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1 Summary 

This deliverable is the implementation of the tests specification described in deliverable D5.1.7.1. It 

covers basic functional tests of the Cirrus platform, tests of its accelerator component, a more 

elaborate benchmark by the Dassault Aviation (DA) partner and a specific focus on the tools 

developed by the UVSQ partner. 

 

2 Introduction 

This deliverable describes the results of the tests specified in deliverable D5.1.7.1, which were 

accomplished through a collaborative work between the partners CEA, DA and UVSQ. In this 

deliverable we will first show that the prototype of an accelerator-based architecture, namely the Cirrus 

platform, is functional, second that it is performant on different use cases and third that tools 

developed by the UVSQ partner can help to optimize codes on such an architecture.  

In addition, we will describe a more elaborate investigation allowed by the prototype.  This benchmark 

involves a full FEM mini-application using industrial-grade simulation data, provided by DA. Even 

though it was not funded during the November 2013 – December 2014 time period of the 

H4H/Perfcloud project, DA was willing to participate in order to test its mini-application on the Xeon Phi 

architecture of the Cirrus platform. 

 

3 Specific tests  

3.1 Code selected 

To test the machines as well as the environments, we used the Hydro benchmark [Github]. 

This basic benchmark is available in a number of implementations allowing for rapid evaluation of a 
platform, be it a single node or a cluster with or without acceleration.  

 

3.2 Basic test of the machine 

The first test will be to use the OpenCL + MPI version of Hydro. It should produce the same output as 
on a production cluster. The output should be identical on the first 10 iterations. This run will validate 
the OS installation as well as the network linking the nodes (if any). 

The first step was to install a functional operating system which was done without problem (see Table 
1). 

 

[coling@cirrus50 Src]$ uname -a 

Linux cirrus50 2.6.32-279.14.1.el6_lustre.x86_64 #1 SMP Fri Dec 14 23:22:17 PST 2012 x86_64 x86_64 x86_64 

GNU/Linux 

[coling@cirrus50 Src]$ cat /etc/redhat-release 

CentOS release 6.3 (Final) 

[coling@cirrus50 Src]$ 
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Table 1: Operating system of the Cirrus prototype 

 

Then we had to install numerous packages to make sure to have a versatile prototype. 

  

[coling@cirrus50 Src]$ module avail 

------------------------------ /opt/Modules/default/modulefiles/applications ------------------------------ 

abinit/7.2.2              cp2k/2.2                  gromacs/4.6.3(default)    openfoam/2.2.2 

abinit/7.2.2_gpu          cp2k/2.3_xc               gromacs/4.6.3_gpu         openfoam/2.3.0 

abinit/7.4.2              cp2k/2.4                  gromacs/4.6.5             salome/7.2.0 

abinit/7.4.2_gpu          desmond/3.4.0.2           gromacs/4.6.5_gpu         saturne/2.0.1 

abinit/7.6.1              espresso/4.2.1            gromacs/4.6.5_plumed      saturne/3.0.0 

abinit/7.6.1_gpu          espresso/5.0.1_cuda       gromos/1.2.0              turbomole/6.4 

abinit/7.6.2_gpu          espresso/5.0.2            lammps/23Feb13_phonon     wgrib/1.8.1.0b 

abinit/7.6.2_mpi(default) freefem++/3.16            lammps/7jun13             wrf/3.3 

aster/11.3.0              freefem++/3.23            nco/3.9.4                 wrf/3.3.1 

bigdft/1.6.0              gamess/2013.05            nco/4.0.5                 wrf/3.3_cuda 

<…> 

gnuplot/4.6.0         libtiff/3.9.4         ploticus/2.42         wxx11/2.8.12 

gnuplot/4.6.5         libtiff/4.0.3         pyqt/4.9.1            xmgrace/5.1.23 

-------------------------------- /opt/Modules/default/modulefiles/parallel -------------------------------- 

bullxmpi/1.1.16.5(default)                 mpi/intelmpi/5.0.1.035 

cuda/4.2(default)                          mpi/mpc/2.4.0 

cuda/5.0                                   mpi/mpc/2.5.0 

hmpp/3.3.0                                 mpi/openmpi/1.6.5 

intelmpi/4.0.3.008                         mpi/openmpi/1.8.2 

intelmpi/4.1.0.030(default)                mpiprofile/bullxmpi/big_collective_io 

<…> 

lapack/intel/13.1.3.192             tbb/14.0.2.144(default) 

lapack/intel/14.0.0.080             tbb/15.0.0.090 

------------------------------- /opt/Modules/default/modulefiles/compilers -------------------------------- 

c++/14.0.2.144(default)           c/intel/12.1.7.256                fortran/pgi/12.6 

c++/gnu/3.4.6                     c/intel/12.1.9.293                fortran/pgi/13.4 

c++/gnu/4.4.5                     c/intel/13.1.3.192                fortran/pgi/14.3 

c++/gnu/4.5.1                     c/intel/14.0.0.080                gnu/3.4.6 

c++/gnu/4.6.3                     c/intel/14.0.1.106                gnu/4.4.5 

c++/gnu/4.8.1                     c/intel/14.0.2.144(default)       gnu/4.5.1 

c++/gnu/4.9.0                     c/intel/15.0.0.090                gnu/4.6.3 

c++/intel/11.1.072                c/pgi/11.10                       gnu/4.8.1 

c++/intel/12.1.7.256              c/pgi/12.6                        gnu/4.9.0 

c++/intel/12.1.9.293              c/pgi/13.4                        intel/11.1.072 

c++/intel/13.1.3.192              c/pgi/14.3                        intel/12.1.7.256 

c++/intel/14.0.0.080              fortran/14.0.2.144(default)       intel/12.1.9.293 

c++/intel/14.0.1.106              fortran/gnu/3.4.6                 intel/13.1.3.192 

c++/intel/14.0.2.144(default)     fortran/gnu/4.4.5                 intel/14.0.0.080 

c++/intel/15.0.0.090              fortran/gnu/4.5.1                 intel/14.0.1.106 

c++/pgi/11.10                     fortran/gnu/4.6.3                 intel/14.0.2.144(default) 



   D5.1.7.2 - Tests of hardware and software developments  

 

 

V1.0 - 05/01/15  -  Draft -  Public  

CEA/DAM  Page 6 / 23   

 

 

 

F

i

g

u

r

e

 

E

r

r

o

r

!

 

M

a

i

n

 

D

o

c

u

m

e

n

t

 

O

n

l

y

.

 

 

c++/pgi/12.6                      fortran/gnu/4.8.1                 intel/15.0.0.090 

c++/pgi/13.4                      fortran/gnu/4.9.0                 java/openjdk/1.6.0_24 

c++/pgi/14.3                      fortran/intel/11.1.072            java/oracle/1.7.0_25 

c/14.0.2.144(default)             fortran/intel/12.1.7.256          jdk/1.7.0_25 

c/gnu/3.4.6                       fortran/intel/12.1.9.293          llvm/3.1 

c/gnu/4.4.5                       fortran/intel/13.1.3.192          llvm/3.2 

c/gnu/4.5.1                       fortran/intel/14.0.0.080          pgi/11.10 

c/gnu/4.6.3                       fortran/intel/14.0.1.106          pgi/12.6 

c/gnu/4.8.1                       fortran/intel/14.0.2.144(default) pgi/13.4 

c/gnu/4.9.0                       fortran/intel/15.0.0.090          pgi/14.3 

c/intel/11.1.072                  fortran/pgi/11.10 

[coling@cirrus50 Src]$ 

Table 2: (truncated) listing of all packages made available on the prototype 

At this stage, the prototype is usable by different types of testers. Here, we will focus on the KNC 
accelerator. The tests were made using the OpenCL version of the Hydro benchmark. The nice feature 
of OpenCL is that, when properly programmed, software using this language can run on different 
architectures without modifications.  

The following listing (Table 3) illustrates what to expect for a run using two MPI tasks of the OpenCL 
version of Hydro on a classical (and modern) piece of hardware. This output will be our reference run. 
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Hydro:  OpenCL compute unit type = CPU 

HydroC: Simple decomposition 

HydroC: nx=2 ny=1 

+-------------------+ 

|nx=2000             | 

|ny=2000             | 

|nxystep=128        | 

|tend=1600.000      | 

|nstepmax=10        | 

|noutput=0          | 

|dtoutput=0.000     | 

+-------------------+ 

Hydro starts in double precision. 

[   0/   2] x=   0 X=1000 y=   0 Y=2000 / u=  -1 d=  -1 l=  -1 r=   1 

[   1/   2] x=1000 X=2000 y=   0 Y=2000 / u=  -1 d=  -1 l=   0 r=  -1 

Nb platform : 1 

[0] Profile : FULL_PROFILE 

[0] VERSION : OpenCL 1.2 LINUX 

[0] NAME : Intel(R) OpenCL 

[0] VENDOR : Intel(R) Corporation 

[0] EXTENSIONS : cl_khr_fp64 cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store 

cl_intel_printf cl_ext_device_fission cl_intel_exec_by_local_thread 

Hydro: 001 has 0 GPU 

Hydro: 001 has 0 ACC 

Hydro: 001 has 1 CPU 

(0) :: device maxcu 56 mxwkitdim 3 mxwkitsz 1024 1024 1024 mxwkgsz 1024  mxclockMhz 2300 mxmemallocsz 32237 

(Mo) globmemsz 128951 (Mo) type 2 [CPU] 

   extensions: cl_khr_fp64 cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store 

cl_intel_printf cl_ext_device_fission cl_intel_exec_by_local_thread 

Device 0 supports double precision floating point 

   prefered vector size: c=1 s=1 i=1 l=1 f=1 d=1 

Hydro: 000 has 0 GPU 

Hydro: 000 has 0 ACC 

Hydro: 000 has 1 CPU 

[0] : nbdevices = 1 

Building a CPU version 

Build OpenCL (opts="-cl-mad-enable -DNVIDIA -DHASFP64 -

I/ccc/ghome/ocre/coling/Github/Hydro/HydroC/oclHydroC_2D/Src ") OK. 

Centered test case : [1] 2 1002 

Hydro 0: initialize acc 0.083604s 

Hydro 1: initialize acc 0.108037s 

Hydro starts main loop. 

--> step=1     1.33631e-03, 1.33631e-03  (0.263s) * 

--> step=2     2.67261e-03, 1.33631e-03  (0.374s) 

--> step=3     5.70914e-03, 3.03653e-03  (0.300s) * 

--> step=4     8.74568e-03, 3.03653e-03  (0.313s) 

--> step=5     1.24942e-02, 3.74854e-03  (0.351s) * 

--> step=6     1.62428e-02, 3.74854e-03  (0.351s) (11.4 MC/s) 

--> step=7     2.06309e-02, 4.38811e-03  (0.327s) (12.2 MC/s) * 

--> step=8     2.50190e-02, 4.38811e-03  (0.337s) (11.9 MC/s) 

--> step=9     2.95700e-02, 4.55100e-03  (0.316s) (12.7 MC/s) * 

--> step=10    3.41210e-02, 4.55100e-03  (0.301s) (13.3 MC/s) 

Hydro ends in 00:00:05.700s(5.700) without init: 3.249s. [DP] 

    GATCON    CONPRI    EOS       SLOPE     TRACE     QLEFTR    RIEMAN    CMPFLX    UPDCON    COMPDT    MAKBOU    

ALLRED 

MIN 0.230371  0.204546  0.170753  0.174949  0.248487  0.243243  0.346009  0.235095  0.375060  0.086611  

0.183798  0.000094 

MAX 0.339994  0.270067  0.213999  0.268457  0.318193  0.400195  0.485847  0.331852  0.403947  0.087503  

0.600992  0.316446 

AVG 0.285182  0.237306  0.192376  0.221703  0.283340  0.321719  0.415928  0.283474  0.389504  0.087057  

0.392395  0.158270 

Average MC/s: 12.3 

Table 3: a typical output of the Hydro code on a reference machine (here a node based on a dual socket Haswell-EP 

with 14 cores at 2.3 GHz each) using two MPI tasks 
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3.3 Test of the accelerator 

To validate the proper functioning of an accelerator, we will use the OpenCL version of Hydro. The 
virtue of OpenCL is that it is present on any kind of accelerator nowadays. We compare the output of 
Hydro with a reference run on a cluster (the one of Table 3). Both the OpenCL versions should 

produce the same results for the final --> step=10 line not taking into account the values in 

parenthesis which represents the execution time of the current iteration and the number of millions of 
cells processed by second. Those timings vary from machine to machine and are a good measurement 
of their respective performances.  

 
Hydro:  OpenCL compute unit type = ACC 

+-------------------+ 

|nx=2000             | 

|ny=2000             | 

|nxystep=128        | 

|tend=1600.000      | 

|nstepmax=10        | 

|noutput=0          | 

|dtoutput=0.000     | 

+-------------------+ 

Hydro starts in double precision. 

Nb platform : 1 

[0] Profile : FULL_PROFILE 

[0] VERSION : OpenCL 1.2 LINUX 

[0] NAME : Intel(R) OpenCL 

[0] VENDOR : Intel(R) Corporation 

[0] EXTENSIONS : cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_spir 

cl_khr_fp64 

(0) :: device maxcu 1 mxwkitdim 3 mxwkitsz 8192 8192 8192 mxwkgsz 8192  mxclockMhz 2100 mxmemallocsz 12057 

(Mo) globmemsz 48230 (Mo) type 2 [CPU] 

   extensions: cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_spir 

cl_intel_exec_by_local_thread cl_khr_depth_images cl_khr_3d_image_writes cl_khr_fp64 

Device 0 supports double precision floatting point 

   prefered vector size: c=1 s=1 i=1 l=1 f=1 d=1 

(1) :: device maxcu 236 mxwkitdim 3 mxwkitsz 8192 8192 8192 mxwkgsz 8192  mxclockMhz 1052 mxmemallocsz 1924 

(Mo) globmemsz 5773 (Mo) type 8 [ACCELERATOR] 

   extensions: cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics 

cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_spir 

cl_khr_fp64 

Device 1 supports double precision floating point 

   prefered vector size: c=1 s=1 i=1 l=1 f=1 d=1 

Hydro: 000 has 0 GPU 

Hydro: 000 has 1 ACC 

Hydro: 000 uses ACC 0 

[0] : nbdevices = 2 

Building an ACC version 

Build OpenCL (opts="-cl-mad-enable -DNVIDIA -DHASFP64 -

I/ccc/ghome/ocre/coling/Github/Hydro/HydroC/oclHydroC_2D/Src ") OK. 

Centered test case : 1002 1002 

Hydro 0: initialize acc 0.496170s 

--> step=1     1.33631e-03, 1.33631e-03  (0.364s) * 

--> step=2     2.67261e-03, 1.33631e-03  (0.304s) 

--> step=3     5.70914e-03, 3.03653e-03  (0.361s) * 

--> step=4     8.74568e-03, 3.03653e-03  (0.301s) 

--> step=5     1.24942e-02, 3.74854e-03  (0.332s) * 

--> step=6     1.62428e-02, 3.74854e-03  (0.308s) (13.0 MC/s) 

--> step=7     2.06309e-02, 4.38811e-03  (0.333s) (12.0 MC/s) * 

--> step=8     2.50190e-02, 4.38811e-03  (0.301s) (13.3 MC/s) 

--> step=9     2.95700e-02, 4.55100e-03  (0.336s) (11.9 MC/s) * 

--> step=10    3.41210e-02, 4.55100e-03  (0.302s) (13.2 MC/s) 

Hydro ends in 00:00:09.834s(9.834) without init: 3.258s. [DP] 

    GATCON    CONPRI    EOS       SLOPE     TRACE     QLEFTR    RIEMAN    CMPFLX    UPDCON    COMPDT    MAKBOU    

ALLRED 

PE0 0.577700  0.166104  0.129874  0.174436  0.365882  0.264103  0.571189  0.169403  0.587714  0.201799  

0.034090  0.000000 

%   17.817641 5.123032  4.005629  5.380016  11.284665 8.145553  17.616830 5.224789  18.126475 6.223969  

1.051401  0.000000 

Average MC/s: 12.7 

Table 4: output of the OpenCL version of Hydro using the KNC and one MPI task. 

By comparing Table 3 and Table 4, we can see that the results are those expected. 
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--> step=9     2.95700e-02, 4.55100e-03  (0.266s) (15.1 MC/s) * 

--> step=10    3.41210e-02, 4.55100e-03  (0.191s) (21.0 MC/s) 

Hydro ends in 00:00:08.733s(8.733) without init: 2.406s. [DP] 

    GATCON    CONPRI    EOS       SLOPE     TRACE     QLEFTR    RIEMAN    CMPFLX    UPDCON    COMPDT    MAKBOU    

ALLRED 

MIN 0.316271  0.109199  0.085169  0.106515  0.200221  0.161903  0.318756  0.101318  0.306316  0.161775  

0.395536  0.023942 

MAX 0.327046  0.111931  0.086332  0.117952  0.203285  0.163022  0.333114  0.108247  0.311196  0.219626  

0.430098  0.103863 

AVG 0.321658  0.110565  0.085751  0.112234  0.201753  0.162462  0.325935  0.104782  0.308756  0.190701  

0.412817  0.063903 

Average MC/s: 18.2 

Table 5: OpenCL run on a KNC using 2 MPI tasks on two separate nodes 

Table 5 is the final validation of the system used in cluster mode. It shows that the results are 
unchanged and that therefore the MPI across nodes and KNCs is functional. Due to the hardware 
implementation of the communications between the KNC and its host, the poor speedup of the MPI 
version is no surprise. This situation should change dramatically with the forthcoming KNL.  

Such tests demonstrate that: 

1. The prototype system is functional on a per node basis as well as in a cluster mode 

2. The performance of a single KNC is equivalent to the performance of a two sockets node (see 

the Average numbers in previous tables). Note that this is a small test case and the results 

may vary between programs and programming languages. Nonetheless, this gives very 
positive trends. 

 

The KNC can also be used as standalone machine. This allows for better conditions to do code 
optimizations. For example, the behavior of directives can be investigated. In Figure 1 we wanted to 

see the impact of the directive #pragma simd on the output of Hydro in its OpenMP implementation. 

If a small number of iteration (10 to 1000) didn’t show any significant differences, in the long run, 
rounding errors due to overaggressive optimizations can be noticed. 

 

Reference Run with #pragma simd Differences between the runs 

 

Figure 1: The first left third of the image is the reference run, the second image is the so called “optimized” run, the 

right third is the comparison between the two previous images and emphasizes the actual differences between the 

two runs, showing that the optimizations was not so great. The results should have been identical after 34000 time 

steps. Any difference in the pixels is denoted as a red pixel. Identical simulations will produce a pure white 

difference image. 
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3.4 Test of the CAPS developments 

Because the CAPS partner had to withdraw from the project, no tests were made of their 
developments. 

 

3.5 Test of the UVSQ developments 

When writing D5.1.7.1, we were contemplating using the Hydro benchmark to evaluate MAQAO. In the 
meantime CEA encountered an optimization problem on another benchmark called Xpn. Xpn showed a 
major slow down when used on the MIC. Therefore, it was a good opportunity to tests the tools of the 
UVSQ partner while solving a real problem. The analysis described here has been done by the UVSQ 
partner and CEA is really grateful for the valuable insights it brought.  

 

Table 6: profile of the Xpn benchmark using 4 MPI tasks 

The first step was to determine where all the time was spent (Table 6). Fortunately, it was in a single 
routine (resc_pn) which eased the next steps. 

The structure of resc_pn looks like (Table 7): 

                              BATAILLE - PROCESS #29251 

                           Thread #29251 - 29.66 second(s) 

##################################################################################### 

#        Function Name       |  Time %  |  Time(s)  |  CPI ratio  |      Module     # 

##################################################################################### 

#  MPIDI_CH3I_Progress       |  94.07   |  27.90    |  0.77       |  libmpi.so.4.1  # 

#  _spin_lock                |  0.47    |  0.14     |  0.83       |  SYSTEM CALL    # 

#  (...)                                                                            # 

##################################################################################### 

                                BATAILLE - PROCESS #29250 

                             Thread #29250 - 29.56 second(s) 

######################################################################################### 

#          Function Name         |  Time %  |  Time(s)  |  CPI ratio  |      Module     # 

######################################################################################### 

#  resc_pn - 130@CALCUL.f        |  99.46   |  29.40    |  0.40       |  Xpn.AVX2       # 

#  _spin_lock                    |  0.47    |  0.14     |  0.83       |  SYSTEM CALL    # 

#  rb_insert_color               |  0.27    |  0.08     |  0.48       |  SYSTEM CALL    # 

######################################################################################### 

                            BATAILLE - PROCESS #29249 

                         Thread #29249 - 29.56 second(s) 

################################################################################# 

#       Function Name      |  Time %  |  Time(s)  |  CPI ratio  |     Module    # 

################################################################################# 

#  resc_pn - 130@CALCUL.f  |  99.59   |  29.44    |  0.40       |  Xpn.AVX2     # 

#  _spin_lock              |  0.47    |  0.14     |  0.83       |  SYSTEM CALL  # 

################################################################################# 

                            BATAILLE - PROCESS #29248 

                         Thread #29248 - 29.56 second(s) 

################################################################################# 

#       Function Name      |  Time %  |  Time(s)  |  CPI ratio  |     Module    # 

################################################################################# 

#  resc_pn - 130@CALCUL.f  |  99.86   |  29.52    |  0.40       |  Xpn.AVX2     # 

#  _spin_lock              |  0.47    |  0.14     |  0.83       |  SYSTEM CALL  # 

################################################################################# 
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Table 7 : structure of the resc_pn subroutine 

The result of a profiling session (Table 8) on Xpn shows that most of the time is spent outside the inner 
loops. 

 

 

Table 8 : detailed profiling of resc_pn showing that most of the time is not spent in the innermost loops. 

Since MAQAO was, by design, focusing on inner loops, it had to be extended to be able to cope with 
this situation, producing a richer tool. From this extended version, many lessons were learned on Xpn. 

First, most of the time is spent on not vectorized section (peel or tail as explained in Table 9). This 
means that the loops do not have enough indices to work on. 

do id=1,x 

  <some code> 

  innermost loop #1 

  <some code> 

  innermost loop #2 

  <some code> 

  innermost loop #3 

  <some code> 

  innermost loop #4 

  <some code> 

end do 

################################################################################################## 

#  Loop ID  |          Source Infos          |    Level    |  Time %  |  Time (s)  |  CPI ratio  | 

################################################################################################## 

#  454      |  resc_pn - 982,1038@CALCUL.f   |  InBetween  |  3.18    |  0.94      |  0.51       | 

#  341      |  resc_pn - 1447,1504@CALCUL.f  |  InBetween  |  3.18    |  0.94      |  0.58       | 

#  416      |  resc_pn - 1141,1198@CALCUL.f  |  InBetween  |  3.04    |  0.90      |  0.58       | 

#  227      |  resc_pn - 1895,1947@CALCUL.f  |  InBetween  |  2.98    |  0.88      |  0.50       | 

#  245      |  resc_pn - 1830,1883@CALCUL.f  |  InBetween  |  2.91    |  0.86      |  0.46       | 

#  530      |  resc_pn - 668,724@CALCUL.f    |  InBetween  |  2.84    |  0.84      |  0.46       | 

#  568      |  resc_pn - 511,568@CALCUL.f    |  InBetween  |  2.84    |  0.84      |  0.53       | 

#  626      |  resc_pn - 268,324@CALCUL.f    |  InBetween  |  2.64    |  0.78      |  0.49       | 

#  550      |  resc_pn - 581,637@CALCUL.f    |  InBetween  |  2.64    |  0.78      |  0.45       | 

#  587      |  resc_pn - 432,488@CALCUL.f    |  InBetween  |  2.57    |  0.76      |  0.50       | 

#  493      |  resc_pn - 817,874@CALCUL.f    |  InBetween  |  2.57    |  0.76      |  0.44       | 

#  397      |  resc_pn - 1221,1277@CALCUL.f  |  InBetween  |  2.37    |  0.70      |  0.45       | 

#  644      |  resc_pn - 197,255@CALCUL.f    |  InBetween  |  2.37    |  0.70      |  0.42       | 

#  379      |  resc_pn - 1291,1348@CALCUL.f  |  InBetween  |  2.30    |  0.68      |  0.42       | 

#  607      |  resc_pn - 348,405@CALCUL.f    |  InBetween  |  2.30    |  0.68      |  0.45       | 

#  283      |  resc_pn - 1685,1738@CALCUL.f  |  InBetween  |  2.30    |  0.68      |  0.37       | 

#  208      |  resc_pn - 208,2021@CALCUL.f   |  InBetween  |  2.30    |  0.68      |  0.39       | 

#  512      |  resc_pn - 736,793@CALCUL.f    |  InBetween  |  2.23    |  0.66      |  0.35       | 

#  302      |  resc_pn - 1612,1665@CALCUL.f  |  InBetween  |  2.23    |  0.66      |  0.39       | 

#  436      |  resc_pn - 1050,1107@CALCUL.f  |  InBetween  |  2.17    |  0.64      |  0.34       | 

#  359      |  resc_pn - 1377,1433@CALCUL.f  |  InBetween  |  2.17    |  0.64      |  0.38       | 

#  265      |  resc_pn - 1750,1802@CALCUL.f  |  InBetween  |  2.03    |  0.60      |  0.31       | 

#  473      |  resc_pn - 902,958@CALCUL.f    |  InBetween  |  1.83    |  0.54      |  0.31       | 

#  322      |  resc_pn - 1526,1582@CALCUL.f  |  InBetween  |  1.69    |  0.50      |  0.33       | 

#  459      |  resc_pn - 1021,1023@CALCUL.f  |  Innermost  |  0.68    |  0.20      |  0.76       | 

#  577      |  resc_pn - 536,538@CALCUL.f    |  Innermost  |  0.68    |  0.20      |  0.79       | 

#  421      |  resc_pn - 1181,1183@CALCUL.f  |  Innermost  |  0.61    |  0.18      |  1.09       | 
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Table 9 : classical decomposition of a loop by a compiler.  

Second, the quality of the generated code is not optimal as the CQA tool proves it in Table 10. 

 

Table 10 : generated assembly code using the default (-O3) optimizing options. 

The not vectorized version (option –no-vec) was much cleaner (Table 11) and surprisingly 2X faster. 

// peel loop, to align on vector boundaries 

do i=2,2 body(i) end do 

// main vector loop, unrolled x4  

do i=3,18 (step 16) 

  body(vector[i+ 0 to i+ 3]) 

  body(vector[i+ 4 to i+ 7]) 

  body(vector[i+ 8 to i+11]) 

  body(vector[i+12 to i+15]) 

end do 

// main vector loop, not unrolled 

do i=19,22 (step 4) 

  body(vector[i to i+3]) 

end do 

// tail loop, to handle leftover elements 
do i=22,23 body(i) end do 

ASM code 

-------- 

MOV         0x1460(%RSP),%RBX 

MOV         0x1450(%RSP),%RAX 

MOV         0x1470(%RSP),%RCX 

MOV         0x1468(%RSP),%RDX 

VMOVUPD     0x60(%RAX,%RBX,8),%YMM5 

VMOVUPD     0x40(%RAX,%RBX,8),%YMM6 

VMOVUPD     0x20(%RAX,%RBX,8),%YMM8 

VMOVUPD     0xd40(%RSP),%YMM3 

VMOVUPD     (%RAX,%RBX,8),%YMM9 

VMULPD      0x60(%RCX,%RBX,8),%YMM5,%YMM7 

VMULPD      0x40(%RDX,%RBX,8),%YMM6,%YMM0 

VFMADD231PD 0x60(%RDX,%RBX,8),%YMM5,%YMM3 

VFMADD132PD 0x40(%RCX,%RBX,8),%YMM7,%YMM6 

VMOVAPD     %YMM8,%YMM4 

VFMADD132PD 0x20(%RCX,%RBX,8),%YMM6,%YMM8 

VFMADD132PD 0x20(%RDX,%RBX,8),%YMM3,%YMM4 

VMOVAPD     %YMM9,%YMM1 

VFMADD132PD (%RDX,%RBX,8),%YMM0,%YMM1 

VFMADD132PD (%RCX,%RBX,8),%YMM8,%YMM9 

VMOVUPD     %YMM4,0xd40(%RSP) 

VADDPD      0xd20(%RSP),%YMM1,%YMM2 

VADDPD      0xd60(%RSP),%YMM9,%YMM10 

VMOVUPS     %YMM2,0xd20(%RSP) 

VMOVUPS     %YMM10,0xd60(%RSP) 

ADD         $0x10,%RBX 

MOV         %RBX,0x1460(%RSP) 

CMP         0x1478(%RSP),%RBX 

JB          417ad5 <resc_pn_+0x3555> 
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Table 11 : assembly code of the loop forcing the not vectorized mode. 

The best vectorized code was produced using an option (-unroll0) to refrain the compiler to over 

optimize the final binary. It produces a clean assembly as shown in Table 12 yet it is only 1.9X faster 
due to the limited span of the inner loops: 

 

Table 12 : assembly code of the loop with moderate vectorization 

 

This statement is confirmed by the static analysis (Table 13) of the resource usage of the binary where 
P0... P7 are the internal paths (named ports) to functional units of the microprocessor. P0 and P1 are 
devoted to floating point operations. P2 and P3 are devoted to loads and stores. A compute routine 
must spend most of its cycles in P0 or P1 otherwise it is memory bound.  

ASM code 

-------- 

VMOVSD  (%RCX,%RBP,8),%XMM15 

VMULSD  (%RDX,%RBP,8),%XMM15,%XMM2 

VADDSD  %XMM3,%XMM2,%XMM3 

VMULSD  (%RAX,%RBP,8),%XMM15,%XMM2 

INC     %RBP 

VADDSD  %XMM4,%XMM2,%XMM4 

CMP     %R13,%RBP 

JB      41ab28 <resc_pn_+0x7278> 

ASM code 

-------- 

VMOVUPD (%RDX,%RAX,8),%YMM4 

VMULPD  (%RDI,%RAX,8),%YMM4,%YMM3 

VMULPD  (%R10,%RAX,8),%YMM4,%YMM12 

VADDPD  %YMM2,%YMM3,%YMM2 

VADDPD  %YMM1,%YMM12,%YMM1 

ADD     $0x4,%RAX 

CMP     %RSI,%RAX 

JB      414e89 <resc_pn_+0x13e9> 
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Table 13 : static analysis of the binary showing what functional units are used. 

All those analysis can be summarized as  

1. Xpn performance was limited by the complexity of the loop nest and especially the “in-between 
sections”. 

2. The compiler may take wrong decisions to optimize a code and using MAQAO can help to 
verify that the proper strategy was taken. If not then explore other non-classical approaches 

such as the –unroll0 option. 

3. Consider reorganizing the code in depth to promote longer vectors and optimize data locality.  

Using the previous remarks and a further restructuring, the Xpn benchmark was accelerated by a 
factor of 4, a major step forward, which demonstrates the importance of tools such as MAQAO to 
understand where the bottlenecks are and to verify that the applied fix did solve the problem.  

 

3.6 Usage of the prototype 

The prototype has been extensively used either internally by CEA/DAM or by the PERFCLOUD 
partners. As a measure of such activity, the total number of minutes used on the prototype for year 
2014 is 1875909 minutes, which is an equivalent of 144 days of continuous work per node (out of 192 
working days for CEA staff member). This level of usage is a clear demonstration that this prototype is 
a very successful machine as the next section will illustrate also. 

Back-end 

-------- 

       P0    P1    P2    P3    P4    P5    P6    P7 

Uops   2.00  2.00  1.50  1.50  0.00  1.00  1.00  0.00 

Cycles 2.00  2.00  1.50  1.50  0.00  1.00  1.00  0.00 

Cycles executing div or sqrt instructions: NA 

Longest recurrence chain latency (RecMII): 3.00 

Cycles summary 

-------------- 

Front-end       : 2.25 

Dispatch        : 2.00 

Data deps.      : 3.00 

Max             : 3.00 

Vector efficiency ratios 

------------------------ 

all     : 100% 

load    : 100% 

store   : NA (no store vectorizable/vectorized instructions) 

mul     : 100% 

add_sub : 100% 

other   : NA (no other vectorizable/vectorized instructions) 
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Figure 2 : the Cirrus prototype 

4 A more elaborate benchmark 

4.1 Relations with the initial H4H project 

DA participated as a full funded partner in the initial period – from October 2010 to October 2013 – of 
the H4H project. As reported in deliverable D4.1.5 (see [D4.1.5]), the bulk of the work accomplished 
during this period was centered on the adaptation of DA’s simulation tools for aircraft design on many-
core architectures: at that time, as MIC was in its infancy, NVIDIA’s GPUs were the only readily 
available many-core hardware.    

Amid several successful works on GPU-adaptation, there stood out one case in which multiple GPU-
optimization efforts gave no meaningful results: AeTHER, our CFD software based on FEM formulation 
and unstructured meshes discretization, in which the FEM matrix & residual assembly is the main 
numerical kernel. Several reasons to explain this situation were provided, which are all somehow 
related to AeTHER’s data-bound behavior; the two main ones are: 

1) On hybrid CPU-GPU hardware - with a PCIe link to connect GPU with CPU - the numerical 
intensity at the elemental level is not high enough to offset the cost of data transfer, even when 
element blocking is activated. 

2) Even on standard CPUs multi-core nodes, our legacy shared-memory parallel implementation, 
which is based on element multi-coloring techniques, has a poor scalability for numbers of 
cores over 3 or 4.    

Progress on the first point would require substantial hardware improvement, which seem ed out of 
scope in the H4H project. To improve on the second point, we need to develop a scalable shared 
memory parallelization technique for the FEM matrix and residual assembly kernel on unstructured 
meshes: that’s exactly what we did in the second half of the H4H project – from June 2012 to October 
2013 - in collaboration with the UVSQ partner, during a POC (Proof Of Concept) action to demonstrate 
the effectiveness of the Divide and Conquer (D&C) approach (see [D4.1.5]).    

In the last year of the H4H/Perfcloud project, as MIC architecture became more available, DA 
embarked on 2 actions, which were carried out in parallel: 

1) Internally in DA, gradual integration of D&C in AeTHER, on standard CPUs multi-core 
architecture. 
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2) In the H4H/Perfcloud project, test of the D&C approach on the MIC architecture, which is 
available on the Cirrus prototype.  

In what follows, we will first recall AeTHER’s MPI implementation and some of the D&C integration 
work, as well as how the FEM mini-application was derived. Finally, we will report on the benchmark 
results on using MIC architecture for the FEM mini-application, running with industrial-grade 
unstructured meshes. 

 

4.2 Technical description: a CFD software and its derived FEM mini-application 

4.2.1 Introducing D&C in AeTHER 

The reader is referred to deliverable D4.1.1 (see [D4.1.1]) for a detailed description of AeTHER, DA’s 
CFD software based on FEM formulation and unstructured meshes discretization. Moreover, as 
mentioned above, an extensive description of the D&C approach can be found in deliverable D4.1.5 
(see [D4.1.5]). At this point, we would just recall the basic facts leading to a hybrid MPI + D&C parallel 
approach, which we would like to implement in AeTHER. 

As depicted on the unstructured mesh shown on the left part of Figure 3, AeTHER solves a system of 
non-linear equations with the following FEM features: 

 The unknowns and the equations – also called residuals in FEM terminology - are located at 
the mesh nodes. 

 In each element, the evaluation of the non-linear residuals is done with unknown values read in 
from the element nodes and the results are stored back at the nodes.  

A quasi-Newton iterative algorithm, based on linearization procedures, is used for the solution of the 
non-linear residual equations: it requires the construction of a sparse matrix which is built -up from local 
elemental matrices computed from local linearization of the residual equations. In short, at each non-
linear iteration, AeTHER’s work load consists in: 

 Kernel 1, FEM residual and matrix assembly: it’s usually the most compute-intensive part, with 
a number of Flops ≈ O (number of elements).  

 Kernel 2, Solution of the linearized equations: an iterative GMRES algorithm is used here and, 
in quasi-Newton fashion, only a limited number of linear iterations is necessary. Thus this 
kernel is fairly compute-intensive with a number of Flops ≈ O (number of nodes).     

For a MPI parallelization of AeTHER, it’s reasonable to focus on kernel 1 and use no-element overlap 
partitioning of meshes to distribute the load on separate MPI processes working in parallel: this 
procedure is depicted on the right part of Figure 3, where one can see the 1-layer-node overlap at the 
interfaces, with the corresponding MPI message exchanges to recover the global residual values at 
these nodes. 
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Figure 3: MPI implementation via mesh partitioning. Left: sequential. Right: MPI. 

To sum up, this MPI parallel implementation has the following features: 

1) For kernel 1: the work load is very well balanced, as much as the mesh partitions are balanced 
in terms of number of elements. 

2) For kernel 2: the work load is fairly balanced (when we compare 2 unstructured meshes, an 
equal number of elements does not guarantee an equal number of nodes…). Moreover there is 
a small overhead in terms of number of nodes, corresponding to the 1-layer-node overlap.      

As one may suspect, this MPI-only (or flat MPI) model does not scale well when the number of 
physical cores (and corresponding MPI processes…) grows over the 500s. In addition to the growing 
complexity of the MPI messages and the sheer difficulty in process synchronization, the overhead in 
interfaces nodes for kernel 2 may become sizable: e.g. for an industrial -grade unstructured mesh of 7 
Million-nodes, partitioned in 1024 mesh blocks, this overhead reaches 24% of the total number of 
nodes. 

In DA, the above observations were made several years ago and since then, numerous efforts were 
done to keep a reasonable number of mesh blocks (and corresponding MPI processes) by introducing 
shared memory parallelism inside each MPI process, in short a hybrid MPI + threads model. 

A legacy procedure (implemented in AeTHER) is to re-factor element multi-coloring techniques, which 
were used for vectorization, to parallelize the loop over elements in kernel 1: this is shown on the left 
part of Figure 4, where one can see the scattered elements, all having the same color, which are then 
processed in parallel threads. One observation can be made, which is the usual warning of cache-
aware optimization experts about coloring techniques: one did introduce a lot of concurrency but at the 
expense of almost random memory access, which is very bad for performance on multi -cache multi-
core hardware.      
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Figure 4: MPI block-wise shared memory implementations. Left: element coloring. Right: D&C recursive partitioning. 

At the bottom line, the D&C approach continues the mesh partitioning, in a recursive manner, inside 
each MPI mesh block. This is depicted in the right half of Figure 4, where the left mesh block of the 
MPI partitioned mesh in Figure 3 is further divided into 2 mesh sub-blocks (red and green) separated 
by a mesh sub-block (blue). This procedure can be further applied to each mesh sub-block, and so 
on…This D&C shared memory parallel implementation has the following nice features: 

 Data locality: the data processed by each thread corresponds to a mesh block (i.e. a 
contiguous group of elements), which means that, provided element and node renumbering are 
done, we have data locality at will…small enough to f it into L3 caches.  

 No further interface nodes overhead: in a shared memory framework and with the (blue) mesh 
separator sub-block, there is no additional node overhead due to mesh partitioning.     

 Local synchronizations: at one given level of D&C partitioning, local synchronization is required 
only to ensure that the red and green computations are done in parallel before the blue 
computations. The full organization of the different parallel tasks is done via a tree-structured 
task graph, as depicted in the right half of Figure 5.       

In the flat-MPI parallel model, as there is only one level of synchronization (MPI process), the 
synchronization actions appear to be global, i.e. small mesh blocks have to wait for larger mesh blocks 
even if they are not connected together: there is not much room for asynchronicity in this very 
“democratic” organization, where every MPI process has the same priority.     

In the D&C parallel model, there are several successive levels of local synchronizations, which allows 
for asynchronous behavior. Unlike the flat-MPI “democratic” model, the effective model here is “work 
stealing”: a limited number of parallel workers (corresponding to the physical cores) pick out work in  a 
much larger pool of parallel tasks in an order defined by the task graph.   
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Figure 5: Cilk recursive implementation of D&C work stealing parallel model. 

On Intel-based platforms, this work-stealing model can be effectively implemented via the Cilk API. 
This is shown on the left part of Figure 5, with a model source code, which includes Cilk commands 
and recursive function calls. On other platforms, D&C can be in theory implemented in the OpenMP 
API: this is on-going development work.   

As mentioned above, in the last year of the H4H/Perfcloud project, D&C was introduced in the MPI-
parallel implementation of AeTHER: more precisely, D&C was activated only for kernel 1. On Intel -
based Bullx nodes, successful runs of D&C-equipped AeTHER on industrial-grade unstructured 
meshes of sizes 1 to 7 Million nodes have shown the following: 

1) For a fixed number of cores, D&C permits faster runs with fewer MPI blocks  (64 MPIs vs. 16 
MPIs x 4 threads). 

2) For a fixed number of MPI blocks, D&C renumbering – without thread parallelism – permits 
faster runs, even when comparisons are made against the MPI + vectorization version.  One 
possible explanation is the much reduced number of cache misses, as measured by the 
MAQAO tool in Figure 6.  

 

Figure 6: Measuring caches misses with MAQAO for CFD runs on a 1 M-nodes mesh 

 

4.2.2 The FEM mini-application 

As detailed in deliverable D4.1.5 (see [D4.1.5]), the POC action to validate the D&C approach was the 
result of a collaborative action between DA and UVSQ, working on DefMesh, a FEM software 
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representative of AeTHER and which uses the same unstructured meshes. In addition to software 
confidentiality issues, the other reason for this procedure was to work on a much simpler code, which 
still possesses all the implementational complexities related to FEM and unstructured meshes.    

In the last year of the H4H/Project, DA has pursued work along these lines by developing, with the 
very active collaboration of UVSQ (in the framework of the EXA2CT project, see [EXA2CT]), a FEM 
mini-application which is software extracted from DefMesh, with the following features:  

1) It uses the same unstructured meshes as DefMesh (and AeTHER). 

2) It implements the FEM matrix and residual assembly kernel, for the linear elasticity operator.       

Compared with the full Navier-Stokes operator in AeTHER, we’re quite far away in terms of numerical 
intensity and memory footprint. Nevertheless, all the FEM data localization and reshuffling are present, 
and, in light of our recent work introducing D&C into AeTHER after the POC action, we can assur e that 
the benefits we get with a simplified operator will be greater with a more complex operator, requiring 
more local computations but on the same unstructured mesh.  

  

4.3 Benchmark results on the FEM mini-application 

The benchmark operation was done with the following features: 

1) Software: FEM mini-application defined above. 

2) Platform: MIC accelerator component of Cirrus prototype. 

3) Mesh data: industrial-grade 7 Million nodes mesh, around a generic Falcon aircraft.  

 

                      

Figure 7: Mesh views of a Falcon type civil aircraft. Left: general 3D view. Right: zoom on surface meshes near the 

cockpit. 

Mesh views are shown in Figure 7, where the zoom on surface meshes near the aircraft cockpit shows 
that practically all the nodes are concentrated near the aircraft surface in order to properly simulate the 
boundary layer. More precisely, 80% of the nodes are located at a distance of less than 0.5 meters 
from the aircraft surface, whereas the far-field surface (the outermost surface of the discretized volume 
around the aircraft) is about one kilometer (1000 meters) from the aircraft surface. These figures show 
the highly unstructured nature of the mesh, with several orders of magnitude  in geometric scales. 
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Despite these highly irregular features, the application of D&C recursive partitioning results in a 
clustering effect on the numbering of nodes and elements, leading to the desired data locality. One 
way to measure this data locality is to compute the maximum distance, in terms of node numbers, 
between the nodes of an element (|i - j| in left part of Figure 8): the smaller this distance is, the better 
one can squeeze all the element data inside L3 cache, thus removing potential cache misses.    

In the right half of Figure 8, cumulated counts of this distance on the whole set of mesh elements is 
shown. As highlighted by the green line, representing a distance value of 10,000:  

 For the initial element and node numbering of the mesh, almost 50% of the elements have a 
maximum distance of more than 10,000. 

 For the mesh with D&C element and node renumbering, only 5% of the elements have a 
maximum distance of more than 10,000. 

                           

Figure 8: Data localization induced by D&C clustering 

For the runs on the MIC/KNCs of Cirrus, we are comparing 2 versions of the FEM mini -application: flat-
MPI and MPI + DC (Cilk). To accommodate a mesh of this size (7 Million nodes), we used 4 KNCs 
throughout the runs: the resulting MPI runs will mix MPI intra-communications (between the 60 cores 
of a KNC) with MPI inter-communications (between cores of different KNCs, i.e. via the PCIe link…).  

For the flat-MPI version, the following mesh partitions were prepared: 4, 128, 256 and 512 blocks.  

For the MPI + DC (Cilk) version, because of memory limitations, we start with 4 MPIs (one on each 
KNC) and increase the number of threads: 4 x 1, 4 x 30, 4 x 60, 4 x 120, 4 x 180, 4 x 240.   

As the number of available physical cores is 4 x 60 (= 240), any run with a higher number of cores 
activates hyper threading.   

In Figure 9, scalability results of the benchmark runs are shown: 

 Parallel efficiency on the left part: MPI+D&C clearly outperforms flat-MPI, with a parallel 
efficiency of more than 90% for the full number of physical cores, 4 x 60 = 240.  

 Speed-up on the right part, with the 4 MPIs x 1 D&C run as reference: once again, MPI+D&C 
outperforms flat-MPI, by a factor of more than 2 for the full number of physical cores, 4 x 60 = 
240.  
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Figure 9: Scalability results with 4 KNCs. Left: parallel efficiency. Right: speed-up.  

To be fair, the flat-MPI runs may be hindered by the growing MPI inter-communications between 
KNCs, as compared with the MPI+D&C runs which are limited to inter-communications between 4 MPI 
processes distributed on 4 KNCs (1 MPI on each KNC).     

In previous tests with a smaller size mesh (1 Million nodes), described in [PPoPP15], we were able to 
fit into one KNC of Cirrus, thus using only MPI intra-communications. The comparisons were still in 
favor of the MPI+D&C version, but with a somewhat lesser difference.   
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5 Abbreviations and acronyms  

MIC®: Many Integrated Core. The public brand name is Intel Xeon Phi and describes processors 
having a lot of cores within its chip. 

KNC: (Knights corner) Intel’s code name of the Xeon Phi.  

#pragma simd: a directive provided by a programmer to tell the compiler to use special hardware 
functional units operating on a number of operands at the same time (SIMD stands for Single 
Instruction Multiple Data). 

CFD: Computational Fluid Dynamics, for the numerical simulation of fluid flows.  

FEM: Finite Element Method. 

PCIe: PCI-eXpress, standard (Intel) solution to link CPU hardware with its many-core component 
(GPUs, MIC) on a node. 

D&C: Divide and Conquer approach for shared memory parallelization. It has been successfully 
applied to the FEM matrix & residual assembly kernel, on fully unstructured 3D meshes. 

GMRES: General Minimal RESidual. An effective (and popular) iterative algorithm for the solution of 
systems of sparse linear equations, with a general definite sparse matrix. 

Cilk: An Intel API to implement shared memory thread parallelism. It’s particularly efficient for task-
based parallelism. 
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