
(ITEA 2 – 13017)

Enabling of Results from AMALTHEA and others
for Transfer into Application and

building Community around

Deliverable: D 1.1
Analysis of Necessary Design Steps

Work Package: 1
Continuous Design Flow and Methodology

Task: 1.1/1.2
Analyzing Concepts in the Design Flow & Identifying Design Steps

Analyzing Exchange of Development Artefacts between Organizations & Tools

Document Type: Deliverable
Document Version: Final
Document Preparation Date: 30.09.2015

Classification: Public
Contract Start Date: 01.09.2014
Duration: 31.08.2017

History

Rev. Content Resp. Partner Date
0.1 Set up Document Jan Jatzkowski April 10,

2015
0.2 Updated document

structure
Jan-Philipp Steghöfer June 26,

2015
0.3 Added content about

ISO 26262
Jan-Philipp Steghöfer June 29,

2015
0.4 Added introduction,

summary, and content
about V-Model

Jan-Philipp Steghöfer July 21,
2015

0.5 Added content about
AUTOSAR

Philipp Heisig July 22,
2015

0.6 Added first version of
design steps

Salome Maro July 29,
2015

0.7 Added content about
SPES/SPES XT

David Schmelter July 30,
2015

0.8 Refined design steps Salome Maro August 8,
2015

0.9 Example for exchange
of development arte-
facts using AUTOSAR

Jan Jatzkowski August 14,
2015

0.10 Refined design steps Salome Maro August 21,
2015

0.11 Added diagrams to il-
lustrate use of design
concepts in design steps

Jan-Philipp Steghöfer August 26,
2015

0.12 Added description of
product line engineering

Christopher Brink August 31,
2015

0.13 Added introduction and
description

Jan-Philipp Steghöfer September
1, 2015

0.14 Added preliminary
analysis of ISO 26262
compatibility

Salome Maro, Maria Trei September
14, 2015

0.15 Finishing touches Jan-Philipp Steghöfer September
19, 2015

ii

Contents

History ii

Summary vii

1 Introduction 1
1.1 Methodology . 1
1.2 Document Structure . 3

2 Development Methodologies and Standards 4
2.1 V-Model . 4
2.2 SPES / SPES XT . 5
2.3 Autosar . 7
2.4 ISO 26262 . 9
2.5 Product Line Engineering Process . 10

3 Design Steps, Goals and Concepts 12
3.1 Overview of the design steps . 12
3.2 Design Step 1: System Requirements Analysis 16

3.2.1 Detailed Steps . 17
3.2.2 Design Concepts . 18
3.2.3 Design Tools . 19

3.3 Design Step 2: System Architecture Design . 19
3.3.1 Design Concepts . 19

3.4 Design Step 3: Software Requirements Engineering 21
3.4.1 Detailed Steps . 22
3.4.2 Design Concepts . 24

3.5 Design Step 4: Derivation of Product Variants 27
3.5.1 Detailed Steps . 28
3.5.2 Design Concepts . 29
3.5.3 Design Tools . 29

3.6 Design Step 5: Definition of Software Architecture 30
3.6.1 Detailed Steps . 31
3.6.2 Design Concepts . 32
3.6.3 Design Tools . 33

3.7 Design Step 6: Behaviour Modelling . 34
3.7.1 Detailed Steps . 35
3.7.2 Design Concepts . 37
3.7.3 Design Tools . 37

3.8 Design Step 7: Variant Configuration . 38
3.8.1 Design Concepts . 39

iii

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.9 Design Step 8: Implementation . 39
3.9.1 Detailed Steps . 40
3.9.2 Design Concepts . 41
3.9.3 Design Tools . 42

3.10 Design Step 9: Validation and Testing . 43
3.10.1 Detailed Steps . 45
3.10.2 Design Concepts . 46
3.10.3 Design Tools . 47

3.11 Design Step 10: System Integration . 48
3.11.1 Detailed Steps . 49
3.11.2 Design Concepts . 52
3.11.3 Design Tools . 53

3.12 Design Step 11: Handover . 53
3.12.1 Detailed Steps . 54
3.12.2 Design Concepts . 55
3.12.3 Design Concepts . 55

4 Exchange of Development Artefacts 56
4.1 Requirements on the Exchange of the Design Concepts 56
4.2 Use Cases for the Exchange of Artefacts . 57
4.3 Examples for Exchanging Development Artefacts 59

4.3.1 AUTOSAR: From Software Architecture to System Integration 59
4.3.2 Exchange of Artefacts between Tools: From Software Architecture to

Behaviour Modelling to Code Generation 61

5 Preliminary Compatibility Analysis for Design Steps with ISO 26262 63

6 Conclusion 66

iv

List of Figures

1.1 Data collection and analysis process. 3

2.1 The abstract view of the V-Model, showing the two juxtaposed branches [21]. . 5
2.2 The SPES Modeling Framework, from [22, sec. 3.5] 5
2.3 The AUTOSAR methodology for developing automotive software [7] 8
2.4 Overview of the different parts of ISO 26262 [17] 9
2.5 Software product line development process [10] 10

3.1 Overview of the identified Design Steps . 12
3.2 Different roles and their involvement in design steps DS1 to DS6. 14
3.3 Different roles and their involvement in design steps DS7 to DS11. 15
3.4 The steps, concepts, and tools used in design step DS1. 16
3.5 The steps, concepts, and tools used in design step DS2. 20
3.6 The steps, concepts, and tools used in design step DS3. 25
3.7 The steps, concepts, and tools used in design step DS4. 27
3.8 The steps, concepts, and tools used in design step DS5. 31
3.9 The steps, concepts, and tools used in design step DS6. 35
3.10 The steps, concepts, and tools used in design step DS7. 38
3.11 The steps, concepts, and tools used in design step DS8. 40
3.12 The steps, concepts, and tools used in design step DS9 (part 1/2). 44
3.13 The steps, concepts, and tools used in design step DS9 (part 2/2). 44
3.14 The steps, concepts, and tools used in design step DS10. 49
3.15 The steps, concepts, and tools used in design step DS11. 54

4.1 Exchange of artefacts between design steps. 59
4.2 Exchange of artefacts between different organisations. 60
4.3 AUTOSAR software layers (cf. [7]). 61
4.4 From software architecture modelling to system integration. 62
4.5 Exchange of Artefacts between Tools [19]. 62

5.1 Overview of the different parts of ISO 26262 covered by the design steps 64

v

List of Tables

3.1 SPEM concepts used in the description of the design steps 13

5.1 ISO 26262 sub-phases of phase 6 and corresponding design steps. 65

vi

Summary

This document describes a number of design steps that are common in the development
of embedded automotive systems. They are presented together with the goals that drive
them, the artefacts used and provided, as well as the tools used in them. In context of
AMALTHEA4public, these design steps establish which parts of the design flow must be sup-
ported by the AMALTHEA platform as well as allow the identification of needs for traceability.
In addition to the design steps, this document also includes requirements and use cases for

the exchange of artefacts between design steps and potentially between different companies
involved in the development process. Furthermore, a preliminary analysis of the conformance
of the identified design steps with the ISO 26262 standard has been conducted.

vii

1 Introduction

The purpose of this document is to provide an overview of the design steps that are common
in the engineering of embedded automotive systems. These design steps are usually part of a
development process, but the lifecycle aspect is not regarded here. Instead, we focus on the
individual steps, the artefacts they use and provide, the goals they help achieve and the tools
that are used.
The overview will be beneficial to the project in several aspects:

1. The existing AMALTHEA tool chain can be evaluated against the designs steps and
checked for their coverage.

2. The artefacts exchanged between design steps and thus potentially between different
companies involved in a joint development effort are identified and characterised.

3. The requirements for traceability between artefacts created in the different design steps
can be expressed in terms of their lifecycle, their producers and consumers.

4. The requirements for traceability between various tools can be established.

As such, the overview of design steps will be an important input to other work packages,
including WP5 in which the tool chain is developed. Within WP1, the document will be used
as the foundation for the definition of a traceability concept (D1.2) as well as for an integrated
design flow (D1.3).

1.1 Methodology

This document is the result of an extensive data collection process in which the project partners
in AMALTHEA4public provided detailed information about the design steps they follow when
developing multi-core embedded software, especially in the automotive domain. The following
project partners contributed to the data collection effort:

• Robert Bosch GmbH

• Timing Architects

• rt-labs

• IFAK

• University of Gothenburg

• Dortmund University of Applied Sciences and Art

• University of Paderborn

1

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

• AVL Turkey

• Fraunhofer IPT, Project Group “Mechatronic Systems Design”

• BHTC

While the academic partners provided information mostly from their experience with different
industrial partners they cooperate with in research projects, the industrial partners contributed
with their concrete practical experience. In addition, the project partners OFFIS and TWT
contributed a preliminary analysis of the identified design steps w.r.t. their compatibility with
ISO 26262.
The data collection and analysis process is illustrated in Figure 1.1. Data was collected using

forms that had specific fields for the different aspects of the steps such as stakeholders, goals,
tools, etc. We asked all project partners to fill out these forms. They were accompanied by an
informative guideline which explained the purpose of the data collection and what is expected
from the partners. We prototyped both form and guideline with our project partners from rt-
labs AB and refined the documents according to their feedback. The refined form and guideline
was sent by email to all the partners. Phone calls were scheduled with all participating project
partners that allowed us to present the purpose of the study and answer all queries on how to
fill the forms. The partners had one month to fill out the forms and send them back, again via
email.
The collected data was analysed by first reading through all the documents and collecting

questions on matters that were unclear or needed more explanation. These questions were
sent back to the respective partners for clarification. After feedback from the partners, all
unique steps that appeared for one or more project partners where included in the analysis.
This analysis identified design steps, design concepts, and tools which are common among
the partners. These were critically studied to understand if they where similar enough to be
grouped and represented by one step without distorting the meaning given by the partners.
The main criteria for grouping steps was the similarity of the description and/or goal.
The analysis produced the set of the design steps that are presented in this document. It

includes both steps that are common in all the companies, such as requirements engineering, and
also those that are specific to companies adopting a certain paradigm of software development.
For instance, deriving product variants is a step specific to companies which use product lines.
Design concepts have been identified and grouped as well, along with the tools that are used to
produce and consume them. An important subgroup of design concepts are (design) artefacts.
Artefacts are created when the design steps are followed. In contrast, there are other concepts
that are merely used as input, such as guidelines and templates.
We furthermore analysed how artefacts are exchanged between the design steps by using the

information from the data collection to derive use cases and requirements for exchange. The
information was also used to compile an overview of the artefact exchange between design steps.
The Software Process Engineering Meta-Model (SPEM, cf. [20]) was used for the purpose of
representing the elements of the design steps in diagrams. The design steps where modelled as
Activities that group other elements such as other activities. Thus, an activity is a building
block of a process. Artefacts that are used in the design steps without being created by any
such step (e.g., templates for requirements or reviews) are modelled as Guidance. Artefacts
that are the result of a design step are modelled as Work Products. The Tools used in the design
steps are also included. This kind of modelling allows for using the created method content for
process tailoring purposes and to combine it with a model of a lifecycle easily.

2

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Figure 1.1: Data collection and analysis process.

1.2 Document Structure

The rest of this document is structured as follows: Chapter 2 gives an overview of common
development processes and engineering standards in the automotive domain, thus providing the
context in which the design steps are applied. The design concepts, design goals, and the design
steps are introduced in Chapter 3. We report on requirements and use cases for the exchange
of design artefacts in Chapter 4 and present a preliminary analysis of the compatibility of the
identified design steps with ISO 26262 in Chapter 5. The report concludes with a discussion
and an outlook on further work in AMALTHEA4public.

3

2 Development Methodologies and
Standards

While the design steps are currently regarded isolated from the lifecycle they are embedded in,
the project partners use them within the context of a development methodology or development
standard. This section gives an overview of the methodologies and standards currently in use
within the AMALTHEA4public consortium. They define the context in which the design steps
must be seen and will—at the same time— form the foundation of the design flow at the end
of the project in D1.3.
In this context, ISO 26262, a standard for safety in road vehicles, plays an especially promi-

nent role since the AMALTHEA platform will be made compatible with it. Current work in
Work Package 4 “Safety” has analysed the gaps between AMALTHEA and the standard and
effort will be spent in closing these gaps, both from a technological as well as from a method-
ological perspective. Therefore, a preliminary analysis of the compliance of the design steps is
included in this report in Chapter 5. The standard is introduced here briefly in Section 2.4

2.1 V-Model

The V-Model can be either seen as an abstract definition of the dependencies in a software
or system development lifecycle or as a concrete development methodology. In the former
understanding, analysis, design, and implementation activities on the left branch of the “V”
are juxtaposed with testing and validation activities on the right side of the “V” as depicted
in Figure 2.1. In the latter understanding, this abstract view is augmented with very concrete
design steps. Examples for such methodologies are the V-Modell XT [12], prescribed for the
development of complex technical systems by the German government and the V-Model (see,
e.g., [16]) used by the federal US government for the same purpose. These specific versions of
the V-Model are of limited interest for the purpose of this report and we focus on the more
abstract understanding.
In the automotive domain, many development efforts follow the abstract V-Model. In fact,

both the AUTOSAR methodology and the ISO 26262 standard are based on the V-Model. The
dependencies between hardware and software development make it necessary to reduce the de-
velopment risks early on, create detailed specification, and follow a somewhat rigid process. On
the other hand, the safety requirements make it necessary to have detailed tests and validation
activities that allow verification and validation of the specifications and the code at all stages
of the product lifecycle. The “V” visualises how these activities must be coordinated and which
stages of the validation correspond to which stages of the specification.

4

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Figure 2.1: The abstract view of the V-Model, showing the two juxtaposed branches [21].

2.2 SPES / SPES XT

Spes and Spes xt are the results of the research project Spes 20201 which was sponsored
by the German Federal Ministry of Education and Research. The Spes Modeling Framework
provides a method for the development of software-intensive embedded systems. It has been
developed by 21 partners from academia and industry from November 2009 until January 2012
[23]. The following elucidations are based on [22, part II].

Figure 2.2: The SPES Modeling Framework, from [22, sec. 3.5]

Spes aims to provide a development method that is independent from the application domain:
To this end, it defines the two fundamental concepts Viewpoints and Abstraction Layers which

1Software Plattform Embedded Systems 2020

5

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

form a two dimensional design space (cf. Figure 2.2). Spes promotes a seamless model-based
development approach facilitating reuse and automation. In context of the automotive domain
Spes aims to be AUTOSAR compliant.

Viewpoint: A viewpoint in Spes follows the notion of the IEEE 1471 standard “Recommended
Practice for Architecture Description of Software-Intensive Systems” [1] and can be un-
derstood as a template or pattern for the development of individual views on the system
under development and its environment. SPES focuses on the following four viewpoints:
Requirements Viewpoint, Functional Viewpoint, Logical Viewpoint and Technical View-
point. These are detailed further in the following paragraphs.

Abstraction Layer: Each system or system element can be modelled on different levels of ab-
straction. Increasing the level of detail (and at the same time decreasing the abstraction
layer) adds knowledge to the according design element. Abstraction Layers in Spes are
user defined, i.e. application domain specific. For example, Abstraction Layers in the
automotive domain might be “Supersystem”, “System”, “Subsystem”, and “Hardware/-
Software Component”. Mappings between the different abstraction layers allow tracing
of the appropriate refinements.

The following paragraphs illustrate the four Viewpoints Spes focuses on in more detail.

Requirements Viewpoint: The requirements viewpoint defines concepts and techniques for
systematically eliciting and specifying the requirements of the system (-element) under
development. It defines four models: The Context Model captures information and con-
straints about the systems environment. Spes utilizes different languages for capturing
context information. For instance, SysML BDDs can be used to model static context
information, Petri nets or finite state machines can be used to capture the dynamic as-
pects. The Goal Model describes the intentions of the different stakeholders. KAOS
goal diagrams, i* models or SysML requirement diagrams can be used to create Goal
Models in Spes. Scenario Models specify exemplary interactions of the system with its
environment. SysML Sequence Diagrams or ITU Message Sequence Charts can be used
to create this type of requirements artefact. Finally, the Solution-oriented Requirements
Model represents a first step towards the later systems implementation. It consists of a
structural, operational and behavioural part utilizing SysML BDDs, Activity Diagrams
and State Machines as modelling languages.

Functional Viewpoint: The Functional Viewpoint provides a formal and model-based be-
haviour specification for the system under development. It provides two model types
that structure the behavioural requirements according to user functions and provide an
abstract realization of these. First, the Functional Black Box Model is created. It formal-
izes the requirement models as those user functions that can be observed at the systems
boundary. Based on the black box model, the Functional White Box Model refines the
user functions. The purpose of this model is to provide a decomposition of the user
functions into smaller functional units in order to give an abstract description of the
realization of the user functions.

Logical Viewpoint: The Logical Viewpoint describes the internal logical structure and the be-
haviour of the system under development. It is a platform independent model, abstracting

6

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

from a concrete hardware platform. The main model type of the logical viewpoint is the
logical component architecture: it describes the logical components of the system realiz-
ing the functions from the Functional Viewpoint as well as their relationships. The logical
components form an acyclic hierarchical tree with the leaves being atomic logical compo-
nents that are not decomposed any further. Behaviour, e.g., in terms of state machines,
is associated to atomic logical components only.

Technical Viewpoint: The technical viewpoint addresses the question on how to get from the
platform-independent models (cf. Logical Viewpoint) to platform-specific models, i.e.,
it handles the actual deployment of logical components. To this end, it supports the
modelling of Resources (like computational power, bandwidth, storage, . . .), Schedulers
(i.e., distribution of Resources) and Tasks. The technical Viewpoint can be compared to
the AUTOSAR Virtual Function Bus (cf. section 2.3).

In addition to the aforementioned Viewpoints and Abstraction Layers, Spes also addresses
cross-cutting concerns like safety and real-time.

Spes xt is the follow-up project of Spes. It also was sponsored by the German Federal
Ministry of Education and Research and has been executed by 21 partners from academia and
industry from May 2012 until July 2015 [23]. Spes xt is structured in three dimensions: Engi-
neering Challenges (modular proof of safety, optimal deployment, mechatronics and software,
variant management, interconnection, early validation), Cross-Cutting Issues (methodology for
holistic model-based development, tools and tool-platforms, systematic transfer into practice)
and Application Domains (use cases “Automotive System Cluster” and “Desalination Plant”)
[24].

2.3 Autosar

AUTOSAR is the de-facto standard within the automotive industry for developing electrics/-
electronics architectures by describing software, hardware and operating system parts. The
demand for such a specification is motivated by an increasing functional complexity within
automotives. Therefore, the main objective of AUTOSAR is to manage complexity in a cost
efficient way by, among others, standardizing the component-based software architecture of
ECUs to support collaboration and exchange between various partners including OEMs and
suppliers, reusing artefacts (e.g., software components or hardware description) within differ-
ent vehicles and platform variants, defining an open architecture, and providing basic system
functions in a standardized way.
The main feature of AUTOSAR is the layered ECU software architecture which allows a

hardware-independent development of component-based vehicle applications. To achieve this, a
software abstraction layer, called Runtime Environment (RTE), abstracts the hardware-oriented
Basic Software (BSW) from the hardware-independent software layer. The BSW provides all
system services and functions for communication, memory management, diagnostic and so
forth. Further, it contains several layers for the abstraction of the underlying ECU hardware
by separating the ECU layout definition (connections between periphery and micro-controller)
from upper layers as well as providing specific hardware drivers. In order to enable the descrip-
tion of functional interaction between software application components independently from the
ECU allocation, AUTOSAR introduced the Virtual Function Bus (VFB) [9]. This concept is

7

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Figure 2.3: The AUTOSAR methodology for developing automotive software [7]

implemented by the RTE and realizes the handling of vehicle-wide functions by providing capa-
bilities for the communication between the software application components as well as granting
access to the BSW services.
Apart from the software architecture, AUTOSAR also standardises the development method-

ology for automotive software [8], which includes coverage of special aspects in order to allow
the implementation of components into a ECU as well as the integration of ECUs in the vehicles
communication network of different bus systems. Furthermore, support for activities and their
dependencies among other, descriptions and usage of tools is given. As shown in Figure 2.3,
several development domains like the definition of the VFB or the ECU configuration are cov-
ered within the methodology. The information flow within the methodology is standardised by
means of a XML-based data exchange format, while a meta model ensures a formal description.
The initial starting point of the methodology is the definition of input descriptions: While

the SW-Component Description provides a standardized component model with well-defined
interfaces and hardware requirements, the ECU Resource Description specify the available
hardware together with their characteristics in a hierarchical manner (e.g., micro-controller
with two cores and flash memory of 512 KB). In addition, information regarding the network
topology (interconnections between ECUs), communication matrix, used protocols (e.g., CAN,
FlexRay), attributes (e.g., data rates, timing), and so on are given within the System Constraint
Description. These descriptions function as input for the generation of the system configuration,
where software component descriptions are distributed to the different ECUs and ports are
mapped to communication signals. For this step, defined constraints as well as ECU resources
have to be taken into account. Based on the system configuration, the BSW and RTE of
each ECU are then configured. Finally, the components of the software application have to
be implemented in order to allow the generation of software executables. Since the release of
specification 4.0, AUTOSAR also supports the definition of product lines through an integrated
variability management [6], which can optionally be managed by feature models [5].

8

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

2.4 ISO 26262

The international standard ISO 26262 is a safety standard with the general title “Road vehicles
– Functional safety”. It was published in 2011, based on the functional safety standard IEC
61508, which deals with safety of E/E systems in every area of industry. In contrast to this,
IS0 26262 concentrates on the development of electrical and/or electronic systems of passenger
cars with a maximum gross vehicle mass up to 3500kg. It is expected that future versions or
extensions of the standard will have a greater coverage and also include vehicles like trucks and
motorcycles.
ISO 26262 describes the safety lifecycle of automotive E/E systems, including management,

development, production, operation, service and decommissioning. A central element is the
hazard analysis and risk assessment in the beginning of the safety lifecycle, where so-called Au-
tomotive Safety Integrity Levels (ASILs) are defined. Based on this classification, requirements
for avoidance of unreasonable residual risk are defined and validation methods are recommended
or prescribed.
In addition, intended relations with suppliers and other stakeholders are described, which

helps to supports integration of an item at product and vehicle level. To this end, the concept
of Safety Elements out of Context (SEooC) is defined in the standard. Figure 2.4 provides an
overview of the different parts of ISO 26262.

Figure 2.4: Overview of the different parts of ISO 26262 [17]

9

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

2.5 Product Line Engineering Process

Product lines were introduced for the development of complex and variable software systems
[14]. Within these product lines common and variable parts of a system are described for
example in the form of feature models [18]. These models consist of a hierarchically arranged set
of features connected through different types of associations. Feature models can be used both in
development as well as in the later product configuration [2, 13]. In order to allow the derivation
of configured products, features are connected to software development artefacts. Afterwards, a
product of the product line can be generated from any valid combination of features. Due to the
nature of a product line, the whole process consists of two fundamental steps, the development
process (Domain engineering) and the configuration process (Application engineering) [10].
While the development process includes steps to identify requirements and to develop the
product line platform including the required features, the configuration process includes the
product generation based on a customer’s needs (Figure 2.5).

Figure 2.5: Software product line development process [10]

Domain Engineering In the domain engineering process a reusable platform (reference ar-
chitecture) with common and variable parts is developed. In order to develop this platform, the
standard software development steps requirements engineering, design, realization and testing
are performed. In addition, a step for managing the product portfolio of the company is added.
The main goals of this process are the definition of the product line scope as well as modelling of
common and variable parts. Further, the development and test of reusable artefacts is focused.

Application Engineering The application engineering allows to build a product out of the

10

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

product line by using the reference architecture. Therefore, the customer’s requirements on
the product are determined in a first step. Based on the requirements, necessary parts of the
reference architecture as well as necessary software components will be selected and configured.
Furthermore, non-existing product-specific components are developed during the application
realization phase. The process ends with the testing of the complete application, including its
architecture and components.

11

3 Design Steps, Goals and Concepts

When developing software every step that is taken is done to achieve a specific goal or purpose.
This chapter describes the design steps and sub-activities that are carried out to accomplish
design goals when developing embedded software. The concepts which are used and provided
by each step and sub-activity are also described in detail. A description of the tools that are
used to create and facilitate use of these design concepts is also given.
This section uses SPEM1 notation to illustrate the design steps. An overview of the notation

can be found in Table 3.

3.1 Overview of the design steps

Figure 3.1 gives an overview of the design steps that are the results of the analysis of the data
collected from the project partners. Note that in this deliverable we do not imply the order in
which these steps are carried out since defining a concrete development process with a concrete
lifecycle is generally company specific. While some steps are carried out sequentially, others
can be done in parallel. The dependencies between the design steps at times also imply an
iterative approach where the design steps are repeated or at least revisited after other work has
been performed. Such an approach is very common in iterative-incremental lifecycles. Having
said that, the concrete life cycle in which the design steps are placed is not regarded here and
a wide variety of lifecycles can be applied. For an overview, please refer to Chapter 2.

Figure 3.1: Overview of the identified Design Steps

1Software & Systems Process Engineering Metamodel (http://www.omg.org/spec/SPEM/2.0/)

12

http://www.omg.org/spec/SPEM/2.0/

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Concept Description Icon

Task Describes a unit of work. A task can create or transform a work
product and can be assigned to a certain role. It can contain
individual steps that have to be performed as part of carrying out
the task. Guidances can be provided, e.g., to give guidelines or
checklists. Tasks can be subsumed in activities.

Activity Groups other elements such as method content uses, milestones,
or other activities. Thus, an activity is both a building block of a
process or a process in itself. The elements within an activity can
be linked to role uses, work product uses, and process parameters.
The order of elements within the activity is denoted as the work
breakdown structure and is established by defining predecessors for
the elements in the structure. The “Use”-elements below are always
defined within the context of an activity.

Process Defines the structure of activities and tasks that determine the
order in which sequences of work are performed and phases and
milestones are completed to get to the final product. Within a
process, concrete role uses, task uses, work products, etc. are de-
fined. A customised process for a specific project is modelled as a
Delivery Process.

Work
Product

Documents, models, code, or other tangible elements that are pro-
duced, consumed, and modified by tasks. Responsibilities for work
products can be assigned to roles.

Role Denotes an individual or a group of individuals with a certain set
of skills, competencies, and responsibilities required in the process.
Different roles can be filled by different people during the process
and an individual can fill several roles if required.

Guidance Provides additional information about the elements in the method
content. Different kinds of guidances are possible: guidelines, tem-
plates, checklists, tool mentors, supporting materials, reports, con-
cepts, examples, and others.

Table 3.1: SPEM concepts used in the description of the design steps

13

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

The identified steps cover most aspects of a traditional software development effort, starting
from contract negotiation and scope identification and ending at the delivery of the software.
Software maintenance has not been covered in the data collection. While many of the steps are
generic in the sense that they could occur very similarly in any domain for which software is
developed, there are some more specific steps and circumstances that can be explained in the
context of the automotive domain.
First of all, the design steps reflect the differentiation of system and software. The steps DS-1

and DS-2 refer to requirements engineering and architecture for the entire system, including the
software but mainly focused on the hardware. Our analysis shows that software requirements
are elicited in a separate step, DS-3. Later on, artefacts pertaining to the system (e.g., the
DS1 System Model) are used to validate the software and to integrate the software with the
hardware in DS10.
Another re-occurring theme is product line issues and variants. There are distinct steps

for the identification and refinement of variants (DS4 and DS7) as well as specific steps or
consideration in the architectural decisions (DS5.3) and the design of the software’s behaviour
(DS6.1). The artefact DC13 Variant Model is thus also one of the most re-used artefacts and
exchanged between a number of design steps.
Finally, since data from companies that work in a customer-centric way (e.g., rt-labs AB)

and with in-house product development (e.g., Bosch) have been combined, it can be seen
that the roles of "Customer" and "Technical Expert" as well as "Product Manager" are all
used. Depending on whether the product under development is for an external customer or the
requirements are set according to an internal product development and diversification strategy,
the stakeholders differ. Even for customer-driven companies, internal product line strategies
might exist and corresponding stakeholders must be consulted. An overview of the different
roles identified in the analysis and their involvement in the different design steps is given in
Figure 3.2 and Figure 3.3.

Proj ect Manager

Developer

Sales Represent at ive

Cust om er

Soft ware Archit ect

Technical Lead

Product Manager

Feat ure/ Var iant Exper t

Syst em s Engineer

Requirem ent s
EngineerTechnical Exper t

DS 1: Syst em Requirem ent s Analysis

DS 2: Syst em
Archit ect ure

Design

DS 3: Soft ware Requirem ent s Engineer ing

DS 4: Der ivat ion
of Product
Var iant s

DS 5: Definit ion of Soft ware Archit ect ure

DS 6: Behav iour Modelling

Figure 3.2: Different roles and their involvement in design steps DS1 to DS6.

14

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Cont rol EngineerProj ect Manager

Developer

Sales Represent at ive

Cust om er
Soft ware Archit ect

Test er

Product Manager

Feat ure/ Var iant Exper t

Syst em s Engineer

DS 7: Var iant Configurat ion

DS 8: I m plem ent at ion

DS 9: Validat ion and Test ing

DS 10: Syst em I nt egrat ion

DS 11: Handover

Figure 3.3: Different roles and their involvement in design steps DS7 to DS11.

The design steps have been classified to show which aspects they address. These aspects
reflect broad topical areas that are usually covered by people working in roles specific to them.
The following classes have been identified:

Systems Engineering is concerned with aspects of the overall system, including its hardware
part.

Product Line Engineering addresses issues of variants and features.

Business aspects are concerned with the negotiation of contracts, sales, and customer relations.

Software Engineering relates to all issues pertaining to the design, construction, and validation
of the developed software.

15

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.2 Design Step 1: System Requirements Analysis

ID: DS 1 Name: System Requirements
Analysis

Involved Roles: Systems Engineers,
Sales Representatives, Technical Ex-
perts, Developers, Customers, Re-
quirements Engineers

Tag Systems Engineering, Product Line Engineering
Goal To capture requirements of the System Under Development (SUD)
Description When designing a system for the automotive domain, several disciplines

such as electronics, software engineering and control engineering are
involved. In this step, overall requirements for the system from the
various domains are elicited. Here, the requirements can be described
textually as well as model-based. The aim is to come up with a model
and/or text document describing the entire system under development.
This can then be used as starting point for eliciting specific requirements
of all the various disciplines involved.

Sub-Activities DS 1.1 System Requirements Elicitation
DS 1.2 Definition of Platform Requirements
DS 1.3 Definition of Product Requirements

Uses DC 1: Customer Requirements
DC 2: Requirements Collection Template

Provides DC 3: System Requirements Model
DC 4: System Requirements Specification Document

DS 1.1: Syst em
Requirem ent s

Elicit at ion

DC 1: Cust om er Requirem ent s

DC 2: Requirem ent s
Collect ion Tem plat e

DC 3: Syst em Model

DT 1: Requirem ent s
Managem ent Tool

DT 2: Requirem ent s
Specif icat ion/ Modelling

Tool

DC 4: Syst em Requirem ent s
Specif icat ion Docum ent

<<provides>>

<<provides>>

DS 1: Syst em Requirem ent s Analysis

DS 1.2: Definit ion of Plat form Requirem ent s

<<uses>>

<<uses>>
<<uses>>

<<provides>>

DS 1.3: Definit ion of
Product Requirem ent s

<<uses>>

<<provides>>

Figure 3.4: The steps, concepts, and tools used in design step DS1.

16

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.2.1 Detailed Steps

ID: DS 1.1 Name: System Requirements
Elicitation

Involved Roles: Systems Engineers,
Sales Representatives, Technical Ex-
perts, Developers, Customers, Re-
quirements Engineers

Tag Systems Engineering
Description The first step in systems engineering is the system requirements elici-

tation. The system requirements can be captured in forms of text or
models depending on the requirements engineering method chosen by
the responsible roles. System requirements describe the entire system
as a black-box, focusing mainly on what the system does (goals and
scenarios), who are the users and what other systems will it interact
with [11]. Model Based Systems Engineering (MBSE) methods provide
a set of partial models to capture system requirements. Examples of
the partial models are Environment models which describe the system
under development (SUD) in its context, Application scenarios which
capture the different use cases of the SUD and requirements models
which capture additional functional and non-functional requirements.

Uses DC 1: Customer Requirements
DC 2: Requirements Collection Template

Tools DT 1: Requirements Management Tools
DT 2: Requirements Specification/Modelling Tools

Provides DC 3: System Requirements Model
DC 4: System Requirements Specification Document

ID: DS 1.2 Name: Definition of Platform Re-
quirements

Involved Roles: Sales Representatives,
Technical Experts, Developers

Tag Product Line Engineering
Description This step captures the requirements relating to the product line. Plat-

form requirements describe requirements that refer to the platform
product line. This platform is common to all products and corresponds
to a reference architecture.

Uses DC 2: Requirements Collection Template
Provides DC 4: System Requirements Specification Document

17

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 1.3 Name: Definition of Product Re-
quirements

Involved Roles: Sales Representatives,
Technical Experts, Developers

Tag Product Line Engineering
Description In this step the requirements based on the differences between the plat-

form/product line and the individual product are defined. Product
requirements are requirements that apply only to a variant that is not
included in all products of the product line. However, it is possible
that this variant is used in more than one product. Thus, product
requirements are requirements for an extension of the platform.

Uses DC 2: Requirements Template
Tools DT 1: Requirements Management Tools

DT 2: Requirements Specification/Modelling Tools

Provides DC 4: System Requirements Specification Document

3.2.2 Design Concepts

ID: DC 1 Name: Customer Requirements
Description These are the requirements from a customer describing what the desired

system should do.

ID: DC 2 Name: Requirements Collection Template
Description This template provides a format the requirements structure should follow.

It can be created using various requirements management tools.

ID: DC 3 Name: System Requirements Model
Description The system requirements model provides a common understanding of the

SUD and serves as a starting point for the discipline-specific development.
It comprises several partial models, e.g., for modelling the environment
of the SUD, requirements, application scenarios etc.

ID: DC 4 Name: System Requirements Specification Document
Description This artefact contains the elicited system requirements. In many cases it

is generated from a requirements management tool.

18

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.2.3 Design Tools

ID: DT 1 Name: Requirements Management Tools
Description This a tool that is used to enter and manage requirements. It can

be a standalone requirements management tool or part of an ap-
plication lifecycle management tool. Some examples of these tools
are IBM Jazz DOORS NG (https://jazz.net/), ProR (http://www.
eclipse.org/rmf/pror/), Trac (http://trac.edgewall.org) and PTC
Integrity (http://www.ptc.com/application-lifecycle-management/
integrity).

ID: DT 2 Name: Requirements Specification/Modelling tools
Description These are tools that allow users to create and edit requirements mod-

els such as use case models and sequence diagrams. Examples of these
tools are Papyrus(https://eclipse.org/papyrus/) and Scenario Tools
(http://scenariotools.org)

3.3 Design Step 2: System Architecture Design

ID: DS 2 Name: System Architecture De-
sign

Involved Roles: Systems Engineers

Tag Systems Engineering
Goal To develop an overall system architecture
Description In this step an overall system architecture is designed according to

the system requirements elicited. This system architecture consists of
several partial models that describe the system, sub-systems and the
relations and interactions of the system to the environment. Both the
structure and behaviour of the SUD are modelled in in this step. Models
such as the active structure model or SysML blocks are used to model
the structural view of the SUD, while models such as activity diagrams
and state machines are used to model behaviour.

Uses DC 3: System Requirements Model
DC 4: System Requirements Specification Document

Provides DC 5: System Architecture

3.3.1 Design Concepts

ID: DC 5 Name: System Architecture
Description This is the architecture of the entire SUD. It consist of various models

describing the structure and behaviour of the SUD.

19

https://jazz.net/
http://www.eclipse.org/rmf/pror/
http://www.eclipse.org/rmf/pror/
http://trac.edgewall.org
http://www.ptc.com/application-lifecycle-management/integrity
http://www.ptc.com/application-lifecycle-management/integrity
https://eclipse.org/papyrus/
http://scenariotools.org

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 2: Syst em Archit ect ure Design

DC 5: Syst em Archit ect ure

<<produces>>

DC 4: Syst em Requirem ent s
Specif icat ion Docum ent

<<uses>>

Figure 3.5: The steps, concepts, and tools used in design step DS2.

20

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.4 Design Step 3: Software Requirements Engineering

ID: DS 3 Name: Software Requirements
Engineering

Involved Roles: Sales Representatives,
Technical Experts, Developers, Sys-
tems Engineers, Requirements Engi-
neers, Customers

Tag Software Engineering, Business
Goals

• To properly understand and evaluate the required systems soft-
ware (in terms of features and cost) before committing to devel-
oping it.

• To develop a refined and formal software requirements specifica-
tion

Description The responsible roles work out and analyse the necessary software
requirements based on the system requirements document (if avail-
able). Requirements are also collected from customers or potential users
through several iterations of meetings. The collected requirements are
recorded in a Software Requirements Specification Document. They
might also be captured in a formal representation, e.g. in terms of
Modal Sequence Diagrams. Acceptance tests for the software to be de-
veloped are defined. A quotation is prepared using the requirements,
acceptance tests and estimated effort. The customer signs an agreement
indicating the approval of the quotation.

Sub-Activities DS 3.1: Software Requirements Elicitation
DS 3.2: Preparation of Requirements Specification Document
DS 3.3: Definition of Acceptance Tests
DS 3.4: Preparation of Quotation

Uses DC 2: Requirements Collection Template
DC 3: System Requirements Model
DC 4: System Requirements Specification Document
DC 5: System Architecture
DC 11: Task Tickets
DC 12: Milestones

Tools DT 1: Requirement Management Tools
DT 2: Requirements Specification/Modelling tools

Provides DC 6: Software Requirements Specification Document
DC 7: MSD Specification
DC 8: Acceptance Tests
DC 9: Quotation
DC 10: Purchase Order (Agreement)

21

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.4.1 Detailed Steps

ID: DS 3.1 Name: Software Requirements
Elicitation

Involved Roles: Sales Representatives,
Technical Experts, Developers, Sys-
tems Engineers, Requirements Engi-
neers

Classification Software Engineering
Description The responsible person arranges meetings with customers. In each of

the meeting he/she tries to understand the customer needs by interview-
ing the customer, showing various demos, and collecting any artefacts
that may be useful. In cases where the system requirements already ex-
ist from the system requirements elicitation step, software requirements
can be elicited from the system requirements.

Uses DC 2: Requirements Collection Template
DC 3: System Requirements Model
DC 4: System Requirements Specification Document
DC 5: System Architecture

Provides DC 6: Software Requirements Specification Document (Early version)

22

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 3.2 Name: Preparation of Require-
ments Specification Document

Involved Roles: Sales Representatives,
Technical Experts, Developers, Sys-
tems Engineers, Requirements Engi-
neer

Classification Software Engineering
Description The software requirements which where collected from the customer and

also those derived from system requirements are recorded in a require-
ments management system. The requirements are usually in formal
requirements specification formats such as use cases or user stories. For
companies using model-based engineering approaches and developing
technical systems that require real time coordination these requirements
can, e.g., be specified in terms of a Modal Sequence Diagram (MSD)
specification. MSDs are a mechanism for formally specifying require-
ments on the interaction of components in a system. Constraints such as
timing and safety are also input into the requirements management tool
as non functional requirements. If a requirement is linked to other arte-
facts the traces to the artefacts are also created in this step. When all
the requirements have been recorded, the software requirements spec-
ification document can be created by exporting the requirements in
formats like PDF, Word, ReqIF etc. The cost of the software and the
time estimate for development of the software is calculated and also
included in the document.

Uses DC 2: Requirements Collection Template
Tools DT 1: Requirements Management Tools

DT 2: Requirements Specification/Modelling tools
Provides DC 6: Software Requirements Specification Document

DC 7: MSD Specification

ID: DS 3.3 Name: Definition of Acceptance
Tests

Involved Roles: Sales Representatives,
Technical Experts, Developers, Sys-
tems Engineers, Requirements Engi-
neers

Classification Software Engineering
Description From the requirements, acceptance tests are written that must pass

when the system is completed. These tests also have to be agreed on
by the customer so that when all tests pass, the system is complete and
can be handed over to the customer. Depending on the system to be
developed, the acceptance tests can be written as unit-tests, integration
tests, functional tests, or a combination of these.

Uses DC 6: Software Requirements Specification Document
Provides DC 8: Acceptance Tests

23

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 3.4 Name: Preparation of Quotation Involved Roles: Sales Representatives
Classification Software Engineering
Description The Sales Representative prepares a quotation based on the require-

ments, acceptance tests, estimated effort and delivery schedule. The
customer agrees to the quotation by signing a purchase order.

Uses DC 6: Software Requirements Specification Document
DC 8: Acceptance Tests
DC 11: Task Tickets
DC 12: Milestones

Provides DC 9: Quotation
DC 10 : Purchase Order

3.4.2 Design Concepts

ID: DC 6 Name: Software Requirements Specification Document
Description This document contains a detailed description of all the requirements for

the system to be built. The requirements are stored in a requirements
management system. This document can be exported in various forms
and given to the customer. It is used as a guidance of what the system
should contain. The document also includes a budget and the time it will
take for the system to be built.

ID: DC 7 Name: MSD Specification
Description The MSD Specification comprises a set of formal requirements and is ded-

icated to the message-based coordination of different systems (or system
parts). The MSD approach considers assumptions on the environment as
well as real-time requirements and is applicable to hierarchical compo-
nent architectures, which makes it well suited in the context of technical
systems.

24

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 3: Soft ware Requirem ent s Engineer ing

DS 3.1: Soft ware
Requirem ent s Elicit at ion

DS 3.2: Preparat ion of
Requirem ent Specif icat ion

Docum ent

DS 3.3: Definit ion of
Accept ance Test s

DS 3.4: Preparat ion of Quot at ion

DC 2: Requirem ent s
Collect ion Tem plat e

DC 4: Syst em Requirem ent s
Specif icat ion Docum ent

DC 6: Soft ware Requirem ent s Specif icat ion Docum ent

DC 7: MSD Specif icat ion

DC 8: Accept ance Test s

DC 9: Quot at ion

DC 10: Purchase Order

<<uses>>

<<provides>>

<<provides>>

<<uses>>

<<uses>>

<<provides>>

DT 1: Requirem ent s
Managem ent Tool

<<uses>>

<<provides>>

<<provides>>

<<provides>>

<<uses>>

<<uses>>

DC 11: Task Ticket s

DC 12: Milest ones

<<uses>>

<<uses>>

DT 2: Requirem ent s
Specif icat ion/ Modelling

Tool

Figure 3.6: The steps, concepts, and tools used in design step DS3.

25

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DC 8 Name: Acceptance Tests
Description Acceptance tests verify that the software satisfies the requirements agreed

upon. These tests are run before the software is delivered to a customer.
When all tests pass then the software satisfies all the requirements and
can be handed over to the customer. The tests are also run internally
during development to continuously validate the software being built.
These tests can be implemented using appropriate test frameworks.

ID: DC 9 Name: Quotation
Description The quotation specifies the cost for building the system, as defined by

the requirements specification and acceptance tests. A delivery schedule
is included based upon the planned milestones. The cost is calculated
based upon the estimates.

ID: DC 10 Name: Purchase Order
Description A document signed by the customer agreeing to the terms in the quota-

tion.

ID: DC 11 Name: Task Tickets
Description A set of tickets in a collaboration tool (e.g., Trac, JIRA, or a physical

backlog), representing implementation activities. Each ticket has an es-
timation of effort attached to it, e.g., in number of hours of remaining
implementation effort. The number is continuously updated during im-
plementation and is used in burn-down charts.

ID: DC 12 Name: Milestones
Description A milestone consists of a number of tasks to be completed at a certain

date. The product of each milestone is usually a deliverable to the cus-
tomer.

26

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.5 Design Step 4: Derivation of Product Variants

ID: DS 4 Name: Derivation of Product
Variants

Involved Roles: Product Managers,
Feature/Variant Experts, Developers

Classification Product Line Engineering
Goal To model and describe variants of a product line
Description Variants within product lines represent particular product features. To-

gether with a common platform of all products (commonalities), the use
of variants results in distinct products. In this step, variants are de-
fined based on the collected requirements. Afterwards, these variants
are summarized together with the commonalities in order to create a
variant model.

Sub-Activities DS 4.1: Definition of Software Variants
DS 4.2: Definition of Hardware Variants

Uses DC 4: System Requirements Specification Document
DC 6: Software Requirements Specification Document
DC 14: Hardware Model

Tools DT 3: Product Line Tools
Provides DC 13: Variant Model

DS 4: Der ivat ion of Product Var iant s

DS 4.1: Definit ion of Soft ware Var iant s DS 4.2: Definit ion of Hardware Var iant s

DC 4: Syst em Requirem ent s
Specif icat ion Docum ent

DC 6: Soft ware Requirem ent s
Specif icat ion Docum ent

DT 3: Product
Line Tool

DC 14: Hardware ModelDC 13: Var iant Model

<<uses>> <<provides>>

<<provides>>

<<uses>>

<<uses>>

Figure 3.7: The steps, concepts, and tools used in design step DS4.

27

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.5.1 Detailed Steps

ID: DS 4.1 Name: Definition of Software
Variants

Involved Roles: Product Managers,
Feature/Variant Experts, Developers

Classification Product Line Engineering
Description The software variants are described within a variant model which rep-

resents the relationships between the variants by its tree structure. In
addition to the relationships, it is also possible to define dependencies
between variants that are not in the same sub tree. These dependencies
are defined by a constraint language. To determine them, it is neces-
sary to analyse the product requirements for inconsistencies. Further,
dependencies within the requirements have to be taken into account.

Uses DC 6: Software Requirements Specification Document
Tools DT 3: Product Line Tools
Provides DC 13: Variant Model

ID: DS 4.2 Name: Definition of Hardware
Variants

Involved Roles: Product Managers,
Feature/Variant Experts, Developers

Classification Product Line Engineering
Description In this step, hardware platforms and their variants are specified. This

can be done in two different ways: On the one hand, a new hardware
platform can be modelled. This platform is not associated with a spe-
cific hardware model. This initially abstract hardware model (which
shows which hardware components are needed) can be linked with a
concrete and matching hardware model that already exists later on.
Nevertheless, the link is optional. On the other hand, a hardware plat-
form can be generated by reading a (concrete) hardware model. The
variant consists of all hardware elements and attributes of the hardware
model. It is also possible to define additional hardware variants. These
are used to specify which elements and associated attributes within a
hardware platform can vary and if dependencies to other variants exist.
The hardware variants are described by a model that allows a hierarchy
of elements. In addition, the definition of varying elements or groups of
elements is covered by the model. However, the description of hardware
variants is not as powerful as the description for the software variants.
This is due to the fact that hardware platforms usually contain only a
small number of variants whereas software variants can occur in several
ways. Furthermore, dependencies between elements are not specifiable
in the model; this task has to be taken over by the linked hardware
model. Only dependencies of hardware variants are covered by the
hardware variability model.

Uses DC 4: System Requirements Specification Document
DC 14: Hardware Model [opt]

Tools DT 3: Product Line Tools
Provides DC 13: Variant Model

28

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.5.2 Design Concepts

ID: DC 13 Name: Variant Model
Description A variant model covers all common and variable parts of a product line

within one model.

ID: DC 14 Name: Hardware Model
Description A model containing the description of the hardware components. It de-

scribes the structure of a hardware platform as well as its main attributes
and characteristics, e.g., how many cores exist, how much memory is
available, etc.

3.5.3 Design Tools

ID: DT 3 Name: Product Line Tools
Description This is a tool that facilitates modelling of product lines. Such tools in-

clude features like variability modelling, product derivation from prod-
uct lines, e.t.c. Examples of these tools are the AMALTHEA4public
product line tool, Pure Variants (http://www.pure-systems.com/
pure_variants.49.0.html) and BigLever (http://www.biglever.com/
overview/software_product_lines.html).

29

http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html
http://www.biglever.com/overview/software_product_lines.html
http://www.biglever.com/overview/software_product_lines.html

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.6 Design Step 5: Definition of Software Architecture

ID: DS 5 Name: Define Software Architec-
ture

Involved Roles: Software Architects,
Developers, Systems Engineers, Tech-
nical Leads, Project Managers

Classification Software Engineering
Goal

• To model and describe various software components of the system
and how they fit together.

• To break down the requirements to a level where the implemen-
tation effort can be estimated in terms of time required for im-
plementation.

• To define the architecture of the system to be developed

Description The software is designed to implement the requirements. Here the com-
ponents and function groups of the software and their relationships
based on the requirements are modelled. In cases where product lines
apply, the software component architecture for the product line also
known as common software platform is defined. Here, it is necessary
to provide required interfaces for software extensions of all individual
products. For this purpose, first the component interfaces and com-
mon components are specified before their connections are defined. To
determine the component architecture, software architects use the re-
quirements as well as the corresponding variant model. Necessary com-
ponents for all variable parts are also defined in the architecture.

Sub-Activities DS 5.1: Specification of Software Architecture
DS 5.2: Review of Software Architecture
DS 5.3: Refine Software Variants

Uses DC 6: Software Requirements Specification Document
DC 7: MSD Specification
DC 13: Variant Model
DC 15: Software Architecture Review Protocol

Provides DC 11: Task Tickets
DC 12: Milestones
DC 16: Software Component Model
DC 17: Software Architecture Document
DC 18: Software Architecture Review Protocol Document

30

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 5: Definit ion of
Soft ware Archit ect ure

DS 5.1: Specif icat ion of Soft ware Archit ect ure

DS 5.2: Rev iew of Soft ware Archit ect ure

DS 5.3: Refine Soft ware Var iant s

DC 15: Soft ware Archit ect ure
Rev iew Prot ocol

DC 19: Syst em
Archit ect ure Rev iew

Check list

DC 6: Soft ware
Requirem ent s

Specif icat ion Docum ent

<<uses>>

<<uses>>

DC 17: Soft ware
Archit ect ure

Docum ent

<<provides>>

<<uses>>

DT 4: Com ponent
Modelling Tool

<<uses>>

DC 18: Soft ware Archit ect ure
Rev iew Prot ocol Docum ent

<<provides>>

DT 3: Product Line Tool

DC 13: Var iant Model

<<provides,uses>>

DC 16: Com ponent Model

<<uses>>

DC 16: Com ponent Model

<<provides>>

DC 11: Task Ticket s

DC 12: Milest ones

<<provides>>

<<provides>>

Figure 3.8: The steps, concepts, and tools used in design step DS5.

3.6.1 Detailed Steps

ID: DS 5.1 Name: Specification of Software
Architecture

Involved Roles: Software Architects,
Developers, Systems Engineers, Tech-
nical Leads, Project Managers

Classification Software Engineering
Description From the specified requirements, the software architecture of the sys-

tem is defined. The software architecture is usually defined using models
such as component models which contains all the software components
and their dependencies. Communication between these components is
also specified in the architecture model. The architecture of a software
can be described using more than one model in order to capture dif-
ferent perspectives of the software or to further refine it into a lower
abstraction level. At this stage, tasks are created for how the require-
ments will be implemented with respect to the architecture. Each task
results in a task-ticket. Milestones for the development project are also
established in this step.

Uses DC 6: Software Requirements Specification Document
DC 7: MSD Specification
DC 19: System Architecture Review Checklist

Tools DT 4: Component Modelling Tools
Provides DC 11: Task Tickets

DC 12: Milestones
DC 16: Component Model
DC 17: Software Architecture Document
DC 46: Software Model

31

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 5.2 Name: Review of Software Archi-
tecture

Involved Roles: Software Architects,
Developers, Systems Engineers, Tech-
nical Leads, Project Managers

Classification Software Engineering
Description The software architecture is reviewed by software architects to ensure

that the architecture covers the requirements and that it is correct. If
there are any mistakes the reviewers will mark them and/or suggest the
changes to be made. The result of the review goes back to the people
responsible for them to make the changes. This is therefore an iterative
process.

Uses DC 6: Software Requirements Specification Document
DC 7: MSD Specification
DC 19: System Architecture Review Checklist
DC 15: Software Architecture Review Protocol

Provides DC 18: Software Architecture Review Protocol Document

ID: DS 5.3 Name: Refine Software Variants Involved Roles: Software Architects,
Developers, Systems Engineers, Tech-
nical Leads, Project Managers

Classification Product Line Engineering
Description After all components have been defined, they are assigned to the corre-

sponding software features in the variant model.
Uses DC 16: Component Model

DC 13: Variant Model
Tools DT 3: Product Line Tools
Provides DC 13: Variant Model

3.6.2 Design Concepts

ID: DC 15 Name: Software Architecture Review Protocol
Description This is the document which describes the procedure for the review of

software system architecture

ID: DC 16 Name: Component Model
Description This is a model containing the software components of the system, their

communication and interdependencies. It is usually exported from a spec-
ification/modelling tool such as Papyrus or Yakindu CoMo.

ID: DC 17 Name: Software Architecture Document
Description This is the final document which describes the software architecture.

32

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DC 18 Name: Software Architecture Review Protocol Document
Description This is the review protocol developed after the completion of software

architecture review.

ID: DC 19 Name: System Architecture Review Checklist
Description A reference list to check while determining the software architecture.

ID: DC 46 Name: Software Model
Description Software Models provide an abstract description of the software, e.g.,

which runnables exist, how many instructions are required for the execu-
tion of each runnable, which date is communicated etc.

3.6.3 Design Tools

ID: DT 4 Name: Component Modelling Tools
Description These are tools that are used to create component models of the software

architecture. Examples for such tools are Papyrus or Yakindu CoMo.

33

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.7 Design Step 6: Behaviour Modelling

ID: DS 6 Name: Behaviour Modelling Involved Roles: Developers, Software
Architects

Classification Software Engineering, Product Line Engineering
Goal To model and describe the functional behaviour of a system.
Description In this step the behaviour of the software components in the architecture

is specified. Behaviour models describe the control structure of the
system. In some cases the behaviour of non functional requirements is
also specified.

Sub-Activities DS 6.1: Determine Component Behaviour
DS 6.2: Algorithm Development
DS 6.3: Determine Real Time Coordination Protocols
DS 6.4: Identify Required Hardware

Uses DC 6: Software Requirements Specification Document
DC 13: Variant Model
DC 7: MSD Specification
DC 3: System Model
DC 20: Algorithm Development Review Checklist
DC 21: Algorithm Development Review Protocol

Provides DC 22: Software Component Requirements Document
DC 23: Algorithm Development Review
DC 24: Component Tests
DC 25: Behaviour Model
DC 26: Real Time Coordination Protocols (as part of the software
architecture)

34

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 6: Behav iour Modelling

DS 6.1: Det erm ine Com ponent Behav iour

DS 6.2: Algor it hm Developm ent

DS 6.3: Det erm ine
Real Tim e

Coordinat ion
Prot ocols

DS 6.4: I dent ify
Required HardwareDC 13: Var iant Model

DC 6: Soft ware Requirem ent s
Specif icat ion Docum ent

DT 5:
Behav iour

Modelling Tool

DC 25: Behav iour Model

<<provides>>
<<uses>>

<<uses>>

DC 20: Algor it hm
Developm ent

Rev iew Check list

DC 21: Algor it hm
Developm ent

Rev iew Prot ocol
<<uses>>

<<uses>>

DC 22: Soft ware
Com ponent

Requirem ent s
Docum ent

DC 23:
Algor it hm

Developm ent
Rev iew

Docum ent

DC 24: Com ponent Test Cases

<<provides>>

<<provides>>

<<provides>>

DC 26: Real Tim e Coordinat ion Prot ocols

<<provides>>

<<provides,uses>>

DT 3: Product Line Tool

DT 4:
Com ponent

Modelling Tool
DC 7: MSD Specif icat ion

<<uses>>

DC 3: Syst em Model

<<uses>>

Figure 3.9: The steps, concepts, and tools used in design step DS6.

3.7.1 Detailed Steps

ID: DS 6.1 Name: Determine Component
Behaviour

Involved Roles: Developers, Software
Architects

Classification Software Engineering
Description After the components architecture has been defined and associated with

the variant model, now the behaviour of the variants is specified. Spec-
ifying the behaviour of components means specifying their control flow
(when each step should be taken), data flow (steps that should be taken
when certain input is produced) and state machines (steps that should
be taken when certain events occur). Control flow is modelled using
activity diagrams, data flow using flow charts or Petri nets and state
machines using state charts.

Uses DC 6: Software Requirements Specification Document
DC 7: MSD Specification
DC 13: Variant Model

Tools DT 4: Component Modelling Tools
DT 5: Behaviour Modelling Tools

Provides DC 25: Behaviour Model

35

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 6.2 Name: Algorithm Development Involved Roles: Developers, Software
Architects

Classification Software Engineering
Description Software developers and architects develop algorithms for desired soft-

ware system requirements and create related component requirements.
Uses DC 20: Algorithm Development Review Checklist

DC 21: Algorithm Development Review Protocol
Provides DC 22: Software Component Requirements Document

DC 23: Algorithm Development Review Document
DC 24: Component Tests

ID: DS 6.3 Name: Determine Real Time Co-
ordination Protocols

Involved Roles: Developers, Software
Architects

Classification Software Engineering
Description Based on the MSD specification, Real-Time Coordination Protocols

are created to model reusable interaction and coordination behaviour
between different software components. Real-Time Coordination Pro-
tocols are abstract protocols on application level that define the coordi-
nation between a pair of communicating roles and a connector that con-
nects these roles. Communication is usually asynchronous and message-
based, i.e., the sender can send its message independent of the receivers
state, the sender of a message does not block while sending, and the
receiver does not block while receiving.

Uses DC 3: System Model
DC 7: MSD Specification

Provides DC 26: Real Time Coordination Protocols (as part of the software
architecture)

ID: DS 6.4 Name: Identify Required Hard-
ware

Involved Roles: Software Architects,
Developers, Systems Engineers, Tech-
nical Leads, Project Managers

Classification Product Line Engineering, Systems Engineering
Description When modelling the behaviour, additional requirements relating to the

hardware platform that must be met for this component may be identi-
fied. These requirements are specified by properties that are associated
with the software variant in the variant model. The properties specify
necessary hardware elements and attributes.

Uses DC 13: Variant Model
DC 14: Hardware Model

Tools DT 3: Product Line Tools
DT 4: Component Modelling Tools
DT 5: Behaviour Modelling Tools

Provides DC 13: Variant Model

36

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.7.2 Design Concepts

ID: DC 20 Name: Algorithm Development Review Checklist
Description A reference list to check while developing the algorithms.

ID: DC 21 Name: Algorithm Development Review Protocol
Description This is the document which describes the procedure of reviewing the

developed algorithms.

ID: DC 22 Name: Software Component Requirements Document
Description This is the final document which describes the requirements of each com-

ponent in the software system.

ID: DC 23 Name: Algorithm Development Review Document
Description This artefact describes the results of the algorithm development review.

ID: DC 24 Name: Component Tests
Description These are the test cases which need to pass for component development

to be accepted.

ID: DC 25 Name: Behaviour Model
Description A model describing the functional behaviour of the system.

ID: DC 26 Name: Real Time Coordination Protocols (as part of the software archi-
tecture)

Description This is the model of the software architecture containing the real time
coordination protocols. It is usually in the form of sequence diagrams,
interaction diagrams, and/or real time state charts.

3.7.3 Design Tools

ID: DT 5 Name: Behaviour Modelling Tools
Description Tools for describing implementation aspects in a formal way. They can be

used to model the expected behaviour of individual components and the
entire system as well. Examples of these tools are YAKINDU Statecharts
or Matlab Simulink.

37

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.8 Design Step 7: Variant Configuration

ID: DS 7 Name: Variant Configuration Involved Roles: Product Managers,
Feature/Variant Experts, Customers

Classification Product Line Engineering
Goal Model and describe hardware platforms of the product line
Description In this step, a product from the product line is derived by selecting

particular variants within the configuration process. Here, both the
dependencies of software variants as well as the dependencies of hard-
ware variations are taken into account. In addition, compatibility be-
tween software and hardware is considered by evaluating the properties.
Therefore, dependencies of selected variants are immediately checked
against the model. This includes dependencies which result from the
tree structure as well as dependencies which have been defined by means
of a constraint language. In case a hardware variant is selected, addi-
tional dependencies between these hardware versions are checked.
In any case, the required properties of the software side are matched
against the available properties on the hardware side and options that
are not selectable are disabled. Thus, the selection of impossible com-
binations of variants is prevented, which can be modelled in two ways:
on the one hand via restrictions of software variants and and on the
other hand through restrictions of hardware variants. Following the
configuration, a software component model for the selected variant is
produced during the generation. It contains all the necessary compo-
nents and their behaviour. This component model can be partitioned
and distributed in the further development process. Furthermore, hard-
ware platforms which matches the requirements are determined.

Uses DC 13: Variant Model
Tools DT 3: Product Line tools
Provides DC 14: Hardware Model

DC 28: Software Component Model
DC 27: Configured Variant Model

DC 14: Hardware Model

DS 7: Var iant Configurat ion

DC 13: Var iant Model

DT 3: Product Line Tool

DC 27: Configured Var iant Model

DC 28: Soft ware Com ponent Model

<<uses>>

<<uses>>

<<provides>>

<<provides>>

<<provides>>

Figure 3.10: The steps, concepts, and tools used in design step DS7.

38

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.8.1 Design Concepts

ID: DC 27 Name: Configured Variant Model
Description In this model, all variants have been resolved.

ID: DC 28 Name: Software Component Model
Description This model is derived from the product line and contains only the software

components which are necessary for a particular product.

3.9 Design Step 8: Implementation

ID: DS 8 Name: Implementation Involved Roles: Developers, Testers
Classification Software Engineering
Goal To implement the system.
Description In this step the software components are implemented. This can ei-

ther be done by writing the code from scratch or generating the code
via model-driven engineering approaches. This step is iterative and is
repeated for each milestone.

Sub-Activities DS 8.1: Implementation of Software Components
DS 8.2: Develop Tests
DS 8.3: Software Integration
DS 8.4: Code Review

Uses DC 11: Task tickets
DC 12: Milestones
DC 25: Behavioural Model
DC 29: Basic Software Configuration
DC 30: Defects
DC 31: Implementation Review Checklist
DC 32: Implementation Review Protocol

Tools DT 6: Collaboration Tools
DT 7: Test Frameworks

Provides DC 30: Defects
DC 33: Source Code
DC 34: Unit Tests
DC 35: Integration Tests
DC 36: Integrated Software and Documentation

39

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 8: I m plem ent at ion

DS 8.1: I m plem ent at ion of Soft ware Com ponent s

DS 8.2: Develop Test s DS 8.3: Soft ware I nt egrat ionDS 8.4: Code Rev iew

DC 11: Task Ticket s

DC 25: Behav iour Model

DC 29: Basic Soft ware Configurat ion DC 30: Defect s

DC 31: I m plem ent at ion
Rev iew Check list

DC 32: I m plem ent at ion Rev iew Prot ocol
DC 33: Source Code

DC 34: Unit Test s

DC 35: I nt egrat ion Test s

DC 36: I nt egrat ed Soft ware
Syst em and Docum ent at ion

DT 6:
Collaborat ion

Tools

<<uses>> <<uses>>

<<provides>>

<<uses>>

<<uses>>

<<uses>>

<<provides>>

<<provides>>

<<uses>>

<<uses>>

<<provides>>

<<provides>>

<<provides>>

DC 12: Milest ones

<<uses>>

DT 7: Test Fram eworks

Figure 3.11: The steps, concepts, and tools used in design step DS8.

3.9.1 Detailed Steps

ID: DS 8.1 Name: Implementation of Soft-
ware Components

Involved Roles: Developers

Classification Software Engineering
Description The software components of the system are implemented by the devel-

opers. In traditional software development environments, developers
write the code from scratch. In companies where model-driven soft-
ware development is adopted, the code for the software components is
generated from models using model transformation techniques.

Uses DC 11: Task Tickets
DC 12: Milestones
DC 25: Behavioural Model
DC 29: Basic Software Configuration
DC 30: Defects

Tools DT 6: Collaboration Tools
Provides DC 33: Source Code

40

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 8.2 Name: Develop Tests Involved Roles: Developers, Testers
Classification Software Engineering
Description Software developers write unit tests as well as integration test for the

software components that are being developed. Unit tests are used to
test the functionality of individual components while integration tests
are written to test the whole or parts of the system together. One or
more tests should stress the system (e.g., with a high data rate) in order
to reveal bugs that only surface in high-load situations.

Uses DC 11: Task Tickets
Tools DT 7: Test Frameworks
Provides DC 24: Component Tests

DC 34: Unit Tests
DC 35: Integration Tests

ID: DS 8.3 Name: Software Integration Involved Roles: Developers, Testers
Classification Software Engineering
Description Software developers and testers integrate software components and

make sure that the system works properly. This is done with the help
of integration tests which can let the engineer know if the components
work together or not. Integration is usually a continuous process and
components are integrated as they come from the developers pipeline,
potentially with the help of continuous integration tools such as Jenkins.
The tools can also automatically execute integration tests.

Uses DC 31: Implementation Review Checklist
DC 32: Implementation Review Protocol
DC 35: Integration Tests

Provides DC 36: Integrated Software and Documentation

ID: DS 8.4 Name: Code Review Involved Roles: Developers, Testers
Classification Software Engineering
Description The source code developed is peer reviewed and the results of the review

are documented for further modification of the code.
Uses DC 33: Source Code
Provides DC 30: Defects

DC 32: Implementation Review Protocol

3.9.2 Design Concepts

ID: DC 29 Name: Basic Software Configuration
Description This is a configured hardware-specific software layer. It describes software

modules mapped to specific hardware.

41

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DC 30 Name: Defects
Description Defects are problems found during or after implementation. Defects are

entered into the issue-tracking system as tickets and are estimated and
assigned to milestones.

ID: DC 31 Name: Implementation Review Checklist
Description Before integrating the software system, the conditions which should be

checked are mentioned in this list.

ID: DC 32 Name: Implementation Review Protocol
Description This is the document which describes the procedure for the review of the

software integration.

ID: DC 33 Name: Source Code
Description Source code, e.g., source and header files for the programming language

C (*.c, *.h)

ID: DC 34 Name: Unit Tests
Description A unit test tests one source code module in isolation. Unit tests should

be run automatically when sources or tests change and are checked in to
the revision control system.

ID: DC 35 Name: Integration Tests
Description Integrations tests test the whole system or several parts of the system

together. Integration tests should also be automated as far as possible,
however they often require manual interaction with hardware, which can
make full automation difficult.

ID: DC 36 Name: Integrated Software System and Documentation
Description This is the final SW system and its Documentation

3.9.3 Design Tools

ID: DT 6 Name: Collaboration Tools
Description These are tools that facilitate storage and collaboration on project plan-

ning and development artefacts. The tools allow various users to work
together on the project and provide functionalities like version control,
continuous integration and automatic build of projects. Examples of these
tools are Trac or JIRA for ticket management and connection to the ver-
sion control software, Subversion or Git for versioning, and Jenkins for
continuous integration and automated builds.

42

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DT 7 Name: Test Frameworks
Description These are tools that are used for development and execution of tests.

3.10 Design Step 9: Validation and Testing

ID: DS 9 Name: Validation and Testing Involved Roles: Software Architects,
Developers, Testers, Control Engi-
neers, Systems Engineers

Classification Software Engineering
Goal

• To check if the software components work according to the spec-
ification

• To facilitate simulation as early as possible in order to reduce
development costs

Description The software components are tested by the responsible roles to check if
they are working as desired, i.e., according to the specified requirements.

Sub-Activities DS 9.1: Integrate with Controller and Environment
DS 9.2: Model in the Loop
DS 9.3: Rapid Control Prototyping
DS 9.4: Software in the Loop
DS 9.5: Hardware in the Loop
DS 9.6: Software System Testing

Uses DC 17: Software Architecture Document
DC 24: Component Tests
DC 37: Control Model
DC 38: Multi-domain Plant Model
DC 39: Functional Mock-up Interface
DC 40: Deployable Controller Software
DC 41: Software Test Report Template

Tools DT 8: Simulation Tools
DT 9: Code Generation Tools

Provides DC 42: Integrated System Simulation
DC 43: Control Unit
DC 44: Software Test Report
DC 45: Software Package and Documentation

43

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 9: Validat ion and Test ing

DS 9.1:
I nt egrat e wit h

Cont roller
Env ironm ent

DC 17: Soft ware
Archit ect ure Docum ent

DT 8: Sim ulat ion Tools

DC 42: I nt egrat ed Syst em Sim ulat ion

<<uses>>

<<provides>>

DS 9.2: Model in t he Loop

DC 37: Cont rol Model

DC 38: Mult i-dom ain Plant
Model

<<provides>>

<<provides>>

DS 9.3: Rapid Cont rol Prot ot ype
<<uses,provides>>

<<uses,provides>>

DC 39: Funct ional Mock -up
I nt er face / Funct ional

Mock -up Unit s

<<provides>>

DC 3: Syst em Model

<<uses>>

DT 8: Sim ulat ion Tools

Figure 3.12: The steps, concepts, and tools used in design step DS9 (part 1/2).

DS 9: Validat ion and Test ing

DC 37: Cont rol Model

DC 38: Mult i-dom ain Plant
Model

DS 9.4: Soft ware in t he Loop

DT 9: Code Generat ion Tools

DC 40: Deployable
Cont roller Soft ware

DC 43: Cont rol Unit

<<uses,provides>>

<<uses>>

<<provides>>

DS 9.5: Hardware in t he Loop

<<uses>>

<<uses>>

<<provides>>

DS 9.6: Soft ware Syst em Test ing

DC 41: Soft ware Test
Repor t Tem plat e

DC 44: Soft ware
Test Repor t

DC 45: Soft ware
Package and

Docum ent at ion

<<uses>>

<<provides>>

<<provides>>

Figure 3.13: The steps, concepts, and tools used in design step DS9 (part 2/2).

44

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.10.1 Detailed Steps

ID: DS 9.1 Name: Integrate with Controller
Environment

Involved Roles: Software Architects,
Developers, Systems Engineers

Classification Software Engineering
Description The model of the discrete behaviour is integrated with the feedback

controllers of the system. Model transformations to tools like MATLAB
Stateflow or Dymola allow an early integrated system simulation.

Uses DC 17: Software Architecture Document
Tools DT 8: Simulation Tools
Provides DC 42: Integrated System Simulation

ID: DS 9.2 Name: Model in the Loop(MiL) Involved Roles: Control Engineers
Classification Control Engineering
Description In the system design phase, early control models and plant models are

developed using tools like MATLAB/Simulink Stateflow and Dymola
respectively. The goal is an early multi-domain simulation and valida-
tion of the overall system behaviour. At this early stage of development,
the plant model is not necessarily very detailed.

Uses DC 3: System Model
Tools DT 8: Simulation Tools
Provides DC 37: (initial) Control Model

DC 38: (initial) Multi-domain Plant Model

ID: DS 9.3 Name: Rapid Control Prototyp-
ing (RCP)

Involved Roles: Control Engineers

Classification Control Engineering
Description In the domain specific control engineering, the control model is refined

(based on the results of the Model in the loop analysis). The refined
control model is then validated against an early laboratory prototype
or a real test bench. A configuration tool with a graphical user interface
(GUI) and hardware interface is required to connect the control model
with the prototype. Typically, tools like dSPACE ControlDesk or NI
VeriStand are used to provide such a configuration GUI. The initial
plant model is refined based on the measurements against the laboratory
prototype.

Uses DC 37: (initial) Control Model
DC 38: (initial) Multi-domain Plant Model

Tools DT 8: Simulation Tools
Provides DC 37: (refined) Control Model

DC 38: (refined) Multi-domain Plant Model
DC 39: Functional Mock-up Interface / Functional Mock-up Units

45

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 9.4 Name: Software in the Loop
(SiL)

Involved Roles: Control Engineers

Classification Software Engineering
Description In the domain specific control engineering, software is generated in the

desired target language from the control model (cf. RCP) which is tested
against the refined plant model afterwards. The control model is further
refined and optimized based on this validation step.

Uses DC 37: (refined) Control Model
DC 38: (refined) Multi-domain Plant Model

Tools DT 9: Code Generation Tools
Provides DC 37: (refined) Control Model

DC 40: Deployable Controller Software

ID: DS 9.5 Name: Hardware in the Loop Involved Roles: Control Engineer
Classification Software Engineering
Description In the system integration phase (component testing), the control unit

(hardware) together with the developed software (cf. SiL) is tested
against the refined plant model.

Uses DC 38: (refined) Multi-domain Plant Model
DC 40: Deployable Controller Software

Provides DC 43: Control Unit (including software)

ID: DS 9.6 Name: Software System Testing Involved Roles: Testers
Classification Software Engineering
Description The software is tested to determine if everything is working as it should.

The results of the tests are documented and the final software to be
delivered is packaged.

Uses DC 24: Component Tests
DC 41: Software Test Report Template

Provides DC 44: Software Test Report
DC 45: Software Package and Documentation

3.10.2 Design Concepts

ID: DC 37 Name: Control Model
Description This is a model that specifies the flow of control between components in

a system.

ID: DC 38 Name: Multi-domain Plant Model
Description This models the physical environment of the System under development

from the requirements. The model includes elements from different do-
mains depending on the system being modelled.

46

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DC 39 Name: Functional Mockup Interface / Functional Mockup Units
Description The Functional Mockup Interface (or FMI) defines a standardized inter-

face to be used in computer simulations to develop complex cyber-physical
systems. In practice, the FMI implementation by a software modelling
tool enables the creation of a simulation model that can be interconnected
or the creation of a software library called FMU (Functional Mock-up
Unit).

ID: DC 40 Name: Deployable Control Software
Description This is the packaged integrated software that is ready to be deployed on

a specific hardware.

ID: DC 41 Name: Software Test Report Template
Description This is a template which test reports have to follow.

ID: DC 42 Name: Integrated System Simulation
Description This is a model that simulates the behaviour of the real system under

development.

ID: DC 43 Name: Control Unit
Description This refers to a combination of the control software and the hardware,

i.e., the control software deployed on the hardware

ID: DC 44 Name: Software Test Report
Description This document includes the results of Software System Tests.

ID: DC 45 Name: Software Package and Documentation
Description This is the final software product and its documentation.

3.10.3 Design Tools

ID: DT 8 Name: Simulation Tools
Description These are tools that provide simulation platforms and facilitate the sim-

ulation of integrated and complex systems. They facilitate software test-
ing without the use of actual hardware. Examples of these tools are
MATLAB/Simulink2, Modelica/Dymola3, dSPACE ControlDesk4 and
NIVeristand5.

2MATLAB/Simulink (http://se.mathworks.com/products/simulink/)
3Modelica/Dymola (http://www.modelon.com/products/dymola/)
4ControlDesk(https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/
controldesk.cfm)

5NIVeristand (http://www.ni.com/veristand/)

47

http://se.mathworks.com/products/simulink/
http://www.modelon.com/products/dymola/
https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
http://www.ni.com/veristand/

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DT 9 Name: Code Generation Tools
Description These are tools that can generate code from provided models.

3.11 Design Step 10: System Integration

ID: DS 10 Name: System Integration Involved Roles: Developers, Systems
Engineers

Classification Software Engineering, Systems Engineering
Goal

• Configure hardware-dependent software for particular (hardware-
independently modelled) application software.

• Parallelize (sequential) software and distribute it to the Hardware

Description In this step, the software is partitioned and packaged so that it can
be deployed on hardware in an effective manner. In product line envi-
ronments this step usually takes place after software component speci-
fication and variant configuration but before the implementation/code
generation step.

Sub-Activities DS 10.1 : Create Executables
DS 10.2 : Partitioning
DS 10.3 : Task Creation
DS 10.4 : Target Mapping

Uses DC 34: Source Code
DC 46: Software Model

Tools DT 10: Compile-tool-chain
DT 11: Partitioning Tools
DT 12: Mapping Tools

Provides DC 30: Basic software configuration
DC 47: Executable file
DC 48: Partitioned software model
DC 49: Constraint model
DC 50: Software Model with Tasks
DC 51: Mapping Model
DC 52: OS Model
DC 53: Stimulation Model
DC 54: Property Constraints Model

48

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 10: Syst em I nt egrat ion

DS 10.1: Creat e Execut ables

DS 10.2: Par t it ioning
DS 10.3: Task Creat ion

DS 10.4: Target Mapping

DC 33: Source Code

DT 10: Com pile-Tool-Chain

DT 11: Par t it ioning Tools

DT 12:
Mapping

Tools

DC 47: Execut able File

<<uses>>
<<provides>>

DC 46: Soft ware Model

DC 48: Par t it ioned
Soft ware Model

DC 49: Const raint Model

<<uses>>

<<provides>>

<<provides>>

<<uses>>

<<uses>>

DC 50: Soft ware Model wit h Tasks

DC 53:
St im ulat ion

Model

<<provides>>

<<provides>>

DC 14: Hardware Model

DC 54: Proper t y Const raint s Model

DC 29: Basic
Soft ware

Configurat ion

DC 51: Mapping Model

DC 52: OS Model

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<provides>>

<<provides>>

<<provides>>

Figure 3.14: The steps, concepts, and tools used in design step DS10.

3.11.1 Detailed Steps

ID: DS 10.1 Name: Create Executables Involved Roles: Developers
Classification Software Engineering
Description Generate the executable for a target hardware to run software on the

ECU.
Uses DC 33: Source Code
Tools DT 10: Compile-Tool-Chain
Provides DC 47: Executable File (*.elf)

49

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 10.2 Name: Partitioning Involved Roles: Developers
Classification Software Engineering
Description Identify initial tasks by assessing graph structure and deriving possible

partitions, that can be executed in parallel. Its configuration includes
possibilities to:

• group Runnables by their activation reference;

• group independent set of Runnables (separate graphs);

• define how cycles are decomposed in order to form DAGs (di-
rected acyclic graphs). Firstly, the approach allows to identify a
minimal number of edges, that have to be decomposed to elimi-
nate cycles. Secondly, the approach identifies edges, that result in
graphs with efficient parallelism potential in case they are selected
for decomposition.

• select from critical path partitioning (CPP) or earliest start
scheduling partitioning (ESSP);

• define whether a global critical path influences partition forming
among all independent graphs and activation groups or if sep-
arate critical paths are formed for each independent graph and
activation group for CPP;

• define the number of partitions for ESSP.

Uses DC 46: Software Model
Tools DT 11: Partitioning Tools
Provides DC 48: Partitioned Software Model

DC 49: Constraints Model

50

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 10.3 Name: Task Creation Involved Roles: Developers
Classification Software Engineering
Description The Scope of this step lies in converting the Process Prototypes, which

describe a preliminary version of tasks, into concrete tasks. These tasks
agglomerate multiple Runnables into a larger group, which is allocated
on the target platform. The Runnable Sequencing Constraints from the
Constraints Model are used for identifying the Runnable order within
the tasks. The results of this step are stored in an augmented Software
Model. Since the groups of Runnables are reduced to a single common
activation rate, a Stimulation model containing this activation is also
created.

Uses DC 48: Partitioned Software Model
DC 49: Constraints Model

Tools DT 12: Mapping Tools
Provides DC 50: Software Model with Tasks

DC 53: Stimulation Model

ID: DS 10.4 Name: Target Mapping Involved Roles: Systems Engineers,
Developers

Classification Software Engineering, Systems Engineering
Description The scope of the mapping step lies in finding a valid and optimal distri-

bution of software elements to hardware components. The mapping tool
utilizes the models for software and hardware, as well as the tasks acti-
vation from the stimulation model, and calculates such a distribution.
In order to calculate this distribution, several approaches are imple-
mented, which can be selected and partially customized. Optionally, a
Property Constraints Model may be included during the mapping pro-
cess, which is used to narrow down the solution space, e.g. by enforcing
a required attribute on a target core for a task. The results of this
step are stored in a mapping model. Moreover, a preliminary OS model
is generated, which contains a scheduler for each of the cores of the
hardware platform.

Uses DC 50: Software Model with Tasks
DC 14: Hardware Model
DC 53: Stimulation Model
DC 54: Property Constraints Model [opt]

Tools DT 12: Mapping Tools
Provides DC 29: Basic software configuration

DC 51: Mapping Model
DC 52: OS Model

51

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.11.2 Design Concepts

ID: DC 47 Name: Executable File
Description Executable file that can be deployed to an ECU to run software on target

hardware.

ID: DC 48 Name: Partitioned Software Model
Description The partitioned software model is an augmented version of the software

model. It contains Process Prototypes, which agglomerate the runnables
into groups.

ID: DC 49 Name: Constraints Model
Description Constraints Models allow modelling different kinds of constraints, e.g., for

describing runnable execution orders, affinities for the mapping of data
to memories or timings. The partitioning tool uses the constraints model
to store runnable dependencies in Runnable Sequencing Constraints and
to derive a graph structure.

ID: DC 50 Name: Software Model with Tasks
Description The Software Model with Tasks is an augmented version of the partitioned

software model and contains task definitions which were generated from
process types.

ID: DC 51 Name: Mapping Model
Description Mapping Models describe the allocation of software elements to hard-

ware components, e.g., which core is used to execute a specific executable
(task), which memory is used to store data etc.

ID: DC 52 Name: OS Model
Description OS Models describes the provided functionality of an operating system.

They mainly provide a way to specify how access is given to certain system
resources, e.g., schedulers or semaphores

ID: DC 53 Name: Stimulation Model
Description Stimulation Models provide information about the activation times and

rates of tasks.

ID: DC 54 Name: Property Constraints Model
Description Property Constraints Models are used as an optional input and allow

limiting the design space of a mapping by specifying required hardware
characteristics to elements of the software.

52

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

3.11.3 Design Tools

ID: DT 10 Name: Compile-Tool Chain
Description This is a collection of tools used for developing software and linking soft-

ware to operating system and hardware.

ID: DT 11 Name: Partitioning Tools
Description Partitioning tools identify possible partitions that can be executed in

parallel. Therefore, it derives DAGs and forms partitions either based on
the critical path or based on an earliest start schedule approach.

ID: DT 12 Name: Mapping Tools
Description Mapping Tools allow creating tasks out of process prototypes. Further-

more, they implement several mapping strategies, which can be used to
find an optimal distribution of software elements to hardware components.

3.12 Design Step 11: Handover

ID: DS 11 Name: Handover Involved Roles: Project Managers,
Developers, Customers, Sales Repre-
sentatives

Classification Software Engineering, Business
Goal To reach an agreement with the customer that the system has been

implemented as specified by the agreed-upon requirements.
Description The acceptance tests should pass. A meeting is arranged with the cus-

tomer where the test results are presented (alternatively the tests are
run with the customer present). The customer signs a sign-off docu-
ment.

Sub-Activities DS 11.1: Acceptance Testing
DS 11.2: Delivery
DS 11.3: Sign off

Uses DC 8: Acceptance Tests
DC 12: Milestones

Tools DT 6: Collaboration tools
Provides DC 55: Acceptance Tests Results

DC 56: Sign off Document

53

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 11: Handover

DS 11.1: Accept ance Test ing

DS 11.2: Delivery

DS 11.3: Sign Off

DC 55: Accept ance Test Result s
DC 56: Sign-Off Docum entDC 8: Accept ance Test s

DC 12: Milest ones
DT 6: Collaborat ion Tools

DC 30: Defect s

<<uses>> <<provides>>

<<uses>>

<<provides>>

<<uses>>
<<provides>>

Figure 3.15: The steps, concepts, and tools used in design step DS11.

3.12.1 Detailed Steps

ID: DS 11.1 Name: Acceptance Testing Involved Roles: Project Managers,
Developers

Classification Software Engineering
Description Acceptance tests which where developed according to the requirements

are run. In order for the system to be delivered to the customer or to
be considered done, all the tests should pass.

Uses DC 8: Acceptance Tests
Provides DC 55: Acceptance Tests Results

ID: DS 11.2 Name: Delivery Involved Roles: Project Managers,
Developers, Customer

Classification Software Engineering
Description The system (sources, tests) is delivered to the customer. A baseline is

created (usually a classification in the revision control system). Accep-
tance tests are run and the results are documented (the tests do not
have to pass until the final milestone). The customer uses the system
and may report defects. The milestone is closed.

Uses DC 12: Milestones
Tools DT 6: Collaboration Tools
Provides DC 32: Defects

54

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

ID: DS 11.3 Name: Sign-off Involved Roles: Project Managers,
Sales Representatives

Classification Business
Description The acceptance tests should pass. A meeting is arranged with the cus-

tomer where the test results are presented (alternatively the tests are
run with the customer present). The customer signs a sign-off docu-
ment.

Uses DC 53: Acceptance Test Results
Provides DC 56: Sign-off Document

3.12.2 Design Concepts

ID: DC 55 Name: Acceptance Tests Results
Description Documents the results of the acceptance tests.

3.12.3 Design Concepts

ID: DC 56 Name: Sign-off Document
Description A document jointly signed by the customer and project manager, agreeing

that the project has been implemented to specification, and also agreeing
to close the project.

55

4 Exchange of Development Artefacts

During an embedded system development process, development artefacts must be exchanged for
various reasons. For instance, development of different parts of the system is done by different
developer teams or departments of a single company, each specialised for particular development
steps. Different companies might cooperate in the development or parts of the development
effort can be subcontracted to third parties. Even if software development was done by a single
person, the application of different tools supporting dedicated development steps requires the
exchange of development artefacts between those tools. In the context of multi- and many-
core software development, this exchange gets even more important because pieces of software
delivered by different suppliers must be deployed to a single hardware platform.
Nevertheless, the various steps within development of embedded multi- and many-core soft-

ware should be connected to a continuous design flow including traceability. For this purpose,
this chapter will cover requirements on the exchange of design concepts as well as use cases
for the exchange of development artefacts. In addition, an overview of the exchange of arte-
facts between the design steps outlined in Chapter 3 will be given. Concrete examples of the
exchange of artefacts in the context of AUTOSAR illustrate how it is handled in practice.

4.1 Requirements on the Exchange of the Design Concepts

The design concepts described in Chapter 3 can be categorised into documents that consist
mostly of text, models that are usually described in a formal modelling language, and lists that
follow a structured form but use no formal language. The requirements for the exchange of
these three categories differ slightly, since they can be stored and transmitted in different ways.
Generally, the exchange of artefacts requires syntactic compatibility, i.e., the file format must
be readable by the other party, and semantic compatibility, i.e., the information stored in the
file must be understandable by the other party.

Text documents. Text documents, e.g., review documents such as DC 18: Software Architec-
ture Review Protocol Document, often have limited structure and are formulated in free text.
This means that their syntactic compatibility can be ensured by storing them in a commonly
accepted file format (such as Microsoft Word, OpenDocument, or Plain Text) and the semantic
compatibility is not strictly enforced but usually implicitly given by the use of a language all
parties understand and by the subject matter. These documents are not intended for con-
sumption by automated tools and are generated either manually or automatically from a more
structured document.

Models. Models capture highly structured information in a precisely defined format. They
are used to capture most technical information, e.g., DC 3: System Model or DC 14: Hardware
Model. Each element in a model is assigned a concrete semantic meaning by making it an
instance of a meta-model. The most commonly used meta-models are well-known industry

56

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

standards (e.g., SysML or UML) and the AMALTHEA platform defines a number of meta-
models for various purposes as well. Semantic compatibility is therefore given by the adherence
to these meta-models and can be established by exchanging the meta-model along with the
models. This enables the use of automated techniques to, e.g., transform a model. It must
be noted, however, that on a higher level, semantic information encoded in the model must
still be interpreted by a human. Syntactic compatibility is usually ensured through the use of
interchange formats. While there is a multitude of modelling tools available (e.g., MagicDraw,
StarUML, Papyrus), each with its own file format, the XML Metadata Interchange (XMI)
format has been established as a de facto model exchange format.

Semi-structured lists. Such documents, e.g., DC 12: Milestones or DC 32: Defects, have more
structure than plain text documents since they are usually in the form of tables or matrices and
the content can therefore be assigned to specific denominators. This also implies a certain level
of semantics, but since the entries themselves are still formulated in natural language, assigning
meaning to the entries still requires a human reader. As for the file format and therefore the
syntactic compatibility, the same remarks as for text documents apply.

The use of version control systems (VCS) such as Git or Subversion poses a challenge when
binary formats such as OpenDocument or Microsoft Word are used. Since VCS are not capable
of computing the differences between two versions of the same binary file (again, an issue
of both syntactical and semantic compatibility), features such as comparison (diffing) and
automated merging are not available. Conflicts must be painstakingly resolved manually by
the stakeholders.
Using online collaboration tools can in many cases make it easier to exchange information

between developers and even between sub-units in a company or between companies. Instead
of storing and exchanging files, potentially through a VCS with limited effect, these tools allow
viewing and creating artefacts online in a unified platform. Tools like Trac, Jira, Trello and
others thus alleviate issues of syntactic compatibility. However, the use of these tools requires
that all parties are willing and able to interact with these tools both from a technical and a
policy perspective. Offline availability and mobile usage may be limited.
It must be noted that a specific artefact can be in either of the three forms mentioned above.

A requirements document such as DC 4: System Requirements Specification Document can,
e.g., be a simple text document, be a structured list expressed as a table, or can be a clearly
defined model based, e.g., on the UML meta-model. While the latter possibility incurs a higher
workload in the initial definition of the artefact, it might have benefits if the document is re-
used and exchanged later on. Which concrete form each of the artefacts in the development
process takes is a decision that must be made by the project stakeholders while the process is
tailored to the project. These decisions are usually influenced by organisational rules, industry
best practices, the expected complexity of the project, and the involved parties.

4.2 Use Cases for the Exchange of Artefacts

Artefacts are exchanged in every development process that includes more than one person
or more than one tool. Two general cases can be distinguished: exchange within the same
development team and exchange with people from outside the development team. The main
difference is that a development team usually has an implicit notion of the semantics of the

57

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

artefacts, thus providing semantic compatibility for artefacts provided and used by that team.
Should such compatibility not exist in specific cases, the short communication routes within
the team allow its establishment in an ad-hoc fashion if necessary. On the other hand, when
exchanging artefacts with outsiders, regardless of whether they are part of the same company
or a different company, this implicit semantic understanding may not exist. In addition, since
the tool chains may differ, even syntactic understanding becomes problematic.
The following paragraphs outline four use cases for the exchange of artefacts where the first

two belong to the category where implicit semantic compatibility is assumed and the other two
to the category where this can not be taken for granted. The use cases are accompanied by two
figures: Figure 4.1 shows which artefacts are exchanged between the design steps outlined in
Chapter 3 in general and Figure 4.2 shows which artefacts are potentially exchanged between
organisations.

Exchange of artefacts between tools The descriptions in Chapter 3 show that each design
step consumes and produces one or more design artefacts. The production and consump-
tion of the artefacts is facilitated by the use of various tools. For an artefact from one
design step using a particular tool to be used in another design step using another tool,
the format of the artefact needs to be readable by the two tools, i.e., output from one
tool needs to be recognised as input to the other tool (syntactic compatibility, see above).

For tools that are not compatible with each other, interfacing mechanisms can be applied
to facilitate the exchange of information between them. For example Open Services for
Lifecycle Collaboration (OSLC) is an open standard that provides a way to connect two
tools together so that one of the tools can access resources of the other tool. For some
specific elements, universally accepted standards exist (e.g., the UML meta-model or the
ReqIF format for requirements) that can facilitate such an exchange.

Exchange of artefacts between developers on the same team Development teams consists
of a number of developers who work on achieving certain milestones in the develop-
ment of a system. Although each developer can work on a task alone, it is often the
case that the result of a task needs to be used by other developers in the team as all of
them are working on developing the same end product. This exchange usually pertains to
artefacts within the same tools but great importance must be given to the correct version
of the exchanged artefact. This is achieved by using VCS such as Git or Subversion and
applying a defined process for committing and retrieving changes.

Exchange of artefacts between sub-units in the same company Sometimes artefacts need to
be exchanged between different development teams or different departments in the same
company for further development or for use as input to other design steps. These concepts
can be exchanged between the same tools or different tools. In case there are different
tools, the same remarks discussed in the first use case apply.

Exchange of artefacts between different companies When the development or part of the
development of a system is subcontracted to a third party company, the OEM needs to
exchange development artefacts with the third party company. The goal is usually to
provide information about a system as well as requirements to the involved 3rd party.
The 3rd party can then give additional input to the exchanged artefact and then send it
back. The contents of the exchanged artefact can be obscured, if there is the need for

58

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Intellectual Property (IP) protection. For instance this can be done by using randomly
generated names for parts of the artefact.

In order for the exchanged artefact to be useful to the 3rd party, other information may
be required as well, e.g., information related to customer requirements. Therefore there
is a need to export and exchange such information as well, together with the traceability
information between the artefacts.

DS 1: Syst em
Requirem ent s Analysis

DS 2: Syst em Archit ect ure Design

DC 4: Syst em
Requirem ent s

Specif icat ion Docum ent

<<provides>>

<<uses>>

DC 7: MSD Specif icat ion

DC 3: Syst em Model

DS 3: Soft ware
Requirem ent s

Engineer ing

DS 4: Der ivat ion of Product Var iant s

<<uses>>

<<provides>>

DS 9: Validat ion and Test ing

<<uses>>

<<provides>>

DC 6: Soft ware Requirem ent s
Specif icat ion Docum ent

<<provides>>
<<uses>>

DS 5: Definit ion of Soft ware Archit ect ure

<<uses>>

DS 6: Behav iour Modelling

<<uses>>

<<uses>>

DC 8:
Accept ance

Test s

DC 11: Task Ticket s

DC 12: Milest ones

<<provides>>

<<provides>>

<<provides>>

DS 8: I m plem ent at ion

<<uses>>

<<uses>>

DS 11: Handover

<<uses>>

<<uses>>

<<uses>>

DC 13: Var iant Model

<<provides>>

<<uses>>
<<uses>>

DS 7: Var iant Configurat ion

<<uses>>

DC 14: Hardware Model

<<provides>>

<<uses>>

DS 10: Syst em I nt egrat ion

<<uses>>

DC 17: Soft ware
Archit ect ure Docum ent

<<provides>>

<<uses>>

DC 25:
Behav iour

Model

<<provides>>

<<uses>>

DC 33: Source Code

DC 30: Defect s

<<provides>>

<<provides,uses>>

<<provides>>

<<uses>>

Figure 4.1: Exchange of artefacts between design steps. Since these design steps can be per-
formed by different division within the same company or by different companies
altogether, the exchanged artefacts pose special requirements on form, traceability,
and format.

4.3 Examples for Exchanging Development Artefacts

This section provides some examples how exchange of development artefacts is currently han-
dled with a special focus on the standardisation provided by AUTOSAR.

4.3.1 AUTOSAR: From Software Architecture to System Integration

As described in Chapter 2, AUTOSAR specifies a layered system architecture aiming at enabling
hardware-independent application software development. However, deployment of hardware-
independent application software requires a system integration step to enable software execution
on a dedicated hardware platform. For this purpose, AUTOSAR specifies hardware-dependent

59

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

DS 1: Syst em
Requirem ent s Analysis

DS 2: Syst em
Archit ect ure Design DC 4: Syst em

Requirem ent s
Specif icat ion Docum ent

<<provides>>

<<uses>>

DC 7: MSD Specif icat ion
DC 3: Syst em Model

DS 3: Soft ware
Requirem ent s

Engineer ing
<<provides>>

DS 9: Validat ion
and Test ing

<<uses>>

<<provides>>

DC 6: Soft ware Requirem ent s
Specif icat ion Docum ent

<<provides>>

DS 5: Definit ion of Soft ware
Archit ect ure

<<uses>>

DS 6: Behav iour Modelling

<<uses>>

<<uses>>

DC 8:
Accept ance

Test s

DC 11: Task Ticket s

DC 12: Milest ones

<<provides>>

<<provides>>

<<provides>>

DS 8: I m plem ent at ion

<<uses>> <<uses>>

DS 11: Handover

<<uses>>

<<uses>>

<<uses>>

DC 13: Var iant Model

<<uses>>

<<uses>>
DC 14: Hardware Model

DS 10: Syst em
I nt egrat ion

<<uses>>

DC 17: Soft ware
Archit ect ure Docum ent

<<provides>>

<<uses>>

DC 25:
Behav iour

Model

<<provides>>

<<uses>>

DC 33: Source Code

DC 30: Defect s

<<provides>>

<<provides,uses>>

<<provides>>

<<uses>>

<<uses>>

DS 7: Var iant Configurat ion

<<uses>> <<provides>>

Organisation A

Organisation B

Organisation E

Organisation D

Organisation C

Figure 4.2: Exchange of artefacts between different organisations. An organisation can be a de-
velopment team, a department, or a company. In the first two cases, the exchange
happens within the same company, potentially simplifying it since similar processes,
collaboration tools, and communication patterns are used. In the last case, docu-
ments are delivered and very little communication apart from that can be assumed,
thus representing a typical outsourcing scenario. The most important exchanged
artefacts are shown here. Central artefacts are the outcomes of the requirements
engineering step as well as code and documentation for the handover of the finished
product. Please note that the organisations do not necessarily have to be distinct.

basic software (BSW) that is connected to hardware-independent application software by the
AUTOSAR runtime environment (RTE) (Figure 4.3).
This example for exchanging development artefacts demonstrates how the transition from

design step 5 “Definition of Software Architecture” to design step 10 “System Integration”
(cf. Chapter 3) can be performed by means of AUTOSAR.
AUTOSAR provides different views on the software architecture, each providing a different

level of detail. Here, we focus on the Virtual Function Bus (VFB) level where application
software is modelled by software components (SWC). Such a SWC encapsulates one or more
Runnables, each representing some functionality. Runnables in turn are the smallest schedulable
entity covered by AUTOSAR. Furthermore, a SWC has ports to model required input as well
as provided output data flow. Ports are therefore associated with port interfaces that describe
data, e.g., by means of data type. Another property of ports is their communication mechanism.
AUTOSAR allows to specify Sender-Receiver or Server-Client communication, so ports are
characterized as sender, receiver, server, or client port. At VFB level, system architects can
instantiate various SWCs and connect them via their ports. However, ports cannot arbitrarily

60

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Application Layer

Runtime Environment (RTE)

Basic Software Layer

ECU-Hardware

Figure 4.3: AUTOSAR software layers (cf. [7]).

be connected but have to be compatible w.r.t. the addressed communication mechanism and
their port interfaces.
The textual, domain specific language “Software Component Language” (SWC Language) –

specified by ARText that is based on Xtext [15] and provided by ARTOP [4] – enables textual
definition of AUTOSAR-compliant SWCs. Amongst others, it provides means to define ports,
port interfaces, internal behaviour with Runnables and VFB-Events, and even compositions
of SWCs. SWC Language stores data in a software component description file (*.swcd). But
ARText provides also means to export data to an AUTOSAR XML file (*.arxml). Hence,
definition of software architecture covering instantiations of SWCs and their data dependencies
given by connections of their ports can also be exported to an AUTOSAR XML file.
The tool “Arctic Studio”, an Eclipse-based, commercial development environment for Arctic

Core AUTOSAR platform provided by ArcCore [3], provides this SWC Language to define
AUTOSAR-compliant software architecture. For system integration, Arctic Studio provides
configuration of AUTOSAR BSW to integrate SWCs on a target platform. Import of system
architecture information is enabled by importing AUTOSAR XML files.
This way, AUTOSAR XML files provide a means to pass development artefacts resulting from

design step 5 “Definition of Software Architecture” to design step 10 “System Integration”. In
design step 10, imported information regarding software architecture are used to appropriately
configure BSW and generate RTE.
Figure 4.4 shows an example of how this exchange of artefacts is enabled by means of AU-

TOSAR. First, a system architect defines the software architecture by a set of software compo-
nents, each stored in a separate *.swcd -file. The collection of SWC description files is exported
to a single AUTOSAR xml-file (*.arxml). This file, in turn, is imported by ArcticStudio and
provides information like communication between various SWCs. This data are required during
system integration, e.g., to configure and generate AUTOSAR runtime environment (RTE) and
configure network communication.

4.3.2 Exchange of Artefacts between Tools: From Software Architecture to
Behaviour Modelling to Code Generation

This example demonstrates how design artefacts are exchanged between various tools. The
example assumes that a company is using model-driven software development. The example
is illustrated using Figure 4.5 which shows a transfer of design artefacts from a component
modelling tool to a behaviour modelling tool and further to a code generation tool.
The architecture of the system which describes the software components of the SUD is mod-

61

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Figure 4.4: From software architecture modelling to system integration: Software architecture
is modelled by means of ARText-based SWC Language, exported to AUTOSAR
xml-file, and imported by ArcticStudio for system integration.

elled using a specification tool such as Vehicle System Architect (VSA) – step 1 in Figure 4.5.
This can then be exported in the AUTOSAR standard exchange format (.arxml) – step 2 in
Figure 4.5. The .arxml file is then imported to a behaviour modelling tool such as Simulink –
step 3 in Figure 4.5 – to allow the behaviour of the components to be modelled. When mod-
elling the behaviour, the architecture (software component model) is also refined until a final
working version that can be used to generate code is obtained. Early versions of the behaviour
model are tested by simulations using Simulink – step 4 in Figure 4.5 – and later the final
versions are tested in the actual vehicle. The final behaviour model is used to generate code for
the software and the amended architecture is exported back to the specification tool (in this
case VSA) for the changes to be merged to the original architecture – step 5 in Figure 4.5.

Figure 4.5: Exchange of Artefacts between Tools [19].

62

5 Preliminary Compatibility Analysis for
Design Steps with ISO 26262

Safety is a critical aspect in the automotive industry. Due to this fact and since the identified
design steps address suppliers for the automotive industry and academic partners with experi-
ence from such suppliers, safety plays an important role in this document. This chapter gives an
evaluation of the design steps described in Chapter 3 in the context of the ISO 26262 standard
which has been introduced in Section 2.4 of Chapter 2. It is based on the review of the design
steps conducted by OFFIS which is one of the project partners that has expertise with the ISO
26262 standard. The aim is to show which of the ISO 26262 phases the design steps cover and
which ones are not covered at the moment. A phase or sub-phase in the ISO 26262 standard
is covered by a design step when the activities in the design step are similar or correspond
to the activities in the phase or sub-phase. This section also points out the weakness in the
design steps and proposes ways of improvement to increase compatibility with the ISO 26262
standard.
The ISO 26262 standard has 10 main phases divided into several sub-phases as shown in

Figure 5.1. The design steps discussed in this document cover the sub-phases which are marked
by the green borders on the figure. Sub-phases not marked explicitly are not covered by the
identified design steps at the moment and will be subject to further investigation.
The design steps in this document have a distinction between the system engineering level

and the software engineering level that is marked by the tags in the tables describing the
steps. This distinction corresponds with the distinction made in the ISO 26262 phases Phase
4: Product development at the system level and Phase 6: Product development at the software
level. The rest of the phases are out of scope for this document.
In phase 4, the design step DS 1: System Requirements Analysis corresponds to the sub-

phase 4-5: Initiation of product development at the system level. The design step DS 2: System
Architecture Design corresponds to the sub-phase 4-7: System design. The sub-phase 4-8 which
is item integration and testing corresponds to the design step DS 10: System Integration while
the sub-phase 4-11 which is release for production corresponds to DS 11: Handover. For phase
6, the design steps’ correspondence to the sub-phases are shown in the table below.
Even though the identified design steps cover some aspects of verification and validation, the

steps do not explicitly mention the verification and validation of safety requirements. This is
why the sub-phases 4-6, 4-9, 4-10 and 6-11 are not covered by any design steps in particular.
This is a weakness in the design steps because they are not concrete enough to reveal the safety
related aspects.
In order for the steps to be completely compatible with the standard, more concrete guide-

lines need to be in place on how to use the design steps. For instance the ISO 26262 standard
explicitly requires that the requirement template should have an attribute for a unique ID and
a distinction of whether a requirement is related to safety or not. If they are, an additional
attribute called ASIL (Automotive Safety Integrity Level) is required. Subsystems have to
inherit the safety-status and the ASIL from their parental element. Therefore their structure

63

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Figure 5.1: Overview of the different parts of ISO 26262 covered by the design steps

must be comprehensible. Also the standard requires that every verification or validation step
has a stated goal on whether it checks for correctness, completeness or consistency. The stan-
dard also emphasises traceability of safety related artefacts from requirements down to their
implementation and tests.
These more concrete guidelines on how the steps should be used in order to be compatible

with the ISO 26262 standard will be created based on further data collection and evaluation
from the project partners. The guideline will be part of the last deliverable for the project, a
design handbook that will illustrate the design flow supported by the techniques developed in
AMALTHEA4public and the AMALTHEA4public tool chain.

64

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

Sub-phase Design step(s)
6-5 Initiation of product development at
the software level

DS 3: Software Requirements Engineering

6-7 Software architectural design DS 4: Derivation of Product Variants
DS 5: Definition of Software Architecture
DS 6: Behaviour Modelling

6-8 Software unit design and implementa-
tion

DS 7: Variant Configuration
DS 8: Implementation

6-9 Software integration and testing DS 9: Validation and Testing

Table 5.1: ISO 26262 sub-phases of phase 6 and corresponding design steps.

65

6 Conclusion

This deliverable provides an overview of the design steps currently in use in the development of
embedded software with a special focus on the automotive domain. It illustrates which design
goals and tools are involved, which artefacts are created and exchanged, and how the identified
steps are compatible with ISO26262.
The work presented here gave important insights into the workflows used by the project

partners in AMALTHEA4public and will help us to achieve the next two goals in the work
package in tasks 1.4 and 1.7: definition of a traceability concept and design of an enhanced
design flow. It also allows to map the artefacts to the models the AMALTHEA tool chain
provides and thus to identify which parts of the design steps can not be accomplished by the
current tool chain.
With regard to the traceability concept, the overview of identified artefacts and how they

are exchanged between design steps, development teams, or companies, allows us to refine the
requirements on traceability already collected. We now have a complete view of the models
that are used and how they are connected through the design steps that allows us to look at
the specific traceability needs for each kind of artefact. In addition, the identified patterns of
exchange allow us to analyse which kind of traceability information must be preserved when
an exchange takes place and which technical infrastructure is necessary to ensure this. This
collaborative view on traceability is novel and will be a focus of investigation in the next year.
Finally, the design of an enhanced design flow that will incorporate the techniques and

approaches developed in AMALTHEA4public will be greatly simplified due to the analysis
presented in this document. With an understanding of the existing workflows and design steps,
we can now work in close collaboration with our project partners in order to seamlessly integrate
new aspects such as safety, the already mentioned traceability, as well as improvements in the
product line approaches.

66

Bibliography

[1] IEEE Recommended Practice for Architectural Description of Software-Intensive Systems.
In: IEEE Std 1471-2000 (2000), S. i–23

[2] Apel, Sven ; Kästner, C.: An overview of feature-oriented software development. In:
Journal of Object Technology (JOT) 8 (2009), Nr. 5, S. 49–84

[3] ArcCore AB: Homepage of ArcCore. http://www.arccore.com/. 2015

[4] Artop - AUTOSAR Tool Platform User Group: Homepage of Artop. http:
//www.artop.org/. 2015

[5] AUTOSAR GbR: Feature Model Exchange Format. http://www.autosar.org/
fileadmin/files/releases/4-2/methodology-templates/templates/standard/
AUTOSAR_TPS_FeatureModelExchangeFormat.pdf. 2014

[6] AUTOSAR GbR: Generic Structure Template. http://www.autosar.org/fileadmin/
files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_
GenericStructureTemplate.pdf. 2014

[7] AUTOSAR GbR: Homepage of AUTOSAR. http://www.autosar.org/. 2014

[8] AUTOSAR GbR: Methodology. http://www.autosar.org/fileadmin/files/
releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_
Methodology.pdf. 2014

[9] AUTOSAR GbR: Virtual Functional Bus. http://www.autosar.org/fileadmin/
files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf. 2014

[10] Böckle, Günter ; Pohl, Klaus ; Linden, Frank van der: Software Product Line Engi-
neering. Springer Berlin Heidelberg, 2005. – ISBN 978-3-540-24372-4

[11] Braun, Peter ; Broy, Manfred ; Houdek, Frank ; Kirchmayr, Matthias ; Müller,
Mark ; Penzenstadler, Birgit ; Pohl, Klaus ; Weyer, Thorsten: Guiding require-
ments engineering for software-intensive embedded systems in the automotive industry.
In: Computer Science - Research and Development 29 (2014), Nr. 1, S. 21–43. – URL
http://dx.doi.org/10.1007/s00450-010-0136-y. – ISSN 1865-2034

[12] Broy, Manfred ; Rausch, Andreas: Das neue V-Modell XT. In: Informatik-Spektrum
28 (2005), Nr. 3, S. 220–229. – URL http://dx.doi.org/10.1007/s00287-005-0488-z.
– ISSN 0170-6012

[13] Bürdek, Johannes ; Lity, Sascha ; Lochau, Malte ; Berens, Markus ; Goltz, Ursula ;
Schürr, Andy: Staged Configuration of Dynamic Software Product Lines with Com-
plex Binding Time Constraints. In: Proceedings of the Eighth International Workshop on
Variability Modelling of Software-Intensive Systems, 2013 (VaMoS ’14), S. 16:1–16:8

67

http://www.arccore.com/
http://www.artop.org/
http://www.artop.org/
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_FeatureModelExchangeFormat.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf
http://dx.doi.org/10.1007/s00450-010-0136-y
http://dx.doi.org/10.1007/s00287-005-0488-z

D1.1 – Final Analysis of Necessary Design Steps ITEA 2 – 13017

[14] Clements, Paul ; Northrop, Linda: Software Product Lines: Practices and Patterns.
SEI Series. Boston, MA, USA : Addison-Wesley Longman Publishing Co., Inc., 2001. –
563 S. – ISBN 978-0-201-70332-0

[15] contributors, Various open-source: Xtext. July 2015. – URL http://www.eclipse.
org/Xtext/

[16] Department of Transportation, Office of Operations: Systems engineering for
intelligent transportation systems / Federal Highway Administration & Federal Transit
Administration. URL http://ops.fhwa.dot.gov/publications/seitsguide/, January
2007 (FHWA-HOP-07-069). – Forschungsbericht

[17] ISO: ISO 26262 - Road vehicles — Functional safety — Part 1 Vocabulary. Juli 2009

[18] Kang, K. C. ; Cohen, S. ; Hess, J. ; Novak, W. ; Peterson, A.: Feature-Oriented
Domain Analysis (FODA), Feasibility Study / Software Engineering Institute. Carnegie
Mellon University, 1990 (CMU/SEI-90-TR-21). – Forschungsbericht

[19] Michael Seibt, Guido Sandman: Stepping through the AU-
TOSAR round trip. http://www.electronicsnews.com.au/Features/
Stepping-through-the-AUTOSAR-round-trip. 2015

[20] OMG: Software & Systems Process Engineering Meta-Model Specification Version 2.0. :
Object Management Group (Veranst.), April 2008. – URL http://www.omg.org/spec/
SPEM/2.0/

[21] Osborne, Leon ; Brummond, Jeffrey ; Hart, Robert D. ; Zarean, Mohsen ; Con-
ger, Steven M.: Clarus: Concept of operations / US Department of Transportation
– Federal Highway Administration. URL http://ntl.bts.gov/lib/jpodocs/repts_te/
14158.htm, October 2005 (FHWA-JPO-05-072). – Forschungsbericht

[22] Pohl, Klaus ; Hönninger, Harald ; Achatz, Reinhold ; Broy, Manfred: Model-Based
Engineering of Embedded Systems: The SPES 2020 Methodology. Springer Publishing
Company, Incorporated, 2012. – ISBN 3642346138, 9783642346132

[23] SPES 2020 project consortium: Homepage of the SPES 2020 project. http://www.
spes2020.de/. 2015

[24] SPES XT project consortium: Presentations on highlights and use cases of the SPES
XT project. http://spes2020.informatik.tu-muenchen.de/abschlussevent_xt.html.
2015

68

http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://ops.fhwa.dot.gov/publications/seitsguide/
http://www.electronicsnews.com.au/Features/Stepping-through-the-AUTOSAR-round-trip
http://www.electronicsnews.com.au/Features/Stepping-through-the-AUTOSAR-round-trip
http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/
http://ntl.bts.gov/lib/jpodocs/repts_te/14158.htm
http://ntl.bts.gov/lib/jpodocs/repts_te/14158.htm
http://www.spes2020.de/
http://www.spes2020.de/
http://spes2020.informatik.tu-muenchen.de/abschlussevent_xt.html

	History
	Summary
	Introduction
	Methodology
	Document Structure

	Development Methodologies and Standards
	V-Model
	SPES / SPES XT
	Autosar
	ISO 26262
	Product Line Engineering Process

	Design Steps, Goals and Concepts
	Overview of the design steps
	Design Step 1: System Requirements Analysis
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 2: System Architecture Design
	Design Concepts

	Design Step 3: Software Requirements Engineering
	Detailed Steps
	Design Concepts

	Design Step 4: Derivation of Product Variants
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 5: Definition of Software Architecture
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 6: Behaviour Modelling
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 7: Variant Configuration
	Design Concepts

	Design Step 8: Implementation
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 9: Validation and Testing
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 10: System Integration
	Detailed Steps
	Design Concepts
	Design Tools

	Design Step 11: Handover
	Detailed Steps
	Design Concepts
	Design Concepts

	Exchange of Development Artefacts
	Requirements on the Exchange of the Design Concepts
	Use Cases for the Exchange of Artefacts
	Examples for Exchanging Development Artefacts
	AUTOSAR: From Software Architecture to System Integration
	Exchange of Artefacts between Tools: From Software Architecture to Behaviour Modelling to Code Generation

	Preliminary Compatibility Analysis for Design Steps with ISO 26262
	Conclusion

