

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report - version 0.9 Date 11/01/2016

State of the Art Report

Deliverable

Deliverable data

 Deliverable Name State of the Art Report

Work Package WP1

Partners involve Addalot, Kugler Maag Cie, Lero, Lund University, Softhouse, Sigrun

Date 9/12/2015

Status Approved

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 2/37

Document history

Version Date Author /Reviewer Description

0.1 17.03.2015 Ulf Asklund All individual drafts joined into this document.

0.2 23.05.2015 Anders Sixtensson Added Disciplined Agile Delivery

0.3 12.06.2015 Martin Höst Revision of existing text

0.4 16.06.2015 Klaas-Jan Stol Overall clean up of text, lay-out, logos etc.

0.5 17.07.2015 Miguel A. Oltra Revision and added comments for further improvement.

0.6 2.9.2015 Ulf Asklund Merge of review comments

0.7 9.12.2015 Klaas-Jan Stol Restructuring of the document; revise text overall; add

introduction section.

0.8 18.12.2015 Martin Höst Rewrite of the Experience Factory section

0.9 11.01.2016 Klaas-Jan Stol Further textual improvements; add figure by Horst Hientz /

Kugler Maag that provides an overview of how the different

models relate to one another; add justification for the

selected models that are discussed in this document.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 3/37

Table of Contents

1 INTRODUCTION .. 4

1.1 LIST OF MODELS INCLUDED IN THIS DOCUMENT .. 4
1.2 STRUCTURE AND DEFINITIONS .. 5

2 BUSINESS ARCHITECTURE PROCESS ORGANIZATION (BAPO) ... 11
2.1 INTRODUCTION .. 11
2.2 EVALUATION ... 12

2.2.1 Scope and Focus .. 12
2.2.2 Underpinning Assumptions ... 13
2.2.3 Approach and Vision ... 14

3 SCALED AGILE FRAMEWORK (SAFE) ... 15
3.1 INTRODUCTION .. 15
3.2 EVALUATION ... 15

3.2.1 Scope and Focus .. 15
3.2.2 Underpinning Assumptions ... 15
3.2.3 Approach and Vision ... 16

4 BUSINESS MODEL INNOVATION MAP (BMIM) ... 18
4.1 INTRODUCTION .. 18
4.2 EVALUATION ... 18

4.2.1 Scope and Focus .. 18
4.2.2 Underpinning Assumptions ... 19
4.2.3 Approach and Vision ... 21

5 THE CAPABILITY MATURITY MODEL (CMM) ... 22
5.1 INTRODUCTION .. 22
5.2 EVALUATION ... 22

5.2.1 Scope and Focus .. 22
5.2.2 Underpinning Assumptions ... 23
5.2.3 Approach and Vision ... 25

6 EXPERIENCE FACTORY (EF) ... 26
6.1 INTRODUCTION .. 26
6.2 EVALUATION ... 26

6.2.1 Scope and Focus .. 26
6.2.2 Underpinning Assumptions ... 27
6.2.3 Approach and Vision ... 27

7 DISCIPLINED AGILE DELIVERY (DAD)... 28
7.1 INTRODUCTION .. 28
7.2 EVALUATION ... 28

7.2.1 Scope and Focus .. 28
7.2.2 Underpinning Assumptions ... 29
7.2.3 Approach and Vision ... 29

8 CONCLUSIONS ... 31
8.1 SUMMARY OF THE FINDINGS ... 32
8.2 CONCLUSION ... 35

9 REFERENCES ... 36

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 4/37

1 Introduction

This document presents a review of the most relevant existing models and frameworks.

The purpose is to give a short overview of existing models and to evaluate the extent to

which they are suitable to achieve the objectives that the SCALARE project has set forth,

namely the support of organizations in scaling their software development and delivery

capacity. The focus is on characteristics relevant for the purpose of SMF. As the SMF covers

three large domains – organization, processes and methods, and products and services –

many other existing models have some relationship to the SMF, however, often focusing

on one of these aspects.

1.1 List of models included in this document

The selected models that are considered to be most relevant to the SCALARE project are:

 Business, Architecture, Process, and Organization Model (BAPO)

 Business Model Innovation (BMI)

 Capability Maturity Model (CMM)

 Experience Factory (EF)

 Scaled Agile Framework (SAFe)

 Discipline Agile Delivery (DAD)

These are well known and as such it is useful to explain these models in sufficient detail so

that their relationship to the SCALARE project and the SMF is clear. The software

engineering literature defines many software process improvement frameworks, but the

majority of these are not widely adopted, well established, or known. Hence, we did not

discuss these models, also because it is clear that software process improvement

frameworks cover only a single dimension of the scaling software phenomenon (which is

discussed in more detail later in this chapter).

While all models are evaluated in contrast with the SMF, this deliverable does not discuss

the SMF in detail. For this, we refer to a separate deliverable that presents the SMF—at the

time of writing (Winter 2015/2016), the SMF is still being developed. Figure 1.1 presents a

timeline of selected key events with regards the models that are presented in this report.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 5/37

Figure 1.1. Timeline of key events: development of frameworks and models over time.

1.2 Structure and Definitions

Models are created for a variety of purposes, one of which is to communicate a complex

topic. Models help to explain the world and to communicate information with others. To

create a model, we rely on abstractions of the real world and focus on the most important

characteristics in order to fulfil the purpose we have using the model. It is hard, or even

impossible, to evaluate models and frameworks and explain what is good and not good

without knowing the context in which the model is to be used. That is, different models can

be used in different situations. Evaluating models should be done in a specific context and

focus on how well the models support the goals defined by that context. In the SCALARE

project, this context is the ability to help organizations understand what they need to do in

order to “scale” and how this can be done, and it is in this broad and general context that

we evaluate the different models.

The focus of the SCALARE project is the ever-increasing role and importance of software for

organizations, even those that did not previously consider themselves to be software

2007
Scott Ambler develops
the Disciplined Agile

Delivery concept while
working at IBM Rat ional.

2004
Frank van der
Linden et al.

publish the BAPO
framework as a

software product

family evaluat ion
framework.

Ca. 1997
Victor Basili
presents the

Experience
Factory.

2013
St Gallen releases
Business Model

Innovation book

1997
Software
Engineering

Institute stops
development of

the CMM, which

had started in
1987.

2002
CMMI
version 1.1

released

2006
CMMI
version 1.2

released

2010
CMMI
version 1.3

released,
which

supports agile

development

2014
SAFe version 3
released

2007
Dean Leffingwell
releases first book

that presents the
conceptual

foundat ion of the

SAFe framework

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 6/37

organizations. The following is a list of scenarios that are typical for the SCALARE context

(although it is not exhaustive):

 Transitioning to software-based platforms. Companies that are traditionally
delivering products based on hardware platforms are now moving en masse to
software-based solutions. A clear example of this is Husqvarna, who are moving
away from petrol-based garden equipment to electronically driven equipment,
which require software for their control. This in turn means that these companies
now have to learn how to develop software-based platforms and solutions, but they
may not be aware of the specific strategies that are available to them, or how to
adopt those. One such strategy could be a product family, for example.

 Tailoring existing software development methods to new environments.
Companies that are already developing software may find themselves in need to
adopt and adapt new methods to their specific development context. An example
of this is QUMAS, a company operating in a regulated environment and
consequently they are subject to regular audits by regulatory bodies. As the need to
deliver software more frequently and maintain a steady pace, QUMAS has adopted
an agile approach for their software development, but had to tailor this approach to
their specific needs, as agile methods are traditionally not suitable for regulated
environments.

 Extending the software development capacity. Companies are also faced with a
need to deliver increasingly more software, or take advantage of software that is
already available, whether as internally developed components or externally
available open source projects. An example of this scenario is Sony Mobile, who are
relying extensively on open source components for delivery of software in their
mobile phones, which are based on the open source Android operating system.
Consequently, Sony Mobile needs to participate in a wider community of open
source developers, and learn how to interact with them in a sustainable manner.
Also, to leverage the use of internally developed assets, Sony Mobile are seeking to
adopt the open source development paradigm internally – or inner source as it is
termed. This introduces the concept of internal “open source” projects with ad-hoc
development teams delivering assets. This scenario represents the scaling of
software development capacity by scaling up the organization in different
directions.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 7/37

Thus, we have a context where organizations must introduce novel strategies to scale up

their software development capacity whether it is in the form of the introduction of

software-based solutions (moving away from non-software solutions), the tailoring of

existing software development methods, or adopting new sourcing strategies such as

opensourcing and innersourcing. Figure 1.2 below captures this context of scaling in

multiple dimensions.

Figure 1.2. Multi-dimensional scaling of software organizations

In each scenario, organizations are driven to embark on these scaling transformations by

specific drivers. General drivers are the need to deliver software more quickly, at lower

cost, and of higher quality. Specific drivers include the need to deliver new and innovative

solutions, and adopt better strategies that secure the future ability to deliver new

customer value quickly.

Figure 1.3 illustrates (a) the drivers that an organization may have to scale (top); (b) the

current capabilities that an organization has (left); (c) the desired, or ‘wanted’ abilities

(right); and (d) the software model that sits in between, and considers the three key

dimensions, namely product, process, and organization. These three dimensions are

Large-scale and scalable
architectures and systems

Traditional systems
and technologies

Traditional
organizations

and domains

Traditional
processes

and

methods

Scaling
organizations,

ubiquitous

computing

New processes and
methods in new

environments

Products,
Systems and

Services

Organizations
and business

domains

Processes and
Methods

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 8/37

recurring in the software engineering literature; indeed, the BAPO model (discussed I more

detail in Chapter 2) includes them as does the software product line literature published by

the SEI (e.g. Northrop 2004).

The challenge of this multi-dimensional scaling can be broken into the need to cross the

chasm between the “current” state (left-hand side) and the “desired” state (right-hand

side). In other words, this deliverable aims to present the other models and frameworks

that have been suggested to achieve the desired abilities of organizations to deliver

software. Therefore, this report does not focus on business drivers, nor does it describe the

SMF itself.

Figure 1.3. Overview of the Scaling Management Framework: Business Drivers, Current inabilities, Wanted

abilities.

It is important to define what “scaling” means in the context of the SCALARE project.

Traditionally, the term is interpreted as “growing in size” – organizations ‘scale’, meaning

they grow in number of departments, employees, teams, projects, products, etc. We refer

to this as a narrow definition of scaling. The SCALARE project adopts a wider interpretation,

namely not only scaling in size, but also the adaptation of an organization’s ability to

deliver software in different contexts, under new constraints, in collaboration with a

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 9/37

variety of partners, which may be internal or external (for example through outsourcing

strategies). Thus, we define ‘scaling software’ as shown in Figure 1.4:

The ability of an organization to:

A. Deliver software that is growing in size, complexity and other product-related
features,

B. Adopt and adapt software development processes and methods to produce
that software,

C. Grow its capacity to deliver the software in terms of required organizational

and business structures.

Figure 1.4. Definition of Scaling Software as a multi-dimensional phenomenon.

Clause A refers to the traditional definition. Clause B refers to the ability of scaling

processes and methods, for example, the adaptation and tailoring of agile methods to new

contexts. Clause C refers to the ability for an organization to grow its capacity either

internally or externally through the forging of partnerships, outsourcing, and other

strategies.

The goal of this deliverable is to evaluate some of the most prevalent models available in

industry, proposed by practitioners and researchers, for their ability to support

organizations in their “scaling” transformation according to the definition provided above.

The context and exemplary scenarios presented above suggest that any model to support

industry in this endeavour offers support on the following aspects:

 Scope and focus: what are the context and aspects that the model focuses on? The
three main dimensions defined above are products, systems and services, processes
and methods, and organizations and business domains. Some models such as the
Scaled Agile Framework (SAFe) focus exclusively on one dimension, such as the
“scaling up” of using agile methods for example. The scope and focus define the
goal of the model in supporting organizations to scale.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 10/37

 Assumptions underpinning the model. Each model has certain assumptions which
may either be implicit or explicitly stated. These assumptions constrain the context
within which the model might be applicable, and explain the “paradigm” that the
originators of the model might have had in mind when defining the model. For
example, the SAFe framework (Scaled Agile Framework) mentioned above, assumes
a certain structure of organizations that consists of teams, projects, programs and
portfolios. Not all organizations, however, may be structured in this way, which
could render the SAFe framework less or not suitable for a specific context.

 Approach and vision of the model. Each model suggests a certain set of steps, or
otherwise that provides guidance to an organization. The level of this guidance may
vary from being very concrete and detailed to providing an overall roadmap that
still facilitates a certain level of tailoring. Models tend to have a certain “vision” – a
suggested destination to pursue, although many models acknowledge that any
scaling transition is a continuous and infinite process of improvement that cannot
be completed.

Each of the models listed earlier in this chapter will be described along these three aspects:

(1) scope and focus, (2) underpinning assumptions, and (3) approach and vision.

The remainder of this report is structured as follows Sections 2 to 7 present analyses of

each of the models listed above, respectively. Section 8 concludes by summarizing the

findings and re-iterating the need for an overall Scaling Management Framework, which is

one of the key outputs of the SCALARE project.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 11/37

2 Business Architecture Process Organization (BAPO)

2.1 Introduction

The BAPO model for product line engineering was a result of the ITEA-CAFÉ project (2001-

2003) (van der Linden 2002; van der Linden et al. 2004; van der Linden et al. 2007). BAPO

assumes that there are four key concerns in software engineering that need to be

addressed to develop software products: Business, Architecture, Process and Organisation,

hence the acronym BAPO.

The BAPO model argues that software product line development must address four types

of concerns: Business concerns, Architectural concerns, Process concerns and

Organisational concerns. Van der Linden et al. (2004, 2007) describe these as follows:

 Business: the costs and profits of the software, the strategy of applying it and the

planning of producing it.

 Architecture: the technical means to build the software.

 Process: the roles, responsibilities and relationships within software development.

 Organisation: the people and organisational structures that execute the software

development.

The first version of the BAPO framework considered the four factors (B, A, P, O) in a single

dimension, as shown in Figure 2.1.

Figure 2.1. Four factors of the BAPO framework (source: COPA Tutorial, Philips SW Conference 2001)

A revision of the BAPO framework extended the relationships between the different

concerns. In this version, while all categories (B, A, P, O) are connected, the BAPO model

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 12/37

has a primary “path” follows the letters BAPO in that order; Business considerations affect

a products architecture, which affects the process to follow, which affects the

organisational structure. This is shown in Fig. 5 below.

Figure 2.2. Architecture has a central position in the BAPO framework

2.2 Evaluation

2.2.1 Scope and Focus

The BAPO framework has an exclusive focus on software-based systems (that contain

software, which includes embedded software systems), and its key goal is to align an

organization’s business concerns with the product architecture, the development

processes and the organizational structures within the company. Having emerged from

ITEA projects on software product lines (CAFÉ, FAMILIES, etc.), the BAPO framework is

strongly architecture-focused, which is also implied by the central position that the

architecture concept takes in Figure 2.2.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 13/37

2.2.2 Underpinning Assumptions

The BAPO framework considers both the “problem space” and the “solution space” to be

constant. The problem space is ‘constant’ in that it deals with the need to manage a line of

related products that may be constructed from a common set of assets (e.g. components).

The solution space is ‘constant’ in that, while solutions vary as new products are

developed, the strategy, or “formula” remains the same: developing an appropriate

systems architecture based on business considerations that is developed following an

appropriate process within an organizational structure that facilitates the development of

the system. These four categorical concerns are recurring in each product development in

the product line. In this sense, the BAPO framework offers a single type of mechanisms for

organizations to manage their software products and make appropriate business, process,

and organizational choices. BAPO is one of the many guiding frameworks that can be used

by organizations, but only after a decision has been taken to adopt a product line strategy.

The BAPO framework can be used to evaluate an organization’s current state-of-practice

(as described extensively in the case studies presented (van der Linden et al. 2007).

However, the BAPO framework assumes a linear evaluation, starting with business aspects,

followed by architectural, process and organizational aspects.

The BAPO model is useful for those organizations that seek to adopt a software product

line strategy – however, the drivers that organizations facing may address very different

forces, for example, the need to move from a hardware-based to software solutions. The

example of Husqvarna is typical, as they are moving from a fuel-based product offering to

equipment running on electronic platforms (driven by software), with an ultimate goal of

connecting all equipment into a “Connected Garden”. Thus, while a product line approach

may be a suitable strategy, this choice is not straightforward; should Husqvarna select this

strategy, the BAPO framework can offer guidance. However, many organizations similar to

Husqvarna are still evaluating their “problem space” and have not yet decided to embark

on a SPL strategy.

Business drivers affect software organizations in different ways. For some organizations, a

certain business driver (e.g. shortening time-to-market) may result in changes relating to a

product (for example, changes to its architecture – such as transforming to a software

product line approach), while for others it may result in process changes (e.g., adopting

agile methods). For others still it might result in changes that address organizational

aspects, such as outsourcing initiatives (incl. innersourcing and crowdsourcing) and

establishing an ecosystem of different parties around a single keystone platform product

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 14/37

(such as Apple’s iPhone, Google Android, and the WordPress content management

system).

BAPO does not address trends such as the ‘softwaretization’ and ‘servitization’ of products.

BAPO already assumes that the solution is software-based, whereas the SMF takes into

consideration those scenarios such as found in Husqvarna, who are moving from petrol-

based platforms to electronic (software-driven) platforms.

2.2.3 Approach and Vision

Figure 2.3 shows the Family Evaluation Framework (FEF) (the term “product family” is used

as a synonym for “product line”) that defines a number of different levels of maturity in

each of the BAPO dimensions. The FEF is based on the BAPO model by refining each BAPO

dimension and defining a set of maturity levels. This can be used by organizations to assess

and evaluate their product line approach.

Figure 2.3. Family Evaluation Framework (FEF) defines maturity levels within the BAPO model (van der

Linden et al. 2007)

86 6 The Family Evaluat ion Framework

dimension mainly deals with the relat ionship between the reference archi-

tecture and the applicat ion architectures. It takes into account how vari-

ability is modelled in the reference architecture. The following aspects play

a role in the architecture dimension of software product line engineering5

(Fig. 6.3):

• Asset reuse level : the extent of the use of domain assets in products.

• Reference architecture: the extent to which the reference architecture de-

termines the applicat ion architectures.

• Variabili ty management : theexplicit useof variat ion pointsand support ing

mechanisms.

In the following sect ions, each of the architecture dimension’s levels is

discussed in detail.

V
is

io
n

C
o
m

m
e
rc

ia
l

C
o
lla

b
o
ra

ti
o
n

ProcessBusiness Architecture Organisation

level 1

level 2

level 3

level 4

level 5

dimension

aspects

Project

based

Aware

Managed

Measured

Optimising

Independent

development

Standardised

infrastructure

Software

platform

Variant

products

Configuring

Initial

Managed

Defined

Quantitatively

managed

Optimising

Project

Reuse

Weakly

connected

Synchronised

Domain

oriented

F
in

a
n
c
ia

l

S
tr

a
te

g
ic

R
e
u
s
e

R
e
fe

re
n
c
e

a
rc

h
it
e
c
tu

re
V

a
ri
a
b
ili

ty

D
o
m

a
in

A
p
p
lic

a
ti
o
n

R
o
le

s
&

re
s
p
o
n
s
ib

ili
ti
e
s

S
tr

u
c
tu

re
C

o
lla

b
o
ra

ti
o
n

F ig. 6.3. Architecture dimension

5 This is an adaptat ion of a model of software product line architectures presented

in [28]

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 15/37

3 Scaled Agile Framework (SAFe)

3.1 Introduction

The Scaled Agile Framework (SAFe) offers an overall guiding framework to organizations

that wish to scale up the use of agile methods. The SAFe is developed by Dean Leffingwell,

and the current version is 3.0.

3.2 Evaluation

3.2.1 Scope and Focus

SAFe is a framework for large-scale software development. SAFe does not assume any

assessment of the current state of practice within an organization. The gap between the

starting organization and the stepwise change towards a more “SAFe-like” organization is

not part of the framework itself; however, assessing such a gap is an important aspect in

any scaling and transformation scenario envisaged by the SCALARE project.

3.2.2 Underpinning Assumptions

The Scaled Agile Framework (SAFe) addresses the social dimension of the scaling problem

by organizing group cohesion around the “Program.” In the SAFe, the Program represents a

value chain that links customers, suppliers, business participants, and technical staff in a

coordinated effort to deliver new solutions to meet business demands. The Program

coordinates the efforts of multiple agile teams synchronized to a common cadence to

optimize communication, reduce bottlenecks, and deliver value at a continuous and

sustainable pace.

Business drivers for a SAFe-driven change typically include low throughput, long lead times

and low quality, and the desire to work more agile. The SAFe model does not address the

need to formulate business drivers.

The SAFe framework also does not address the various ways to package and deliver an

offering to the market using open-source components, integration with legacy systems,

and so on. SAFe’s ‘home ground’ that seems to be most suitable is that of software-

intensive products developed by an organization without dependencies on other sourcing

forms including outsourcing, opensourcing, etc.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 16/37

3.2.3 Approach and Vision

As Figure 3.1 shows, the SAFe identifies different layers within the organization. The

bottom layer is the “team” level, which explains how teams are organized and the way

their development process is coordinated. The Program layer is defined at a higher level,

and links the activities from different agile teams (at the Team Level) together into a

‘Program”. Additional roles and ceremonies are defined in this layer. The top layer is called

“Portfolio” and considers how the set of projects together that is delivered by an

organization offer value to customers. At this level an organization can orchestrate the

projects that are embarked on, which are evaluated on a business-strategic level. That is,

projects are not evaluated purely on their own merit, but primarily from a strategic

perspective, by answering the question whether or not the project is critical to the

organization.

Figure 3.1. The SAFe framework (from http://www.scaledagileframework.com)

http://www.scaledagileframework.com/

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 17/37

The organizational dimension of the scaling problem is addressed by abandoning the

project metaphor and instead allowing and encouraging agile teams to be self-organizing,

self-managing and cross functional. Additional teaming is necessary at the Program level to

integrate the work produced by agile teams into value-producing features and to

coordinate the activities required to deliver these changes into the business.

Also, the SAFe addresses the management and governance of the Program by describing an

agile approach to portfolio management in the Portfolio layer. Having abandoned the

project metaphor in favour of a continuous flow approach, the Portfolio layer integrates

lean concepts by describing business strategy and technology oversight as a pull-based,

Kanban approach. Kanban is a signalling mechanism that originated in the Toyota

Production System, in which ‘downstream’ processes indicate to ‘upstream’ processes that

they are ready for processing the next ‘product’ (Ohno 1988). This downstream to

upstream signalling mechanism causes the ‘pull’ in pull-based systems, which is a key

characteristic of lean manufacturing (based on the Toyota Production System).

Management and governance is achieved by paying attention to the flow of work through

the Program. By watching the work queues, feedback is regularly provided to the teams at

the Program and Team levels. Opportunities for improvements are continuously

encouraged to increase flow where desired.

SAFe is a framework for scaling up the use of agile methods within large organizations, and

presents a desired position for large-scale agile software development. It is becoming an

industry standard for how to scale the use of agile methods at the enterprise level, that

involves many different teams, products, and components. However, while the SAFe is

proposed by Dean Leffingwell, a renowned agile advocate, other agile experts such as Ken

Schwaber has criticized the SAFe for having introduced certification which he argues

defeats the reason d’etre of agile methods, namely that of being a lightweight approach.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 18/37

4 Business Model Innovation Map (BMIM)

4.1 Introduction

The Business Model Innovation Map (BMIM) was developed by the BMI Lab at the

University of St. Gallen, Switzerland (Gassmann et al. 2015). The BMIM is based on the

premise that prominent companies can lose their capability to innovate if they fail to adapt

their business models to their environment that is constantly changing. The effectiveness

of business models is critical to the survival of companies. However, at the time that the

BMIM was proposed, little agreement existed on what constitutes a business model. The

BMIM aims to fill that gap by providing a conceptualization of business models and

defining the core components.

4.2 Evaluation

4.2.1 Scope and Focus

Researchers from the University of St Gallen defined a business model to contain the

following four components:

1. The Who – who is the customer;

2. The What – what is being offered to the customer; also referred to as the value
proposition;

3. The How – process and activities to implement the business model;

4. The Value – explains why the business model is financially viable.

Figure 4.1 presents what Gassmann et al. call the ”magic triangle” of the business model

definition, which explains how these four components are related to each other.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 19/37

BMIM does not focus at a particular driver or enabler for innovation, such as software

technology, but takes a broader view when addressing needs of (future) customers and

markets. Technology innovation, possibly disruptive, is an enabler for any Business Model

to create value for the customer; it does not create value on its own.

BMI is an iterative (change) process in cycles of designing, prototyping, and testing the new

Business Model ideas. A new Business Model affects and aligns all three dimensions

towards a new value creation proposition.

Figure 4.1. Business model definition (source: Gassmann et al. 2015)

4.2.2 Underpinning Assumptions

Business drivers for change are captured by looking on the factors the industry competes

on (following the dominant industry logic - “red ocean strategy”) to create new, raise,

eliminate, or reduce those factors relative to the industry standard.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 20/37

BMIM is analysing in a structured way the ecosystem in which the old business is

operating; it looks at market players and market change drivers for value creation and

value capturing. BMI explicitly focuses at following dimensions of the business:

(1) Who is the target customer (segment)?

(2) Why is the business profitable?

(3) What is the offering to the customer?

(4) How is the value proposition created?

BMI requires changing at least two of a business model’s dimensions.

Table 4-1. Selection of business model patterns (source: Gassmann et al. 2015)

Pattern
Name

Business
Model
components

Example
companies

Description

Add-on What, Value Ryanair,
SAP, Sega

The core offering is priced competitively, but
there are numerous extras that drive the final
price up. In the end, the costumer pays more
than he or she initially assumed. Customers
benefit from a variable offer, which they can
adapt to their specific needs.

Affiliation How, Value Amazon
Store,
Pinterest

The focus lies in supporting others to
successfully sell products and directly benefit
from successful transactions. Affiliates usually
profit from some kind of pay-per-sale or pay-
per-display compensation. The company, on the
other hand, is able to gain access to a more
diverse potential customer base without
additional active sales or marketing efforts.

Auction What, Value eBay,
Google,
Elance

Auctioning means selling a product or service to
the highest bidder. The final price is achieved
when a particular end time of the auction is
reached or when no higher offers are received.
This allows the company to sell at the highest
price acceptable to the customer. The customer
benefits from the opportunity to influence the
price of a product.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 21/37

Gassmann et al. argue that organizations have difficulty developing new business models

because ”thinking out of the box” is difficult. To understand how business innovation works

in practice, Gassmann et al. have studied 250 business models that have been used in the

last 25 years, which resulted in a set of 55 patterns.

The BMIM leverages on the observation that 90% of all business model innovations are

recombinations. It makes use of the 55 Business Model Patterns to innovate the business

model through creative imitation and recombination. A selection of these 55 patterns is

listed in Table 4-1.

4.2.3 Approach and Vision

BMIM’s strategic move (“blue ocean strategy”) is applying a combination of 55 patterns by

transferring, combining, and leveraging those in order to generate new Business Model

ideas. The BMIM methodology consists of three main steps:

1. Initiation. In this first step, the “transformation journey” is defined. A starting point
must be defined as well as an approximate direction.

2. Ideation. In the second step, the 55 business model patterns are considered one by
one in a group setting, to discuss what that pattern might mean if it were applied to
the current situation. This process is called “pattern confrontation”. This step is to
explore and understand the implications of applying one or more specific patterns.

3. Integration. In the final step, the selected patterns must be implemented and
tailored according to the specific context of the product and the company. The St.
Gallen Business Model Navigator™ provides checklists and analytical tools (e.g. the
value network methodology) that can assist in this task.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 22/37

5 The Capability Maturity Model (CMM)

5.1 Introduction

The Capability Maturity Model (CMM) is a process improvement framework (Paulk et al.

1994; Raynus 1998). It can be used as an assessment model, as an improvement model or

as software engineering training material. The CMM provides a set of practices for

improving processes, building upon an organization’s attributes. The CMM framework does

not provide a single process; instead, it suggests how to improve an organization’s

processes, but does not define the organization’s processes—one implication of this is that

the CMM can also facilitate adoption of agile methods such as Extreme Programming

(Paulk 2001). The CMM is designed as a maturity model for an organization to improve its

existing processes according to proven best practices developed by members of industry,

government, and academia.

The CMM has been now integrated into the CMM Integration (CMMI) which defines three

areas of interest:

 Product and service development — CMMI for Development

 Service establishment, management — CMMI for Services

 Product and service acquisition — CMMI for Acquisition

However, for the purpose of this report, topics such as services (different from “software

as a service” or the trend of servitization) and acquisition (of complete products and

services as opposed to “sourcing”) are not within the scope of the SCALARE project. Hence

this report focuses on the CMM.

5.2 Evaluation

5.2.1 Scope and Focus

The CMM originated from research by Watts Humphrey and others from the Software

Engineering Institute (SEI) (Humphrey 1988). The SEI was founded to develop software

engineering expertise for the US Department of Defence (DoD). By observing successes and

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 23/37

failures across a large number of software projects, “best practices” were distilled and

organized within a five-level framework (Paulk et al. 1993).

The scope of the CMM is organizations’ software development processes and as such it

focuses on following a disciplined approach in implementing a number of key practice

areas (more details in section 5.2.3). Business considerations and product-specific concerns

are not included—while the CMM prescribes extensive documentation related to the

product being developed (e.g. requirements documentation, etc.), this is the same for any

product, but no product-specific guidance is provided.

The CMM can be used as a framework for assessing an organization’s current state of

practice, and indeed, CMM assessment and certification can be acquired. For US

organizations wishing to deliver to the US DoD, such certification is necessary. Other

organizations around the world use CMM certification to signal their claimed excellence

with regards to their development processes.

5.2.2 Underpinning Assumptions

The CMM was developed based on the assumption that whatever practices were present

in successful software projects, were contributing to the success of those projects.

Likewise, failures were traced back to their root cause, which would be linked to “missing

practices.” For example, failure to manage different versions of either the product or

process documentation suggests a need to implement a sound version control system.

The key assumption that the CMM implies is what can be summarized as “one size fits all.”

Whatever practices are useful in one project will also result in successes in other contexts.

One important consequence of this is the assumption that a singular process improvement

path can be adopted for any software organization, irrespective of the context that the

organization operates in. Thus, a linear process improvement path is suggested. Figure 5.1

below illustrates this linear pathway clearly.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 24/37

Figure 5.1. CMM Maturity levels

(source: https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration)

Another assumption is that, given a sufficiently rigorous software development process,

the software product will be of high quality – or as the saying goes, “the proof is in the

pudding.” The CMM is not unique in this assumption—indeed, most manufacturing

processes (software and non-software) that are subject to regulation (such as the US Food

& Drug Administration, FDA), also assumes that as long as certain practices are

implemented, the product will be of acceptable quality.

The CMM does not require any specific process. Traditional terminology placed so-called

plan-driven approaches (waterfall, V-model, etc.) on one side of the spectrum with agile

methods being placed on the other end, suggesting that agile methods do not follow any

plan. However, this dichotomy of “plan-driven” versus “agile” is incorrect, and indeed,

CMM advocates have clearly indicated the possibility to marry agile methods with the

CMM framework (Paulk 2001). Version 1.3 of the CMM explicitly acknowledged agile

methods.

CMMI users have to be very knowledgeable in software engineering, while the users of the

SMF could also be non-technical people including managers and business analysts.

SMF addresses top managers in product companies, seeing a big growth of the importance

of their software and their software organizations.

https://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 25/37

A requirement in CMMI is that top managers support and drive the software improvement

initiatives, but users of CMMI are software engineers and software process improvement

engineers.

5.2.3 Approach and Vision

The CMM defines a number of key process areas – Figure 5.2 below defines these 18 KPAs.

Figure 5.2. Key Practice Areas as defined in CMM levels 2 (Repeatable) to 5 (Optimized) (source: Raynus

1998)

The CMM defines the criteria for an organization to ‘mature’ its process and be promoted

to the next level on the maturity model. For example, in order to be assessed at Level 3

(“Defined”), an organization must successfully implement all processes as defined for the

KPAs in Level 3 and all of those at lower levels (i.e. Level 2; Level 1 does not define any

KPAs). This approach to “maturation” clearly indicates the next process improvement

activities to undertake if an organization wishes to be assessed at a higher level.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 26/37

6 Experience Factory (EF)

6.1 Introduction

The idea of the Experience Factory (EF) concept is to divide the organization into two

different sub-organizations in order to manage reuse of experience in software process

improvement. One of the sub-organizations is responsible for traditional execution of

projects, i.e. the traditional organization. The other sub-organization, the EF, is responsible

for collecting experience from projects in the traditional organization, generalizing it, and

providing it back to the traditional organization when new projects are started. This results

in the collection of experiences into a database using different methods is collected.

Extensive research on the EF concept was conducted during the nineties, although after

that less research has been conducted. Basili et al. (1994) describe the Experience Factory

in detail.

Figure 6.1 The Experience Factory

This is shown in Figure 6.1 where the projects reside in the project organization and the

experience management in the Experience Factory part.

6.2 Evaluation

6.2.1 Scope and Focus

The scope of the approach is limited to software process improvement, and to a rather

large degree on quantitative experience of using different process models. The approach

Project organization

project

project

project

Experience Factorydata from
projects

Experience,
guidence data-

base

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 27/37

was developed after an observation that there is a need to collect and generalize

experience from using new development processes, which can be compared to that there

is a need to generalize product artefact before they can be reused in future projects.

Compared to the SMF the scope is solely on software process improvement and the focus

on quantitative data.

6.2.2 Underpinning Assumptions

The basic assumption is that it is possible to collect quantitative data in order to support

software process improvement, and that this requires methods for defining which data to

collect, i.e. goal based measurement, e.g. GQM as discussed for example by Van Solingen

and Berghout (1999). Business drivers are not describes as explicitly, although they can, of

course, be included in a GQM metrics analysis. The assumption is also that it is possible to

set up one EF for every organization, whereas the assumption of the book from Scalare is

more to generalize knowledge from a wide range of organizations.

6.2.3 Approach and Vision

The Experience Factory (EF) is one of the first approaches based on distilling “lessons

learned” from empirical industry case studies into reusable practice patterns. Approach

requires an improvement cycle where experience data is collected, e.g. the Quality

Improvement Paradigm, where improvements are carried out for each project, and data is

collected in the form of experiences: 1) Characterize the current project, 2) Set

improvement goals for the project, 3) Choose development process, 4) Execute the project

while collecting data and giving feedback, 5) Analyse the results, 6) Generalize and package

the results in the experience database. It can be seen that the main responsibility for some

steps are in the project organization (e.g. 3) and some in the EF (e.g. 6).

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 28/37

7 Disciplined Agile Delivery (DAD)

7.1 Introduction

Many organizations start their agile journey by adopting Scrum because it describes a good

strategy for leading agile software teams—some surveys suggest that Scrum is the most

popular agile approach adopted in industry. However, Scrum represents only part of what

is required to deliver sophisticated solutions to stakeholders. Invariably, teams must look

at other practices and techniques to close the gaps that Scrum purposely ignores. When

looking at other methods there is considerable overlap and conflicting terminology that

can be confusing to practitioners and customers. Worse yet, stakeholders are often

struggling with seeking additional advice or are not cognizant of the key issues they must

address to close the gaps that the Scrum framework offers. The Disciplined Agile Delivery

(DAD) is a process decision framework that focuses primarily on people and “learning”.

7.2 Evaluation

7.2.1 Scope and Focus

DAD is an approach that extends Scrum with proven strategies from other agile methods

and practices including Agile Modelling (AM), Extreme Programming (XP), Unified Process

(UP), Kanban, Lean Software Development, Outside In Development (OID) and several

other methods. DAD is a non-proprietary, freely available framework. DAD extends the

construction-focused lifecycle of Scrum to address the full, end-to-end delivery lifecycle

from project initiation all the way to delivering the solution to its end users. It also supports

lean and continuous delivery versions of the lifecycle: unlike other agile methods, DAD

does not prescribe a single lifecycle because it recognizes that one process size does not fit

all. DAD includes advice about the technical practices such as those from Extreme

Programming (XP) as well as the modelling, documentation, and governance strategies

missing from both Scrum and XP. But, instead of the prescriptive approach seen in other

agile methods, including Scrum, the DAD framework takes a goals-driven approach. In

doing so DAD provides contextual advice regarding viable alternatives and their trade-offs,

enabling an organization to tailor DAD to effectively address the situation in which they

find themselves. By describing what works, what does not, and more importantly why, DAD

assists to adopt strategies that are appropriate for the context of an organization. Thus,

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 29/37

DAD has been suggested as a framework to help organizations in solving the “puzzle” of

selecting appropriate techniques and practices – this is suggested in Figure 7.1.

The DAD is exclusively focused on agile methods, and does not consider aspects related to

business, architecture and organization. While it does not advocate a single solution for

different problems, the solution space does assume the augmentation of an agile approach

with other practices to ensure delivery of a full product. The DAD framework offers many

different starting points; organizations can choose their point of departure based on their

current environment. Whatever the current state in an organization’s agile process, the

DAD offers guidance in further improving this.

7.2.2 Underpinning Assumptions

The organizations that use the DAD framework are often organizations that have

understood the complexity of lean and agile by doing this at small scale at first. The DAD

framework describes several strategies for organizing large or geographically distributed

teams. It describes a range of options for scaling your approach to agile and lean software

development, giving you context-sensitive options that other models, such as the SAFe, do

not.

7.2.3 Approach and Vision

An important feature of the Disciplined Agile Delivery (DAD) framework is that it provides a

foundation from which to scale agile solution delivery. There are three levels for what it

means to scale agile delivery.

The first level captures how organizations typically start with agile or lean methods such as

Scrum or Kanban. The next level is where the DAD framework does the “heavy lifting” for

you by showing how the various agile strategies work together, taking your existing agile

teams to the next level and giving teams new to agile a head start by providing the process

guidance they require. The third level is named Agility at scale. An organization can tailor

its process, team structure, and tooling approaches as is appropriate for its current

development context.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 30/37

Figure 7.1. The Disciplined Agile Delivery process decision framework

(source: http://www.disciplinedagiledelivery.com/home/)

The DAD framework is not as end-state-focused as SAFe is, hence the idea is that one

cannot anticipate which end-state is reached. The DAD framework claims that successful

scaling of agile and lean techniques can be achieved in several ways. First, its full delivery

lifecycles and breadth of software development advice answers how to successfully apply

agile in practice. Second, its goal-driven approach provides the required flexibility for

tailoring an agile process to meet the challenges faced by agile teams working at scale.

Third, the DAD framework builds on many foundational concepts required at scale. Several

new trends have emerged in recent years that can be included in the DAD framework; for

example, DevOps has emerged as an important approach, which addresses the gap

between developers on the one hand and operations teams on the other.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 31/37

8 Conclusions

Scaling software development is an important concern for the software industry. Several

frameworks, models and guidelines have been offered by practitioners and researchers.

This report has presented the most relevant and prevalent models that have been

proposed. One observation from this review is that virtually all models assume that

“scaling” problems can be solved by a linear growth model, and that the need to scale is

merely in degree, rather than in kind. In other words, all models assume that scaling

software refers to “more” software and “larger” systems.

Figure 8.1 positions the models reviewed in this report along two dimensions: Drivers, and

Impact.

The first dimension, Drivers, is concerned with the “Why” – why do organizations wish to

change, and subsequently adopt a certain model. Several reasons can be observed,

including compliance (or “better” compliance), performance, business growth (through

business improvement), and business innovation.

The second dimension is Impact, and is concerned with the question of which aspects of

the organization are affected. The figure defines the three key dimensions that the

SCALARE project has defined to be relevant (see Chapter 1), namely: Product, Process, and

Organization.

The figure positions the various models within this two-dimensional grid, and highlights

that models can be found in several positions within this grid. For example, the CMM can

be used as a framework for process compliance as well as for process improvement.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 32/37

Figure 8.1. Positioning of the various models presented in this report.

8.1 Summary of the findings

The need to scale agile methods has been recognized for more than a decade, soon after

the presentation of the Agile Manifesto in 2001. Agile methods were originally thought

suitable for development of small systems, with co-located teams in non-critical

environments. Soon, however, practitioners and researchers made attempts to scale up

the use of agile methods, leading for example to the SAFe framework (Leffingwell 2007).

While such frameworks are very useful to guide companies in their attempts to deploy

agile methods at scale, they do not address other dimensions of scale.

B
us
in
e
ss
	A
ss
ur
an
ce

Compliance
(ticket-to-trade)

CMM

B
us
in
e
ss
	I
m
pr
ov
em

en
t

Performance	
Improvement
(quality,	cost,	time)

BAPO

CMM,	
SAFe,
EF,	

BAPO

BAPO
CMM

Business	
Growth

(Product/Service	
Innovation)

EF EF

B
us
in
es
s	

In
no
va
ti
on

Business	
Foundation
(NewBusiness,	

Company	
Transformation)

BMI BMI BMI

Drivers
Impact

Product
(Systems	&	Service)

Processes
(Development	&	

Operations)

Organisation
(Research	&	

Development)

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 33/37

The DAD is a model that advocates a higher level of customization than the SAFe, but its

scope remains limited to that of agile methods and practices focused on delivery of a

product – hence a process-oriented model.

The CMM is also focused on the process, which assumes a linear progression model as it

defines a number of Key Process Areas that any organization adopting the CMM should

implement. While the CMM is a framework, and does not suggested specific software

development methods, it remains limited to the process dimension.

Table 8-1 provides some of the key findings of the review presented in this report. What

becomes clear is that all models offer guidance in specific directions, but they are all

limited in that they either assume a ‘constant’ solution and/or problem space; they assume

a linear progression model, or they focus only on one specific dimension, with most models

focusing on process-related issues.

This report does not suggest these models are not useful – instead, the SCALARE project

aims to present these initiatives within a larger encompassing framework, which

recognizes that different types of growth (scaling) requires different approaches. What all

scaling scenarios have in common, however, is that they involve scaling and tailoring in

three key dimensions, namely that of products, systems and services, processes and

methods, and organizations and business domains. These three dimensions unify all

models reviewed in this document.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 34/37

Table 8-1. Key findings of the review of existing models

 Scope and Focus Underpinning

Assumptions

Approach and Vision

BAPO Multi-dimensional,
but focused
specifically on
product lines /
families

Single problem space, and
single solution space.
BAPO is very architecture-
centric and assumes a
software product line
approach.

Family Evaluation
Framework (FEF) that
defines a set of
maturity levels for
each of the BAPO
dimensions.

SAFe Adopting agile
methods in the
enterprise; agile at
large.

It assumes a common
organizational structure of
teams, projects, programs,
portfolios for any
organization adopting the
SAFe.

Using agile and lean
practices. The specific
details are quite
detailed and well
documented.

BMI Focus on business
models. No attention
for organizational
aspects.

Business model
innovations are difficult
due to “thinking out of the
box” challenge. Instead,
new business model
innovations can be
developed by reusing and
combining business model
patterns.

Adopt, adapt and
combine a subset of
55 pre-defined
business model
innovation “patterns”

CMM Focuses on process
improvement only;
disregards product
aspects,
organizational
aspects as well as
business aspects.

Linear set of maturity
levels, “one size fits all”. It
assumes that all key
process areas are suitable
in all contexts.

Companies increase
their ‘maturity’ based
on an assessment of
their implementation
of a predefined set of
Key Process Areas.

Experience
Factory

Software process
improvement,
quantitative
knowledge

Lessons learned through
empirical studies can be
transferred to new
settings.

“Bottom up” process
improvement based
on project needs.

DAD Focus exclusively on
agile methods.

Organizations understand
agile/lean methods and
that these have been
successfully employed.

Tailor the ‘solution
space’ based on the
context of the
organization.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 35/37

8.2 Conclusion

The SCALARE is based on the premise that “scaling software” is not only a matter of “large-

scale”, but that this also must address other dimensions, such as the tailoring of methods

to new domains, the transformation of hardware-based to software-based solutions, and

the need to grow organizations and source software elsewhere than merely within the

organization.

The models reviewed in this report each offer a specific solution to a specific problem.

Some solutions are more constrained suggesting a ‘one size fits all’ approach (e.g. the SAFe

framework), whereas others recognize the need to tailor solutions (e.g. the DAD

framework). Software organizations are, however, facing new challenges as they move into

new domains, are confronted with new regulations and standards (software can be a

“medical device” in its own right since a 2010 EU Directive, for example), and are

experimenting with new sourcing strategies such as innersourcing, crowdsourcing and

opensourcing.

The SCALARE project aims to deliver a framework that offers “solutions to problems”,

recognizing that each organization’s software capability must take into account the

organization’s business drivers, nature of the product, and suitability of the processes and

methods that are adopted. An organization’s software delivery capacity, measured for

example in the time to deliver or size of the workforce, can also be scaled up and down

with new strategies such as crowdsourcing. The Scaling Management Framework aims to

capture these “common” solutions for recurring problems into an overall framework. The

framework is built on a set of “practice patterns” and organizations can select the

appropriate patterns that are suitable for their context. In this sense, the SMF is akin to the

DAD presented in this review, except that the DAD is limited to “agile delivery” whereas

the SMF takes a much wider view of “delivery” including the transformation of hardware-

based to software-based solutions.

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 36/37

9 References

SW Ambler. 2013. Going Beyond Scrum: Disciplined Agile Delivery. White Paper Series.

October 2013. Available from:

http://disciplinedagileconsortium.org/Resources/Documents/BeyondScrum.pdf

SW Ambler, M Lines. 2012. Disciplined Agile Delivery: A Practitioner's Guide to Agile

Software Delivery in the Enterprise. ISBN 978-0132810135.

VR Basili, G. Caldiera, H.D. Rombach. 1994. “Experience Factory”. Encyclopedia of Software

Engineering, edited by J.J. Marciniak, Vol. 1, John Wiley & Sons, 1994, pp. 469-476.

VR Basili, F McGarry. 1997. The experience factory: how to build and run one (tutorial).

ICSE '97 Proceedings of the 19th international conference on Software engineering

pp. 643-644

O Gassmann, K. Frankenberger, M. Csik. 2015. The Business Model Navigator: 55 Models

That Will Revolutionise Your Business. FT Press.

WS Humphrey. 1988. Characterizing the Software Process: A Maturity Framework. 5(2) pp.

73-79

P Jalote. 1999. CMM in Practice: Processes for Executing Software Projects at Infosys.

Addison-Wesley

D Leffingwell. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Addison-

Wesley

LM Northrop. 2004. Software Product Line Adoption Roadmap. Technical Report CMU/SEI-

2004-TR-022/ESC-TR-2004-022. Carnegie Mellon Software Engineering Institute.

MC Paulk, B Curtis, M Chrissis, C Weber. 1993. Capability Maturity Model, version 1.1. IEEE

Software 10(4) pp. 18-27.

MC Paulk, CV Weber, B Curtis, The Capability Maturity Model: Guidelines for Improving the

Software Process, Carnegie Mellon University, 1994.

MC Paulk. 2001. Extreme Programming from a CMM Perspective. IEEE Software 18(6) pp.

19-26

T Ohno. 1988. Toyota Production System: Beyond Large-Scale Production. Productivity

Press.

J Raynus. 1998. Software process improvement with CMM. Artech House.

http://disciplinedagileconsortium.org/Resources/Documents/BeyondScrum.pdf

SCALARE: SCAling softwARE: Supporting Industry in Managing Software
Scalability

Project
Label

12018

State of the Art Report – version 0.9 Date 11/01/2016

SCALARE Consortium Dissemination: Public 37/37

F van der Linden. 2002. So ware Product Families in Europe: The Esaps Caf Projects.

IEEE Software 19(4).

F van der Linden, K Schmid, E. Rommes, 2007. “Software Product Lines in Action”, Springer.

F van der Linden, J Bosch, E Kamsties, K Känsälä, H Obbink. 2004. Software Product Family

Evaluation. In: Software Product-Family Engineering. Volume 3014 of the series

Lecture Notes in Computer Science pp. 352-369

R van Solingen, E. Berghout, “The Goal/Question/Metric Method, A Practical Guide for

Quality Improvement of Software Development”, McGraw-Hill, 1999.

