. Configuration variables offer the capability of (re-)configuration and
are solely set by the management system. In fact, querying and modifying the management
objects properties is only available in form of reading and writing corresponding status and
configuration variables. What operations on managed management objects will be executed
is predefined by management rules, but still depends on the current system state.

The BaaS system may contain hundreds of managed objects. In order to make management
practically feasible, the concept of a management domain is introduced. Management
domains provide the means of partitioning management responsibility by grouping objects
accordingly to common characteristics. A managed object can belong to several domains
whereas all members of a management domain are managed with respect to the domain-
specific management rules.

All BaaS managed objects are arranged in a distributed hierarchical tree structure, a
management tree that offers a virtual data access structure of management data.

5.3.2 Management Tree

Figure 5-4: Management Tree

A distributed management tree [13] covers the protocol-specific parameters for data
acquisition through specific handler implementations which are realized in the form of self-
contained software components (Figure 5-4). They are dynamically provided at runtime

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 108

respecting the requirements imposed on the monitoring and configuration system. It means,
only those parameters are accessible through the management system that actually have
data consumers. When management data need no longer to be accessible, the
corresponding data handlers are disposed in order to improve system performance.

The management tree forms a virtual data access structure that does not store any kind of
management data, but rather offers a hierarchical view on the data provided by different
management agents. The purpose of a handler implementation is to map management data
to an adequate hierarchical object model abstracting from access operations and event
notification. Data that should be visible within the management space must be provided by
management variables, in the form of status and configuration variables. The configuration
variables are written by the manager in order to trigger the component to adapt its
behavioral state. Changes in state are vice versa reflected by modifying the appropriate
status variables by the component.

The separation between status and configuration accounts for the temporal offset between
status change triggering and the actual execution. Even when the management system
triggers the state change, it is possible that the transition fails or is not executed within the
required time constraint leading to an inconsistency between actual and desired state. The
variable separation allows the system to control and reconfigure itself by monitoring those
actions it has initiated.

Just like any tree data structure, the management tree is a hierarchical structure consisting
of nodes and vertices. We distinguish between interior nodes and leaf nodes. Interior nodes
can have children nodes (i.e. interior and leaf nodes), whereas leaf nodes hold primitive
values. Base value types are: Boolean, Short, Integer, Long, Float, Double, String, Binary and
Object. Nodes can have an Access Control List (ACL), associating operations allowed on those
nodes with a particular principal represented as a String value. Furthermore, nodes can hold
meta data describing the actual nodes and their siblings. Leaf nodes may have default values
specified in their meta data. Allowed access operations (Get, Add, Replace, Delete and
Execute) on nodes are defined by means of meta nodes. Each node of the tree is uniquely
identified by an absolute URI starting at the root node of the tree.

Furthermore, a node has a number of properties. They can always be read; some of them
may also be set at runtime. The properties of interior nodes and leaf nodes are:

Name The node’s name, which must be unique among its siblings. A node can be renamed at
runtime depending on the capabilities of the underlying handler implementation.

Title A human readable title of the node, which is distinct from the node’s name. This
property is optional depending on the implementation that handles the node.

ACL The Access Control List for this node and its descendant nodes.

Version The version number starting at 0, incremented after every modification (for both a
leaf and an interior node). Changes to the value or any of the properties (including ACLs), or
adding/deleting nodes, are considered as changes. The value is read-only. In certain cases,
the underlying data structure does not support change notifications or makes it difficult to
support versions, therefore this property is optional depending on the node’s
implementation.

Timestamp The time of the last change in version. The value is read-only. This property is
optional depending on the node’s implementation.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 109

Data Type The data type of the data that can be held by the corresponding node. Only a leaf
node can be typed.

Mime Type The mime type of the data contained in the leaf node. This property is only
supported by leaf nodes.

Value The value contained in the leaf node. Only leaf nodes can hold values.

Schema The name of the schema defining the subtree structure with this node as root node.

Thus, the whole management process can be reflected in operations on the management
tree, which are limited to node creations, node removals and property assignments. A
management node in the form of an interior or leaf node is an abstraction of the actual
management information. The management tree incorporates brokerage capabilities and
offers a consistent and uniform view of the underlying management data. Each node must
be provided by a data handler implementation. Thereby two different handler
implementations can be distinguished. The first handler implementation type is the basic
one; the management tree itself is equipped with. It restricts the tree structure according to
a predefined schema. Schemas are declarative and can be added or removed at runtime. A
schema specifies and determines the subsequent tree structure. A node may be typed with a
schema at creation time, whereas this particular node represents the root node of this
subtree. If a node is untyped, it is automatically a part of the already declared schema valid
at this part of the tree. A node can only be added, removed or changed if the underlying
schema allows the corresponding modification action. A node can only be added to the tree
if it can be associated with a matching schema node otherwise the node cannot be part of
the tree and node creation fails. This point in the management tree represents the transition
between two schemas, so that the new node must be typed with a new schema valid at this
position. The tree data is only stored in memory and is not persistent.

The other handler type is a protocol-specific handler implementation of an existing
management service or agent. It adapts the management data and offers a hierarchical view
of these data to the consumer. This handler can be added dynamically to the management
tree’s access mechanism and homogenizes the monitoring and configuration data in order to
be in line with the handler’s pre-defined object model.

Interacting with the management tree requires a valid session, which allows atomic or
transactional data access as requested. The client specifies at the very beginning what kind
of session is needed and chooses one of the following three session types:

Shared Session Any number of read-only sessions can run concurrently, but ongoing read-
only sessions must block the creation of an exclusive session on an overlapping subtree.

Exclusive Session Two or more exclusive sessions cannot access the same part of the tree
simultaneously. An exclusive session must acquire a write lock on the subtree, which blocks
the creation of other sessions that want to operate on an overlapping subtree.

Transactional Session A transactional session is the same as an exclusive session, except that
the session can be rolled back at any moment, undoing all changes made so far since the last
transaction point defined by a previous commit call. All participants must accept the result:
rollback or commit.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 110

5.3.3 Overall View

Figure 5-5: Technical Management Overall View

Figure 5-5 depicts how the technical management system is embedded into the overall BaaS
architecture [14]. The complete building automation system basically consists of the physical
infrastructure (sketched on the left hand side), a building automation service hierarchy
deployed on containers and the technical management system. The various parts are spread
over the different layers of the automation hierarchy. The access facade forms a
homogenous view on the resource landscape composed of entities that provide dedicated
functions for the BAS spanning from low-level sensors and actuators to middleware and
finally to the technical management system. Thus, the technical management is extensive
and global, covering all the BaaS layers: management, automation and field.

The core of the system is given by the management tree (sketched on the right hand side)
and its data handlers (e.g. for the rule engine, containers, BACnet and Zigbee) enabling the
homogeneous configuration and monitoring of all relevant managed objects through
corresponding management variables (e.g. lifecycle-state, avg_response_time, timeout). The
bacnet- and zigbee-data handlers are responsible for the protocol dependent management
on the field level. It automatically detects outtakes, defects and other anomalies arising on
the lowest level of the BAS hierarchy. The container-data handler observes and injects all
changes related to the building automation services. Here comes the service lifecycle
management into play caring for the proper operation of all BAS services including for
instance the dynamic binding of services, service deployment, configuration, and
monitoring. It does not only observe the BAS services themselves, but also the environment
like mgmt-extensionservices or the underlying containers, too. The last data handler
contained in the example is the rule engine-data handler as a prominent representative for
data handlers covering the technical management system itself. The rule engine-data
handler monitors and configures the execution of management rules in order to provide a
reliable management process. Specific branches within the management tree are created for
this purpose, which branches contain status variables describing the actions and parameters
executed on the related elements. Start time and end time allow monitoring that rule

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 111

execution succeeds within specific time constraints. This self-managing capability is a key
feature in our implementation providing for self-managing ability.

In order to be compliant with the lifecycle of building automation systems, we utilize the
runtime model of the BAS to automatically derive the management rules and artifacts for
the configuration of the technical management system. Furthermore, the patterns for the
derivation of the rules and artifacts are developed at the development phase, which in turn
are than applied on the transformation of the runtime model in the engineering phase. The
rules and artifacts configure the management system during the commissioning phase when
all BAS services are set up too.

Taking our example into account, the automated management works as follows: the
management tree observes the lifecycle state of the temperature service by means of the
mgmt-exentsionservice. In case any change of the lifecycle state is recognized by the
management tree, corresponding events are generated in order to notify all components
that are subscribed to lifecycle state changes of the temperature service. Let us suppose, the
rule engine is provided with a management rule to react on the changes of this service. As
soon as the state changes, the rule engine receives the corresponding event and evaluates
the respective conditions defined by the management rule. For example, if the state has
changed (event) to uninstalled (condition), the rule engine triggers the redeployment of the
temperature service by calling (action) the deploy service bundle-interface through the
management tree. Another example is the recognition of a new heating BACnet component
on the field level, which in turn results in the deployment of a corresponding heating service.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 112

6 Summary
The document at hand describes the second and final iteration of the BaaS reference
architecture. This reference architecture defines an abstract set of mechanisms and patterns
to provide guidance for the development of concrete BaaS architectures, taking into account
the architectural requirements of the BaaS system.

The BaaS project [1] is targeted to establish a generic service platform for commercial
buildings that integrates traditional building automation and management systems with ICT
infrastructures. This platform supports the development and deployment of novel valued
added services and applications that take advantage of an integrated model of novel and
legacy building systems and the data provided and consumed by them.

The BaaS reference architecture also addresses BaaS technical objectives:

· A structured approach for the generation and deployment of value-added building
services is presented in the Lifecycle View. The view clarifies the artifacts (models,
software,...) created in each phase of the lifecycle of a BaaS system and how those
artifacts depend on each other to generate value added services in a model based
fashion. This reduces the effort needed to create and maintain building automation
systems.

· The Information View defines a BaaS data model which includes additional semantic
information to simplify the engineering of value added services and applications for
the BaaS system and the integration of legacy systems.

· The Functional View defines the building blocks needed in each phase of the lifecycle
to define and generate a BaaS system based on model-based mechanisms. The
functional view captures the interactions of the functional building blocks as
triggered by the actors during the lifecycle. The resulting system allows the analysis,
aggregation and transformation of data in a service-oriented way, where the
engineering is supported by the added semantic information. This view also provides
building blocks for the integration of existing and novel sources of information to
create a “building information sphere”.

· The Behavioral View focuses on the interaction and communication patterns of data
exchanged between BaaS services. Those patterns derived from application cases are
needed to model the distributed communication in a typical building automation
system.

· The Dependability, and Security Perspectives deals with the reliability, availability as
well as with the security of the BaaS system. These qualities are needed as base in
building automation systems and have to be supported by BaaS.

· The Technical Management Management Perspective describes mechanisms to
manage and maintain the availability and reliability of the BaaS infrastructure.

6.1 Modifications in the Second Iteration
The second iteration of the BaaS reference architecture uses feedback from the
implementation of the BaaS platform for a major overhaul of the Information View. We have

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 113

introduced the concept of BaaS features to increase the reusability of the models and have
refined the Building Automation Function as semantic description of datapoints as well as
the modeling of BaaS services. Further, we have consolidated the information provided on
the Technical Management as perspective in a single place and introduced several
clarifications on the Lifecycle View and Security Perspective.

6.2 Requirements Mapping
In the following we present a mapping of the requirements [2] to the architectural views and
perspectives, as well as to the phases of the lifecycle. The preliminary analysis shows, that
we archive a good level of matching. Only few requirements cannot be mapped, which might
be reasoned that the requirement is either to the architecture itself or might be on
technology level.

Req.
ID

Requirement View/ Perspective Phase

Req.
F-01

The BaaS reference architecture shall specify
mechanisms to support network independent
identifiers.

Information View Development,
Engineering,
Operation

Req.
F-02

The BaaS reference architecture shall specify
mechanisms to search for specific entities using
semantic queries.

Functional View Operation,
Optimization

Req.
F-03

The BaaS reference architecture shall provide
mechanisms for authorized access to data and
services.

Security Perspective Development,
Engineering,
Operation

Req.
F-04

The BaaS reference architecture shall support
exchangeable authentication and authorization
mechanisms.

Functional View /
Information View /
Lifecycle View

Development,
Engineering,
Operation

Req.
F-05

The BaaS reference architecture shall specify a
mechanism to support exchangeable encryption
mechanisms.

Functional View /
Information View /
Lifecycle View

Development,
Engineering,
Operation

Req.
F-06

The BaaS reference architecture shall specify
mechanisms to describe and model BaaS entities.

Functional View Development,
Engineering,
Operation

Req.
F-07

The BaaS reference architecture shall specify
mechanisms to extend a basic set of Baas
ontologies and BaaS models.

Functional View Development

Req.
F-08

The BaaS reference architecture shall provide
mechanisms for system monitoring.

Functional View Development

Req.
F-09

The BaaS reference architecture shall specify
mechanisms for creation of instances of BaaS
devices and BaaS services and configuration of the
relations between these instances.

Functional View Engineering

Req. The BaaS reference architecture shall define
mechanisms to specify the basic features of a

Functional View / Engineering

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 114

Req.
ID

Requirement View/ Perspective Phase

F-10 service for the operational phase, like e.g.
communication protocol or authorization
mechanism.

Information / Lifecycle

Req.
F-11

The system built using the BaaS reference
architecture shall provide software components
that implement basic features of a service for the
operational phase, like e.g. communication
protocol or authorization mechanism.

Functional View /
Information / Lifecycle

Engineering

Req.
F-12

The BaaS reference architecture shall specify
mechanisms to support the communication
patterns “request-response”, “publish/ subscribe”
and "eventing (observer)".

Behavioral View Engineering,
Operation

Req.
F-13

The BaaS reference architecture shall specify
mechanisms for group communication.

Information View Engineering,
Operation

Req.
F-14

The BaaS reference architecture shall specify
mechanism to access building automation data.

Information View,
Functional View

Operation

Req.
F-15

The BaaS reference architecture shall specify
mechanisms for implementing user alert services.

Functional View Engineering

Req.
F-16

The BaaS reference architecture shall specify
mechanisms for dynamic deployment and removal
of BaaS services and BaaS devices.

Functional View Operation,
Optimization

Req.
F-17

The BaaS reference architecture shall specify a
mechanism for conflict resolution when accessing
building automation data.

Operation

Req.
F-18

The BaaS reference architecture shall specify
mechanisms to access data and meta data
independently.

Information View Operation

Req.
F-19

The BaaS reference architecture shall support
development of services that use building data
models (building geometry, location and data of
rooms, floors, sensors).

Functional View Operation

Req.
F-20

The BaaS reference architecture shall specify
mechanisms for service lifecycle management.

Functional View Commissioning,
Operation

Req.
N-01

A BaaS platform and a BaaS system must be
implemented in a way compliant with the BaaS
reference architecture.

Development

Req.
N-02

The BaaS reference architecture shall specify
mechanisms for the integration of external
services.

Functional View Development,
Engineering,
Operation

Req. The BaaS reference architecture must define Development

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 115

Req.
ID

Requirement View/ Perspective Phase

N-03 mechanisms for transferring data/information
which should cover common solutions in literature
(xml, json, etc.) and also suitable for custom
solutions.

Req.
N-04

The BaaS reference architecture shall provide
mechanisms for transparent integration of legacy
devices.

Functional View Development,
Engineering

Req.
N-05

The BaaS reference architecture shall follow a
service-oriented paradigm.

Lifecycle View, domain
model

Req.
N-06

The BaaS reference architecture shall provide
mechanisms to secure the data that are collected
and provided.

Security Perspective Operation

Req.
N-07

The BaaS reference architecture should support
the developers in designing a system under
awareness of the dependability.

Dependability
Perspective

Development,
Engineering,
Operation

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 116

7 List of Figures
Figure 3-1: BaaS Domain Model - Top Level View ...15

Figure 3-2: BaaS Domain Model - Data Sub-Model ...16

Figure 3-3: BaaS Domain Model - Ontology Sub-Model ..17

Figure 4-1: BaaS System Lifecycle ...21

Figure 4-2: From BaaS Data Point Types to BaaS Service Instances22

Figure 4-3: Interaction of BaaS Services by Exchanging Data via Resources36

Figure 4-4: Different Abstraction Layers of the BaaS Information Model for Data37

Figure 4-5: BaaS Data Information Model ...38

Figure 4-6: BaaS Feature Information Model ..39

Figure 4-7: BaaS Data Point Information Model ..41

Figure 4-8: BaaS Service Information Model ...42

Figure 4-9: BaaS Service Instance Information Model ...43

Figure 4-10: Overview of a Heating Circuit. ...44

Figure 4-11: A Grundfos UPS 25-60. ..46

Figure 4-12: BaaS Ontologies, Key Concepts and Relations. ..52

Figure 4-13: BaaS Location Ontology ..53

Figure 4-14: Ontology Example: A Feed Temperature Data Point..54

Figure 4-15: Collaborations on Data Points ...69

Figure 4-16: Collaborations about BaaS Service Types ..71

Figure 4-17: Collaborations of the BaaS Dependability Editor ...72

Figure 4-18: Collaborations of the BaaS Engineering Tool ...78

Figure 4-19: CPAT-01: Request Response to GET Data from a Node91

Figure 4-20: CPAT-02: Request Response to SET Data to a Node ...92

Figure 4-21: CPAT-03: Asynchronous Request Response ...93

Figure 4-22: CPAT-04: Asynchronous Notification ...94

Figure 4-23: CPAT-05: Asynchronous Announcement to a Group of Receivers (1)95

Figure 4-24: CPAT-05: Asynchronous Announcement to a Group of Receivers (2)96

Figure 5-1: Management Control Loop ... 105

Figure 5-2: ECA Rules Paradigm .. 105

Figure 5-3: Management Infrastructure .. 106

Figure 5-4: Management Tree .. 107

Figure 5-5: Technical Management Overall View .. 110

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 117

8 References
[1] C. Niedermeier, Ed., “BaaS - Building as a Service.” ITEA Full Project Proposal, 28-Sep-

2012.

[2] Ö. Aydemir, Ed., “D04 BaaS Architecture Requirements.” ITEA BaaS Project, Dec-2014.

[3] N. Rozanski and E. Woods, Software Systems Architecture: Working with Stakeholders
Using Viewpoints and Perspectives. Pearson Education, 2011.

[4] A. Müller, Ed., “D01 Use Case Scenarios and Requirements.” Jun-2014.

[5] Kieback & Peter, “Gebäudeautomation.” [Online]. Available: http://www.kieback-
peter.de/de-de/support-software/woerterbuch-der-gebaeudeautomation.

[6] Kruchten, Philippe, “4+1 architectural view model,” Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/4%2B1_architectural_view_model.

[7] Siemens, “Siemens Glossary.” [Online]. Available:
http://www.fullyengineered.com/journals/Siemens/0-91900-
en_Glossary_and_Abbreviations.pdf.

[8] “Setpoint (control system),” Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/Setpoint_(control_system).

[9] E. J. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, 1. A.
Addison Wesley, 2003.

[10] “ISO 16484-2:2004 Building automation and control systems (BACS) -- Part 2:
Hardware.” ISO/TC 205.

[11] M. Bauer, N. Bui, J. De Loof, C. Magerkurth, A. Nettsträter, J. Stefa, and J. Walewski,
“IoT Reference Model,” in Enabling Things to Talk, A. Bassi, M. Bauer, M. Fiedler, T.
Kramp, R. van Kranenburg, S. Lange, and S. Meissner, Eds. Springer Berlin Heidelberg,
2013, pp. 113–162.

[12] IBM, “An Architectural Blueprint for Autonomic Computing,” IBM, Jun. 2005.

[13] A. Brinkmann, C. Fiehe, A. Litvina, I. Lück, L. Nagel, K. Narayanan, F. Ostermair, and W.
Thronicke, “Scalable Monitoring System for Clouds,” presented at the 6th IEEE/ACM
International Conference on Utility and Cloud Computing (UCC 2013), 3nd
International Workshop on Intelligent Techniques and Architectures for Autonomic
Clouds (ITAAC 2013), Dresden, Germany, 2013.

[14] Malte Burkert, Heiko Krumm, and Christoph Fiehe, “Technical Management System for
Dependable Building Automation Systems,” presented at the 9th International
Workshop on Service-Oriented Cyber-Physical Systems in Converging Networked
Environments (SOCNE) in conjunction with the 20th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2015), Luxembourg, 2015.

[15] A. Pras and J. Schoenwaelder, “On the Difference between Information Models and
Data Models,” Internet Engineering Task Force, 2003.

[16] “EN 50126 - Railway applications - The specification and demonstration of Reliability,
Availability, Maintainability and Safety (RAMS),” European Commitee for
Electrotechnical Standardization, 1999.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 118

[17] M. R. Lyu, Ed., Handbook of Software Reliability Engineering. Hightstown, NJ, USA:
McGraw-Hill, Inc., 1996.

[18] K. Echtle, Fehlertoleranzverfahren. Berlin; Heidelberg; New York; London; Paris; Tokyo;
Hong Kong; Barcelona: Springer, 1990.

[19] A. Immonen and E. Niemelä, “Survey of reliability and availability prediction methods
from the viewpoint of software architecture,” Softw. Syst. Model., vol. 7, no. 1, pp. 49–
65, Nov. 2007.

[20] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, “OWL 2 Web
Ontology Language Primer,” World Wide Web Consortium, W3C Recommendation,
Oct. 2009.

[21] L. Lefort, “Ontology for Quantity Kinds and Units,” World Wide Web Consortium, 2010.

[22] “SSN-XG,” W3C, 2011. [Online]. Available: http://www.w3.org/2005/Incubator/ssn/.

[23] “Project Haystack.” [Online]. Available: http://project-haystack.org/.

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 119

Annex

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 120

A Heating System OWL representation

A.1 Basic Data Type definitions
Basic types are used to describe the format in which BaaS exchanges data. Here, we only
need two basic types, consisting of temperature and throughput, both represented by floats.

A.1.1 Water Throughput
<xs:simpleType name="throughputType">

 <xs:restriction base="xs:float"/>

</xs:simpleType>

<xs:complexType name="throughputRootType">

 <xs:sequence>

 <xs:element type="troughputType" name="throughput"/>

 </xs:sequence>

</xs:complexType>

A.1.2 Temperature
 <xs:simpleType name="temperatureValueType">

 <xs:restriction base="xs:float">

 <xs:minInclusive value="-60.0"/>

 <xs:maxInclusive value="100.0"/>

 </xs:restriction>

 </xs:simpleType>

<xs:complexType name="temperatureRootType">

 <xs:sequence>

 <xs:element name="temperature" type="temperatureValueType"/>

 </xs:sequence>

</xs:complexType>

A.2 Specified Features

A.2.1 Temperature Sensor
 <rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 121

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensor">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature" />

 <rdfs:label
rdf:datatype="&xsd;string">TemperatureSensor</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasExposedValue" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorTemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorFeatureBAF2" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <description rdf:datatype="&xsd;string">Measures a
temperature.</description>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorTemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Exposed_Value" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperatureRootType" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#composedOf" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 122

 <dataTypeSource rdf:datatype="&xsd;string">D:/baas-
int/BaaSEditors/XSDFiles/chris.xsd</dataTypeSource>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Basic_Data" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasExtendedValueCharacteristic" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperatureValueCharacteristic2" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperatureValueType" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataTypePath
rdf:datatype="&xsd;string">temperatureRootType.temperatureValueType
temperature</dataTypePath>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorFeatureBAF2">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorSensing" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorSensing">

 <rdfs:label rdf:datatype="&xsd;string">Sensing</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 123

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperatureValueCharacteristic2">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Extended_Value_Characteristic" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasQuantity" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorTemperatureUnit" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasUnit" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorDegreeCelsius" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasRange" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensortemperatureValueCharacteristic2Range"
/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <writeability rdf:datatype="&xsd;boolean">false</writeability>

 <readability rdf:datatype="&xsd;boolean">true</readability>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorDegreeCelsius">

 <rdfs:label rdf:datatype="&xsd;string">DegreeCelsius</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Unit" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensorTemperatureUnit">

 <rdfs:label
rdf:datatype="&xsd;string">TemperatureUnit</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Quantity" />

 </owl:Class>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 124

</rdf:RDF>

A.2.2 Flow Setpoint
 <rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#FlowSetpoint">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature" />

 <rdfs:label rdf:datatype="&xsd;string">FlowSetpoint</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasExposedValue" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointdesiredThroughput" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointFeatureBAF4" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <description rdf:datatype="&xsd;string">Describes the desired
throughput of some water-processing device, such as a valve or a
pump.</description>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointdesiredThroughput">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Exposed_Value" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughputRootType" />

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 125

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#composedOf" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughput" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataTypeSource rdf:datatype="&xsd;string">D:/baas-
int/BaaSEditors/XSDFiles/chris.xsd</dataTypeSource>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughput">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Basic_Data" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasExtendedValueCharacteristic" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughputValueCharacteristic4" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointtroughputType" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataTypePath
rdf:datatype="&xsd;string">throughputRootType.troughputType
throughput</dataTypePath>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointFeatureBAF4">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 126

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointSetPoint" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointSetPoint">

 <rdfs:label rdf:datatype="&xsd;string">SetPoint</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughputValueCharacteristic4">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Extended_Value_Characteristic" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasQuantity" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointVolumePerTimeUnit" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasUnit" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointCubicMeterPerHour" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasRange" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointthroughputValueCharacteristic4Range" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <writeability rdf:datatype="&xsd;boolean">true</writeability>

 <readability rdf:datatype="&xsd;boolean">true</readability>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointCubicMeterPerHour">

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 127

 <rdfs:label
rdf:datatype="&xsd;string">CubicMeterPerHour</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Unit" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FlowSetpointVolumePerTimeUnit">

 <rdfs:label
rdf:datatype="&xsd;string">VolumePerTimeUnit</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Quantity" />

 </owl:Class>

</rdf:RDF>

A.3 Specified Data Point Types

A.3.1 Temperature Sensors
The temperature sensors measure temperatures in different parts of the heating system.
Since they are only differentiated by different semantic tags, only one of the sensor’s OWL
representations (that of the feed temperature sensor) will be shown here.

 <rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

 <!--http://www.baas-itea2.eu/dp/ucs#Data_Point_Type-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensor">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Data_Point_Type" />

 <rdfs:label
rdf:datatype="&xsd;string">FeedTemperatureSensor</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 128

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorBAF2" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <description rdf:datatype="&xsd;string">A temperature sensor
connected to the heating system feed pipe.</description>

 <extendedDPT rdf:datatype="&xsd;string"></extendedDPT>

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#Feature_Binding-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensor" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperatureBAF1" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#Building_Automation_Function-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperatureBAF1">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 129

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorHeating" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorWater" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#BAF_Domain-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorHeating">

 <rdfs:label rdf:datatype="&xsd;string">Heating</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorWater">

 <rdfs:label rdf:datatype="&xsd;string">Water</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#Building_Automation_Function-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorBAF2">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 130

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFContext" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorHeatingSystem#1" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperatureSensor" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorSensor" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#BAF_Type-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorFeedTemperatureSensor">

 <rdfs:label
rdf:datatype="&xsd;string">FeedTemperatureSensor</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Custom_BAF_Type" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorSensor">

 <rdfs:label rdf:datatype="&xsd;string">Sensor</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

 <!--http://www.baas-itea2.eu/dp/ucs#BAF_Context-->

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#FeedTemperatureSensorHeatingSystem#1">

 <rdfs:label
rdf:datatype="&xsd;string">HeatingSystem#1</rdfs:label>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 131

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Context" />

 <subSystem rdf:datatype="&xsd;string"></subSystem>

 <subSubSystem rdf:datatype="&xsd;string"></subSubSystem>

 </owl:Class>

</rdf:RDF>

A.3.2 Boiler
 <rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#Boiler">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Data_Point_Type" />

 <rdfs:label rdf:datatype="&xsd;string">Boiler</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerDesiredTemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasInputRelation" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerOutsideTemperatureInput" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasInputRelation" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerReturnTemperatureInput" />

 </owl:Restriction>

 </rdfs:subClassOf>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 132

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasInputRelation" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerFeedTemperatureInput" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerBAF4" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <description rdf:datatype="&xsd;string">A boiler and heating
controller, taking input from three temperature sensors (feed, return,
outside). A desired input temperature is settable via a temperature
setpoint.</description>

 <extendedDPT rdf:datatype="&xsd;string"></extendedDPT>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerDesiredTemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSetpoint" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerDesiredTemperatureBAF0" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerDesiredTemperatureBAF0">

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 133

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerHeating" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerHeating">

 <rdfs:label rdf:datatype="&xsd;string">Heating</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerOutsideTemperatureInput">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Input_Relation" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataTypeFilter" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerOutsideTemperatureInputDataTypeFilter" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataPointFilter rdf:datatype="&xsd;string">SELECT DISTINCT *
WHERE { {{ SELECT DISTINCT ?dp WHERE { ?dp rdfs:subClassOf
:Data_Point_Type . ?dp rdfs:subClassOf ?bafRes . ?bafRes
owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes . ?hasRes
owl:allValuesFrom ?value . ?dp3 rdfs:subClassOf :Data_Point_Type .
?dp3 rdfs:subClassOf ?bafRes3 . ?bafRes3 owl:allValuesFrom ?baf3 .
?baf3 rdfs:subClassOf ?hasRes3 . ?hasRes3 owl:allValuesFrom ?value3 .
FILTER (?value = :HeatingSystem#1 && ?dp = ?dp3 && ?value3 =
:OutsideTemperatureSensor) . } } .} UNION {{ SELECT DISTINCT ?dp
WHERE { ?hasBaf rdfs:subClassOf :Feature_Binding . ?dp rdfs:subClassOf
?ftb . ?ftb owl:allValuesFrom ?hasBaf . ?hasBaf rdfs:subClassOf
?bafRes . ?bafRes owl:allValuesFrom ?baf . ?baf rdfs:subClassOf
?hasRes . ?hasRes owl:allValuesFrom ?value . ?hasBaf3 rdfs:subClassOf
:Feature_Binding . ?dp3 rdfs:subClassOf ?ftb3 . ?ftb3
owl:allValuesFrom ?hasBaf3 . ?hasBaf3 rdfs:subClassOf ?bafRes3 .
?bafRes3 owl:allValuesFrom ?baf3 . ?baf3 rdfs:subClassOf ?hasRes3 .
?hasRes3 owl:allValuesFrom ?value3 . FILTER (?value =
:HeatingSystem#1 && ?dp = ?dp3 && ?value3 = :OutsideTemperatureSensor
) . } } . } UNION {{ SELECT DISTINCT ?dp WHERE { ?hasBaf
rdfs:subClassOf :Feature . ?dp rdfs:subClassOf ?dpRes . ?dpRes
owl:allValuesFrom ?ftb . ?ftb rdfs:subClassOf ?ft . ?ft
owl:allValuesFrom ?hasBaf . ?hasBaf rdfs:subClassOf ?bafRes . ?bafRes

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 134

owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes . ?hasRes
owl:allValuesFrom ?value . ?hasBaf3 rdfs:subClassOf :Feature . ?dp3
rdfs:subClassOf ?dpRes3 . ?dpRes3 owl:allValuesFrom ?ftb3 . ?ftb3
rdfs:subClassOf ?ft3 . ?ft3 owl:allValuesFrom ?hasBaf3 . ?hasBaf3
rdfs:subClassOf ?bafRes3 . ?bafRes3 owl:allValuesFrom ?baf3 . ?baf3
rdfs:subClassOf ?hasRes3 . ?hasRes3 owl:allValuesFrom ?value3 .
FILTER (?value = :HeatingSystem#1 && ?dp = ?dp3 && ?value3 =
:OutsideTemperatureSensor) . } } .} . }</dataPointFilter>

 <simpleQuery rdf:datatype="&xsd;string">hasBAFContext =
HeatingSystem#1

 AND hasBAFType = OutsideTemperatureSensor

</simpleQuery>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerReturnTemperatureInput">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Input_Relation" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataTypeFilter" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerReturnTemperatureInputDataTypeFilter" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataPointFilter rdf:datatype="&xsd;string">SELECT DISTINCT *
WHERE { {{ SELECT DISTINCT ?dp WHERE { ?dp rdfs:subClassOf
:Data_Point_Type . ?dp rdfs:subClassOf ?bafRes . ?bafRes
owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes . ?hasRes
owl:allValuesFrom ?value . ?dp3 rdfs:subClassOf :Data_Point_Type .
?dp3 rdfs:subClassOf ?bafRes3 . ?bafRes3 owl:allValuesFrom ?baf3 .
?baf3 rdfs:subClassOf ?hasRes3 . ?hasRes3 owl:allValuesFrom ?value3 .
FILTER (?value = :HeatingSystem#1 && ?dp = ?dp3 && ?value3 =
:ReturnTemperatureSensor) . } } .} UNION {{ SELECT DISTINCT ?dp
WHERE { ?hasBaf rdfs:subClassOf :Feature_Binding . ?dp rdfs:subClassOf
?ftb . ?ftb owl:allValuesFrom ?hasBaf . ?hasBaf rdfs:subClassOf
?bafRes . ?bafRes owl:allValuesFrom ?baf . ?baf rdfs:subClassOf
?hasRes . ?hasRes owl:allValuesFrom ?value . ?hasBaf3 rdfs:subClassOf
:Feature_Binding . ?dp3 rdfs:subClassOf ?ftb3 . ?ftb3
owl:allValuesFrom ?hasBaf3 . ?hasBaf3 rdfs:subClassOf ?bafRes3 .
?bafRes3 owl:allValuesFrom ?baf3 . ?baf3 rdfs:subClassOf ?hasRes3 .
?hasRes3 owl:allValuesFrom ?value3 . FILTER (?value =
:HeatingSystem#1 && ?dp = ?dp3 && ?value3 = :ReturnTemperatureSensor)
. } } . } UNION {{ SELECT DISTINCT ?dp WHERE { ?hasBaf
rdfs:subClassOf :Feature . ?dp rdfs:subClassOf ?dpRes . ?dpRes
owl:allValuesFrom ?ftb . ?ftb rdfs:subClassOf ?ft . ?ft
owl:allValuesFrom ?hasBaf . ?hasBaf rdfs:subClassOf ?bafRes . ?bafRes
owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes . ?hasRes
owl:allValuesFrom ?value . ?hasBaf3 rdfs:subClassOf :Feature . ?dp3
rdfs:subClassOf ?dpRes3 . ?dpRes3 owl:allValuesFrom ?ftb3 . ?ftb3
rdfs:subClassOf ?ft3 . ?ft3 owl:allValuesFrom ?hasBaf3 . ?hasBaf3
rdfs:subClassOf ?bafRes3 . ?bafRes3 owl:allValuesFrom ?baf3 . ?baf3
rdfs:subClassOf ?hasRes3 . ?hasRes3 owl:allValuesFrom ?value3 .
FILTER (?value = :HeatingSystem#1 && ?dp = ?dp3 && ?value3 =
:ReturnTemperatureSensor) . } } .} . }</dataPointFilter>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 135

 <simpleQuery rdf:datatype="&xsd;string">hasBAFContext =
HeatingSystem#1

 AND hasBAFType = ReturnTemperatureSensor

</simpleQuery>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerFeedTemperatureInput">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Input_Relation" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataTypeFilter" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerFeedTemperatureInputDataTypeFilter" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataPointFilter rdf:datatype="&xsd;string">SELECT DISTINCT *
WHERE { {{ SELECT DISTINCT ?dp WHERE { ?dp rdfs:subClassOf
:Data_Point_Type . ?dp rdfs:subClassOf ?bafRes . ?bafRes
owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes . ?hasRes
owl:allValuesFrom ?value . ?dp3 rdfs:subClassOf :Data_Point_Type .
?dp3 rdfs:subClassOf ?bafRes3 . ?bafRes3 owl:allValuesFrom ?baf3 .
?baf3 rdfs:subClassOf ?hasRes3 . ?hasRes3 owl:allValuesFrom ?value3 .
FILTER (?value = :HeatingSystem#1 && ?dp = ?dp3 && ?value3 =
:FeedTemperatureSensor) . } } .} UNION {{ SELECT DISTINCT ?dp WHERE
{ ?hasBaf rdfs:subClassOf :Feature_Binding . ?dp rdfs:subClassOf ?ftb
. ?ftb owl:allValuesFrom ?hasBaf . ?hasBaf rdfs:subClassOf ?bafRes .
?bafRes owl:allValuesFrom ?baf . ?baf rdfs:subClassOf ?hasRes .
?hasRes owl:allValuesFrom ?value . ?hasBaf3 rdfs:subClassOf
:Feature_Binding . ?dp3 rdfs:subClassOf ?ftb3 . ?ftb3
owl:allValuesFrom ?hasBaf3 . ?hasBaf3 rdfs:subClassOf ?bafRes3 .
?bafRes3 owl:allValuesFrom ?baf3 . ?baf3 rdfs:subClassOf ?hasRes3 .
?hasRes3 owl:allValuesFrom ?value3 . FILTER (?value =
:HeatingSystem#1 && ?dp = ?dp3 && ?value3 = :FeedTemperatureSensor) .
} } . } UNION {{ SELECT DISTINCT ?dp WHERE { ?hasBaf rdfs:subClassOf
:Feature . ?dp rdfs:subClassOf ?dpRes . ?dpRes owl:allValuesFrom ?ftb
. ?ftb rdfs:subClassOf ?ft . ?ft owl:allValuesFrom ?hasBaf . ?hasBaf
rdfs:subClassOf ?bafRes . ?bafRes owl:allValuesFrom ?baf . ?baf
rdfs:subClassOf ?hasRes . ?hasRes owl:allValuesFrom ?value . ?hasBaf3
rdfs:subClassOf :Feature . ?dp3 rdfs:subClassOf ?dpRes3 . ?dpRes3
owl:allValuesFrom ?ftb3 . ?ftb3 rdfs:subClassOf ?ft3 . ?ft3
owl:allValuesFrom ?hasBaf3 . ?hasBaf3 rdfs:subClassOf ?bafRes3 .
?bafRes3 owl:allValuesFrom ?baf3 . ?baf3 rdfs:subClassOf ?hasRes3 .
?hasRes3 owl:allValuesFrom ?value3 . FILTER (?value =
:HeatingSystem#1 && ?dp = ?dp3 && ?value3 = :FeedTemperatureSensor) .
} } .} . }</dataPointFilter>

 <simpleQuery rdf:datatype="&xsd;string">hasBAFContext =
HeatingSystem#1

 AND hasBAFType = FeedTemperatureSensor

</simpleQuery>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#BoilerBAF4">

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 136

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFContext" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerHeatingSystem#1" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerHeating" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilerDevice" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#BoilerDevice">

 <rdfs:label rdf:datatype="&xsd;string">Device</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerHeating">

 <rdfs:label rdf:datatype="&xsd;string">Heating</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerHeatingSystem#1">

 <rdfs:label
rdf:datatype="&xsd;string">HeatingSystem#1</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Context" />

 <subSystem rdf:datatype="&xsd;string"></subSystem>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 137

 <subSubSystem rdf:datatype="&xsd;string"></subSubSystem>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerOutsideTemperatureInputDataTypeFilter">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Complex_Data" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilertemperatureRootType" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataTypeSource rdf:datatype="&xsd;string">D:/baas-
siemens/workpackages/wp4/Datapoints/XSDFiles/Control.xsd</dataTypeSour
ce>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerReturnTemperatureInputDataTypeFilter">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Complex_Data" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilertemperatureRootType" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <dataTypeSource rdf:datatype="&xsd;string">D:/baas-
siemens/workpackages/wp4/Datapoints/XSDFiles/Control.xsd</dataTypeSour
ce>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#BoilerFeedTemperatureInputDataTypeFilter">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Complex_Data" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasDataType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BoilertemperatureRootType" />

 </owl:Restriction>

 </rdfs:subClassOf>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 138

 <dataTypeSource rdf:datatype="&xsd;string">D:/baas-
siemens/workpackages/wp4/Datapoints/XSDFiles/Control.xsd</dataTypeSour
ce>

 </owl:Class>

</rdf:RDF>

A.3.3 Hot Water Cylinder
<rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinder">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Data_Point_Type" />

 <rdfs:label
rdf:datatype="&xsd;string">HotWaterCylinder</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderCurrentTemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderdesiredTemperature" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderBAF7" />

 </owl:Restriction>

 </rdfs:subClassOf>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 139

 <description rdf:datatype="&xsd;string">A hot water storage
cylinder with embedded electric heating system and
controller.</description>

 <extendedDPT rdf:datatype="&xsd;string"></extendedDPT>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderCurrentTemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSensor" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderCurrentTemperatureBAF10" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderdesiredTemperature">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#TemperatureSetpoint" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderCurrentTemperatureBAF10">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 140

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderWater" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderWater">

 <rdfs:label rdf:datatype="&xsd;string">Water</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderBAF7">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFContext" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderHeatingSystem#1" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderHeating" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderDevice" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderDevice">

 <rdfs:label rdf:datatype="&xsd;string">Device</rdfs:label>

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 141

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderHeating">

 <rdfs:label rdf:datatype="&xsd;string">Heating</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#HotWaterCylinderHeatingSystem#1">

 <rdfs:label
rdf:datatype="&xsd;string">HeatingSystem#1</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Context" />

 <subSystem rdf:datatype="&xsd;string"></subSystem>

 <subSubSystem rdf:datatype="&xsd;string"></subSubSystem>

 </owl:Class>

</rdf:RDF>

A.3.4 Pumps
 <rdf:RDF xmlns="http://www.baas-itea2.eu/dp/ucs#"
xml:base="http://www.baas-itea2.eu/dp/ucs"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sp="http://spinrdf.org/sp#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:spin="http://spinrdf.org/spin#" xmlns:loc="http://www.baas-
itea2.eu/loc#" xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns:Information-Model-Objects="http://www.baas-
itea2.eu/EA_Model/Information-Model-Objects/">

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#Pump">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Data_Point_Type" />

 <rdfs:label rdf:datatype="&xsd;string">Pump</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpcurrentFlow" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeatureBinding" />

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 142

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpdesiredFlow" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#implementsFunction" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpBAF8" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <description rdf:datatype="&xsd;string">A water pump including a
controller and a flow sensor, allowing setting a desired flow
rate.</description>

 <extendedDPT rdf:datatype="&xsd;string"></extendedDPT>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#PumpcurrentFlow">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSensor" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#PumpdesiredFlow">

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Feature_Binding" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasFeature" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#FlowSetpoint" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#PumpBAF8">

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 143

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#Building_Automation_Function" />

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFContext" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpHeatingSystem#1" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpHeating" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFDomain" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpWater" />

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="http://www.baas-
itea2.eu/dp/ucs#hasBAFType" />

 <owl:allValuesFrom rdf:resource="http://www.baas-
itea2.eu/dp/ucs#PumpDevice" />

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#PumpDevice">

 <rdfs:label rdf:datatype="&xsd;string">Device</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Type" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#PumpHeating">

 <rdfs:label rdf:datatype="&xsd;string">Heating</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

D05 – BaaS Reference Architecture Version 2.0, May 20, 2016

ITEA2: Building as a Service - BaaS 144

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-itea2.eu/dp/ucs#PumpWater">

 <rdfs:label rdf:datatype="&xsd;string">Water</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Domain" />

 </owl:Class>

 <owl:Class rdf:about="http://www.baas-
itea2.eu/dp/ucs#PumpHeatingSystem#1">

 <rdfs:label
rdf:datatype="&xsd;string">HeatingSystem#1</rdfs:label>

 <rdfs:subClassOf rdf:resource="http://www.baas-
itea2.eu/dp/ucs#BAF_Context" />

 <subSystem rdf:datatype="&xsd;string"></subSystem>

 <subSubSystem rdf:datatype="&xsd;string"></subSubSystem>

 </owl:Class>

</rdf:RDF>

	D05 – BaaS Reference Architecture
	Document properties
	Abstract
	Table of Contents
	1 Motivation and Structure
	1.1 Why do we need a Reference Architecture?
	1.2 Description of the Approach
	1.3 Structure of the Deliverable

	2 Glossary
	3 BaaS Domain Description
	3.1 Domain Model
	3.1.1 What is a Domain Model?
	3.1.2 Purpose of the BaaS Domain Model (BDM)
	3.1.3 General Overview on the BDM
	3.1.4 Detailed Discussion of Selected Concepts

	3.2 BaaS Platform
	3.2.1 BaaS Framework
	3.2.2 BaaS Service Runtime
	3.2.3 Technical Management

	4 Architectural Views
	4.1 Lifecycle View
	4.1.1 Introduction
	4.1.2 BAS System Lifecycle Revisited
	4.1.3 Activities throughout the BaaS Lifecycle
	4.1.3.1 From BaaS Data Point Types to BaaS Service Instances
	4.1.3.2 Artifacts Provided by the BaaS Platform
	4.1.3.3 Artifacts Provided by Customer Solution Specification
	4.1.3.4 Design Phase – Domain Engineer
	4.1.3.5 Development Phase – Software Engineer
	4.1.3.6 Engineering Phase – System Engineer
	4.1.3.7 Commissioning Phase – System Installer
	4.1.3.8 Operation Phase – Facility Manager/Service Technician
	4.1.3.9 Optimization Phase

	4.2 Information View
	4.2.1 From Data Points in the Building Domain to BaaS Data Points
	4.2.2 Information Flow between BaaS Services
	4.2.3 Information Model
	4.2.3.1 Basic Data Types
	4.2.3.2 BaaS Data Types
	4.2.3.3 BaaS Feature Type
	4.2.3.4 BaaS Data Point Type
	4.2.3.5 BaaS Service Type
	4.2.3.6 BaaS Service Instance
	4.2.3.7 Modelling a Heating System - a Concrete Example
	4.2.3.7.1 Defined Features
	4.2.3.7.2 Defined Data Point Types
	4.2.3.7.3 Defined Service Types

	4.2.4 Ontology Modeling

	4.3 Functional View
	4.3.1 Motivation
	4.3.2 Types of Functional Building Blocks
	4.3.2.1 BaaS Framework/SDK
	4.3.2.1.1 Editors to Specify BaaS Entities
	4.3.2.1.2 Tools to Engineer a BaaS system
	4.3.2.1.3 Tools to Commission a BaaS system

	4.3.2.2 BaaS Framework/SDK and BaaS Runtime Environment
	4.3.2.2.1 BaaS Information Storage
	4.3.2.2.2 BaaS Registries
	4.3.2.2.3 BaaS Software Libraries to be used by Code Generation Mechanisms when Developing and Engineering BaaS Services
	4.3.2.2.4 BaaS Software Packages to be used when Engineering a BaaS System
	4.3.2.2.5 Technical Management of a BaaS System

	4.3.3 Overview of Functional Building Blocks
	4.3.4 Functional View of the Development Phase
	4.3.4.1 BaaS Data Point Editor
	4.3.4.2 BaaS Data Point Information Storage
	4.3.4.3 Query Wizard
	4.3.4.4 BaaS Service Editor
	4.3.4.5 BaaS Dependability Editor
	4.3.4.6 BaaS Service Information Storage
	4.3.4.7 IDE for Implementing the BaaS Service (and Legacy Protocols)
	4.3.4.8 BaaS Legacy Profile as Software Package
	4.3.4.9
	4.3.4.9 BaaS Legacy Profile Tool
	4.3.4.10
	4.3.4.10 Collaborations at Development Time
	4.3.4.10.1 Browse/Create/Modify/Delete BaaS Data Points
	4.3.4.10.2 Specifying and Implementing a Service type
	4.3.4.10.3 Specify Dependability Qualities and Transformation Rules

	4.3.5 Functional View of the Engineering Phase
	4.3.5.1 BaaS Engineering Tool
	4.3.5.2 Query Wizard
	4.3.5.3 BaaS Service (Instance) Registry
	4.3.5.4
	4.3.5.4 BaaS Software Libraries
	4.3.5.5
	4.3.5.5 BaaS Legacy Analysis Tool
	4.3.5.6 Collaborations at Engineering Time
	4.3.5.6.1 Creating a Functional Model

	4.3.6 Functional View of the Commissioning Phase
	4.3.6.1 BaaS Commissioning Tool
	4.3.6.2
	4.3.6.2 Technical Management System
	4.3.6.3
	4.3.6.3 BaaS Service Instance Registry
	4.3.6.4
	4.3.6.4 BaaS Container Software Packages

	4.3.7
	4.3.7 Functional View of the Operation Phase
	4.3.7.1 BaaS Service Instance Registry
	4.3.7.2
	4.3.7.2 BaaS Container/Device
	4.3.7.3
	4.3.7.3 Technical Management System
	4.3.7.4
	4.3.7.4 BaaS Legacy Gateway
	4.3.7.5
	4.3.7.5 BaaS Service Instance

	4.3.8
	4.3.8 Functional View of the Optimization Phase

	4.4 Behavioral View
	4.4.1 General Aspects of Communication and their Impact
	4.4.2 Analysis of Application Cases
	4.4.3
	4.4.3 Identified Communication Patterns
	4.4.3.1 CPAT-01: Request Response to GET Data From a Node
	4.4.3.2 CPAT-02: Request Response to SET Data to a Node
	4.4.3.3 CPAT-03: Asynchronous Request Response
	4.4.3.4 CPAT-04: Asynchronous Notification
	4.4.3.5 CPAT-05: Asynchronous Message to a Group of Receivers
	4.4.3.6 CPAT-06: Broadcast to all Nodes

	4.4.4 Composition of Communication Patterns to Application Patterns
	4.4.4.1 APAT-01: On Demand Data Point Query / Get Value Request
	4.4.4.2 APAT-02: Reliably Set a Value at a Data Point / Set Value Request
	4.4.4.3
	4.4.4.3 APAT-03: Publish/Subscribe for Change-of-Value Notifications

	5 Perspectives
	5.1 Security Perspective
	5.1.1 Threat Model
	5.1.2 Concept
	5.1.3 Security During the Lifecycle
	5.1.3.1 Development Phase
	5.1.3.2 Engineering Phase
	5.1.3.3 Commissioning Phase
	5.1.3.4 Operation Phase

	5.2 Dependability Perspective
	5.2.1 Concept
	5.2.1.1 BaaS Services
	5.2.1.2 BaaS Platform Services
	5.2.1.3 Management Services

	5.3 Technical Management Perspective
	5.3.1 Management Infrastructure
	5.3.2 Management Tree
	5.3.3 Overall View

	6 Summary
	6.1 Modifications in the Second Iteration
	6.2 Requirements Mapping

	7 List of Figures
	8 References
	Annex
	A Heating System OWL representation
	A.1 Basic Data Type definitions
	A.1.1 Water Throughput
	A.1.2 Temperature

	A.2 Specified Features
	A.2.1 Temperature Sensor
	A.2.2 Flow Setpoint

	A.3 Specified Data Point Types
	A.3.1 Temperature Sensors
	A.3.2 Boiler
	A.3.3 Hot Water Cylinder
	A.3.4 Pumps

