
 

 

 

D3.1.1 Review of Model-to-Model 

Transformation Approaches and 

Technologies 
ModelWriter 
Text & Model-Synchronized Document Engineering Platform 
 

 

 

 

 

 

 

 

 

Project number: ITEA 2 13028 

Work Package: WP3 

Task: T3.1 - Review of M2M transformation approaches 

 

Edited by: 

 

Ferhat Erata <ferhat.erata@unitbilisim.com> (UNIT) 

Moharram Challenger <moharram.challenger@unitbilisim.com> (UNIT) 

Geylani Kardas <geylani.kardas@ege.edu.tr> (KoçSistem) 

 

 

Date: 15-September-2015 

Document version: 2.2.1 

 

 

 

 

 

 

 

 

 

Apart from the deliverables which are defined as public information in the Project Cooperation 

Agreement (PCA), unless otherwise specified by the consortium, this document will be treated as 

strictly confidential. 

  



2 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 2 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

Document History 

Version Author(s) Date Remarks 

0.1.0 Ferhat Erata 07-June-2015 Draft 

1.0.0 Moharram Challenger 10-July-2015 Initial Release 

1.1.0 Geylani Kardas 29-July-2015 Corrections 

2.0.0 Moharram Challenger 03-Aug-2015 Complete version 

2.1.0 Geylani Kardas 04-Aug-2015 Corrections 

2.2.0 Moharram Challenger 05-Aug-2015 Modifications 

2.2.1 Ferhat Erata 16-Sep-2015 Modifications 

 

 

  

https://github.com/ModelWriter/Deliverables/issues/33


3 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 3 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

Table of Contents 

Contents 

DOCUMENT HISTORY .......................................................................................................... 2 

TABLE OF CONTENTS.......................................................................................................... 3 

1. INTRODUCTION .............................................................................................................. 4 

Role of the deliverable .................................................................................................. 4 
The List of Technical Work Packages ............................................................................. 4 

Structure of the document ............................................................................................. 4 
Terms, abbreviations and definitions ............................................................................... 4 
Disclaimer ................................................................................................................... 5 

2. PRELIMINARY ................................................................................................................ 6 

3. TRANSFORMATION LANGUAGES, TOOLS, AND TECHNOLOGIES.................................................. 8 

4. COMPARISON ............................................................................................................... 15 

5. CONCLUSION AND WAY FORWARD ..................................................................................... 17 

REFERENCES ................................................................................................................... 19 

 

 

https://github.com/ModelWriter/Deliverables/issues/33


4 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 4 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

1. Introduction 

Role of the deliverable  

This document consists of a review of model transformation approaches in general and model to 

model transformation approaches in specific. Also, the document will discuss the classifications of 

widely used transformation approaches, their tools and languages. This document may be up-

dated depending on the further details and requirements we get during the project. 

The List of Technical Work Packages 

UC Code Requirements derived from 

WP2 Semantic Parsing and Generation of Documents and Documents Components 

WP3 Model to/from Knowledge Base (synchronization mechanism) 

WP4 Knowledge Base Design and Implementation 

WP6 Architecture, Integration and Evaluation 

 

Structure of the document 

This document is organized as follows: 

 Chapter 1 introduces the document including its role, list of technical WPs, structure of 

this document, and terms and abbreviations. 

 Chapter 2 discusses the preliminaries including the classification of model transformation 

languages and the properties which distinguish them from each other. 

 Chapter 3 reviews the model transformation approaches in different groups and for 

various uses which are available as the state-of-the-technology. 

 Chapter 4 compares the available approaches by considering their pros and cons. 

 Chapter 5 presents the conclusion and way forward for the ModelWriter transformation 

mechanism. 

Terms, abbreviations and definitions 

Abbreviation Definition 

M2M Model to Model Transformation 

M2T / M2C Model to Text or Model to Code Transformation 

WP Work Package 

UC Use Case 

https://github.com/ModelWriter/Deliverables/issues/33


5 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 5 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

Abbreviation Definition 

KB Knowledge base 

AS Abstract Syntax 

CS Concrete Syntax 

MT Model Transformation 

 

Disclaimer 

All of the tools, technologies, and languages discussed in this survey belong to the authors and 

proper citation is provided for them. This document is a collection of the quotations from the 

sources related to these tools and languages for which the sources are cited. In aim is to 

introduce the tools and languages as a candidate framework which can be used in WP3 to 

contribute in ModelWriter. 

 

https://github.com/ModelWriter/Deliverables/issues/33


6 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 6 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

2. Preliminary 

The notion of model transformation is central to model-driven development (Sendall and 

Kozaczynski, 2003). A model transformation, which is essentially a program which operates on 

models, can be written in a general-purpose programming language, such as Java. However, 

special-purpose model transformation languages can offer advantages, such as syntax that 

makes it easy to referring model elements. For writing bidirectional model transformations, which 

maintain consistency between two or more models, a special bidirectional model transformation 

language is particularly important, because it can help avoid the duplication that would result from 

writing each direction of the transformation separately (Wikipedia, 2015). 

Model transformations and languages for them have been classified in many ways (Czarnecki and 

Helsen, 2006; Mens and Van Gorp, 2006; Stevens, 2008; Lúcio et al., 2014). Some of the more 

common distinctions drawn are: 

 

Number and type of inputs and outputs: 

In principle a model transformation may have many inputs and outputs of various types; the only 

absolute limitation is that a model transformation will take at least one model as input. However, a 

model transformation that did not produce any model as output would more commonly be called a 

model analysis or model query. 

  

Endogenous versus exogenous:  

Endogenous transformations are transformations between models expressed in the same 

language. Exogenous transformations are transformations between models expressed using 

different languages (Mens and Van Gorp, 2006). For example, in a process conforming to the 

OMG Model Driven Architecture, a platform-independent model might be transformed into a 

platform-specific model by an exogenous model transformation. 

 

Unidirectional versus bidirectional: 

A unidirectional model transformation has only one mode of execution: that is, it always takes the 

same type of input and produces the same type of output. Unidirectional model transformations 

are useful in compilation-like situations, where any output model is read-only. The relevant notion 

of consistency is then very simple: the input model is consistent with the model that the 

transformation would produce as output, only. 

For a bidirectional model transformation, the same type of model can sometimes be input and 

other times be output. Bidirectional transformations are necessary in situations where people are 

working on more than one model and the models must be kept consistent. Then a change to 

either model might necessitate a change to the other, in order to maintain consistency between 

the models. Because each model can incorporate information which is not reflected in the other, 

there may be many models which are consistent with a given model.    

 

Horizontal vs Vertical Transformation: 

A horizontal transformation is a transformation where the source and target models reside at the same 

abstraction level (e.g. Platform independent or platform specific levels). Typical examples are 

refactoring (an endogenous transformation) and migration (an exogenous transformation). A vertical 

transformation is a transformation where the source and target models reside at different abstraction 

levels. A typical example is refinement, where a specification is gradually refined into a full-fledged 

implementation, by means of successive refinement steps that add more concrete details (Wirth, 

1971; Back and Wright, 2012). 

https://github.com/ModelWriter/Deliverables/issues/33


7 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 7 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

 

Table 1 illustrates that the dimensions horizontal versus vertical and endogenous versus exogenous 

are truly orthogonal, by giving a concrete example of all possible combinations. As a clarification for 

the Formal refinement mentioned in the table, a specification in first-order predicate logic or set theory 

can be gradually refined such that the end result uses exactly the same language as the original 

specification (e.g., by adding more axioms). 

 

Table 1: Orthogonal dimensions of model transformations with examples 

 Horizontal Vertical 

Endogenous Refactoring Formal refinement 

Exogenous Language migration Code generation 

 

Syntactic versus semantic transformations: 

A final distinction can be made between model transformations that merely transform the syntax, 

and more sophisticated transformations that also take the semantics of the model into account. As 

an example of syntactical transformation, consider a parser that transforms the concrete syntax of 

a program (resp. model) in some programming (resp. modeling language) into an abstract syntax. 

The abstract syntax is then used as the internal representation of the program (resp. model) on 

which more complex semantic transformations (e.g. refactoring or optimization) can be applied. 

Also when we want to import or export our models in a specific format, a syntactical 

transformation is needed. 

https://github.com/ModelWriter/Deliverables/issues/33


8 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 8 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

3. Transformation Languages, Tools, and Technologies 

In this section the state of the art technologies are reviewed for model transformation, their tools, 

and languages (Czarnecki and Helsen, 2003; Mens and Van Gorp, 2006; Huber, 2008; Lúcio et 

al., 2014).  

 

ATL: 

ATL Transformation Language (Jouault et al., 2006) is a model transformation language and 

toolkit developed and maintained by OBEO and INRIA-AtlanMod (Czarnecki and Helsen, 2006). It 

was initiated by the AtlanMod team (previously called ATLAS Group). In the field of Model -Driven 

Engineering (MDE), ATL provides ways to produce a set of target models from a set of source 

models. Released under the terms of the Eclipse Public License, ATL  is an M2M (Eclipse) 

component, inside of the Eclipse Modelling Project (EMP). 

ATL is based on the QVT which is an Object Management Group standard for performing model 

transformations. It can be used to do syntactic or semantic translation. ATL is built on top of a 

model transformation Virtual Machine. 

 

JTL: 

Janus Transformation Language (JTL) is a bidirectional model transformation language 

specifically designed to support non-bijective transformations and change propagation (Cicchetti 

et al., 2011). In Model Driven Engineering, bidirectional transformations are considered as core 

ingredients for managing both the consistency and synchronization of two or more related models. 

However, while non-bijectivity in bidirectional transformations is considered relevant, most of the 

languages lack of a common understanding of its semantic implications hampering their 

applicability in practice. 

The JTL is a bidirectional model transformation language specifically designed to support non-

bijective transformations and change propagation. In particular, the language propagates changes 

occurring in a model to one or more related models according to the specified transformation 

regardless of the transformation direction. Additionally, whenever manual modifications let a 

model be non-reachable anymore by a transformation, the closest model which approximate the 

ideal source one is inferred. The language semantics is also presented and its expressivity and 

applicability are validated against a reference benchmark. JTL is embedded in a framework 

available on the Eclipse platform which aims to facilitate the use of the approach, especially in the 

definition of model transformations. 

 

ETL: 

Epsilon family (Kolovos et al., 2006) is a model management platform that provides transformation 

languages for model-to-model, model-to-text, update-in-place, migration and model merging 

transformations. Epsilon Transformation Language (ETL) (Kolovos et al., 2008) is a hybrid, rule-

based model-to-model transformation language built on top of EOL. ETL provides all the standard 

features of a transformation language but also provides enhanced flexibility as it can transform 

many input to many output models, and can query/navigate/modify both source and target 

models. 

Although a number of successful model transformation languages have been currently proposed, 

the majority of them have been developed in isolation and as a result, they face consistency and 

integration difficulties with languages that support other model management tasks. ETL, a hybrid 

model transformation language that has been developed atop the infrastructure provided by the 

Epsilon model management platform. By building atop Epsilon, ETL is seamlessly integrated with 

https://github.com/ModelWriter/Deliverables/issues/33


9 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 9 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

a number of other task specific languages to help to realize composite model management 

workflows. 

 

Kermeta:  

The Kermeta language was initiated by Franck Fleurey in 2005 within the Triskell team of IRISA 

(gathering researchers of the INRIA, CNRS, INSA and the University of Rennes (Fleurey et al., 

2006)). The Kermeta language borrows concepts from languages such as MOF, OCL and QVT, 

but also from BasicMTL, a model transformation language implemented in 2004 in the Triskell 

team by D. Vojtisek and F. Fondement. It is also inspired by the previous experience on MTL, the 

first transformation language created by Triskell, and by the Xion action language for UML. 

Kermeta, and its execution platform are available under Eclipse. It is open-source, under the 

Eclipse Public License. 

 

Kermeta is a general purpose modelling and programming language for metamodel engineering 

which is also able to perform model transformations. It fills the gap of MOF which defines only the 

structure of meta-models, by adding a way to specify static semantic (similar to OCL (Warmer and 

Kleppe, 2003)) and dynamic semantic (using operational semantic in the operation of the 

metamodel). Kermeta uses the object-oriented paradigm like Java or Eiffel.  

 

Kermeta is a modelling and aspect oriented programming language. Its underlying metamodel 

conforms to the EMOF standard. It is designed to write programs which are also models, to write 

transformations of models (programs that transform a model into another), to write constraints on 

these models, and to execute them (Fleurey et al., 2006)). The goal of this model approach is to 

bring an additional level of abstraction on top of the "object" level and thus to see a given system 

like a set of concepts (and instances of concepts) that form an explicitly coherent whole, which 

one will call a model. 

 

QVT (Kurtev, 2008):  
The OMG has defined a standard for expressing M2M transformations, called MOF/QVT or in 

short QVT (Eclipse, 2008). Eclipse has two extension for QVT called QVTd (Declarative) and 

QVTo (Operational/Procedural). QVT Operational component is a partial implementation of the 

Operational Mappings Language defined by the OMG standard specification (MOF) 2.0 

Query/View/Transformation. In long term, it aims to provide a complete implementation of the 

operational part of the standard. A high level overview of the QVT Operational language is 

available as a presentation from EclipseCon 2008, Model Transformation with Operational QVT.  

 

Atom3 (De Lara et al., 2004; Vangheluwe et al., 2007): 

AToM3 is a Python based tool for multi-paradigm modelling which stands for “A Tool for Multi-

formalism and Meta-Modelling”'. The two main tasks of AToM3 are meta-modelling and model-

transforming. Meta-modelling refers to the description, or modelling of different kinds of 

formalisms used to model systems (although we have focused on formalisms for simulat ion of 

dynamical systems, AToM3's capabilities are not restricted to these.) Model-transforming refers to 

the (automatic) process of converting, translating or modifying a model in a given formalism, into 

another model that might or might not be in the same formalism (Vangheluwe, 2006). 

 

In AToM3, formalisms and models are described as graphs. From a meta-specification (in the ER 

formalism) of a formalism, AToM3 generates a tool to visually manipulate (create and edit) models 

described in the specified formalism. Model transformations are performed by graph rewriting. The 

transformations themselves can thus be declaratively expressed as graph-grammar models. 

https://github.com/ModelWriter/Deliverables/issues/33


10 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 10 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

Some of the meta-models currently available are: Entity-Relationship, GPSS, Deterministic Finite 

state Automata, Non-Deterministic Finite state Automata, Petri Nets, Data Flow Diagrams and 

Structure Charts. Typical model transformations include model simplification (e.g., state reduction 

in Finite State Automata), code generation, generation of executable simulators based on the 

operational semantics of formalisms, as well as behaviour-preserving transformations between 

models in different formalisms. Atom3 is supported by a web based tool, but it has no standalone 

framework or any integration with a framework such as Eclipse.  

 

Acceleo (Eclipse, 2005): 

Acceleo is a pragmatic implementation of the Object Management Group (OMG) MOF Model to 

Text Language (MTL) standard. It is very easy to get started and understand the basic principles 

of model to text transformation with Acceleo. It is the result of R&D in the French company Obeo 

(one of the partners of ModelWriter project). It offers advantages such as: High ability to 

customize, Interoperability, Easy kick off, and so on (Eclipse, 2005). 

The reference implementation provided within the Eclipse M2T project, Acceleo 3, combines 

tooling, simple syntax and efficient code generation.  The Acceleo generation module Editor 

supports the user with the features such as: content assist, quick outline, navigation links to the 

declaration of model elements, template elements and variables, quick fixes, refactoring, syntax 

highlighting, occurrences highlighting, and so on. 

 

 

Xtend (Xtext, 2006; Eclipse, 2014): 

Xtend is a statically-typed programming language which translates to comprehensible Java 

source code. Syntactically and semantically Xtend has its roots in the Java programming 

language but improves on many aspects such as: Lambda Expressions, Active Annotations, and 

Template expressions. 

Unlike other JVM languages Xtend has zero interoperability issues with Java: Everything you 

write interacts with Java exactly as expected. At the same time Xtend is much more concise, 

readable and expressive. Xtend’s small library is just a thin layer that provides useful utilities and 

extensions on top of the Java Development Kit (JDK). Of course, you can call Xtend methods 

from Java, too, in a completely transparent way. Furthermore, Xtend provides a modern Eclipse-

based IDE closely integrated with the Eclipse Java Development Tools (JDT), including features 

like call-hierarchies, rename refactoring, debugging and many more. 

 

Xpand (Xpand, 2004a; Xpand, 2004b): 

The Xpand generator framework provides a textual language which is useful in different contexts 

in the MDSD process (e.g. validation, metamodel extensions, code generation, and model 

transformation). 

It can operate on a model, metamodel and/or meta-metamodel and you do not need to learn 

different languages to do these tasks. The framework provides a uniform abstraction layer over 

different meta-meta-models (e.g. EMF Ecore, Eclipse UML2, JavaBeans, XML Schema etc.). 

Additionally, it offers a powerful, statically typed expressions language, which is used in the 

various textual languages. 

 

JET (Eclipse, 2007): 

Generating source code can be powerful, but the program that writes the code can quickly 

become very complex and hard to understand. One way to reduce complexity and increase 

readability is to use templates. One of the Eclipse Modelling Framework (EMF) project tools for 

generating source code is JET (Java Emitter Templates). With JET you can use a JSP-like syntax 

https://github.com/ModelWriter/Deliverables/issues/33


11 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 11 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

(actually a subset of the JSP syntax) that makes it easy to write templates that express the code 

you want to generate. JET is a generic template engine that can be used to generate SQL, XML, 

Java source code and other output from templates (Eclipse, 2007).  

JET is used in the implementation of a "code generator" as an important component of Model 

Driven Development (MDD) with the aim of describing a software system using abstract models 

and then refining and transforming these models into code. Although it is possible to create 

abstract models, and manually transform them into code, the real power of MDD comes from 

automating this process. Generating source code can save you time in your projects and can 

reduce the amount of tedious redundant programming.  Such transformations accelerate the MDD 

process, and result in better code quality. The transformations can capture the "best practices" of 

experts, and can ensure that a project consistently employs these practices. 

However, transformations are not always perfect. Best practices are often dependent on context - 

what is optimal in one context may be suboptimal in another. Transformations can address this 

issue by including some mechanism for end-user modification of the code generator. This is 

frequently done by using "templates" to create artefacts, and allowing users to substitute their own 

implementations of these templates if necessary, which is the role of JET. 

 

MOFScript (Oldevik et al., 2005; Eclipse, 2009): 

The MOFScript includes tools and frameworks for supporting model to text transformations, e.g., 

to support generation of implementation code or documentation from models. It should provid e a 

metamodel-agnostic framework that allows usage of any kind of metamodel and its instances for 

text generation. It also has a language to support the editing, parsing, and execution of 

transformation rules (Eclipse, 2009). MOFScript covers the aspects needed in the context of text 

generation in software engineering, e.g.: Generation of text from MOF-based models: The ability 

to generate text from any MOF-based model (e.g. UML models), Control mechanisms, String 

manipulation, Output of expressions referencing model elements, Production of output resources 

(files), and traceability between models and generated text. However it does not support reverse 

engineering. The MOFScript tool is developed as two main logical architectural parts: tool 

components and service components (see Figure 1). The tool components are end user tools that 

provide the editing capabilities and interaction with  the services. The services provide capabilities 

for parsing, checking, and executing the transformation language. The language is represented by 

a model (the MOFScript model), an Eclipse Modeling Framework (EMF) model populated by the 

parser. This model is the basis for semantic checking and execution. The MOFScript tool is 

implemented as an Eclipse plug-in using the EMF plug-in for handling of models and metamodels. 

 

 

Figure 1: MOFScript Architecture (Eclipse, 2009) 

https://github.com/ModelWriter/Deliverables/issues/33


12 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 12 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

The Service Components consist of these component parts: The Model Manager is an EMF-

based component which handles management of MOFScript models. The Parser and Lexer are 

responsible for parsing textual definitions of MOFScript transformations, and populating a 

MOFScript model using the Model Manager. The parser is based on antlr. The Semantic Checker 

provides functionality for checking a transformation’s correctness with respect to validity of the 

rules called, references to metamodel elements, etc. The Execution Engine handles the execution 

of a transformation. It interprets a model and produces an output text, typically to a set of output 

files. The Text Synchroniser handles the traceability between generated text and the original 

model, aiming to be able to synchronize the text in response to model changes and vice versa.  

 

Also, there are other model transformation languages and tools which are mostly under-research 

and academic studies. Some of them are listed below: 

 

 Higher Order Transformations (HOTs) (Tisi et al., 2009): Just as any other model can 

be created, modified, augmented by a transformation, a transformation model can 

itself be instantiated, modified and so on, by a so-called Higher-Order Transformation 

(HOT). This uniformity has several benefits: especially it allows reusing tools and 

methods, and it creates a framework that can be applied recursively (since 

transformations of transformations can be transformed themselves). 

 GReAT (Balasubramanian et al., 2007): It is a transformation language in the GME 

environment (Lédeczi et al., 2001). The Graph Rewriting and Transformation (GReAT) 

language is a graphical language for the specification of graph transformations 

between domain-specific modelling languages (DSMLs). It consists of three sub-

languages: the pattern specification language, the transformation rule language, and 

the sequencing or control flow language. Additionally, the input and the output 

languages of a transformation are defined in terms of meta-models. GReAT is not a 

standalone tool; rather, it is used in conjunction with the Generic Modelling 

Environment (GME). However, once a transformation has been developed, a 

standalone executable can be executed outside of GME. The typical modeling and 

transformation process proceeds as follows. 

 Henshin (Arendt et al., 2010): a model transformation language for EMF, based on graph 

transformation concepts, providing state space exploration capabilities. Henshin supports 

both direct transformations of EMF single model instances (endogenous transformations), 

and translation of source model instances into a target language (exogenous 

transformations). It offers features such as verification using state space tools, formal 

graph transformation semantics, and arbitrary m-to-n exogenous transformations using a 

flexible generic trace model. 

 MOLA (MOdel transformation LAnguage) (Kalnins et al., 2005): a graphical high-level 

transformation language built in upon Lx. MOLA language is based on traditional area 

concepts such as pattern matching and rules defining how the elements of the 

matched pattern should be transformed. The order, in which the rules must be applied, 

is specified by means of traditional programming constructs – sequence, loop and 

branching. Other traditional programming concepts - variables and calls - can also be 

https://github.com/ModelWriter/Deliverables/issues/33


13 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 13 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

used in MOLA. The distinguishing feature of MOLA language is the loop construct 

which is tightly integrated with the pattern definition and makes transformations in 

MOLA to appear very straightforward and easy readable. A complete transformation 

description in MOLA consists of a metamodel (MOF compliant) and a set of MOLA 

diagrams (procedures).   

 SiTra (Akehurst et al., 2006): a pragmatic transformation approach based on using a 

standard programming language, e.g. Java, C#. SiTra is a simple Java library for 

supporting a programming approach to writing transformations aiming to, firstly use 

Java for writing transformations, and secondly, to provide a minimal framework for the 

execution of transformations. SiTra consists of two interfaces and a class that 

implements a transformation algorithm. The aim is to facilitate a style of programming 

that incorporates the concept of transformation rules.  

 Stratego/XT (Visser and Benaissa, 1998): Stratego/XT is a language and toolset for 

constructing stand-alone program transformation systems. It combines the Stratego 

transformation language with the XT toolset of transformation components, providing a 

framework for constructing stand-alone program transformation systems. The Stratego 

language is based on a programming paradigm called strategic term rewriting. It 

provides rewrite rules for expressing basic transformation steps. The application of 

these rules can be controlled using strategies, a form of subroutines. The XT toolset 

provides reusable transformation components and declarative languages for deriving 

new components, such as parsing grammars using the Modular Syntax Definition 

Formalism (SDF) and implementing pretty-printing (Wikipedia, 2009). 

 Tefkat (Lawley and Steel, 2006): is a transformation language and a model 

transformation engine and implements a state-of-the-art declarative model 

transformation language suitable for Model-Driven Development (MDD) and data 

transformation. It is implemented as an Eclipse plugin that leverages the Eclipse 

Modelling Framework (EMF) to handle models based on MOF, UML2, and XML 

Schema. Unlike XSLT, Tefkat has a simple and familiar SQL-like syntax, is specifically 

designed for writing scalable and re-usable transformation specifications using high-

level domain concepts rather than operating directly on XML syntax. 

 Tom (Balland et al., 2007): Tom language extends Java with the purpose of providing 

high level constructs inspired by the rewriting community. Tom furnishes a bridge 

between a general purpose language and higher level specifications that use rewriting. 

This approach was motivated by the promotion of rewriting techniques and their 

integration in large scale applications. Powerful matching capabilities along with a rich 

strategy language are among Tom’s strong points, making it easy to use and 

competitive with other rule based languages. 

 UML-RSDS (Lano, 2013): UML-RSDS solves the long-standing problem of how to 

combine declarative high-level specification of model transformations and general 

https://github.com/ModelWriter/Deliverables/issues/33


14 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 14 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

software systems, with efficient execution. It does this by enabling users to write their 

specifications in OCL and class diagrams, and then automatically generating efficient 

Java code from these specifications. The tool can be used to quickly sketch designs in 

UML and immediately generate working code - even for incomplete models. It can also 

be used to quickly produce prototypes or test scripts. 

 VIATRA2 (Varró and Balogh, 2007): The main objective of the VIATRA2 (VIsual 

Automated model TRAnsformations) framework is to provide a general -purpose 

support for the entire life-cycle of engineering model transformations including the 

specification, design, execution, validation and maintenance of transformations within 

and between various modeling languages and domains. 

 

Please note that although there are various tools and technologies for M2M transformation, one 

the major technologies is classical Java classes with the use of EMF API. Although, there is no 

high level programming language to support M2M transformation in this way, its flexibility makes it 

as a preference for some of the developers.  

https://github.com/ModelWriter/Deliverables/issues/33


15 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 15 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

4. Comparison 

The transformation approaches discussed in the previous section are used in different 

applications. Their tools and languages are based on various concepts and technologies. Two 

well-known technologies are QVT and TGG. Query/View/Transformation (QVT) is the 

transformation technology recently proposed for this purpose by the OMG. Triple Graph 

Grammars (TGGs) are another transformation technology proposed in the mid-nineties, used for 

example in the FUJABA CASE tool. In contrast to many other transformation technologies, both 

QVT and TGGs declaratively define the relation between two models (Greenyer and Kindler, 

2010). With this definition, a transformation engine can execute a transformation in either 

direction and, based on the same definition, can also propagate changes from one model to the 

other. Comparing the concepts of the declarative languages of QVT and TGG, we can see that 

TGGs and declarative QVT have many concepts in common. In fact, QVT-Core can be mapped to 

TGGs. QVT-Core can be implemented by transforming QVT-Core mappings to TGG rules, which 

can then be executed by a TGG transformation engine that performs the actual QVT 

transformation. However, there are semantic gaps between TGGs declarative languages of QVT 

(Greenyer and Kindler, 2010). But, it is possible for TGGs to benefit from the concepts of QVT 

and QVT can fill its semantic gap with TGG. 

Comparing ATL and QVT, ATL, ATL with its hybrid nature as a declarative and imperative 

programming makes it more expressive and grants it with the ability to express any kind of 

transformations. With respect to performance ATL in most cases executes faster than QVT due to 

two main reasons; first: It's easier to reduce the matching set with the WHERE clause in the rules. 

Second: Due to the fact that ATL is compiled and executed in a virtual machine.  

Although there are different domain specific modelling tools and frameworks, such as GME, GMF, 

Epsilon, and so on, Eclipse Modeling Framework (EMF) is one of the frameworks which is widely 

used in industry. There are several model transformation based upon EMF, such as EMT 

(Taentzer, 2004), Kermeta (Fleurey et al., 2006), and ATL (Jouault et al., 2006). Each of these 

languages support transformation of Ecore models within the EMF. In (Stephan and Stevenson, 

2009), the authors attempt to implement the same transformation rule on identical meta models in 

each of these languages to achieve the appropriate transformed model. They provide their 

observations in using each tool to perform the transformation and commen t on each 

language/tool's expressive power, ease of use, and modularity. They conclude by noting that ATL 

is their preference language/tool of choice because it strikes a balance between ease of use and 

expressive power and still allows for modularity.  

Also, in (Grønmo et al., 2009), the authors compare three model transformation languages: 1) 

Concrete syntax-based graph transformation (CGT) (Grønmo, 2009), 2) Attributed Graph 

Grammar (AGG) representing traditional graph transformation, and 3) Atlas Transformation 

Language (ATL) representing model transformation. Their case study is a fairly complicated 

refactoring of UML activity models. The case study shows that CGT rules are more concise and 

requires considerably less effort from the modeler, than with AGG and ATL. With AGG and ATL, 

the transformation modeler needs access to and knowledge of the metamodel and the 

representation in the abstract syntax. In CGT rules on the other hand, the transformation modeler 

can concentrate on the familiar concrete syntax of the source and target languages. 

Model transformation relies on the efficient matching and modification of graph-based data 

structures; its sibling graph rewriting has been used to successfully model problems in a variety of 

domains. In (Jakumeit et al., 2014), the authors present a comparison of the model and graph 

https://github.com/ModelWriter/Deliverables/issues/33


16 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 16 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

transformation tools that participated at the Transformation Tool Contest 2011. They also present 

an overview of the field and its tools, based on the illustrative solutions submitted to a specific 

task. They consider different factors such as suitability (is the tool suited to my task?), data (can I 

adequately model my domain?), computation (can I adequately specify my computations?), 

language and user interface (does the user interface of the tool fit to my needs or preferences?), 

and environment and execution (in which environment can I use the tool?). These factors are 

considered for evaluating 13 tools such as ATL, Epsilon, MODA, UML-RSDS, VIATRA2, and so 

on. According to their results, nearly all tools were built with the goal of offering general-purpose 

transformations.  

Also, taking the voting results in the contest into consideration, some other criteria are evaluated, 

namely dimension completeness, understandability, and conciseness. Completeness was of low 

impact compared to conciseness and understandability, with the worst solution in this regard 

scoring at 95% of the maximum value (compared to 56% and 57% regarding the other 

dimensions). This high rate of success is not surprising taking in to account how basic the tasks 

were; in fact it is rather surprising that a third of the tools was not able to give a complete/correct 

solution in the first place. So the matter was decided alongside understandability and 

conciseness. Regarding understandability, three points played a role: (i) the distinction in to 

graphical versus textual languages, with a general bonus for graphical tools, (ii) the concepts the 

tools are built upon, constructs from formal logics received a mauls, and (iii) whether the tool 

offers a syntax similar to well-known programming languages, which was preferred. Regarding 

conciseness, the availability of (i) lightweight means for simple CRUD tasks played a role, 

suffered by imperative solutions, but even more so (ii) the general expressiveness of the tools, as 

expressed by the availability of the features referenced in the feature matrices; they had not to be 

used in to great depth, but their general availability already lead to more compact solutions 

compared to competing tools. 

 

 

https://github.com/ModelWriter/Deliverables/issues/33


17 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 17 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

5. Conclusion and way forward 

There are many tools and technologies to implement model driven development techniques. The 

heart and soul of MDD is model transformation which tries to make required changes, provide the 

consistency, and/or generate new models. This transformation can be in the horizontal way, from 

PIM to PIM or PSM to PSM. It also can be in the vertical way, from PIM to PSM or PSM to Code. 

The latter ones are called M2M and M2C transformations respectively.  

 

There are many possible tools of handling the model, some of which can be ATL, ETL, Xtend, 

Xpand, and so on. There are several classifications for these model transformation tools and 

languages which are considered for various needs. Some of these common distinctions are: 

Number and type of inputs and outputs, endogenous versus exogenous transformation, 

Unidirectional versus bidirectional, horizontal vs vertical transformation, Syntactic versus semantic 

transformations, and so on.  

 

In WP3 of the ModelWriter project … 

The primary objective of WP3 is to provide the synchronization mechanism of the ModelWriter 

platform that will keep the “user-visible models” consistent with the “KB-stored models” and vice 

versa. This work package addresses all problems related to the "model-to-model transformations" 

in ModelWriter. 

• By “user-visible models” is meant those models that have been explicitly created by a 

Technical Author, using e.g. a spreadsheet, a kind of UML diagram, a block diagram, a 

mind map, etc. or any modelling tool (part of the “Model” side of ModelWriter) she/he has 

found the most appropriate for authoring her/his technical information.  

• By “KB-stored model” is meant a part of the Knowledge Base devoted to store pieces of 

related information, disregarding whether it is represented in user-visible models, in 

natural-language documents, or in both. 

 

This mechanism will be based on "model-to-model (M2M) transformations” of two complementary 

categories: 

• WP3.1, for transforming a user-visible model to a KB-stored model. 

• WP3.2, for transforming a KB-stored model into a user-visible model. 

 

The main goal of this WP is to develop a M2M Transformation Framework that supports the 

synchronization mechanisms for the ModelWriter tool. 

These mechanisms will be based on a requirements synchronization framework that can be 

extended to support different requirements models (based on both textual and/or visual 

notations). The framework is made up of three main components:  

 

1. A meta-modelling infrastructure,  

2. A DSL for model transformation specifications, and  

3. A model synchronization API. 

 

Also, in some of the use cases of the ModelWriter, such as UC-TR-03 and UC-TR-04, the model 

transformation is needed. For example, in UC-TR-03 the ReqIF instance models are needed to be 

transformed to the ModelWriter knowledge base models. So, some of the transformation 

requirements will be provided from the use cases.  

 

https://github.com/ModelWriter/Deliverables/issues/33


18 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 18 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

As the result of this survey, well-known approaches are studied and reported for model-to-model 

transformation approaches. Some of these tools and languages will be selected which is the most 

convenient and widely used in the industry for inclusion into the ModelWriter tool.  This selection 

will be based on the needs in the architecture during the project and requirements which are 

pushed from use cases. 

 

 

 

 

 

https://github.com/ModelWriter/Deliverables/issues/33


19 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 19 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

References 

 

 

Akehurst, D. H., Bordbar, B., Evans, M. J., Howells, W. G. J. and McDonald-Maier, K. D. (2006). SiTra: 

Simple transformations in java. Model Driven Engineering Languages and Systems, Springer: 351-

364. 

Arendt, T., Biermann, E., Jurack, S., Krause, C. and Taentzer, G. (2010). Henshin: advanced concepts and 

tools for in-place EMF model transformations. Model Driven Engineering Languages and Systems, 

Springer: 121-135. 

Back, R.-J. and Wright, J. (2012). Refinement calculus: a systematic introduction, Springer Science & 

Business Media. 

Balasubramanian, D., Narayanan, A., van Buskirk, C. and Karsai, G. (2007). "The graph rewriting and 

transformation language: GReAT." Electronic Communications of the EASST 1. 

Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E. and Reilles, A. (2007). Tom: Piggybacking Rewriting 

on Java. Term Rewriting and Applications. F. Baader, Springer Berlin Heidelberg. 4533: 36-47. 

Cicchetti, A., Di Ruscio, D., Eramo, R. and Pierantonio, A. (2011). JTL: a bidirectional and change 

propagating transformation language. Software Language Engineering, Springer: 183-202. 

Czarnecki, K. and Helsen, S. (2003). Classification of model transformation approaches. Proceedings of the 

2nd OOPSLA Workshop on Generative Techniques in the Context of the Model Driven Architecture, 
USA. 

Czarnecki, K. and Helsen, S. (2006). "Feature-based survey of model transformation approaches." IBM 

Systems Journal 45(3): 621-645. 

De Lara, J., Vangheluwe, H. and Alfonseca, M. (2004). "Meta-modelling and graph grammars for multi-

paradigm modelling in AToM3." Software and Systems Modeling 3(3): 194-209. 

Eclipse. (2005). "Acceleo."   Retrieved Aug, 2015, from http://www.eclipse.org/acceleo/. 

Eclipse. (2007). "JET."   Retrieved Aug, 2015, from https://eclipse.org/modeling/m2t/?project=jet.  

Eclipse. (2008). "QVT Operational."   Retrieved Aug, 2015, from 

https://projects.eclipse.org/projects/modeling.mmt.qvt-oml. 

Eclipse. (2009). "Scope of the MOFScript."   Retrieved July, 2015, from 

http://www.eclipse.org/gmt/mofscript/about.php. 

Eclipse. (2014). "Eclipse Documentation for Xtext."   Retrieved June, 2015, from 

http://eclipse.org/Xtext/documentation/. 

Fleurey, F., Drey, Z., Vojtisek, D., Faucher, C. and Mahé, V. (2006). "Kermeta Language, Reference 

Manual." Internet: http://www. kermeta. org/docs/KerMeta-Manual. pdf. IRISA. 

Greenyer, J. and Kindler, E. (2010). "Comparing relational model transformation technologies: 

implementing Query/View/Transformation with Triple Graph Grammars." Software & Systems 
Modeling 9(1): 21-46. 

Grønmo, R. (2009). Using concrete syntax in graph-based model transformations, University of Oslo. 

Grønmo, R., Møller-Pedersen, B. and Olsen, G. (2009). Comparison of Three Model Transformation 

Languages. Model Driven Architecture - Foundations and Applications. R. Paige, A. Hartman and A. 

Rensink, Springer Berlin Heidelberg. 5562: 2-17. 

Huber, P. (2008). The model transformation language jungle: an evaluation and extension of existing 

approaches, Master Thesis, TU-Wien. 

Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Hegedüs, Á., Herrmannsdörfer, M., Horn, T., Kalnina, 

E., Krause, C. and Lano, K. (2014). "A survey and comparison of transformation tools based on the 

transformation tool contest." Science of computer programming 85: 41-99. 

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I. and Valduriez, P. (2006). ATL: a QVT-like transformation 

language. Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming 

systems, languages, and applications, ACM. 

Kalnins, A., Celms, E. and Sostaks, A. (2005). Model transformation approach based on MOLA. Model 

Transformations in Practice Workshop at MoDELS, Citeseer. 

Kolovos, D. S., Paige, R. F. and Polack, F. A. (2006). Eclipse development tools for epsilon. Eclipse 

Summit Europe, Eclipse Modeling Symposium. 
Kolovos, D. S., Paige, R. F. and Polack, F. A. (2008). The epsilon transformation language. Theory and 

practice of model transformations, Springer: 46-60. 

https://github.com/ModelWriter/Deliverables/issues/33
http://www.eclipse.org/acceleo/
http://www.eclipse.org/gmt/mofscript/about.php
http://eclipse.org/Xtext/documentation/
http://www/


20 

 

Document reference: D3.1.1  

ModelWriter 

Review of model-to-model transformation approaches and technologies 

 

Page 20 of 20 https://github.com/ModelWriter/Deliverables/issues/33 

 

Kurtev, I. (2008). State of the art of QVT: A model transformation language standard. Applications of 

graph transformations with industrial relevance, Springer: 377-393. 

Lano, K. (2013). The UML-RSDS Manual. 

Lawley, M. and Steel, J. (2006). Practical declarative model transformation with Tefkat . Satellite Events at 

the MoDELS 2005 Conference, Springer. 

Lédeczi, Á., Bakay, A., Maroti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J. and Karsai, G. (2001). 

"Composing domain-specific design environments." Computer 34(11): 44-51. 

Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G. M., Syriani, E. and Wimmer, M. 

(2014). "Model transformation intents and their properties." Software & Systems Modeling: 1-38. 

Mens, T. and Van Gorp, P. (2006). "A taxonomy of model transformation." Electronic Notes in Theoretical 

Computer Science 152: 125-142. 

Oldevik, J., Neple, T., Grønmo, R., Aagedal, J. and Berre, A.-J. (2005). Toward standardised model to text 

transformations. Model Driven Architecture–Foundations and Applications, Springer. 

Sendall, S. and Kozaczynski, W. (2003). Model transformation the heart and soul of model -driven software 
development. 

Stephan, M. and Stevenson, A. (2009). "A comparative look at model transformation languages." Software 

Technology Laboratory at Queens University. 

Stevens, P. (2008). A landscape of bidirectional model transformations. Generative and transformational 

techniques in software engineering II, Springer: 408-424. 

Taentzer, G. (2004). AGG: A graph transformation environment for modeling and validation of software. 

Applications of Graph Transformations with Industrial Relevance, Springer: 446-453. 

Tisi, M., Jouault, F., Fraternali, P., Ceri, S. and Bézivin, J. (2009). On the use of higher-order model 

transformations. Model Driven Architecture-Foundations and Applications, Springer. 

Vangheluwe, H. (2006). "AToM3: A tool for mutli-formalism and meta-modeling."   Retrieved Aug, 2015, 

from http://atom3.cs.mcgill.ca/index_html. 

Vangheluwe, H., Sun, X. and Bodden, E. (2007). Domain-Specific Modelling With Atom3. ICSOFT 

(PL/DPS/KE/MUSE), Citeseer. 

Varró, D. and Balogh, A. (2007). "The model transformation language of the VIATRA2 framework." 

Science of Computer Programming 68(3): 214-234. 

Visser, E. and Benaissa, Z.-e.-A. (1998). "A core language for rewriting." Electronic Notes in Theoretical 

Computer Science 15: 422-441. 
Warmer, J. B. and Kleppe, A. G. (2003). The object constraint language: getting your models ready for 

MDA, Addison-Wesley Professional. 

Wikipedia. (2009). "Stratego/XT."   Retrieved July, 2015, from https://en.wikipedia.org/wiki/Stratego/XT. 
Wikipedia. (2015). "Model transformation language."   Retrieved June, 2015, from 

https://en.wikipedia.org/wiki/Model_transformation_language. 

Wirth, N. (1971). "Program development by stepwise refinement." Communications of the ACM 14(4): 

221-227. 

Xpand. (2004a). "Xpand Documentation."   Retrieved June, 2015, from 

http://ditec.um.es/ssdd/xpand_reference.pdf. 

Xpand. (2004b). "Xpand tools."   Retrieved June, 2015, from http://wiki.eclipse.org/Xpand/. 

Xtext. (2006). "Xtext Language."   Retrieved June, 2015, from http://www.eclipse.org/Xtext/. 

 

 

 

https://github.com/ModelWriter/Deliverables/issues/33
http://atom3.cs.mcgill.ca/index_html
http://ditec.um.es/ssdd/xpand_reference.pdf
http://wiki.eclipse.org/Xpand/
http://www.eclipse.org/Xtext/

