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Summary

This document presents a detailed overview of the state of the art of model veri�cation and
validation techniques. On the one hand, this document describes the main model veri�cation
and validation techniques and methods: informal, static, dynamic, and formal methods, test
case generation and validation techniques, simulation techniques and product line methodology.
On the other hand, this document presents the main tools used in the model veri�cation
regarding to the methods and guidelines detailed above.
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1 Introduction

In order to integrate existing industrial and academic veri�cation tools to formally de�ne and
develop a new model-based veri�cation approach to prove the correctness of software in a mul-
ti/many core environment, improving existing simulation techniques and test tools to support
a thorough V&V of multi-core systems in a model-driven development environment, it's neces-
sary a good understanding of the existing model veri�cation and validation methods. On the
one hand, the following V&V technique methods can be highlighted: informal, static, dynamic
and formal methods. Advantages and disadvantages of each one are presented. Test case gen-
eration and validation techniques are analysed next. Finally, simulation techniques, including
discrete-event simulation and instruction set simulation, and product line methodologies are
explained.
On the other hand, a set of V&V tools is over viewed. These tools complement the previously

analysed V&V techniques. In this way, it is aimed to integrate new or proven techniques and
approaches for veri�cation, simulation, and testing into the Amalthea toolchain.
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2 V&V Guidelines, Techniques, Methods

and Best Practice

2.1 Introduction to model veri�cation and validation methods

Veri�cation can be understood as the process of determining that a model implementation and
its associated data accurately represents the developer's conceptual description and speci�ca-
tion. Veri�cation also evaluates the extent to which the model or simulation has been developed
using sound and established software engineering techniques [83]. In general terms, software
engineering methods will apply and the process will answer to the question 'Is the model coded
right?'. Veri�cation techniques are deployed to ensure that the requirements for the simulation
model and its conceptual model design have been transformed into the computer model with
su�cient accuracy. In other words, the veri�cation phase of V&V focuses on comparing the
elements of a simulation model of the system with the description of what the requirements
and capabilities of the model were to be. Veri�cation is an iterative process aimed at deter-
mining whether the product of each step in the development of the simulation model ful�ls all
the requirements levied on it by the previous step and is internally complete, consistent, and
correct enough to support the next phase.[78]
On the other hand, the de�nition of validation involves the process of determining the degree

to which a model or simulation and its associated data are an accurate representation of the
real world from the perspective of the intended uses of the model or simulation [83]. Speci�c
validation methods will be needed and the process will answer to the question 'Is the right
model coded?'. Validation techniques are deployed to reach an acceptable level of con�dence
that the simulation model's results are su�ciently accurate for its intended use and applicable
to the real-world system being modeled. The validation phase of V&V focuses on comparing the
observed behaviour of elements of a system with the corresponding elements of a simulation
model of the system, and on determining whether the di�erences are acceptable given the
intended use of the model. If agreement is not obtained, the model is adjusted in order to
bring it in closer agreement with the observed behaviour of the actual system (or errors in
observation/experimentation or reference models/analyses are identi�ed and recti�ed). [78]
The two terms are often used together and incorrectly treated as if they were interchangeable.

Another common misconception is that V&V is synonymous with testing. V&V does not replace
testing, nor does it include testing. V&V, when used properly, can determine if testing has been
performed correctly. Testing is an important activity in all software life cycles. V&V, while
not normally a life-cycle activity, makes sure that all lifecycle activities have been correctly
performed (including testing). The V&V of modeling and simulation (M&S) is also di�erent
from V&V of other software artifacts. In M&S, the V&V is used to show that the software
model is a useful representation of the real world.
The basic goals of model V&V are to demonstrate that the requirements established by

the model can be traced through the structural design, functionality, and output(s) of the
model; and secondly, to build con�dence in the modeled results by attempting to prove that

2
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the simulation model is, in e�ect, incorrect relative to the real-world system being modeled.
Finally, the V&V process allows to make an informed accreditation decision. Accreditation

refers to the decision by a model sponsor (or its accreditation authority) whether to use a
speci�c model for a speci�c application. Without an established and documented V&V process
taking an appropriate decision will be almost impossible due to the lack of the critical knowledge
to certify the model for its intended use. Bearing in mind the characteristics and needs to be
covered in the Amalthea4public project, accreditation issues shall be not covered.
In the next �gure a comparison between veri�cation and validation is done.

Figure 2.1: Veri�cation and validation comparisons [89]

Veri�cation can be made for a conceptual model against the requirements and the executable
model, whereas the validation will be used to compare the real-world system/element to be
simulated against its conceptual model and the results obtained as outputs produced during
the simulations.
Developing an M&S application is not signi�cantly di�erent from any other software appli-

cation regarding V&V considerations. However, certain types of M&S applications have more
stringent V&V needs. M&S is typically used for one of three purposes: descriptive, predictive,
and normative models.

• Descriptive models are intended to provide a characterization of the nature and workings
of the modeled process to explain how a real-world activity functions.

• Predictive models, usually more complex than descriptive models, are designed to predict
future events in addition to describing objectives and events.

• Normative (or control) models are the most di�cult and complex models to construct
since these models not only describe and predict, but also provide direction about the
proper course of action.

Descriptive models require V&V just like any other software activity. Typical software has
an output that, once veri�ed and validated, can be used. Predictive and normative models

3
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require additional V&V because the output of these models is used to predict and guide future
actions, often without a human in the loop. Because of the potentially high cost of failure,
V&V is critical for these types of models. Because of this, separate and additional V&V for
the M&S is frequently merited. It is no secret that requirements are an integral part of all
software activities. In fact, requirements engineering is fundamental to developing useful and
valid software. Nowhere are requirements more important than in M&S. Prior to attempting
to use M&S to help save time or costs in your system, make sure that a mature requirements
engineering program is in place [107].
The are plenty of V&V available methods available for use since 1985 which address di�erent

purposes and they can be grouped in a variety of ways. The following categorization has been
chosen due to its clearness distribution of methods inside groups (Informal, Static, Dynamic,
Formal). The methods are related to each other depending on the similarities they present
regarding the context they can be used and the di�erences between them concern the item
which is being compared or the degree of formality and quantitativeness required.
The selection of V&V methods to be applied shall be done bearing in mind the characteristics

of the model, the fact that certain methods apply best to speci�c types of model, or the type
of data to be used because some methods will require speci�c types or amounts of data. In
addition to this, other considerations are that some methods will need more resources or speci�c
skills than others.
In the next table a summary of the most common V&V methods is presented. These

techniques can be used in support of one or more of the V&V activities identi�ed for the
Amalthea4public project. Typically, these activities and techniques are carefully planned and
documented in the form of a V&V Plan, which is revised as the V&V activity it describes un-
folds during the course of the model development life cycle. DMSO provides this list as a set of
tools from which a practitioner can select the most appropriate techniques for their particular
project. It is not necessary, or even advisable to attempt to apply all of the techniques to any
individual project. Many of the techniques are overlapping in their coverage, and it requires
experience to determine which technique is the best to meet a project's needs.

Category V&V techniques

Informal

• Audit

• Face Validation

• Reviews

• Walkthroughs

• Desk Checking

• Inspections

• Turing Test

4
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Category V&V techniques

Static

• Cause-E�ect Graphing

• Data Analysis

� Data dependency

� Data �ow

• Interface Analysis

� Model interface

� User interface

• Structural Analysis

• Syntax Analysis

• Control Analysis

� Calling structure

� Concurrent process

� Control �ow

� state transition

• Fault/Failure Analysis

• Semantic Analysis

• Symbolic Evaluation

• Traceability Assessment

5
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Category V&V techniques

Dynamic

• Acceptance Testing

• Assertion Checking

• Bottom-Up Testing

• Compliance Testing

� Authorization

� Performance

� Security

� Standards

• Execution Testing

� Monitoring

� Pro�ling

� Tracing

• Field Testing

• Graphical Comparisons

• Object-Flow Testing

• Predictive Validation

• Regression Testing

• Statistical Techniques

• Structural (White-Box) Testing

� Branch

� Condition

� Data �ow

� Loop

� Path

� Statement

• Symbolic Debugging

• Alpha Testing

• Beta Testing

• Comparison Testing

• Debugging

6
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Category V&V techniques

Dynamic

• Fault/Failure Insertion Testing

• Functional (Black-Box) Testing

• Interface Testing

� Data

� model

� User

• Partition Testing

• Product Testing

• Sensitivity Analysis

• Special Input Testing

� Boundary value

� Equivalence partitioning

� Extreme input

� Invalid input

� Real-time input

� Self-driven input

� Stress

� Trace-driven input

• Sub-model/Module Testing

• Top-Down Testing

• Visualization/Animation

7
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Category V&V techniques

Formal

• Induction

• Logical Deduction

• Lambda Calculus

• Predicate Transformations

• Inference

• Inductive Assertions

• Predicate Calculus

• Proof of Correctness

Table 2.1: Overview of V&V techniques by category. Source: Veri�cation, Validation, and
Accreditation Recommended Practices Guide (DMSO, 1996)

Furthermore, the Figure 2.2 summarizes a number of characteristics of the general nature
of each category: the basis for veri�cation, the relative level of mathematical formality, the
complexity of the associated techniques, cost in terms of human time and e�ort, cost with
respect to computer resources (e.g., execution time, memory utilization, storage requirements,
etc.), the relative e�ectiveness of the method in general, whether or not the category is con-
sidered instrumentation-based, and the relative importance of the associated techniques). the
comparison among the categories is intended more to give a relative view among the spectrum
of categories rather than to measure against some known standard.
In the subsequent sections further information will be provided regarding the categories

identi�ed for the distribution of the above listed techniques. Some techniques will be also
explained with some detailed due to they could be interesting for the context of Amalthea4public
project.

2.2 Informal methods

Informal methods are those which rely heavily on Subject Matter Expert (SME) expertise and
evaluation. They usually are qualitative and subjective and performed by SMEs. The infor-
mal techniques have the advantage that they are relatively easy to perform and understand.
However, it is commonly believed that these methods are unstructured. In fact, several of
the methods such as desk checking or self-inspection can have very detailed checklists. Infor-
mal V&V techniques can be very e�ective if applied with structure and guidelines, and they
are relatively low cost. These methods are e�ective for examining both the model and the
simulation.
Some of the most used techniques of Informal V&V methods are explained next.

8
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Figure 2.2: Characteristics of the Programmed Model Veri�cation techniques under each
category

2.2.1 Veri�cation

Audit

An audit is a veri�cation technique performed throughout the development life cycle of a new
model or simulation or during modi�cation made to legacy models and simulations. An audit is
a sta� function that serves as the "eyes and ears of management" [87]. An audit is undertaken
to assess how adequately a model or simulation is used with respect to established plans,
policies, procedures, standards, and guidelines. Auditing is carried out by holding meetings
and conducting observations and examinations [66]. The process of documenting and retaining
su�cient evidence about the substantiation of accuracy is called an audit trail [88]. Auditing
can be used to establish traceability within the simulation. When an error is identi�ed, it
should be traceable to its source via its audit trail.

9
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Inspection

It is a general software veri�cation method where requirements are compared to conceptual
models and these conceptual models to executable models.
Teams of developers, testers and users will be organised to examine the product of a par-

ticular simulation development phase (e.g., M&S requirements de�nition, conceptual model
development, M&S design).
The team inspecting a simulation design might include a moderator, a recorder, a reader from

the simulation design team who will explain the design process and answer questions about the
design, a representative of the Developer who will be translating the design into an executable
form, SMEs familiar with the requirements of the application, and the V&V Agent. Normally,
an inspection consists of �ve phases: overview, preparation, inspection, rework, and follow-up
[96].

• Overview: The simulation design team prepares a synopsis of the design. This and related
documentation (e.g., problem de�nition and objectives, M&S requirements, inspection
agenda) is distributed to all members of the inspection team.

• Preparation: The inspection team members individually review all the documentation
provided. The success of the inspection rests heavily on the conscientiousness of the team
members in their preparation.

• Inspection: The moderator plans and chairs the inspection meeting. The reader presents
the product and leads the team through the inspection process. The inspection team can
be aided during the fault �nding process by a checklist of queries. The objective is to
identify problems, not to correct them. At the end of the inspection the recorder prepares
a report of the problems detected and submits it to the design team.

• Rework: The design team addresses each problem identi�ed in the report, documenting
all responses and corrections.

• Follow-up: The moderator ensures that all faults and problems have been resolved satis-
factorily. All changes should be examined carefully to ensure that no new problems have
been introduced as a result of a correction.

Review

A review is intended to evaluate the simulation in light of development standards, guidelines,
and speci�cations and to provide management, such as the User or M&S PM, with evidence
that the simulation development process is being carried out according to the stated objectives.
A review is similar to an inspection or walkthrough, except that the review team also includes
management. As such, it is considered a higher-level technique than inspection or walkthrough.
A review team is generally comprised of management-level representatives of the User and

M&S PM. Review agendas should focus less on technical issues and more on oversight than an
inspection. The purpose is to evaluate the model or simulation relative to speci�cations and
standards, recording defects and de�ciencies. The V&V Agent should gather and distribute
the documentation to all team members for examination before the review. The V&V Agent
should also prepare a set of indicators to measure such as those listed in the table below.
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The V&V Agent may also prepare a checklist to help the team focus on the key points. The
result of the review should be a document recording the events of the meeting, de�ciencies
identi�ed, and review team recommendations. Appropriate actions should then be taken to
correct any de�ciencies and address all recommendations.

Review indicators

Appropriateness of the problem definition and

M&S requirements

Adequacy of all underlying assumptions

Adherence to standards

Modeling methodology

Quality of simulation representations

Model structure

Model consistency

Model completeness

documentation

Table 2.2: Review indicators

Walkthroughs

The main thrust of the walkthrough is to detect and document fault. It is not a performance
appraisal of the Developer. This point must be made to everyone involved so that full co-
operation is achieved in discovering errors. A typical structured walkthrough team consists
of:

• Coordinator, often the V&V Agent, who organizes, moderates, and follows up the walk-
through activities

• Presenter, usually the Developer

• Recorder

• Maintenance oracle, who focuses on long-term implications

• Standards bearer, who assesses adherence to standards

• Accreditation Agent, who re�ects the needs and concerns of the User

• Additional reviewers such as the M&S PM and auditors

Except for the Developer, none of the team members should be involved directly in the
development e�ort. [18] [45] [81] [82] [113]
Inspections di�er signi�cantly from walkthroughs. An inspection is a �ve-step, formalized

process. The inspection team uses the checklist approach for uncovering errors. A walkthrough
is less formal, has fewer steps, and does not use a checklist to guide or a written report to docu-
ment the team's work. Although the inspection process takes much longer than a walkthrough,
the extra time is justi�ed because an inspection is extremely e�ective for detecting faults early
in the development process when they are easiest and least costly to correct [17] [31] [47] [74]
[88] [96].
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Inspections and walkthroughs concentrate on assessing correctness. Reviews seek to ascertain
that tolerable levels of quality are being attained. The review team is more concerned with
design de�ciencies and deviations from the conceptual model and M&S requirements than it is
with the intricate line-by-line details of the implementation. The focus of a review is not on
discovering technical �aws but on ensuring that the design and development fully and accurately
address the needs of the application. For this reason, the review process is e�ective early on
during requirements veri�cation and conceptual model validation. [66] [88] [100] [110]

Desk Checking / Self-inspection

Desk checking, or self-inspection, is an intense examination of a working product or document
to ensure its correctness, completeness, consistency, and clarity. It is particularly useful during
requirements veri�cation, design veri�cation, and code veri�cation. Desk checking can involve
a number of di�erent tasks, such as those listed in the table below [31]. To be e�ective, desk
checking should be conducted carefully and thoroughly, preferably by someone not involved in
the actual development of the product or document, because it is usually di�cult to see one's
own errors [18].

Typical Desk Checking Activities

Syntax review

Cross-reference examination

Convention violation assessment

Detailed comparison to specifications

Code reading

Control flowgraph analysis

Path sensitizing

Table 2.3: Typical Desk Checking Activities

2.2.2 Validation

Face validation

With this validation method a comparison between the results and the simulation of the element
is done. It implies doing an assessment based on expertise, estimates and intuition where the
model validity is evaluated subjectively. This method is frequently used because its simplicity
and when user interaction is important.
The project team members, potential users of the model, and subject matter experts (SMEs)

review simulation output (e.g., numerical results, animations, etc.) for reasonableness. They
use their estimates and intuition to compare model and system behaviours subjectively under
identical input conditions and judge whether the model and its results are reasonable [64].
Face validation was used in the development of a simulation of the U.S. Air Force (AF)

manpower and personnel system to ensure it provided an adequate representation. The sim-
ulation was designed to provide AF policy analysts with a system-wide view of the e�ects of
various proposed personnel policies. The simulation was executed under the baseline personnel
policy and results shown to AF analysts and decision-makers who subsequently identi�ed some
discrepancies between the simulation results and perceived system behaviour. Corrections were
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made and additional face validation evaluations were conducted until the simulation appeared
to closely approximate current AF policy. The face validation exercise both demonstrated the
validity of the simulation and improved its perceived credibility.
Face validation is regularly cited in V&V e�orts within the Department of Defense (DoD)

M&S community. However, the term is commonly misused as a more general term and misap-
plied to other techniques involving visual reviews (e.g., inspection, desk check, review). Face
validation is useful mostly as a preliminary approach to validation in the early stages of de-
velopment. When a model is not mature or lacks a well-documented V&V history, additional
validation techniques may be required.

Turing test

A comparison is made between model behaviour and human behaviour. This validation tech-
nique is suitable for human behaviour models and when it is not possible to make distinctions
between them it can be concluded that the model-generated behaviour is valid or realistic.
System experts are presented with two blind sets of output data, one obtained from the model

representing the system and one from the system, created under the same input conditions
and are asked to di�erentiate between the two. If they cannot di�erentiate between the two,
con�dence in the model's validity is increased [99] [105] [68]. If they can di�erentiate between
them, they are asked to describe the di�erences. Their responses provide valuable feedback
regarding the accuracy and appropriateness of the system representation.

2.2.3 Advantages and disadvantages of Informal Analysis

Informal analysis can be of great importance. Its techniques are valuable from the early stages
of model formulation throughout the entire programming process. In particular is the ability
of informal analysis techniques to evaluate the subjective and multifaceted aspects of the sim-
ulation study. The success of a simulation study stems from the ability to achieve su�ciently
correct simulation results and as importantly, to convince the study sponsor that the simulation
model is a su�ciently accurate one. Insuring the acceptance of the many subjective aspects
of the model cannot be overlooked. Besides the advantage of allowing human reasoning in the
veri�cation process, the informal analysis techniques are not di�cult to perform and require
virtually no computer resources. On the other hand, the techniques used are very time con-
suming and require very high human resource allocation. Because of their reliance on human
evaluation they are prone to human error. Success depend on the level of knowledge and exper-
tise of the individual. The human time and e�ort required coupled with the likelihood of error
result in limited e�ectiveness of informal analysis. Though their e�ectiveness improves as their
guidelines for use become more structured and formal, informal analysis techniques cannot be
relied upon in themselves to verify the programmed model.

2.3 Static methods

The static V&V methods are based on artifact characteristics that can be determined without
running a simulation. They often involve analysis of executable model code and may be sup-
ported by automated tools or manual notations or diagrams. They are more often performed
by technical experts. These techniques are used almost exclusively to examine the model and
its implementation. Unfortunately, static V&V techniques do not examine the execution of the
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model, and therefore they are of limited usefulness in M&S V&V. Static V&V techniques can
be used on the code of the model as it is being developed, but they are not e�ective on simu-
lations themselves, as simulations require execution of the model. They only perform V&V on
the model, and ignore the simulation. Because of that, during M&S V&V, dynamic techniques
are also used for simulation.
These techniques can obtain a variety of information about the structure of the model,

coding techniques and practices employed, data and control �ow within the model, syntactical
accuracy, and internal as well as global consistency and completeness of implementation. The
information gathered can be used to generate test data for use with other types of analysis, can
identify the testing requirements for the various areas of the model, can be used to optimize the
model's code, and can even be used to instrument the model to enhance further analysis. Just
as importantly, their results provide an indication of the principles used to meet the objectives
of the software development project [23]. Knowing that the model is being engineered for
quality makes a strong statement for veri�cation.
Static analysis is generally more complex than informal analysis but not as complex as the

other categories of analysis.
Examples of static methods are shown next.

2.3.1 Veri�cation

Syntax analysis

Any model that is to undergo translation from a higher form to a machine-readable form must
�rst pass a syntax check. This check assures that the mechanisms of the language are being
applied correctly. This fundamental analysis is the most widely utilized veri�cation technique.
During the course of a compilation, as the syntax is checked and the source statements

'tokenized', a symbol table is built which describes in detail the elements, or symbols, which
are being manipulated in the model. This includes descriptions of all functions declarations,
type and variable declarations, scoping relationships, interfaces, dependencies, and so on. The
symbol table holds the compilation together, growing dynamically as the source code is scanned.
Obviously there is a wealth of information about the static model available in the symbol table.
Just listing the table itself is a tremendous source of documentation.
In addition to this, cross-reference tables are easily generated which provide such information

as called versus calling submodels, where each data element is declared, referenced and altered,
duplicate data declarations and unreferenced source code. Submodel interface tables re�ect the
actual interfaces of the caller and the called, particularly useful when using a compiler that
does not perform strict type checking nor verify external calls. Also readily created are maps
which relate the generated runtime code to the original source code. All of this information is
useful for documentation purposes. It is even more useful as the underpinnings for debugging.
Another useful feature is the ability to reformat the source listing on the basis of its syntax
and semantics.
All of the above have various merits for documentation and display of the source model, and

even the model speci�cations.

Semantic analysis

Also occurring during source code translation is semantic analysis. It attempts to determine
the modeller's intent in writing the code. The goal is to obtain an accurate translation of
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modeller's intentions. In truth, the only meaning which can be derived from the source code
is that which is self-evident in the code. It is dangerous to let the compiler make any other
assumptions about modeller's intentions. It therefore becomes bene�cial, even to the point of
being essential, to tell the modeller what it is that he has speci�ed in the source code. The
same principle can be applied to speci�cations. It is then up to the modeller to verify that the
true intent is being re�ected.
When the source code is being parsed during compilation, the target runtime system is

most likely being simulated. This allows the compiler to generate code which will perform
the requested tasks. As the meaning of the source code is derived, the corresponding runtime
code is produced. The symbol table is referenced to check that the data elements used �t the
operation being performed. A result of this is the ability to determine what is and is not being
used, how often it is being used, and to a large degree in what manner it is being used. As in
syntax analysis, the harnessing of this information provides a healthy source of documentation.
Other bene�ts include locating variables which have been used but not initialized.
Neither syntax analysis nor semantic analysis require complete compilation in order to obtain

their results. Like the results of syntax analysis, semantic analysis should be captures and
maintained to drive other parts of the veri�cation process. The usefulness of this data will
become self-evident as dynamic analysis techniques.

Structural analysis

Structured design and development refers to the use of widely accepted techniques for con-
structing quality software. These techniques are all founded on a set of principled which are
recognized to be e�ective and comprehensive building blocks for software development. The
principles are based on the use of acceptable 'control structures' from which the software will
be built. The three basic control structures are sequence, selection and iteration.
Structural analysis examines the model's structure and determines if it adheres to structured

principles. This is accomplished by constructing a graph of the model control structure. This
graph de�nes model control �ow and as such is called a control �ow graph. The control �ow
graph is analysed for anomalies, such as multiple entry and exit points, excessive levels of nesting
within a structure, and questionable practices such as the use of unconditional branches. The
anomalies can be �agged so that they may be scrutinized further.
Structural analysis may also reveal commonalities of particular model structures. Steps may

be taken to reduce the structure if possible.
The control �ow graph is an e�ective veri�cation document due to it documents the model's

control �ow in a clear an concise way.

Data �ow analysis

Data �ow analysis is concerned with the behaviour of the programmed model with respect to its
use of model variables. This behaviour is classi�ed according to the de�nition, referencing, and
unreferencing of variables [18], i.e., when a variable space is allocated, accessed, and deallocated.
A data �ow graph can be constructed to aid in the data �ow analysis. The nodes of the graph
represent statements and corresponding variables. The edges represent control �ow.
Data �ow analysis can be used to detect unde�ned or unreferenced variables (much as in

static analysis) and, when aided by model instrumentation, can track minimum and maximum
variable values, data dependencies, and data transformations during model execution. It is also
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useful in detecting inconsistencies in data structure declaration and improper linkages among
submodels [92].

Consistency checking

Consistency checking is essential to the integrity of the model. It is concerned with verifying
that the model description does not contain contradictions. All speci�cations must be clear
and unambiguous so that each person viewing the model sees the same thing. All model com-
ponents must �t together properly. It also involves verifying that the data elements are being
manipulated properly. This includes data assignment to variables, data use within computa-
tions, data passing among submodels, and even data representation and use during model input
and output. Must consistency checking is accomplished by using the documentation produced
by syntax and semantic analysis (listings, cross-references) as materialto guide code inspections
and walkthroughs. As the speci�cation becomes more formally stated, more of the work can
be automated. Data elements and interfaces can be checked as they are actually used to ensure
their consistent usage.
Another perspective on consistency checking is related to the cosmetic style with which

language elements are applied (e.g., naming conventions, use of upper, lower, and mixed case,
etc.).

2.3.2 Validation

Cause-e�ect graphing

This validation technique compares causes and e�ects in the element to be simulated to those
in the conceptual model. Cause is understood as the event or condition whereas the e�ect
is the state change triggered by a cause. With this method it is possible to identify missing,
extraneous, and inconsistent cause-e�ect relationships.
The technique assists accuracy assessment by addressing the question of 'what causes what

in the model representation?'. It is performed by �rst identifying causes and e�ects in the
problem domain being represented and by examining if they are accurately re�ected in the
model speci�cation. As many causes and e�ects as possible are listed and the semantics are
expressed in a cause-e�ect graph. The graph is annotated to describe special conditions or
impossible situations. Once the cause-e�ect graph has been constructed, a decision table is
created by tracing back through the graph to determine combinations of causes which result in
each e�ect. Finally, the decision table is then converted into test cases with which the model
is tested.

2.3.3 Advantages and disadvantages of Static analysis

Most static analysis techniques have automated tools which support their use. As a result,
the human resource cost is appreciably low. Since model execution is not involved, computer
resource cost is moderate compared to instrumentation-based veri�cation approaches. These
techniques are limited, however, in what they can actually verify. For instance, static anal-
ysis can verify that the syntax used conforms to the de�ned syntax of the language. It can
make conclusions about the semantics of the model and inferences on aspects of the model's
execution. It cannot insure that the intentions of the modeller are being met nor can it algo-
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rithmically examine a model to determine its execution behaviour [52] [67]. Further, the basis
for performing the veri�cation must be shown to be correct (e.g., the compiler must be correct).
Overall, static analysis has proven to be an e�ective veri�cation method. Its strength lies in

the number of well-known techniques which are supported by a variety of commercial available
tools, most of which are highly automated. Further, static analysis complements other methods
of veri�cation, such as symbolic execution and execution pro�ling.
Especially important to the simulation study is the extensive documentation generated

through static analysis. Graphs which depict the model's logic and data �ow are easily un-
derstood even through the layman's eyes. The construction of the model can be shown to be
structurally sound and free of any anomalies which might arouse questions about the model's
integrity.

2.4 Dynamic methods

Dynamic methods are those methods that involve running the executable model and assessing
the results. The results can be compared due to they often are quantitative and objective
as well as performed by technical experts. Dynamic V&V techniques look at the results of
the execution of the model. At the simplest level, dynamic V&V can be merely examining
the output of an execution. However, that is almost always insu�cient. Instead, the model
must be examined as it is being executed. This typically requires instrumenting the insertion
of additional code into the model to collect or monitor model behaviour during execution.
Normally, the steps involved are to instrument the model with V&V code, execute the model,
and then analyse the dynamic behaviour and output of the model. While these are extremely
useful techniques, instrumenting a model changes it slightly. To observe the dynamic execution
of a model requires additional instructions to collect data. These additional instructions can
slightly modify the timing or behaviour of the model. A dictum to remember in dynamic V&V
is, 'Those who observe, perturb!'. Because of that great care must be used in instrumenting
simulation code to ensure that the instrumentation itself does not a�ect the validity of the
simulation output.
Examples of dynamic methods presented below.

2.4.1 Veri�cation

Black-box testing

Black-box testing is concerned with what the model or submodel does, i.e, what its function is.
Black-box testing (also known as functional testing) views the model (the "test object") as a
black box. The concern is not what is in the box; rather, what is produced by the box. Testing
of the model is accomplished by feeding inputs to the model and verifying the corresponding
outputs. The model speci�cation is used to derive tests data [82] [69].
In general it is virtually impossible to test all inputs to the model. Rather than verifying

that the model produces the correct output for each input, the modeler is more interested in
�nding inputs that produce incorrect outputs. Determining if the test set is complete is the
main drawback to black-box testing [108]. Black-box testing is typically used at the global
model level, when all of the submodels have been thoroughly tested with another approach.
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White-box testing

As opposed to black-box testing, which tests the function of a model, white-box testing tests
the model based on its internal structure (how it was built). White-box testing uses data �ow
and control �ow graphs to verify the logic and data representations of the model. The focus of
testing here is breadth of coverage of model paths. As many execution paths as possible should
be tested.
White-box testing is the most common mode of testing. It is the only reliable means of

detecting redundant code, faulty model structure, and special case errors [108]. An e�ective
test plan determines which approach best �ts the varied needs of the model and applies them
accordingly. In most cases, all approaches will be used in some way, blended together in a
well-orchestrated, concerted manner.

Stress testing

A characteristic of simulation software is a dependency on time. Quite often real-time require-
ments and tight synchronization are involved. Testing these time-dependent situations is a
di�cult task. Many testing techniques are not adequate for these particular needs.
An approach to time-sensitive testing needs is stress testing. Stress testing tests the model

on the borders of its time critical components. It pushes the model to and beyond its limits. If
the model performs well under both valid and invalid input conditions, the model is said to be
robust. As [82] points out, such tests are valuable because such "never-will-occur" situations
may, in reality, occur, and system response under such conditions is often indicative of errors
that might occur under "normal", less stressful conditions.
Stress testing, while in no way considered an exhaustive testing technique, is valuable for

giving evidence (along the lines of strength in numbers) that a model will behave as desired
if, after numerous stressful tests have been performed, no errors arise. Lack of errors do not
imply correctness; however, stress testing provides an alternative to not having any functional
evidence at all. It is important that any test plan involving stress testing be strongly supported
with a solid structural testing program.

Execution tracing

The method can be used in veri�cation and validation contexts and it consists on recording
and examining the simulation executions. It can be done 'line by line' or 'step by step'. The
output simulation state variables change at each state and state examinations must be done for
consistency and reasonableness. Comparisons of results to conceptual models and the elements
of simulation are done. The outputs generated can be to GUI or trace �le and the examination
manual or automated.
The modeller can view the model's execution, determine what factors cause the traversal

of particular paths, follow model data �ow, determine in what order data elements combine
and how the data is treated, and so on. Tracing is like creating a window into the execution
environment. The modeller can see what is happening at speci�c locations in the model,
recreate the events of the simulation, and easily track the source of errors.
Execution tracing is most often associated with interpretive languages which o�er source

level tracing by simply displaying the source statement being interpreted at the given moment.
The tracing features and closeness to the source code of interpretive languages make this an

18



D3.1 � Final Analysis of state of the art V&V techniques ITEA 2 � 13017

attractive alternative. And languages with trace capability provide a mechanism for turning
tracing on and o�.
Trace data can be displayed during execution or routed elsewhere for subsequent analysis

and use. [50] [51] suggests maintaining the trace data in a database in order to enhance further
veri�cation activity.
Although execution tracing can be used to verify the model, other techniques are often easier

to use, with the same or greater e�ectiveness. Typically, tracing is used to aid debugging by
isolating known errors in the code.
This technique can be also used in terms of veri�cation.

Regression testing

As model development progresses the model is going to evolve: incorporate design changes and
correct mistakes. Veri�cation is also a continuous process, �owing with the tide of change.
When mistakes are corrected, the corrections often result in adverse side-e�ects to the existing

model. If care is not taken, the correction of an error in one place leads to an error in another.
The later in the life cycle error correction takes place, the greater the likelihood of harmful
side-e�ects occurring. Regression testing seeks to assure that model corrections do not initiate
other problems. Regression testing is usually accomplished by retesting the corrected model
with a subset of the previous test sets used. This makes retaining and managing old test data
essential. Successful regression testing is as much a matter of planning and con�guration control
(simulation project library management, version control, traceability, etc.) as it is anything
else. Thus a plan for performing regression testing must be incorporated in the overall model
design. Waiting until the �rst (sub)models begin undergoing correction and revision is too late
to think about regression testing.

Comparison testing

Simulations and their corresponding scenarios are run using two di�erent models. Afterwards,
the results are compared. When di�erences between results are found then further research is
needed because it can be a signal of problems. The key is to �nd which model has problems in
case of di�erences, so depending on the assumptions made, this method will be performed as
veri�cation or validation:

• One model is assumed as valid �> validation method

• Neither model is assumed as valid �> veri�cation method

This technique can be also used in terms of veri�cation.

2.4.2 Validation

Statistical methods

Statistical validation methods are used to compare model results to the observations made to
the real-system or the elements under simulation. Various statistical methods can be used,
sometimes combined with other methods: regression analysis, analysis of variance, con�dence
intervals, hypothesis tests, etc. Each statistical method de�nes statistic or metric of 'closeness'
or similarity, it is a measure of validity. However it is a method that is generally underutilized.
Examples of statistical methods are shown in the next table.
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Figure 2.3: Application of statistical methods

2.4.3 Advantages and disadvantages of Dynamic analysis

The potential cost in human resources for dynamic analysis can be very high. If not managed
properly, dynamic analysis can needlessly consume the time of the modeller. Secondly, dynamic
analysis cannot show model correctness. It can only re�ect how the model behaves for a given
set of test data. The possible test sets for a model can be in�nite. Thus complete testing
is rendering impossible for virtually all practical models of any speakable size. Adequate test
coverage is a problem as well. The required scope of coverage broadens in exponential fashion
as the model increases as the model increases in size. Dynamic analysis does not possess the
capability to manage this situation.
On the other hand, dynamic analysis techniques thoroughly document a given test execution.

It can provide conclusive proof that a model functioned as intended. dynamically executing the
model is the only way to test how the model behaves on a given hardware, or when operating on
distributed hardware. The execution history not only enhances error detection and correction,
it serves as a reference of model structure which can be used to enhance error detection and
correction, it serves as a reference of model structure which can be used to enhance and maintain
the model. Combining dynamic analysis with other veri�cation techniques helps reduce some
of the problems associated with dynamic analysis.

2.5 Formal methods

The formal methods are based on formal mathematical proofs of program correctness. They
are quantitative (or logical) and objective. If attainable, formal proof of correctness is the
most e�ective means of verifying software. The term 'correct' means that the model meets its
speci�cations. Therefore, formal proof of correctness corresponds to expressing the model in
a precise notation and then mathematically proving that the executed model terminates and
that it satis�es the requirements of its speci�cation.
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Traditionally, natural language is used to specify the artefacts and products in the software
development. Often speci�cations depend on the semantics/meanings of words to convey the
understanding to the system to be developed. Due to the ambiguity of the natural language,
it is di�cult to verify the correctness of the system and the veri�cation process becomes less
e�ective and less rigorous when the computer system becomes larger and more complex. The
automation of the process is also impossible because of the informal speci�cations. Thus, the
needs for formal methods increase tremendously especially in the �elds of distributed system,
concurrent system, and real-time system development. The uses of formal methods enhance
the understanding of software requirements. Formal methods also enable rigorous veri�cation
of speci�cations and their implementation. They facilitate the automation of the veri�cation
process and improve the e�ectiveness of the veri�cation process. Thus, the use of formal
methods is expected to lead to increased software quality and reliability.
The growing complexity of designs increases the importance of veri�cation techniques. The

research in the formal veri�cation of hardware and software has lately made signi�cant progress
in developing methodologies and tools.
Formal veri�cation is the process of determining whether or not the products of a given

phase in the life-cycle ful�l a set of established requirements, using a formal mathematical
notation. During software development, the code must not only implement behaviours as
speci�ed by a model, but a model itself may need to change based on discovered limitations of
the implementation environment or changes of customer requirements. To reduce the divergence
between the code and models which may cause future problems such as design errors, expensive
rework, etc., the formal veri�cation has to be conducted throughout the whole development
cycle. So Formal veri�cation mathematically prove the correctness of a design with respect to
a mathematical formal speci�cation
Formal veri�cation conducts exhaustive exploration of all possible behaviours and are per-

formed by technical experts. In the following table a comparison between formal veri�cation
and testing is provided.
Formal design validation combines aspects of traditional checking and dynamic simulation

based veri�cation with the symbolic simulation and static analysis techniques of formal veri�-
cation to provide optimized trade-o�s in scalability and completeness so improving veri�cation
e�ectiveness. Formal validation checking tools extend the ease of use methodology of tradi-
tional checking techniques to the area of property checking and so provide a practical and
usable alternative to di�cult to use formal veri�cation techniques, such as model checking.
Examples of formal methods are presented next.

2.5.1 Veri�cation

Inductive assertions

This veri�cation method aims to construct proof of executable model correctness. In order to
achieve this goal assertions and statements about required executable model input-to-output
relations are associated with execution paths in an executable model. Basically proofs of as-
sertions along paths are constructed and those proofs along all paths imply correctness. The
executable model is then compared to the conceptual model. This speci�c method is closely
related to general program proving techniques, where proofs are done using mathematical in-
duction and the 'Correctness' is with respect to the conceptual model. An example of inductive
assertions methods are assertions concerning to the performance of a �ber optic system model,
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�t actual performance parameters to the components of the system model, design the sys-
tem model, check to see if the input signals produce the required output signals and adjust
parameters to obtain the desired result.

Model Checking

With Model Checking methods (cf. [25]) a model can be formally veri�ed with respect to
speci�ed properties. Model checking uses symbolic simulation techniques to verify that these
properties are satis�ed for all legal design inputs. In symbolic simulation, symbols are used
rather than just logic zero and one values. Temporal logic (CTL - Computation Tree Logic,
LTL - Linear temporal logic, etc.) allows the user to specify these properties. Then the model
will be executed at a symbolic level in order to proof the correctness of the speci�ed properties
(see Figure 2.4). Symbolic model checking is primarily useful in verifying the control parts (i.e.,
the state based behavior) of a system. When applied naively it is impractical for most data
paths, since it su�ers from the state explosion problem where the state space of the design that
must be explored grows extremely large (cf. section 3.4.6).

Figure 2.4: Model checking (veri�cation)

In addition, performing model checking on design modules requires that an interface speci�-
cation for the module is available so that only legal inputs are considered. However, in practice,
detailed interface speci�cations of design modules are rarely available and so veri�cation often
requires the creation of the interface speci�cation. This can be a complex task.
The model checking formal veri�cation approach is heavily dependent on experienced users

who must specify the properties of the design that are to be checked. The reliance on a design
engineer, who must provide knowledge about design behavior and the design properties to be
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analyzed, has limited the adoption of this technology.

Deductive Methods

A deductive veri�cation is a formal veri�cation method that uses an expressive logic to state
correctness of a given target system relative to a given property. Logical reasoning (deduction)
is used to prove validity of that property [29].
The �rst question is that of de�ning the correctness of a program. In other words, what

is the program supposed to do and how can we express it formally? This is done using a
speci�cation language. This is made of two parts: a mathematical language to express the
speci�cation and its integration with a programming language. The use of a speci�cation
language is needed by deductive veri�cation, but can also be used for documenting the program
behaviour, for guiding the implementation, and for facilitating the agreement between teams
of programmers in modular development of software. The speci�cation language expresses
preconditions, postconditions, invariants, assertions, and so on. This relies on Hoare's work
[65] introducing the concept known today as Hoare triple.
This technique contrasts to model checking (propositional temporal logic speci�cations),

correctness by re�nement/sound compilation (preservation of behaviour) and abstract inter-
pretation (abstraction of target system).
There are three main approaches:

• Proof Assistant: it is an interactive proof system for an expressive, higher-order logic. It
is based on few axioms (e.g., ZF set theory [16]) and other rules soundly derived. It is
encoded in syntax and semantics of target system as well as properties. It is independent
of target language, very general and can be used to prove meta properties (e.g., compiler
correctness). However, the coding e�ort for a new system is substantial and it requires a
high degree of interaction and expertise.

• Program Logic: it uses a modal logic tailored to reason about a speci�c target language
and involves calculus for that logic whose rules re�ect semantics of target language. An
interleave analysis of target system and intermediate simpli�cation are performed. There
is a high degree of automation achievable (> 99% of rule applications) and veri�cation �ow
follows �ow of execution of target system. On the other hand, the implementation e�ort
for a new language is substantial and detailed auxiliary speci�cations may be required
(e.g., invariants).

• Veri�cation Condition Generation (VCG): this technique annotates target program with
assertions that are propagated through it, which results �rst-order veri�cation condi-
tions discharged by SMT solver. It involves �Batch mode� interaction pattern (edit; run;
analyse) and bug �nding. As advantages the following can be mentioned: �run� part
is fully automatic and loose coupling of VCG, SMT (making use of latest SMT solver
technology). On the contrary, expressiveness of assertion language usually limited (e.g.,
quanti�er-free) and analysis of a failed run hard to interpret.
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2.5.2 Validation

Predicate calculus

It involves a method to logically analyse a conceptual model. It is a formal logic system to
create, manipulate, and prove statements. The conceptual model is compared to the real-world
system/the elements to be simulated and the conceptual model are described in predicate
calculus, so it is used to prove properties of both to show logical consistence. However, it is
quite di�cult to apply to non-trivial problems.
The programmed model can be de�ned in terms of predicate and manipulated using the

rules of the predicate calculus. The predicate calculus forms the basis of all formal speci�cation
languages. Predicate transformation provides a basis for verifying model correctness by formally
de�ning the semantics of the model with a mapping which transforms model output states to
all possible model input states. This representation provides the basis for proving whether or
not the model is correct (if it has transformed initial states to termination states properly).
Figure 2.5 shows an example of Predicate calculus.

Figure 2.5: Example of Predicate calculus method for validation

2.5.3 Advantages and disadvantages of Formal analysis

Attaining proof of correctness in a realistic sense is not possible with current technology but
is a �eld of active research. Setting up a proof for even a simple model is an expensive, time-
consuming undertaking today. Completing the proof would be just as intense. The matter
is further complicated by non-mathematical considerations such as machine dependencies and
other related idiosyncrasies. However, the advantage of realizing proof of correctness is con-
siderable, so when it is realized, it implies a big di�erence in the veri�cation of software. For
example, MechatronicUML aims at providing a holistic compositional veri�cation approach
to handle the state-space-explosion problem (cf. 3.4.6).

2.6 Veri�cation using Test Cases

2.6.1 Test Cases generation

Model based testing (MBT) refers to the type of methods using model(s) as base element(s) for
all testing activities. In general it is used as a technique for generating test cases (see Figure 2.6).
Based on a speci�cation model test cases wil be generated with respect to speci�ed test goals
(coverage criteria, test metrics, etc.). The speci�cation model describes the expected behavior
of the test object at an abstract level.
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Figure 2.6: General process for model based test generation

But also other testing activities like test implementation, test execution, documentation, etc.
can be simpli�ed with the using of models. Those formal models are generally categorized into
three main categories: requirements models, usage models, and source code dependant models.
The requirements models can be behavioural, interactional, or structural models according to
the perspective by which the requirements are being looked at. The test cases derived from
behavioural or interactional models are in general functional test cases and they have the same
level of abstraction as the models creating them. These kinds of test cases di�er from those
derived using structural models. Other types of models can be used as well to extract test cases;
often the Uni�ed Modeling Language (UML) is used for creating and describing speci�cation
models on order to generate test cases.
The more early test cases are generated, the more costs, time and e�ort can be saved when

the actual testing time comes. Many researchers have recently given this �eld a great attention
where test cases can be generated in the analysis and design phases using requirements-based
models and sometimes other models. UML diagrams are the most common type of models
used to represent the requirements-based models. They can be categorized into behavioural,
interactional and structural diagrams.
Behavioural diagrams are a type of diagrams that represent behavioural features of a system

or business process. They include activity, state chart, and use case diagrams as well as the
four interaction diagrams (communication, interaction, sequence and timing).
Interactional diagrams are a subset of behavioural diagrams which accentuate object inter-

actions. They include communication, interaction overview, sequence, and timing diagrams.
Structural diagrams are a type of diagrams that emphasize the elements of a speci�cation

which are irrespective of time. They include class, component, deployment, object, composite
structure and package diagrams.
The categorization of UML diagrams yields to a categorization of the test cases generation

techniques according to the diagram(s) being used. An extra category is given to generation
techniques that use other types of models rather than the UML models like the mathematical,
boolean and feature models. The categorized techniques are classi�ed as follows.

Behavioral and Interactional UML Model-based Techniques Activity diagrams are graph-
ical representations of work�ows of stepwise activities and actions with support for choice,
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iteration and concurrency. In the Uni�ed Modeling Language, activity diagrams are intended
to model both computational and organisational processes (i.e. work�ows). Activity diagrams
show the overall �ow of control. Activity diagrams are constructed from a limited number of
shapes, connected with arrows Figure 2.7.

Figure 2.7: Activity diagram

The use of model checking and activity diagrams is the aid of the approach proposed in
Coverage-driven Automatic Test Generation for UML Activity Diagrams [37]. The UML ac-
tivity diagram is translated into a formal model which is considered the NUSMV input [9].
Next, properties in the form of CTL (Computational Tree Logic) or LTL (Linear Temporal
Logic) formulas are generated using coverage criteria. Finally, the properties are applied on
the NUSMV input using model checking to generate required tests.
Other types of diagrams have been used in many approaches to generate test cases like State

chart, Collaboration, and Sequence diagrams.
State charts are used to give an abstract description of the behaviour of a system. This

behaviour is analysed and represented in series of events, that could occur in one or more
possible states. Hereby each diagram usually represents objects of a single class and tracks the
di�erent states of its objects through the system. State diagrams can be used to graphically
represent �nite state machines Figure 2.8.
An algorithm that transforms a state chart diagram into an intermediate diagram, called the

Testing Flow Graph (TFG) is shown in [70]; from the TFG it generates test cases that apply
the full state and full transition overage criteria.
Collaboration diagrams model the interactions between objects or parts in terms of sequenced

messages. Collaboration diagrams represent a combination of information taken from Class,
Sequence, and Use Case Diagrams describing both the static structure and dynamic behaviour
of a system.
However, Collaboration diagrams use the free-form arrangement of objects and links as used

26



D3.1 � Final Analysis of state of the art V&V techniques ITEA 2 � 13017

Figure 2.8: State chart diagram

in Object diagrams. In order to maintain the ordering of messages in such a free-form diagram,
messages are labelled with a chronological number and placed near the link the message is sent
over. Reading a communication diagram involves starting at message 1.0, and following the
messages from object to object Figure 2.9.

Figure 2.9: Collaboration diagram

Collaboration diagrams are represented using trees in the approach presented in automatic
test case generation from UML communication diagrams [94]. The approach after constructing
a tree out of the system's collaboration diagram carries out a post-order traversal on it for
selecting conditional predicates. Then, it applies function minimization technique to generate
test data. The generated test cases achieve message paths coverage as well as boundary coverage
criteria.
Sequence diagrams are interaction diagrams that show how processes operate with one an-

other and what is their order. They are constructs of Message Sequence Charts. A sequence
diagram shows object interactions arranged in time sequence. It depicts the objects and classes
involved in the scenario and the sequence of messages exchanged between the objects needed
to carry out the functionality of the scenario. Sequence diagrams are typically associated with
use case realizations in the Logical View of the system under development. Sequence diagrams
are sometimes called event diagrams or event scenarios.
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A sequence diagram shows, as parallel vertical lines (lifelines), di�erent processes or objects
that live simultaneously, and, as horizontal arrows, the messages exchanged between them, in
the order in which they occur. This allows the speci�cation of simple runtime scenarios in a
graphical manner Figure 2.10.

Figure 2.10: Sequence diagram of e-mail message sequence

UML sequence diagrams are also used to generate test cases. Transforming them into graphs
called the sequence diagram graphs (SDGs) is the �rst step to do so [95]. The presented ap-
proach then increases the SDG nodes with di�erent information necessary to form test vectors.
The test vectors are �nally reformed to represent the test cases.
Altering sequence diagrams to have an initial model and making this model the starting point

of the algorithm is another way of generating test cases for unit testing. It is shown in [71]. The
sequence diagram is �rst transformed into a general unit test case model called xUnit using
model-to-model transformations. Then the general xUnit model is transformed into platform
speci�c (JUnit, SUnit etc.) test cases using model-to-text transformations.
Sequence diagrams can be used with activity diagrams as well to generate test cases in a

strategy shown in Test Case Generation from Behavioral UML Models [101] where one general
sequence diagram is built for each use case. The constructed sequence diagram is then used to
create several intermediate tables and �ow graphs that are used in turn to create test sequences.
The created test sequences are what this strategy uses to extract its �nal test cases.

Petri net based techniques of test case generation of concurrent behavior A similar ap-
proach to the UML Model-based techniques is the generation of test cases out of an Petri net
as speci�cation model. Thereby a Petri net can be seen as a generalization of a UML State
Machine. There are a lot of mapping algorithms for transforming a UML State Machine into
a suitable Petri net available. With a Petri net the modeling of concurrent behavior is quite
simple and intuitive, which can be an advantage if modeling of requirements with concurrent
behavior is necessary. The procedure of generating test cases based on a Petri net as speci�-
cation model is similiar to the procedure for other graph based speci�cation models like UML
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State Machines, Statecharts, UML Activity diagrams, etc. The graph will be traversed and test
cases will be derived with respect to speci�ed test goals. Only for test goals with quite high
coverage criteria of the speci�cation models, like all path must be covered with at least one test
case, the whole behavior of the speci�cation model will be calculated. For Petri nets the whole
behavior is represented by its reachability graph or by the complete pre�x of the unfolding [73].
But this is often not possible because of the mentioned state explosion problem.

Requirement based techniques of test case generation The greatest e�ort within a model
based test generation process is the creation of the speci�cation model as basis of test generation
algorithms. It is very di�cult for test engineers to model all requirements, described with
natural language within requirement documents, with one behavior model, e.g. with one UML
State Machine, or with one UML Acitvity diagram, or with one Petri net. Therefore there are
some academic approaches to generate test cases directly from the formalized requirements.
But with these approaches the test coverage of the generated test cases are not high enough,
especially for safety critical applications. Also inconsistencies within the requirements will not
be detected. Therefore there are further approaches to synthesize a speci�cation model based
on a set of formal requirements. One advantage of these approaches are the identi�cations of
inconsistencies during the synthesization of the speci�cation model within the requirements.
Also the achieved test coverage of the generated test cases is better and equivalent to the former
described methods. The general process is described in Figure 2.11, an industrial use case is
described in [80].

Figure 2.11: requirement based model synthesos for test generation purposes

Structural UML Model-based Techniques The Component diagrams depict how components
are wired together to form larger components and/or software systems. They are used to
illustrate the structure of arbitrarily complex systems. Component-based development (CBD)
and object-oriented development go hand-in-hand, and it is generally recognized that object
technology is the preferred foundation from which to build components Figure 2.12.
The class diagrams describe the structure of a system by showing the system's classes, their

attributes, operations (or methods), and the relationships among objects. The class diagram
is the main building block of object oriented modelling. It is used both for general conceptual
modelling of the systematics of the application, and for detailed modelling translating the
models into programming code. Class diagrams can also be used for data modelling. The
classes in a class diagram represent both the main objects, interactions in the application and
the classes to be programmed.
In the diagram, classes are represented with boxes which contain three parts. The top part

contains the name of the class. The middle part contains the attributes of the class. The
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Figure 2.12: Component diagram

bottom part contains the methods the class can execute. Figure 2.13 depicts an example of a
class diagram.

Figure 2.13: Class diagram

Class and object diagrams are used in �Automatically Generating Test Cases Using UML
Structure Diagrams� [93] to generate test cases. The presented methodology accepts the appli-
cation code as input and runs it to create a list called the class list which contains features of
classes mentioned in the application; it then uses this class list to extract the features of each
class as well as the relationships between them. Finally test cases are generated based on these
features and relationships.
Class diagrams and state machines are used in �An Approach for Selective State Machine

based Regression Testing� [53] to generate test cases that can identify the impact of changes
made in class diagrams on the corresponding state machines and in turn on the test suite.
The introduced methodology assumes the presence of test suite for the program under test.
It presents a UML based selective regression testing strategy to identify changes and classify
them. The changes are then classi�ed as class-driven (obtained from class diagram) and state-
driven (obtained from state machine). These changes are �nally used to identify fault-revealing
test cases.
The paper �Control �ow analysis of UML 2.0 Sequence diagrams� [55] introduces the main

seed of a class diagram-based methodology that generates test cases for regression testing. The
former paper presents a control �ow analysis methodology for sequence diagrams, which is based
on de�ning formal mapping rules between metamodels. Then Object Constraint Language
(OCL)-based mapping is made between sequence diagrams and Control �ow graphs called
Concurrent Control Flow Graphs (CCFGs), so as to ensure the completeness of the metamodels
and allow their veri�cation. This methodology is extended to ful�ll the purpose of regression
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testing where class diagrams are included to get more information. The current CCFG is
renamed as Extended CCFG (ECCFG). The ECCFG is constructed using a sequence diagram
and the corresponding class diagram. The extended methodology works by �rst having two
versions of the same ECCFG, then comparing them to identify the changed nodes and arcs
which are further used as input for test case selection and generation.
Class diagrams and Object Constraint Language (OCL) are used in �Automatic Test Cases

Generation from Software Speci�cations� [20] to extract test cases from functional speci�cations
by �rst transforming them to XML. Then extract speci�cations and use them to construct a
class's hierarchy table which is used to create a classi�cation tree. The tree is �nally pruned to
extract the �nal test cases.

Di�erent Model-based Techniques An automatic model-driven technique is commonly used
to generate test cases for Graphical User Interface-based applications (GUIs). The technique
uses feedback from the execution of an initial test suite, which is generated using an existing
structural event-interaction graph model of the GUI. During its execution, the run-time e�ect
of each event on all other events determines event-semantic interaction (ESI) relationships,
which are used to generate new test cases.
Mathematical models can be used as well to generate test cases even if other models will be

involved. A technique that generates test cases from UML state charts using a mathematical
basis is what �Formal Test Case Generation For UML State Charts� [57] proposed. The gen-
eration algorithm is written in a language which is a mix of process algebra and a simpli�ed
version of the lambda calculus. The �nal test cases might be represented again as state charts
or sequence diagrams or just as code in a proper programming language. No assumption about
their form is determined.

2.6.2 Test Cases Validation

In order to be able to claim that the generated test cases, based on previously de�ned software
model, are better than others or even decide whether they are applicable or not, they must be
�rst quali�ed for usage.
Quality of test cases depends on how well they cover the functionalities of the system under

test and not only on their form. The test cases should be validated against known quality
standards which determine their acceptable form as well as the degree of their functional cov-
erage which in turn speci�es their level of applicability. Many metrics have emerged and are
being used to measure the quality of the test cases being generated like the time, cost, e�ort,
complexity of generation, coverage criteria, and many others.
Coverage criteria are considered a set of metrics that are used to check the quality of test

cases that are extracted from behavioural models. This metrics set contains many types of
criteria and according to the UML model being used in generating the test cases, a certain
criterion or many criteria are selected rather than the others. Some examples of the coverage
criteria are:

• The branch coverage criterion; it is used with Control �ow graphs.

• The full predicate and the condition coverage criteria; they are used to validate the test
cases generated from state charts or communication diagrams.

• The all basic paths coverage criterion; it is used with activity diagrams-based techniques.
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It can take several forms improving the quality of the test cases, such as decreasing the testing
e�ort or time, decreasing the complexity or cost of the generation algorithms, increasing the
functionality coverage as well as other quality and reliability issues. Also reducing the generated
test cases can be a form of optimization.

Test case reduction and optimization techniques

Reduction of the number of test cases is a major target of some approaches such as the work
presented in �Evolving the Quality of a Model Based Test Suite� [54] and �Optimizing for
the Number of Tests Generated in Search Based Test Data Generation with an Application
to the Oracle Cost Problem� [61]. The former approach is an evolutionary-based algorithm
that presents a novel model-based test suite optimization technique involving UML activity
diagrams by explicating the test suite optimization problem as an Equality Knapsack Problem.
The latter technique uses an algorithm depending on various testing techniques which are:
Evolutionary testing, Genetic algorithms, and the Search based testing. It covers the branch
coverage of functions as a unit testing model. Another technique presented in �A Black-Box
Test Case Generation Method� [76] proposes a requirement prioritization process during a
test case generation process by introducing a method that generates multiple test suites while
minimizing the number of test cases in them using UML scenarios.
A model-based regression testing approach that uses Extended Finite State Machine (EFSM)

is presented in �Model Based Regression Test Reduction Using Dependence Analysis� [75]. It
is used to reduce the regression test suites. The modi�ed parts of the model are tested using
selective test generation techniques, but still the size of regression test suites may be very
large. As a result, the approach automatically identi�es the di�erences between the original
model and the modi�ed model as a set of elementary model modi�cations. For each elementary
modi�cation, regression test reduction strategies are used to reduce the regression test suite
based on EFSM dependence analysis.
Dynamic symbolic execution is a structural testing technique that systematically investigates

feasible paths of the program under test by running the program with di�erent test inputs. Its
main goal is to �nd a set of test inputs that lead to the coverage of particular test targets.
Many techniques include Dynamic Symbolic Execution (DSE) technique in test case genera-
tion. However, these DSE techniques, as claimed by Reggae: �Automated Test Generation for
Programs using Complex Regular Expressions� [79], cannot generate high-covering test inputs
for programs that use complex regular expressions due to the huge search space. To handle
this problem, an approach is proposed named Reggae that reduces the search space of DSE
in test generation, thus generating test data with higher branch coverage. However practically
the number of feasible paths explored may explode, thus another search strategy called Fitnex,
was proposed in �Fitness-Guided Path Exploration in Dynamic Symbolic Execution� [112], that
uses state-dependent �tness values which are computed using a �tness function to guide the
path exploration.
A technique is introduced in Reassert: �Suggesting repairs for broken unit tests� [43] where

a tool called ReAssert is built to repair test cases that have failed due to changes that have
been made in the requirements which cause changes in the code. It makes changes to the test
case's code to enable the passing of failed tests. It also displays the repaired and failing test
code for the user to con�rm the changes or make further modi�cations on them. However
ReAssert has some limitations, like its ability to only repair about 45% of failures in open-
source applications. Also ReAssert suggests a suboptimal repair, which means that a more
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useful repair can be possible. Moreover, if a failing test modi�es expected values, creates
complex expected objects, or has multiple control-�ow paths, then ReAssert cannot determine
what expected values need to be changed and in what way. Then a modi�cation comes on the
ReAssert in �On test repair using symbolic execution� [42] to introduce a symbolic test repair
which repairs more test failures and provides better repairs. It is a technique that uses the
symbolic execution to change the literals in the test code. This technique can overcome some
of ReAssert's limitations mentioned previously. It is also developed in java. Pex is another tool
which can be used for the same aim but it is developed for .Net applications, cf. �Pex - White
Box Test Generation for .NET� [103].

2.7 Simulation

According to Banks et al. [26], simulation imitates operations of real-world processes or even
entire systems over time. For this purpose, similar to formal methods using mathematical
analysis � e.g., presented in previous subsections � simulation requires a model of the considered
system. This model should represent the system as accurate as possible related to the focused
properties which are aimed to be veri�ed respectively validated. In practice, simulation is
known as an appropriate approach to compare alternative designs as well as to optimize a
particular design [60]. Furthermore, simulation supports estimation of best and worst case
execution times (BCET and WCET) that are required as input for veri�cation and validation
steps. Last but not least, simulation enables veri�cation and validation of system behavior for
particular situations by considering dedicated input parameters.
Figure 2.14 depicts the comparison of lower/upper execution time bounds obtained by an-

alytical methods, minimal/maximal observed executions times from simulation or hardware
measurements as well as the actual BCET/WCET. While analytical methods usually provide
very pessimistic estimations resulting, e.g., in overestimated WCETs, simulation techniques
enable more realistic approximation of WCETs, i.e. estimations resulting from measurements
like simulation tend to be the normal case. This is because simulation results depend on the
considered input data that have to be well chosen to cover most common system behavior.
But this processing also implies that one cannot guarantee to cover the worst case. Conse-
quently, approximations resulting from simulation are usually underestimated with reference
to the actual WCET.
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The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.
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Figure 2.14: Simulation accuracy: Comparison of lower/upper execution time bounds obtained
by analytical methods, minimal/maximal observed executions times from simula-
tion or hardware measurements as well as the actual BCET/WCET. (cf. [111]).

2.7.1 Simulation Techniques Overview

Various simulation techniques are known that enable system simulation on di�erent levels of
abstraction. This enables veri�cation of system designs during early design phases and thus
provides the opportunity to support, e.g., design space exploration at system- and micro-
architecture levels [59]. Figure 2.15 shows the comparison of system level analytical models
as well as the simulation techniques abstract performance simulation, instruction set simula-
tion, cycle accurate simulation and HDL/RTL simulation with reference to their accuracy and
required evaluation/implementation time.

in Fig. 2. Analytical models allow a fast evaluation of a relatively large fraction of the design
space, thus enabling the identification of corner cases of the design. Over several possible steps
of refinement with increasing effort for evaluation and implementation the design space can be
bound to one particular design point. This funnel representation resembles the upper part of
the platform-based design double pyramid [29], i.e., the final design point could also represent a
whole platform. Methods for systematically exploring the design space on one of the layers of
abstraction are discussed in the following section.
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Figure 2: Design funnel model. Refinements of the evaluation method narrow the reachable
design space (vertical direction), whereas covering algorithms explore the size of the design space
(horizontal direction).

4 Methods for exploring the design space

After having discussed methods used to evaluate a single design point, this section provides a
survey of algorithms used to walk through and reasonably cover the design space. Exploring the
design space is an iterative process which is usually based on the Y-chart [56] approach. Here,
application and architecture descriptions are explicitly associated to each other in a mapping step
and evaluated afterwards. The mapping could include compile and synthesis phases to enable the
performance analysis. Results from the evaluation of that particular design point could then be
used to further guide the exploration by varying application and architecture descriptions as well
as the mapping between the two.

In the following sections we provide a coarse classification of search strategies depending on
the number of objectives that are active during the exploration, a review of common cost functions
and metrics, a survey of recent work on search strategies and design space pruning techniques,
and a list of supporting functions for automated exploration in the area of computer architecture
design.

13

Figure 2.15: Simulation techniques: Comparison of di�erent simulation techniques regarding
accuracy and evaluation/implementation time (cf. [59]).

In the following, we give a more detailed description of discrete-event simulation � as an
example for abstract performance simulation � and instruction set simulation that covers in-
struction as well as cycle-accurate simulation.
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2.7.2 Discrete-Event Simulation

Discrete-event simulation is an e�cient way to simulate systems whose states can only change
at discrete points in time. Jumping in time from one event occurrence to the successive event
occurrence, discrete-event simulators utilize the fact that inbetween the occurrence of two
consecutive events a system cannot change its states [60]. This way, simulators consider only
those points in time when a system might change its states and thus saves time spent for
simulation. Figure 2.16 shows the principle of discrete-event simulation.

t1 t2 t3 ti ti+1 

Figure 2.16: Discrete-event simulation: System states can only change at discrete points in time
and thus enables simulators to step from one event occurence to the successive
event (cf. [60]).

Each time an event occurs, new so called event notices can be generated. An event notice
represents future events and consists at least out of

Time de�ning the point in time when this event will occur and

Type specifying the kind of this event [60].

Discrete-event simulators usually hold a future event list to manage these event notices. This
future event list is ordered by the points in time when events occur next. An overview of further
components usually contained by a discrete-event simulator is given by Tab. 2.4.

Term Description

System state Set of variables

Clock Provides current (simulated) time

Future event list Used to manage future events

Statistical counters Set of variables to store information about system perfor-
mance

Initialization routine Initializes the simulation model and simulation clock

Timing routine Retrieves the next event from future event list and sets the
clock to the occurrence time of the event

Event routine (also
called handler)

Called when a particular event occurs during simulation; typ-
ically, an event routine is de�ned for each event type

Table 2.4: Components of a discrete-event simulator (cf. [60])

In general, a discrete-event simulator processes as follows: It starts with an initialization
routine that initializes all entities, state variables, and the clock of the simulator providing the
current time during a simulation run. Then, events are processed in a loop: The simulator gets
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the next event from the future event list and sets the clock to the occurrence time of this event.
Depending on the event's type, the corresponding event routine is called which can

• change the state variables and entities,

• update some statistical counters, and

• generate new event notices that are added to the future event list.

This loop is processed until the termination condition becomes true. Finally, the simulator
creates some output as, e.g., a trace or statistics describing simulated system characteristics.
Figure 2.17 shows the usual work �ow of a discrete-event simulator by means of a state machine.

Start

Initialization

(Initialization routine)

Event routine 2Event routine 1 Event routine k

Terminate?

Output

Yes

No

Select next event from future 

event list

(Timing routine)

End

Figure 2.17: State machine of a discrete-event simulator (cf. [60]).

2.7.3 Instruction Set Simulation

As the name implies, instruction set simulation is based on the instruction set of a target hard-
ware architecture. Here, target hardware refers to the hardware platform where the considered
software system is supposed to be deployed onto. For this purpose, the instruction set of the
target hardware is simulated by a simulator software executed on a host system. A host sys-
tem is usually a computational powerful system � e.g., a desktop PC � whose instruction set
architecture di�ers from that of the target hardware. Therefore, an instruction set simulator
provides a mapping of target hardware instructions to a single instruction or sequence of in-
structions of the host system. This way, instruction set simulators enable simulation of target
code.
However, it is important to note that instruction set simulation is based on some kind of hard-

ware models and thus usually imply some abstraction resulting in a loss of accuracy between
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simulated and real target hardware. Consequently, instruction set simulation does not guar-
antee that system behavior of the simulated hardware is the same as of real target hardware.
Alizai et al. [21] distinguish two kinds of instruction set simulations:

• Cycle accurate instruction set simulation

• Instruction accurate instruction set simulation.

As implied by the names, cycle accurate instruction set simulators operate on granularity of
cycles of a processor core and instruction accurate ones operate on granularity of instructions.
Nevertheless, both kinds of instruction set simulators in general operate as follows [21]: An
executable resulting from software development is loaded by an instruction set simulator into
its memory. Afterwards, the simulator processes a loop by �rst fetching an instruction of the
executable from memory. Next, this instruction is decoded for the targeted instruction set
architecture and �nally executed on the host machine to simulate the behavior of the target
processor. Figure 2.18 depicts this general operation of instruction set simulators.

Software Development

.

.

.

.

Source Code

Executable

Instruction Set Simulation

Memory

Fetch Decode Execute

Figure 2.18: General principle of an instruction set simulator (cf. [21]).

As instructions di�er with reference to their execution times, instruction accurate simulation
allows simulation of functional system behavior, but timing behavior is neglected in general.
However, there are approaches to include timing to instruction set simulations. For instance,
instructions could be annotated by an execution time to respect their di�erent timing require-
ments. Cycle accurate simulations provide the capability of timing analysis as execution times
can be computed based on the number of cycles counted during simulation. But as already
stated above, cycle accurate instruction set simulation requires a much more detailed hardware
model to reach this accuracy.

2.8 Product Line Analysis

The automotive industry and others use product lines [39, 106] for developing complex prod-
ucts combining system parts of di�erent engineering disciplines like mechanical engineering,
electrical engineering and software engineering [97]. Product lines [39] are a set of products or
systems sharing a common set of features. Through the selection of variants, di�erent products
can be built out of the product line. Building such product lines (also called product family)
requires three essential activities (see Figure 2.19).
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Figure 2.19: Essential Product Line Activities [39]

First, the platform also called core assets has to be developed, which contains all common
parts of the product line. Therefore, di�erent inputs need to be considered in order to develop
the core assets as well as a production plan (Figure 2.20).

Figure 2.20: Core Asset Development [39]

The second activity is the product development, which use the output of the �rst activity
for building individual products. Furthermore, the requirements for the individual product are
an input, which are used to identify necessary adaptations (variants) of the platform. Both
activities need to be highly managed through the third. When setting up a product line three
approaches are possible [77]:

• Proactive: In the proactive approach, all products and variants are planned and developed
in advance, which is like the waterfall approach to conventional software.

• Reactive: The development of the product line starts with a few variants and is extended
incrementally (more or less as in a extreme programming approach).

• Extractive: In the extractive approach, one or more existing products are used to form
the bases for the new product line.
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While developing such product lines feature models [72] are used for describing these common
and variable parts of the system. A feature model consists of a hierarchically arranged set of
features connected through di�erent types of associations. During the product con�guration
(e.g. described in [22, 41, 36]), the model can be used for creating valid combinations of fea-
tures. For this purpose, features are connected to software development artifacts e.g. software
components.
In AMALTHEA4public, we focus on the development of product lines including all three

approaches. To enable the development of variable systems, it is necessary to integrate them
into the development process. To add the aforementioned support to the existing development
processes, the process has to be extended by introducing further steps regarding variant devel-
opment. Because of the nature of a product line, the whole process consists of two fundamental
steps, the development process and the con�guration process. While the development process
includes steps to identify requirements and to develop the product line including the required
features, the con�guration process includes the product generation based on a customer's needs.
The problem is that product lines have a long lifetime, while system parts of it may have

di�erent life-cycles so that parts needs to be changed or replaced at certain stages. This applies
in particular to the software evolution [58]. If a product line feature or a con�guration changes
- same as if a requirement changes - the software components (and in some cases the software
architecture) has to be changed to re�ect the changed functionality. Some changes even result
into a changed target hardware platform. Such changes happen frequently during a software
development project. Especially late changes demanded by the customer are a problem.
Because of these changes during the long lifetimes that exist particularly in the automotive

industry, analysis methods are important in order to identify errors in the models. For this
purpose various automatic methods have been developed in the past [32], e.g. for the identi-
�cation of dead features. By a systematic identi�cation of all locations that are a�ected by
a change (Change Impact Analysis), it would be possible to minimize the errors caused by
changes. This approach focus on uncovering errors, instead of avoiding them. Nevertheless,
also e�ective methods for change impact analysis of product lines are necessary.

2.8.1 Feature Models

A central element for the representation of software variants (common and variable parts) are
feature models [72]. Each feature model consists of many features, which represent stakeholder
requirements or product characteristics [38, 27, 41]. These features are arranged in a tree
structure and may have dependencies to other features. Supplementary each feature has a
semantic which indicates the meaning within a group (optional, mandatory, or, alternative).
The feature itself is associated with a concrete software component or software artifact, so that
it is possible to produce software based on a selection of features and their dependencies. A
de�ned and valid selection of features represents one con�guration (software product) of the
software product line.
After the introduction of feature models in 1990 as part of the FODA [72], many exten-

sions have been proposed in the following years. One remarkable extension are the so called
Cardinality-Based Feature Models. Features and feature groups can receive a cardinality which
de�nes a limitation that will restrict the selection during the con�guration process. The Manda-
tory and Optional elements can be understood as special cardinalities. Therefore the cardinality
[1..1] would de�ne a mandatory and [0..1] an optional element [40]. In combination with feature
groups, Alternative and Or groups can be expressed as cardinalities of [1..1] and [1..*]. Other
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extensions are for example, modularization, attributes, relationships, feature categories, and
annotations.

Temperature Monitoring 

(TM)

current 

temperature
visualization

100°C warning

service monitoring

history data
configurable 

measuring distance
analog digital 

Legend

Feature

Mandatory

Optional

Figure 2.21: Software variants of the temperature monitoring (TM) example

Figure 2.21 shows an example feature model of a temperature monitoring (TM) system.
In any case, the system measures the actual temperature and visualizes it in an analog way.
Optionally, it is possible to choose a digital visualization as well as a warning function, which
displays a warning, if the temperature rises above 100 degrees Celsius. Another optional variant
is the service monitoring capability. This variant allows to establish a web connection to the
system via an Ethernet interface. Using this interface, the latest temperature values can be
displayed as well as the current sample rate. Another variant can extend this interface, which
allows the user to change the sample rate.

2.8.2 Feature Model Analysis

The analysis of feature models uses information of the model in order to automatically perform
analysis operations and thus check the models. Over time, a variety of operations was devel-
oped [32, 109, 33].

Analysis operations

• Void feature model
It is checked whether it is possible to create a valid product from a feature model. The
feature model is void when no product can be produced.

• Valid product
This operation checks whether a set of features is a valid set of a Feature model.

• All products/Number of products
This operation determines all the possible products of a feature model. It is also possible
to determine only the number of products.

Detection of anomalies

• Dead features
A feature that cannot be part of any product.

• False optional features
A feature that is optional, but has to be part of any product.
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• Wrong cardinalities
A Cardinality, which cannot be instantiated (mostly due to cross-dependencies).

Optimization methods

• Core features
Determines all features that have are part of all valid products.

2.8.3 Change Impact Analysis

A Change Impact Analysis is de�ned by Bohner and Arnold as �identifying the potential con-
sequences of a change, or estimating what needs to be modi�ed to accomplish a change� [34].
Furthermore, a CIA will allow determining variants, which will not be supported by the new
system parts. Based on the operations in [35], the following changes can occur in a product
line.

• Modify

Modifying a�ects the feature model as well as the component model. On the one hand, the
tree structure of the feature model can be changed by modifying a feature type, shifting
or merging of features. On the other hand, the feature and its realizing components can
be modi�ed. Furthermore, changes in the target or source of cross-tree constraints are
possible.

• Delete

During the deletion of elements, they will be completely removed from the system family,
so that related elements need to be revised. This applies for other features, constraints
and software components, too.

• New

Similar to deleting elements, it is necessary to determine related features and components
during the analysis while adding of new constraints and components. Adding new features
is a special case. It is not possible to identify related elements, so that a prediction is
required.

In recent years, various approaches have been published [86, 85, 46, 19], based mainly on
traceability links or analyzes produced products before and after a change.
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3 State of the art V&V tools and

frameworks

This section aims to describe some existing model veri�cation tools and frameworks. This tool
list is aligned with veri�cation and validation methods seen above.

3.1 Informal veri�cation tools and frameworks

Informal reviews are applied many times during the early stages of the life cycle of software
development. The most important thing to keep in mind about the informal veri�cation is that
usually they are not documented and there are not speci�c tools for informal veri�cation, so it
is performed using non speci�c ones. Some examples of informal methods are detailed next.

3.1.1 Face Validation

Analyzing the accuracy of a chess bot simulator's response to user input to verify that the
A.I. is reacting in a logical manner. Or the accuracy of a train simulator's response to control
inputs can be evaluated by having an experienced train operator driving the simulator through
a range of maneuvers.

3.1.2 Walkthrough

A software development team reviewing a product before the �nal product is sent for approval
by the customer.

3.1.3 Desk Checking

Any programmer who develops software participates in the informal method of veri�cation
known as desk checking. Debugging software as it is being developed is a form of desk checking.
The developer sets breakpoints or checks the output from the model to verify that it matches
the algorithms developed in the conceptual model.

3.1.4 Turing Test

Cleverbot [1] is an application that interacts with people by responding to questions and learn-
ing from replies. Testing of Cleverbot is best completed by using a Turing Test. Interacting
with Cleverbot allows the user to analyze whether or not they can distinguish between the fact
that it is actually just code responding to them, or if they believe that it is another human.

42



D3.1 � Final Analysis of state of the art V&V techniques ITEA 2 � 13017

3.2 Static veri�cation tools and frameworks

3.2.1 ModelJUnit

ModelJUnit [8] is an open source Java library that extends JUnit [5] to support model-based
testing. The models are written in Java. ModelJUnit allows the user to write simple �nite
state machine (FSM) models or extended �nite state machine (EFSM) models as Java classes,
then generate tests from those models and measure various model coverage metrics.

3.2.2 MBT-Tool

MBT-Tool [7] speci�cally aims to enhance the test design process for communication protocols,
e.g. used in smart card based systems. Replacing manual steps with automated methods
based on UML models and suitable algorithms enables more comprehensive test coverage and
extended test depth. MBT-Tool covers the following test methods:

• Modeling of static test methods: Testing of data structures as expected on the card (i.e.
machine-readable passport or national ID card) and manipulated data as it may be sent
to a reader or terminal.

• Modeling of dynamic test methods for protocol testing (i.e. PACE), simulation of card
behavior and simulation of terminal behavior.

• Meta modeling of protocols and static data in UML.

3.3 Dynamic veri�cation tools and frameworks

3.3.1 MaTeLo

MaTeLo [6] implements a Model-Based Testing approach in a user-friendly environment. Start-
ing from application usages, business requirements or user stories, testers design models able
to automatically generate optimized test suites. These test suites can be exported either to
automatic execution tools or to test management tools for manual execution.
Business requirements or User Stories are created into MaTeLo or imported from a require-

ments manager tool (HP ALM QC, Doors, Test Link,. . . ).For each test step, stimulation data
is generated from equivalence classes. Output test data set (Test Oracle) can be computed from
treatment functions or from data sources (�les, DB, Web Services, ERP. . . ), or from external
tool calculators (Matlab, Scilab) or by using Python functions.

3.3.2 JUMBL

JUMBL [91] is a Java class library and set of command-line tools for working with usage
models. The JUMBL supports construction and analysis of models, generation of test cases,
automated-execution of tests, and analysis of testing results. The JUMBL provides support
for every phase of statistical testing. Models can be constructed from libraries of common
components using a language such as TML and are then analyzed to determine their stochastic
properties. The JUMBL can generate tests in various ways and convert test cases into au-
tomated test information. The results of testing can be analyzed to determine the expected
system performance.
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Figure 3.1: MaTeLo model editor

3.3.3 Spec Explorer

Spec Explorer [10] is a tool that extends Visual Studio for modeling software behavior, analyzing
that behavior by graphical visualization, model checking, and generating standalone test code
from models. The behavior is modeled in two ways: by writing rules in C# (with dynamic data-
de�ned state spaces) and by de�ning model scenarios as action patterns in a regular-expression
style. One of Spec Explorer's major features is the ability to compose models written in these
two styles. This technique enables users to slice out test cases from large state machines to
achieve test purposes by de�ning relevant scenarios, thus tackling the notorious state-space
explosion problem that is so pervasive in model-based testing. Spec Explorer also supports
combinatorial interaction testing with a rich set of features.

3.3.4 TorX

The TorX tool [14] is a prototype testing tool for conformance testing of reactive software. The
tool requires a real implementation and a formal speci�cation of that implementation. The
speci�cation describes the system behavior that the real implementation is allowed to perform.
The TorX tool checks the correct behavior of a real implementation during its execution based
on the formal speci�cation.

3.3.5 Uppaal TRON

Uppaal TRON [15] is a testing tool based on the Uppaal engine. It is suited for black-box
conformance testing of timed systems, mainly targeted for embedded software commonly found
in various controllers. Tests are derived, executed and checked simultaneously while maintaining
the connection to the system in real-time.
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3.4 Formal veri�cation tools and frameworks

Formal veri�cation is integrated in di�erent areas through frameworks that enable reasoning
about the correctness of the developed software application. Throughout the last two decades a
certain variety of frameworks and tools for Model Checking for both general as well as speci�c
domains were introduced.
Currently there are many tools of model checking. Most of them require that the model �ts

their own speci�cation language. Furthermore, many checking tools are directed to a single
temporal logic. In the context of Model Checking usually temporal logic is used to specify the
property to verify (e.g. CTL, LTL, CTL *, ...).

3.4.1 SPIN

Spin [11] is an open-source software veri�cation tool that can be used for the formal veri�cation
of multi-threaded software applications. The tool supports a high level language called Promela
to specify systems descriptions.
Veri�cation models are focused on providing the correctness of process interactions, and they

attempt to abstract as much as possible from internal sequential computations. The processes
refer to system components that communicate with each other in terms of asynchronous message
passing through bu�ered channels (including access to shared variables or with any combination
of these).
Furthermore, it provides direct support for use of embedded C code as part of model speci-

�cations. This makes it possible to directly verify implementation level software speci�cations
and as a logic engine to verify high level temporal properties.
The basic structure of Spin is to start with the high level speci�cation of a concurrent model

or distributed algorithm, using Spin's graphical front-end XSpin. After �xing syntax errors,
interactive simulation is performed until con�dence is gained.
Otherwise, Spin is also used to generate an optimized on-the-�y veri�cation program from

the high level speci�cation. This veri�cation is compiled, with possible compile-time choices for
the types of reduction algorithms to be used, and executed. If the design does not behave as
intended, these can be fed back into the interactive simulator and inspected in detail to identify
and remove their cause.

3.4.2 UPPAAL

Uppaal [30, 44] is an integrated tool environment for modeling, simulation and veri�cation
of real-time systems, developed jointly by Basic Research in Computer Science at Aalborg
University in Denmark and the Department of Information Technology at Uppsala University
in Sweden. It is appropriate for systems that can be modeled as a collection of non-deterministic
processes with �nite control structure and real-valued clocks, communicating through channels
or shared variables. Typical application areas include real-time controllers and communication
protocols in particular, those where timing aspects are critical.
Uppaal consists of three main parts: a description language, a simulator and a model-

checker. The description language is a non-deterministic guarded command language with data
types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design language to describe
system behavior as networks of timed automata extended with clocks and data variables. The
simulator is a validation tool which enables examination of possible dynamic executions of a
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system during early design (or modeling) stages and thus provides an inexpensive mean of
fault detection prior to veri�cation by the model-checker which covers the exhaustive dynamic
behavior of the system. The model-checker can check invariant and reachability properties by
exploring the state-space of a system, i.e. reachability analysis in terms of symbolic states
represented by constraints.
To facilitate modeling and debugging, the Uppaal model-checker may automatically gener-

ate a diagnostic trace that explains why a property is not satis�ed by a system description.
The diagnostic traces generated by the model-checker can be loaded into the simulator for
visualization and investigation.

Figure 3.2: The simulator in the Uppaal GUI

3.4.3 NuSMV

NuSMV [9] is a reimplementation and extension of SMV symbolic model checker, the �rst
model checking tool based on Binary Decision Diagrams (BDDs).The tool has been designed
as an open architecture for model checking. It is aimed at reliable veri�cation of industrially
sized designs, for use as a backend for other veri�cation tools and as a research tool for formal
veri�cation techniques.
NuSMV supports the analysis of speci�cations expressed in CTL and LTL. User interaction

is performed with a textual interface, as well as in batch mode.
NuSMV 2, version 2 of NuSMV, inherits all the functionalities of NuSMV. Furthermore, it

combines BDD-based model checking with SAT-based (Boolean Satis�ability Problem) model
checking.
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3.4.4 Java PathFinder

Java PathFinder (JPF) [4] is an open source explicit-state model checker for Java programs
distributed under GPL license. It explores all executions that a given program can have due
to di�erent thread interleavings and nondeterministic choices. JPF implements a backtracking
Java Virtual Machine (JVM) that executes bytecodes using a special representation of JVM
states. This special representation enables JPF to quickly store, restore, and compare states; it
is crucial for making the overall state exploration e�cient. However, the special representation
creates additional overhead during each execution.
The core of JPF is a virtual machine (VM) which runs on top of the Java VM in order to

enable model checking of user programs. JFP is mainly used for:

• Exploring alternative execution

� Scheduling sequences � concurrent applications.

� Variations in input data.

� Environment events.

� Program control �ow choices.

• Execution inspection

The core of JPF (jpf-core project) discovers defects without the need for speci�cations of any
program properties. This includes: deadlocks, race conditions, uncaught exceptions. Manifes-
tation of nonfunctional properties should not occur in any application.
The exploration of the set of inputs and an optional bound on the length of program execution

allows to determinate all executions (up to the given bound) which the program can have due to
di�erent thread interleavings and nondeterministic choices. JPF can generate those executions
that violate a given (temporal) property in terms of example traces.

3.4.5 Symbolic PathFinder

Symbolic PathFinder (SPF) [12] combines symbolic execution with model checking and con-
straint solving for test case generation in Java bytecode programs. Programs are executed
on symbolic inputs representing multiple concrete inputs. Values of variables are represented
as numeric constraints, generated from analysis of code structure. These constraints are then
solved to generate test inputs guaranteed to reach that part of code.
SPF is part of the Java PathFinder veri�cation tool-set Figure 3.3, a freely available open-

source project. It uses the instruction factory class SymbolicInstructionFactory to build byte-
code instructions that manipulate symbolic values and expressions. SPF stores these symbolic
values in special �attributes� associated with the program data (variables, �elds and stack
operands).
The symbolic execution of conditional instructions leads to the exploration of distinct pro-

gram paths. SPF relies on the JPF-core framework to systematically explore the di�erent
choices of symbolic execution paths as well as thread interleavings. The choices are explored
exhaustively using a mechanism of Java PathFinder-core known as �choice generators� (e.g.
PCChoiceGenerator) for the construction of path conditions. A path condition is associated
with each choice generated and is checked using a decision procedure or a constraint solver. If
the path condition becomes unsatis�ed, JPF is automatically instructed to backtrack.
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Figure 3.3: Symbolic PathFinder

The Symbolic listeners gather and display information about the path conditions generated
during the symbolic execution. To limit the possibly in�nite (symbolic) search state space that
results from analyzing programs with loops, the user needs to provide a limit on the model
checker's search depth or on the number of constraints encoded in the path condition.

3.4.6 MechatronicUML

The section introduces the MechatronicUML method and especially it's compositional ver-
i�cation approach. Major parts of this summary are a shortened version based on [62, 28].
MechatronicUML

1 provides a method and tools for the model-driven development of safe
software for interconnected mechatronic systems [28, 90]. A strong focus is on the coordination
and communication between systems and sub-systems as well as on the early veri�cation of
the modeled software. MechatronicUML de�nes a formal modeling language which uses
concepts of the UML [84] and follows a component-based approach (cf. [102]). This enables
a scalable compositional veri�cation of the system model, utilizing Uppaal as the underlying
model-checker[62]. The complete method speci�cation can be found in [28].
Here, we use the RailCab system to introduce the basic concepts of MechatronicUML

and present its compositional veri�cation approach [63]: The vision of the RailCab project is
a railway transportation system where autonomous vehicles, called RailCabs, travel on a track
system. The track system is subdivided into sections including switches and railroad crossings.
In this system, collision avoidance on track has to be realized by the system itself. In particular,
collision avoidance requires communication of the RailCab with various track systems or other
RailCabs because sensors cannot detect other RailCabs if they are hidden behind a bend or
some other obstacle. In our example, each RailCab must query an upcoming track section
whether it is allowed to enter this track section. Considering the situation shown in Figure 3.4,
both RailCabs want to enter the switch ts3. They communicate with the switch by adhering
to a communication protocol. This protocol is safety-critical because it must ensure that only
one of the two RailCabs may enter the ts3 at a time to avoid a collision. Therefore, the
communication protocol must obey real-time constraints to ensure that the RailCab comes to a
stop before the switch if it is not allowed to enter. Hence, we need to apply formal veri�cation

1http://www.mechatronicuml.org/en/index.html
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Figure 3.4: Example: Two RailCabs Approaching a Switch and a Railroad Crossing Afterwards

to guarantee safety of the RailCab system. However, the state space of the software models
of the RailCab and the track system is too large to be assessed by standard model checking
approaches based on timed automata [62]. The approach to tackle this challenge is introduced
in Figure 3.4.6.
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Figure 3.5: Software Architecture (Instance Con�guration) of the Railcab Scenario, modeled in
MechatronicUML

Figure 3.4 shows a part of the software architecture for the presented Railcab Scenario,
modeled in MechatronicUML. Each entity of the scenario is modeled in terms of a software
component (e.g. ts1:NormalTrackSection, r1:RailCab...; cf. 3.4.6). These are represented
by rectangles with component symbols similar to UML. Connections and interactions between
software components are modeled in terms of Real-Time Coordination Protocols (cf. 3.4.6).
These are represented by ovals (e.g. :EnterSection) and attached to the components via ports
(smaller rectangles with arrows). Both the component and protocol behavior are modeled in
terms of Real-Time Statecharts (cf. 3.4.6). Please refer to the MechatronicUML method
speci�cation for a more detailed description of all language elements [28].

MechatronicUML development process

This section gives a brief overview of the MechatronicUML development process (cf. Fig.
3.6). Please refer to [28] for a more detailed description. Here, we focus on step 2 which is the
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design of an platform-independent software model (PIM): Based on a set of formal requirements
2, the components of the overall system structure are speci�ed in step 2.1. Each component is
a software entity that encapsulates a part of the system behavior (cf. section 3.4.6). In step
2.2, the interactions between the components are speci�ed in terms of Real-Time Coordination
Protocols (cf. section 3.4.6). Real-Time Coordination Protocols specify a contract between
components, in particular allowing to specify the message exchange as well as real-time prop-
erties. Also, the �rst integrated analysis step is performed: The safety and liveness properties
of each Real-Time Coordination Protocol are veri�ed formally using timed model checking (cf.
section 3.4.6). In step 2.3, based on the Real-Time Coordination Protocols of step 2.2, the
internal component behavior is derived (i.e. re�ned from the protocol behavior), again in terms
of Real-Time Statecharts. The correct re�nement is formally veri�ed by a re�nement check
(cf. section 3.4.6). Afterwards, the component is then formally veri�ed for deadlock freedom
to ensure that all ports of a component communicate safely with each other. These three veri-
�cation steps make up to overall compositional veri�cation approach of MechatronicUML.
In Step 2.4, the model of the discrete behavior is integrated with the feedback controllers of the
mechatronic system. The formal veri�cation of a correct integration of the controllers, however,
is not feasible for real-world systems (cf. [28]).
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Figure 3.6: MechatronicUML Development Process (from: [28])

Component Model

Each component in MechatronicUML encapsulates a part of the software and de�nes a set
of external interaction points, which are called ports. As an example, Fig. 3.7 shows the com-
ponents of our Rail-Cab example. Each system element (RailCab, normal track section,
switch, and railroad crossing) is represented by one component. Component RailCab has
two ports: sec1 communicates with the section the RailCab is currently on; sec2 communicates
with the section the RailCab will drive on next. The components NormalTrackSection, Switch
and RailRoadCrossing have a port left to communicate with RailCabs that drive from left to
right and a port right to communicate with RailCabs that drive the opposite way. Component
Switch must also be able to communicate with a third Rail-Cab. Therefore, the component has
a third port bottom. Additionally, the components Switch and RailRoadCrossing shall com-
municate with each other. Thus, Switch has a port followingSection and RailRoadCrossing

2these are modeled in terms of Modal Sequence Diagrams
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has a port precedingSection. The component model is structured hierarchically: Components
are either atomic components, i.e., they are implemented directly (atomic components) or they
are structured components, i.e., they are decomposed into further components. Only atomic
components have a behavior. For a detailed description of the component model, please re-
fer to [28]. Feedback controllers are integrated as continuous components into the component
model. MechatronicUML provides no behavior speci�cation for feedback controllers. In-
stead, it is assumed that this behavior is speci�ed by a control engineering tool like CamelView
or MATLAB/Simulink.

  

Normal

TrackSection

rightleft
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sec2sec1
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rightleft
  

Switch

left right

bottom followingSection precedingSection

Figure 3.7: Components of the RailCab Scenario (from: [62])

Real-Time Coordination Protocols

Real-Time Coordination Protocols are abstract protocols on application level that de�ne the
coordination between a pair of communicating roles and a connector that connects these roles.
The communication is always asynchronous and message-based, i.e., the sender can send its
message independent of the receivers state, the sender of a message does not block while sending,
and the receiver does not block while receiving.

railcab section

EnterSection

in-buffer size: 1 in-buffer size: 1
delay: 20ms

Figure 3.8: Coordination Protocol �EnterSection� (from: [62])

Figure 3.8 shows an example of a Real-Time Coordination Protocol named EnterSection.
It consists of the roles railcab, which represents a RailCab, and section, which represents
various kinds of track sections, e.g., the sections of our running example: a normal track
section, a switch, and a railroad crossing. Both roles may send and receive messages to realize
this coordination (indicated by the two black triangles). The purpose of this protocol is to
enable a coordination for traversing a section in a safe and e�cient manner[62]. The behavior
of the associated roles is speci�ed in terms of Real-Time Statecharts (cf. 3.4.6). Each role
which receive messages has a message bu�er for incoming messages, which we call in-bu�er.
The in-bu�er always enqueues messages in FIFO-style (First In First Out) and can only store
a �xed number of messages. The developer has to apply timed model checking to make sure
the in-bu�er does not over�ow. Furthermore, we explicitly consider that a transmission of a
message from sender to receiver takes time. Therefore, connectors have a required message
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transmission delay. The delay is de�ned as an interval with a minimum and maximum bound.
Please refer to [48] for a detailed speci�cation of Real-Time Coordination Protocols.

Real-Time Statecharts

MechatronicUML de�nes the coordination behavior in a state-based manner using Real-

Time Statecharts (RTSCs). They tackle typical aspects of interconnected mechatronic systems
like hard real-time requirements and asynchronous message-based coordination. Their bases
are hierarchical UML state machines and timed automata. Using Real-Time Statecharts, the
developer de�nes the behavior of a role, a port, or a component. Like timed automata, a Real-
Time Statechart may de�ne a �nite set of continuous clocks that enable clock-based timing
requirements like guards, state invariants, and worst-case execution times. Each state may de-
�ne state invariants and side e�ects. Each invariant de�nes an upper-bounded clock constraint
that refers to a clock of the statechart. All invariants must be true as long as the state is active,
otherwise a time stopping deadlock occurs. Timed Model-Checking is applied to identify these
deadlocks. Please refer to [28] for a detailed description of Real-Time Statecharts and their
execution semantics.
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Figure 3.9: Real-time Statecharts of the Coordination Protocol �EnterSection� (from: [62])

Figure 3.9 shows the Real-Time Statecharts of the two roles railcab and section of the
Real-Time Coordination Protocol EnterSection (cf. Fig. 3.8). As they belong to one protocol,
they are able to exchange messages with each other. The informal behavior de�nition for these
roles is as follows: Initially, both roles are in state Idle. As soon as role section recognizes
the RailCab (this behavior is not part of the protocol because it shall be de�ned within the
section component), it sends the message newSection to role railcab to inform that a new
section is approaching. Afterwards, it switches to state RailCabApproaching. Here, it is waiting
for a request for at most 10 ms. When role railcab receives and consumes the message, it
requests for entering this section by answering with the message request and switching to
state WaitForAnswer. According to the invariant, the answer must be available after 2 s.
Role section receives and consumes message request at most 100 ms after this state was
activated. Then, role section switches to state CheckRequest. In this state, the section
checks within 1980 ms if the RailCab may enter. This check is not part of the protocol but
of the concrete component because each section kind must execute di�erent checks. However,
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the result is stored in variable free and may be true or false. If the section is free, then
the role section sends the message enterAllowed and switches to state EnterAllowed, else
it sends the message enterDenied and switches to state EnterDenied. For the latter case,
the role will check repeatedly, if the section is free. As soon as this is the case, it will send
enterAllowed and switch to the eponymous state. As long as role section did not answer
if entering is allowed, role railcab remains in state WaitForAnswer. However, after 2 s, it
will either receive message enterAllowed or enterDenied. If entering is denied then it will
wait until message enterAllowed arrives. For simplicity reasons, we assume that entering will
eventually be allowed within the 1980 ms. As soon as this happens, role railcab switches to
state Approved. As depicted by the state invariant, the approval is valid for 2 min. Within this
time, the RailCab must enter the section. As soon as this is the case, message enterSection

will be sent. Role section will receive this message at most 120,040 ms (= 2 min 40 ms) after it
allowed to drive on its section and will answer with message confirmEntry. Here, the invariant
of 2 min and 40 ms constitutes of the 2min the RailCab had to drive to the section and two
times the message delay for the two messages enterAllowed and enterSection. Role railcab
will consume message confirmEntry at most 100 ms after it sent message enterSection. As
soon as the RailCab leaves the section, it will send message leaveSection. Role section

will con�rm this with the message confirmExit. After one second, the coordination for this
drive through is �nished and a new coordination with the same RailCab can start again. Role
railcab will consume message confirmExit within 100 ms after message leaveSection was
sent. Then, it is also ready to enter this section again.

Compositional Veri�cation

In this section we give a summary of the compositional veri�cation approach in Mecha-

tronicUML. The approach syntactically decomposes the software model of an interconnected
mechatronic system into Real-Time Coordination Protocols and components. For deriving
correct veri�cation results, it imposes one critical syntactical requirement to the Mechatron-

icUMLmodel: Any connection between two ports in the component model needs to be speci�ed
by a Real-Time Coordination Protocol. Each port of a component needs to implement one of
its roles. That enables to verify the software model in three steps as shown in Figure 3.10.
In the �rst step, each Real-Time Coordination Protocol is veri�ed for safety and liveness

properties (cf. Sect. 3 in [62]). The Real-Time Coordination Protocol is the abstract protocol in
our approach. The safety and liveness properties are proved via timed model checking, utilizing
Uppaal as the underlying model-checker. This is achieved by a semantics preserving transfor-
mation of the Real-Time Coordination Protocol and its Real-Time Statecharts into a network
of timed automata. A detailed explanation of the transformation is given by Gerking in [56].
Figure 3.11 illustrates the transformation approach. For each role and its corresponding Real-
Time Statechart, a set of timed automata is generated (among others one timed automaton
for each hierarchy level) and all states and transitions are adapted. Afterwards, the language
elements that Uppaal does not support are transformed into elements of Uppaal (e.g. asyn-
chronous message exchange, state events, urgent transitions, and hierarchical states, cf. [56]).
Along with the generated timed automata, the model checker requires as a second input safety
and liveness properties, which shall be veri�ed. Therefore, in a �rst step, the developer has
to specify its requirements as safety and liveness properties by using the Timed Computation
Tree Logic (TCTL). In our example, the Real-Time Coordination Protocol EnterSection has
the following informal requirement: �The message enterSection will never be sent from role
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Figure 3.10: Overview of the Compositional Veri�cation Approach (from: [62])

railcab, until message enterAllowed is sent by role section.� The developer formalizes this
into the TCTL property ϕ1 (cf. Fig. 3.11):

AG (A not railcab.enterSectionMsg W section.enterAllowedMsg)

The developer manually transforms this property into the following Uppaal TCTL expression:

A[] (railcab.enterSectionSent==true imply section.enterAllowedSent==true)

Here, railcab and section are the names of two timed automata. enterSectionSent and
enterAllowedSent are two Boolean variables. Both are initially false. They are set to true

when their respective message was sent and set to false when location Idle is activated. These
variables are necessary because Uppaal does not support the operator W and is not able to
reference a message within its TCTL expression but only locations, variables, and clocks.
In the second step, one has to verify if the ports of the components re�ne the roles of the

Real-Time Coordination Protocol correctly (cf. section 4 in [62]). The behavior of a port must
be compliant to the speci�ed role behavior, i.e. it must be a legal re�nement regarding the
chosen re�nement de�nition (cf. section 5 in [62]). The result is the re�ned protocol. Typical
re�nement steps include adding data exchange between di�erent ports of a component, adding
component speci�c functions, and accessing shared variables inside the component. That, in
turn, may require to add additional states and transitions to the Real-Time Statechart of the
role. The behavior of the re�ned protocol is de�ned by the port Real-Time Statechart. More-
over, the speci�cation of the message bu�er for incoming messages and the message transmission
delay must conform to the protocol speci�cation. In our example in Fig. 3.10, the connection
between the ports sec2 and left must be compliant to the Real-Time Coordination Protocol
EnterSection. In particular, port sec2 must be compliant to role railcab; port left must
be compliant to role section. Thus, one has to check if the two Real-Time Statecharts of
Fig. 3.9 are re�ned correctly by their corresponding port Real-Time Statecharts. Right now,
MechatronicUML supports six re�nement de�nitions for interconnected mechatronic sys-
tems and their automatic selection: Simulation, Bisimulation, Timed Ready Simulation,
Timed Simulation, Relaxed Timed Bisimulation and Timed Bisimulation. They di�er in
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the properties that they preserve and modi�cations that they allow. A detailed description of
this approach including the di�erent re�nement de�nitions is presented in sections 4,5,6 in [62].
In the third step, one need to verify for each component that it is free of deadlocks.

Additional safety and liveness properties might be veri�ed referring to a correct interaction of
the di�erent ports of a component if necessary. In our example, only one RailCab may receive
permission to enter a track section. Such properties may only be veri�ed on the component
level because they depend on the interaction of the di�erent ports of one component, e.g., the
ports left and right of the NormalTrackSection in Fig. 3.7.
The overall compositional veri�cation approach of MechatronicUML is still under active

research. For example, current research activities focus on automating the synthesizing of the
component implementations from the re�ned ports. This would complete step three of the
presented approach. Furthermore, the MechatronicUML developers aim to transform the
counterexamples generated by Uppaal back to MechatronicUML language elements. This
would make the usage of the attached model-checking tools more accessible to domain experts.

3.5 Test case generation tools and frameworks

Former described tools

• MBT-Tool,

• MaTeLo

• JUMBL

• Spec Explorer
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can also be used for generating test cases. And there are a lot of tools available with the
label "test case generation". Some of them are implementations of academic approaches, other
with commercial background. One has to know about its background, its domain, its test
infrastructure, etc. before deciding which tool �ts best the own requirements.

3.5.1 Conformiq Designer

Conformiq Designer [2] is a classic Model Based Testing tool for automated test design. With
this tool test cases can be generated when a model of the requirements (a speci�cation model)
is previously designed. Main application domain of Conformiq Designer is the telecommuni-
cation domain, but also other application domains like automotive, industrial automation are
addressed.
Speci�cation models can be created as UML State Machines and in Qtronic Modelling Lan-

guage (QML). QML is a Java based language. Tests can be exported to test management tools
or TTCN-3. It is a desktop product that runs on Windows and Linux. The test generation
engine reads the models and runs a symbolic test generation algorithm that creates a set of
tests to test the features described in the model. It generates automatically both test input
data as well as test output data from the single model. These tests can be then reviewed and
exported, but they cannot be executed as Conformiq Designer is not a test execution tool.
They need to be exported in order for them to be useful. This means that they are written
out in a human-readable or an executable format, for example Java, Python, Perl, HTML or
Word-compatible formats. Many di�erent output formats are supported.

3.5.2 T-VEC

T-VEC Tester for Simulink and State�ow [13] generates test cases for MathWorks Simulink
models based on various structural coverage criteria (structured path coverage, branch coverage,
statement coverage or interface coverage). It automates much of the testing process by analysing
the Simulink model to determine the best test cases for validating the model and testing
implementations of the model.
The T-VEC Tester produces a complete set of artifacts for verifying Simulink models such as

model analysis report for identifying model errors, test vectors (input values, expected output
values, traceability from each test to the Simulink model), test coverage report or test results
report that details test successes and failures.

3.6 Other veri�cation tools and frameworks

3.6.1 Oracle Java Mission Control

Oracle Java Mission Control [3] is a tool suite for managing, monitoring, pro�ling and trou-
bleshooting Java applications without introducing the performance overhead normally associ-
ated with these types of tools. It uses data collected for normal adaptive dynamic optimization
of the Java Virtual Machine (JVM) and has been included in Java standard Java SDK since
version 7u40.
Java Mission Control consists of the client application (JMC client) and a number of plug-ins

that run on it:
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• JVM Browser: shows the running Java applications and their JVMs. Each JVM instance
is called a JVM Connector.

• JMX Console: connects to a running JVM, collects and displays its characteristics in real
time, and enables you to change some of the runtime properties through Managed Beans
(MBeans).

• Java Flight Recorder (JFR): collects and displays application characteristics for historical
analysis and pro�ling.

Java Mission Control plug-ins connect to a JVM using the Java Management Extensions
(JMX) agents. The JMX Console is a tool that presents live data about memory and CPU
usage, garbage collections, thread activity, attributes exposed via MBeans and registered with
the MBean server, and more features across the board, providing information about the Java
VM.
The JMX Console also provides triggers that can monitor MBeans and trigger actions, such

as showing a noti�cation, when a condition is met.
The overview tab of JMX Console provides an overview of CPU performance and heap usage

during the recording Figure 3.12.

Figure 3.12: Java Mission Control Overview

Besides, the MBean tab displays information about all the Mbeans registered with the plat-
form MBean Figure 3.13.
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Figure 3.13: MBean Features

The main focus of this tool is on production-time pro�ling and diagnostics. Java Mission
Control gathers the data necessary with the lowest possible impact on the running system.
The technology used also enables the application to run at full speed once the tool is discon-
nected from the Java Virtual Machine (JVM). This makes JMC suitable for use in production
environments.

3.7 Simulation Tools

3.7.1 TA Simulator

TA Simulator [104] is a discrete, event-based simulation tool as introduced in Section 2.7.2. It
operates on the AUTOSAR-compliant and AMALTHEA-compliant Timing Model [98]. During
simulation, state transitions (events) like the activation, preemption and termination of tasks
as well as the respective time stamps are recorded into a BTF trace [24]. TA Simulator also
includes an evaluation module which applies di�erent statistical estimators to the trace, which
allows the calculation of di�erent timing metrics and performance metrics.
Figure 3.14 shows a screenshot of TA Simulator. In the upper part of the �gure, the resulting

trace of a simulation run is visualized in a Gantt chart. In addition to that, the interference
analysis is shown as overlay to the Gantt chart. This overlay visualizes which tasks interfered
with others (e.g. preemptions or resource con�icts). The middle part of the �gure shows the
load of the di�erent cores over time. In the lower part of the �gure, the results of the timing
requirements analysis are shown. The left part hereby shows the di�erent requirements and the
respective percentage of requirement violations. In the right part, the response time histogram
of a task together with its deadline (upper limit for the response time) is shown.
TA Simulator is integrated into the AMALTHEA Toolchain using the import/export interface

of TA Tool Suite to transform an AMALTHEA model into a Timing Model and vice versa.

3.8 Trace Analysis and Veri�cation Tools

3.8.1 Trace Compass

Trace Compass [49] is a new Eclipse project, which focuses on the development of a tool for
viewing and analyzing any type of logs or traces. To be exact, it is actually not new, but was
part of the Eclipse LTTng Project (Linux Trace Toolkit, next generation) before. This was due
to the reason, that the capabilities of the developed tool were not just limited to traces from
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Figure 3.14: Screenshot of TA Simulator (cf. [104]).

the Linux operating system, but could handle a large variety of di�erent traces and formats
instead.
In order to show that fact, the project developed an interface to the BTF trace format [24],

whose speci�cation was made open source in the scope of the AMALTHEA project. This
functionality is available since their release version 1.0.0. Figure 3.15 shows a screenshot of a
previous version of LTTng. As it can be clearly seen, the goal of Trace Compass is to provide
a variety of views, graphs, and metrics to help analyzing traces by extracting and visually
representing useful information.
It is developed to either be integrated into an existing Eclipse IDE or used as a standalone

application. An available generic interface for the integration of logs or trace data input,
analyses and views makes it possible to easily adopt new trace formats and extend the platform
accordingly. Moreover, it supports live log and trace reading and monitoring and was especially
designed to be able to handle traces that consume a huge amount of memory.

3.8.2 TA Inspector

TA Inspector [104] is a trace visualization, trace analysis and trace veri�cation tool. It supports
various trace sources, including Lauterbach, iSystem, Gliwa, Elektrobit, AMALTHEA and BTF
traces.
An unique feature of TA Inspector is the support for a Closed-loop development process.

Hereby, information from model-based descriptions like the AMALTHEA model, Code-Parsing
and hardware traces are used to either create or re�ne Timing Models. Hardware traces are
used in this context to automatically reconstruct execution times of runnables or the activation
pattern of tasks.
Figure 3.16 shows a screenshot of TA Inspector. In the upper part of the �gure, an imported

trace is visualized in a Gantt chart. In addition to that, di�erent event-chains are shown as
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Figure 3.15: Screenshot of LTTng, the predecessor of Trace Compass (cf. [49]).

overlay to the Gantt chart. Event-Chains are de�ned by a stimulus and response event, e.g.
the activation or termination of a task, and allow a detailed analysis of the duration of certain
processing chains. The middle part of the �gure shows the statistics of the event-chain analysis
on the left and the histogram of an event-chain on the right. In the lower part of the �gure,
the results of a timing requirement analysis are shown.
TA Inspector is integrated into the AMALTHEA Toolchain using the import/export interface

of TA Tool Suite to transform Timing Models resulting from the Closed-loop development
process back to AMALTHEA models.
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Figure 3.16: Screenshot of TA Inspector (cf. [104]).
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4 Conclusion

The main contribution of this document is the analysis of the V&V techniques as well as a
description of the main tools applied to model veri�cation, in the context of the intended
Amalthea4Public goals.
Based on this deliverable, the following step is to identify which techniques will be imple-

mented inside Amalthea's toolchain and how it will be performed.
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