



# Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains: Major: Services, Systems & Software Creation Minor: Society ITEA Roadmap technology categories: Major: Systems Engineering & Software Engineering Minor 1: Engineering Process Support

# WP2, WT2.1 Deliverable D2.3.1.b: Project Glossary

Due date of deliverable: 30/11/2014 Actual submission date: 30/09/2014

Start date of the project: 01/07/2011

Duration: 36 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: Continental Automotive

Editor: Jörg Kemmerich

Contributors: SAFE members during SAFE project

# Revision chart and history log

| Version | Date       | Reason                                                                     |
|---------|------------|----------------------------------------------------------------------------|
| 0.1     | 16.04.12   | Initialization of document                                                 |
| 0.2     | 19.04.12   | First version for internal Review                                          |
| 1.0     | 26.04.12   | Integration of review comments, finalization of Draft Deliverable for D6.a |
| 1.1     | 15.03.2014 | Creation of framework for glossary items out of working document           |
| 1.2     | June 2014  | Content for deliverable D6.b inserted by Editor                            |
| 1.3     | 30.09.2014 | Finalisation, published version                                            |

1

# Table of contents

| 1 | Table of    | contents                       | 3  |
|---|-------------|--------------------------------|----|
| 2 | List of fig | gures                          | 5  |
| 3 | Executiv    | e Summary                      | 6  |
| 4 | Introduc    | tion and overview of document  | 7  |
| - |             |                                |    |
| 5 | Glossary    | y Objectives                   | 8  |
| 1 | 5.1 Ref     | ference Glossaries             | 8  |
| 6 | Delivera    | ble Contents                   | 9  |
| ( | 6.1 Glo     | ossary                         | 9  |
|   | 6.1.1       | Integrated Safety System (ISS) | 9  |
|   | 6.1.2       | System Variant                 | 9  |
|   | 6.1.3       | Validation Scenario            | 9  |
|   | 6.1.4       | Model Based Engineering        | 9  |
|   | 6.1.5       | Test Case                      |    |
|   | 6.1.6       | SAFE Process Model             |    |
|   | 6.1.7       | SAFE Product Model             |    |
|   | 6.1.8       | Dysfunctional Behavior         |    |
|   | 6.1.9       | Abstraction Level              |    |
|   | 6.1.10      | Model Based Safety Analysis    |    |
|   | 6.1.11      | Perspective                    |    |
|   | 6.1.12      | Realization                    |    |
|   | 6.1.13      | Refinement                     |    |
|   | 6.1.14      | View                           |    |
|   | 6.1.15      | Viewpoint                      |    |
|   | 6.1.16      | Safety extension               |    |
|   | 6.1.17      | Generative approach            |    |
|   | 6.1.18      | Fault Containment              |    |
|   | 6.1.19      | Error Detection                |    |
|   | 6.1.20      | Error Handling                 |    |
|   | 6.1.21      | Malfunction                    | 14 |
|   | 6.1.22      | Horizontal Error Propagation   |    |
|   | 6.1.23      | Vertical Error Propagation     | 14 |
|   | 6.1.24      | Hazardous Event                | 14 |
|   | 6.1.25      | Safety Relevant Failure        | 14 |
|   | 6.1.26      | Domain Model                   | 14 |
|   | 6.1.27      | Horizontal Layer               | 14 |

|   | 6.1.28    | Vertical Layer     | .15 |
|---|-----------|--------------------|-----|
| 6 | .2 Acro   | nyms               | .16 |
| 7 | Conclusio | ons and Discussion | .18 |
| 8 | Reference | es                 | .19 |
| 9 | Acknowle  | dgments            | .20 |

# 2 List of figures

#### 3 Executive Summary

The document at hand (Deliverable 2.3.1) comprises a set of terms and definitions to be used within the SAFE project. The establishment of such a document is mandatory especially for projects where

- A large number of companies from various cultures and techniques are collaborating
- Complex interdisciplinary topics have to be dealt in common

The goal has been to develop a common understanding and naming within the consortium und to provide a public document to be used also for other and/or future activities.

As several glossaries are already defined in adjacent areas and projects, these glossaries are checked first in order to prevent a redundant definition. The remaining entries that need definition in SAFE glossary are separated into a list of acronyms and the glossary itself.

# 4 Introduction and overview of document

The aim of this document is to provide a SAFE project wide glossary and a list of acronyms.

Both glossary list and list of acronyms have been created at the beginning of the project and have been updated on demand during the project. The results of the glossary activity have been discussed.

#### 5 Glossary Objectives

The objective of this Glossary is to provide a common naming and understanding to the SAFE participants.

The **glossary** contains items that need explanations, explicit definitions, examples, references and/or a discussion.

The **list of acronyms** is meant to simply give the link between an acronym and the corresponding full term.

The definitions provided concentrate on terms in the following fields:

- Automotive electrical/electronic-systems
- Dependability, functional and technical safety, and
- Safety related process steps.

Within SAFE project, the items should be used as given in the glossary. Alternative definitions that are in use within the SAFE project and new definitions that come into being should be added to the document.

#### 5.1 Reference Glossaries

As several glossaries are already defined in adjacent areas and projects, these glossaries are checked first in order to prevent a redundant definition. First and most relevant reference glossary is the glossary of the ISO26262 [1].

In case that an item is defined in another glossary, but the item is refined in SAFE, the refinement is also given in the SAFE glossary together with a reference to the original definition.

# 6 Deliverable Contents

# 6.1 Glossary

# 6.1.1 Integrated Safety System (ISS)

| Definition | An Integrated Safety System is a composition of functions and/or components that enhance the level of safety for human beings, inside and outside of the vehicle. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | EASIS-Glossary                                                                                                                                                    |

# 6.1.2 System Variant

| Definition | A system variant is a specific combination of configuration and calibration parameters that do not change at runtime.   |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Reference  | no reference available                                                                                                  |
| Example    | A specific pre-processor instruction and country code is one specific combination of configuration and calibration data |

#### 6.1.3 Validation Scenario

| Definition | A validation scenario describes operating situations and failure mode where the controllability of the vehicle and the effectiveness of safety measures, external measures and elements of other technologies shall be demonstrated. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | no reference available                                                                                                                                                                                                               |
| Example    | A specific pre-processor instruction and country code is one specific combination of configuration and calibration data                                                                                                              |

# 6.1.4 Model Based Engineering

| Definition  | Frontloading of development activities.                                                                 |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Definition of functional behavior and Code Generation based on a formal description in form of a model. |  |  |  |  |  |
| Reference   | ISO26262 Glossary, Item 1.74                                                                            |  |  |  |  |  |
|             | CESAR Glossary                                                                                          |  |  |  |  |  |
| Example     | Development steps are structured in a one of the following ways                                         |  |  |  |  |  |
|             | Matlab / Simulink / Stateflow> Targetlink> ECU                                                          |  |  |  |  |  |
|             | UML/SAFE Model> Code                                                                                    |  |  |  |  |  |
| Alternative | Configuration based code generation (e.g. CAN interface Generation, BIOS-                               |  |  |  |  |  |

| Definitions | Generation) |
|-------------|-------------|

# 6.1.5 Test Case

| Definition | A test case defines a procedure to assure that a system element correctly implements a requirement. A test case consists of a sequence of stimuli and expected system element responses. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | no reference available                                                                                                                                                                   |

#### 6.1.6 SAFE Process Model

| Definition | Portion of the SAFE model that describes process steps and activities that are necessary to develop a ASILx system according to ISO 26262 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | no reference available                                                                                                                    |

# 6.1.7 SAFE Product Model

| Definition | Portion of the SAFE model that describes product related attributes / properties of any work product that are necessary to develop a ASILx system according to ISO 26262 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | no reference available                                                                                                                                                   |

# 6.1.8 Dysfunctional Behavior

| Definition | Unexpected modeled | Behavior  | w.r.t. | specification. | Dysfunctional | Behavior. | Can | be |
|------------|--------------------|-----------|--------|----------------|---------------|-----------|-----|----|
| Reference  | no reference       | available |        |                |               |           |     |    |

# 6.1.9 Abstraction Level

| Definition | An abstraction level provides a specific level of description and analysis of a design item (e.g. component). On the next lower abstraction level the granularity of the design item is refined. Such a lower abstraction level is realized by specific decomposition techniques. Models on different abstraction levels may differ in both their granularity and their viewpoints. Realized links between models allow tracing those refinements. The use of abstraction layers may support both the reuse of solutions and the management of the supply chain.<br>Note that components of models on lower abstraction levels still have to respect the aspect specifications defined for their higher level counterparts. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | Architecture Modeling; research report from project SPES2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         | (www.spes2020.de)                                                                           |
|---------|---------------------------------------------------------------------------------------------|
| Example | The automotive domain specific language "EAST-ADL" is organized in four abstraction levels. |
|         | - Vehicle level defines features and requirements                                           |
|         | - Analysis level defines the abstract functional architecture                               |
|         | - Design level defines concrete functional and course hardware architecture                 |
|         | - Implementation level defines software and detailed hardware architecture                  |
|         | EE Architecture                                                                             |

# 6.1.10 Model Based Safety Analysis

| Definition | An approach for automating portions of the safety analysis process using executable formal models of the system.                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | A Proposal for model-based safety analysis; A. Joshi et. Al.; Presented at the 24th Digital Avionics Systems Conference, Washington, D.C., October, 2005. |

# 6.1.11 Perspective

| Definition | A perspective combines views of different abstraction levels which are related to similar viewpoints. Perspectives can be used to group and to structure views of different disciplines in order to cope with the complex task of developing a system. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | Architecture Modeling; research report from project SPES2020<br>(www.spes2020.de)                                                                                                                                                                      |

# 6.1.12 Realization

| Definition | A realization describes a mapping between component parts of different abstraction layers. |
|------------|--------------------------------------------------------------------------------------------|
| Reference  | Architecture Modeling; research report from project SPES2020                               |
|            | (www.spes2020.de)                                                                          |

# 6.1.13 Refinement

| Definition | Refinement defines the derivation of a concrete description of the design item     |
|------------|------------------------------------------------------------------------------------|
|            | from an abstract description. The derivation thereby conserves the characteristics |
|            | of the abstract description. In the case of a contract specification, the derived  |

|           | component has to fulfill all contracts of the more abstract component. |
|-----------|------------------------------------------------------------------------|
| Reference | Architecture Modeling; research report from project SPES2020           |
|           | (www.spes2020.de)                                                      |

#### 6.1.14 View

| Definition | A view is a set of models of the system under development or of a part of this within an abstraction layer with respect to a specific viewpoint. A view addresses one or more concerns. |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | ISO/IEC/IEEE 42010 System and software engineering – Architecture description;                                                                                                          |
|            | Architecture Modeling; research report from project SPES2020                                                                                                                            |
|            | (www.spes2020.de)                                                                                                                                                                       |

#### 6.1.15 Viewpoint

| Definition | A viewpoint defines a specific form of abstraction in order to focus on particular concerns within a system. For each viewpoint a selected set of architectural constructs and structuring rules is defined in order to design and use a viewpoint specific view. Thereby, a viewpoint is not constraint to a specific abstraction layer. |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | ISO/IEC/IEEE 42010 System and software engineering – Architecture description;                                                                                                                                                                                                                                                            |
|            | Architecture Modeling; research report from project SPES2020                                                                                                                                                                                                                                                                              |
|            | (www.spes2020.de)                                                                                                                                                                                                                                                                                                                         |

### 6.1.16 Safety extension

| Definition | An extension of the system model regarding safety information |
|------------|---------------------------------------------------------------|
| Reference  | no reference available                                        |

### 6.1.17 Generative approach





# 6.1.18 Fault Containment

| Definition | Mechanism to prevent the manifestation of faults in the system |
|------------|----------------------------------------------------------------|
| Reference  | no reference available                                         |

#### 6.1.19 Error Detection

| Definition | Mechanism to detect the ocurrence of errors |
|------------|---------------------------------------------|
| Reference  | no reference available                      |

# 6.1.20 Error Handling

| Definition | Mechanism | to | handle | errors | and | prevent | such | from | interfering | with | system |
|------------|-----------|----|--------|--------|-----|---------|------|------|-------------|------|--------|
|            | operation |    |        |        |     |         |      |      |             |      |        |

| Reference no reference available | Reference | no reference available |
|----------------------------------|-----------|------------------------|
|----------------------------------|-----------|------------------------|

# 6.1.21 Malfunction

| Definition | Malfunction is a failure or unintended behavior of the item or element of the item that has the potential to propagate. |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Reference  | Definition used for D3.2.1, agreed in Oldenburg PTC meeting                                                             |

# 6.1.22 Horizontal Error Propagation

| Definition | Propagation of errors inside a same architectural level. |
|------------|----------------------------------------------------------|
| Reference  | Definition used for D3.3.1                               |

# 6.1.23 Vertical Error Propagation

| Definition | Propagation of errors through different architectural levels |
|------------|--------------------------------------------------------------|
| Reference  | Definition used for D3.3.1                                   |

#### 6.1.24 Hazardous Event

| Definition | A hazardous event is a combination of a hazard and an operational situation. |
|------------|------------------------------------------------------------------------------|
| Reference  | Definition used for D3.2.1                                                   |

# 6.1.25 Safety Relevant Failure

| Definition | Safety relevant failures are failures that are identified during safety analyses to have the potential to lead to a violation of a safety goal |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference  | Definition used for D3.2.1                                                                                                                     |

# 6.1.26 Domain Model

| Definition | result of modelling activities that are neccessary for a topic |
|------------|----------------------------------------------------------------|
| Reference  | no reference available                                         |

#### 6.1.27 Horizontal Layer

| Definition | collection of properties within the same architectural level |
|------------|--------------------------------------------------------------|
| Reference  | Definition used for D6.x, no reference available             |

# 6.1.28 Vertical Layer

| Definition | collection of properties within different architectural level |
|------------|---------------------------------------------------------------|
| Reference  | Definition used for D6.x, no reference available              |

| Item     | Full Name                                                   |
|----------|-------------------------------------------------------------|
| RTP      | Reference Technology Platform                               |
| PMHF     | Probabilistic Metric for random Hardware Failures           |
| RF       | Residual Fault                                              |
| SPF      | Single Point Fault                                          |
| SPFM     | Single Point Fault Metric                                   |
| LF       | Latent Fault                                                |
| LFM      | Latent Fault Metric                                         |
| ETC      | Electronic Throttle Control                                 |
| Soc      | System On Chip                                              |
| SEooC    | Safety Element out of Context                               |
| MTBF     | Mean time between failures                                  |
| TRL      | Technology Readiness Level                                  |
| ETC      | Electronic Throttle Control                                 |
| SSR      | Software Safety Requirement                                 |
| SSM      | Software Safety Mechanism                                   |
| ASIL     | Automotive Safety Integrity Level                           |
|          | Advancing Traffic Efficiency and Safety through Software    |
| ATTEST   | Technology                                                  |
| AUTOSAR  | AUTomotive Open System ARchitecture                         |
| BCM      | Body Control Management                                     |
| BDD      | Binary Decision Diagram                                     |
| CAE      | Computer Aided Engineering                                  |
| CAN      | Controller Area Network                                     |
| CCF      | Common Cause of Failure                                     |
|          | Cost-Efficient methods and processes for SAfety Relevant    |
| CESAR    | embedded systems                                            |
| COTS     | Component Off the Shelf                                     |
| CPU      | Central Processing Unit                                     |
| DM       | Degradation Mode                                            |
|          | Distributed, Reliable and Intelligent control and cognitive |
| DRIS     | Systems                                                     |
| E/E      | Electronic and Electrical                                   |
|          | Description Language                                        |
| FCU      | Electronic Control Unit                                     |
| EMC      | Electro Magnetic Compatibility                              |
|          | Event Tree Analysis                                         |
|          | Eurotion(al) Design Architecture                            |
|          |                                                             |
|          | Failure Mode Effect and Disgnaptic Applysic                 |
|          | Failure Mode and Effect Analysis                            |
|          |                                                             |
| FIA      | Fault Tree Analysis                                         |
| GUI      | Graphical User Interface                                    |
| HAZOP    | HAZard and OPerability study                                |
| HUA      | Haroware Design Architecture                                |
| HIP-HOPS | Studies                                                     |
| HBC      | Heterogeneous Rich Components                               |
| HW       | Hardware                                                    |

| IP       | Intellectual Property                              |
|----------|----------------------------------------------------|
| LFM      | Latent Fault Metric                                |
| LH       | Limp Home                                          |
|          | Model-based Analysis & Engineering of Novel        |
| MAENAD   | Architectures for Dependable electric vehicles     |
| MCU      | Microcontroller Unit                               |
| OEM      | Original Equipment Manufacturer                    |
| Open-PSA | Open Probabilistic Safety Assessment               |
| RAM      | Random Access Memory                               |
| RBD      | Reliability Block Diagram                          |
| RSL      | Requirements Specification Language                |
| RTE      | Real Time Environment                              |
| SAFE     | Safe Automotive soFtware architEcture              |
| SM       | Safety Mechanism                                   |
|          | Speculative and Exploratory Design in Systems      |
| SPEEDS   | Engineering                                        |
| SPFM     | Single Point Fault Metric                          |
| SW       | Software                                           |
| SWC      | Software Component                                 |
| ТСМ      | Top Column Module                                  |
| WT       | Work Task                                          |
| XML      | Extensible Markup Language                         |
| EAST-    | Electronics Architecture and Software Technology - |
| ADL      | Architecture Description Language                  |
| FAA      | Function Analysis Architecture                     |

### 7 Conclusions and Discussion

In the first phase of the SAFE project a first set of items for the glossary list and the acronym list has been created.

Later until the end of the SAFE project these lists have been finalized in order to provide a public document.

# 8 References

- [1] ISO 26262(1) Vocabulary
- [2] AUTOSAR Glossary
- [3] CESAR Glossary

# 9 Acknowledgments

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster program  $\Sigma$ ! 3674. The work has been funded by the German Ministry for Education and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy and Finance (DGCIS). The responsibility for the content rests with the authors.