
SAFE – an ITEA2 project                       D3.3.2 

 2011 The SAFE  Consortium  1 (32) 

 

         Contract number: ITEA2 – 10039        

Safe Automotive soFtware architEcture (SAFE) 

ITEA Roadmap application domains: 

Major: Services, Systems & Software Creation 

Minor: Society 

ITEA Roadmap technology categories: 

Major:  Systems Engineering & Software Engineering 

Minor 1: Engineering Process Support 

 

WP3 - Deliverable D3.3.2 

Requirement specification for a multi-class                

ECU concept 

 
 

Due date of deliverable: 27/12/2014 

Actual submission date: 28/03/2013 

 

Start date of the task: 28/03/2012    Duration: 23 months 

 

Project coordinator name: Stefan Voget (Conti-G) 

Organization name of lead contractor for this deliverable: Continental France 

 

Editor: Philippe Cuenot (Conti-F) 

Contributors: Philippe Cuenot (Conti-F), Roland Geiger (ZF), Abdelillah Ymlahi-Ouazzani (Valeo) 

Andreas Eckel (TTTech) 

Reviewers: Lionel Guichard (Conti-F), Roland Geiger (ZF), Abdelillah Ymlahi-Ouazzani (Valeo) 



SAFE – an ITEA2 project                       D3.3.2 

 2011 The SAFE  Consortium  2 (32) 

Revision chart and history log 

Version Date Reason 

0.1 2012-07-24 Initialization of chapter (yellow part are out dated text) 

0.2 2013-10-24 Integration of change from ZF and new chapter 7 organization 

0.3 2013-12-03 Integration of Valeo contribution and review from chapter 7.3 new 
requirement 

0.4 2014-01-06 Conti-F update of document versus discussion status at 12/2013 

0.5 2014-06-15 Incorporation of ZF inputs and selective reviews 

0.6 2014-06-24 Incorporation of TTTech inputs by ZF 

1.0 2014-06-30 Complete and final document review 

   

   



SAFE – an ITEA2 project                       D3.3.2 

 2011 The SAFE  Consortium  3 (32) 

1 Table of contents 

 

1 Table of contents ........................................................................................................................................ 3 

2 List of figures .............................................................................................................................................. 4 

3 Executive Summary .................................................................................................................................... 5 

4 Introduction and overview of the document ................................................................................................ 6 

4.1 Detailed scope of WT 3.3.2 ................................................................................................................ 6 

4.2 Structure of the document .................................................................................................................. 7 

5 Overview on ISO 26262 .............................................................................................................................. 8 

6 State of the art of AUTOSAR mixed criticality ECU systems ................................................................... 10 

6.1 Independence and non-interference ................................................................................................. 10 

6.2 Critical resources .............................................................................................................................. 10 

6.3 AUTOSAR Document Reference ..................................................................................................... 12 

7 Architecture analysis for AUTOSAR mixed criticality ECU systems ......................................................... 14 

7.1 Current status of AUTOSAR ............................................................................................................. 14 

7.2 New proposed Architecture .............................................................................................................. 15 

7.3 New Requirements ........................................................................................................................... 17 

7.3.1 Failure Modes ........................................................................................................................... 17 

7.3.2 Design pattern .......................................................................................................................... 21 

7.3.3 Use case definition ................................................................................................................... 21 

8 Conclusions and Outlook .......................................................................................................................... 30 

9 References ............................................................................................................................................... 31 

10 Acknowledgments................................................................................................................................. 32 

 

 

 



SAFE – an ITEA2 project                       D3.3.2 

 2011 The SAFE  Consortium  4 (32) 

2 List of figures 

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) ....................................................... 8 

Figure 2: AUTOSAR Safety Concept............................................................................................. 14 

Figure 3: TTTECH Safety Concept based on partionining ............................................................. 15 

Figure 4: Extended Safety Concept ............................................................................................... 16 

 



SAFE – an ITEA2 project                       D3.3.2 

 2011 The SAFE  Consortium  5 (32) 

3 Executive Summary 

Main goal of the work task 3.3.2 is to provide requirements and concepts for technical bricks which 
are necessary to achieve independence and non-interference in a multi-class concept for a single 
ECU. A concept is attributed as multi-class if the concept allows several software functions of dif-
ferent ASIL or QM classification to coexist on the same ECU, while fulfilling all relevant require-
ments of ISO 26262. 

Besides this, the document gives an overview on the relevant sections of ISO 26262 and on the 
WT 3.3.2 dedicated requirements, which were derived from the ISO 26262 analysis of WT 2.1 and 
from the use cases described in WT 2.3. In an additional section, the current achievements on the 
requirements allocated to WT 3.3.2 are presented. 

Existing AUTOSAR-based solutions rely on software partitions which are controlled by the operat-
ing system. They are defined by introducing and making use of so-called OS applications as new 
OS-related design elements. The AUTOSAR specifications imply that the infrastructure software 
(basic software plus RTE) then either fulfills ASILD (if safety relevant) or QM (if not safety rele-
vant), but nothing in between is possible. Because the classification in detail is project specific and 
because a lower number of partitions can be handled easier this seems somehow natural, but it 
implies that any safety relevant function needs to be analysed and implemented according to 
methods and mechanisms related to ASIL D. The demands of ISO 26262 related to ASIL D are 
from technical and from methodological point of view most demanding. This raises the question: 
Does it make sense to treat many software parts according to higher demands than really neces-
sary? 

The EUROSTAR project Safe-e [2] has developed a safety partition for single core and multicore 
ECU to enable the use of AUTOSAR QM software building blocks in combination with safety-
relevant software modules for applications up to ASILD level. In such a case QM software building 
blocks can be integrated in up to ASIL-D applications without running the danger of ASIL related 
functions being impacted by non-safety-relevant QM functions/software building blocks. 

Partitioning of the AUTOSAR basic software, especially when considering extensive use of ECU-
local IO with directly connected sensors and actuators, is still not supported as necessary. There-
fore WT3.3.2 aims at defining requirements to support a multi-class concept for a single ECU by 
supporting the coexistence of several software architectural elements with concurrent ASIL levels 
(A, B, C, D) and QM, including the basic software. Since the basic software safety requirements 
strongly depend on the project, e. g. when defining which concrete resources need to fulfill a cer-
tain safety criticality class, AUTOSAR cannot provide “ready-to-use”- solutions. 

The contribution of WT 3.3.2 to the SAFE meta-model is not considered in details as only con-
cepts are introduced, and as AUTOSAR IP right for publication has to be considered.  

The contents of the document may serve as input to AUTOSAR. 
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4 Introduction and overview of the document 

The document at hand provides a state of the art analysis of the AUTOSAR mechanisms as being 
considered in Release 4.0.3 and elements defined in the AUTOSAR safety work package, to sup-
port a safety partition and to guarantee the independence and non-interference of that partition 
from the rest. Moreover, it will analyse standard ECU AUTOSAR architecture in order to identify 
entities to be controlled to guarantee the freedom from interference with the scope of a multi-class 
ECU. The safety mechanisms to control these entities are safety patterns that are today present in 
the AUTOSAR specification, but there are still gaps which have to be filled, in particular for the 
basic use of standard input/output signals. 

The aim of this WT3.3.2 is to define design elements as additional requirements with respect to 
existing AUTOSAR definitions to allow the control of safe execution in the sense that the execution 
will be protected from failure propagation for independent software partitions, such that the re-
quirements of the ISO 26262 for safe execution are fulfilled. 

Some patterns will then be briefly presented to be able to later elaborate further details on soft-
ware or hardware specification for implementation. The Safe-E demonstrator, related to the SAFE 
project, will implement a partial solution to prove the feasibility of the concept. 

4.1 Detailed scope of WT 3.3.2 

As part of work package 3, WT3.3.2 deals with the definition of requirements to support an ECU 
multi-class concept. The different ASIL software applications, clustered in separate software parti-
tions, have to guarantee freedom from interference as documented in ISO26262-6 annex D. The 
technical concept, as low level requirement of hardware and software bricks, has to extend the 
actual capabilities of the AUTOSAR R4.0.3 release. Mainly the concept and the interrelations are 
considered. Before starting, some terms need to be defined 

 

Software Partition 

A software partition is an organization of several software elements, which can generally be con-
trolled and protected by the functions of an operating system and respective hardware features. It 
guarantees the freedom from interference between the included software elements and others 
belonging to a different partition, as memory accesses (code and data) are protected from other 
partition access. 

Timing supervision/protection 

A timing fault supervision/protection monitors/defines the correctness of execution of a piece of 
software with respect to timing, to detect or to prevent deadlock or livelock of software execution, 
to ensure correct allocation of time execution or synchronization of software elements. The timing 
supervision/protection can be realized by services in the operating system or in the infrastructure 
by defining bounds for timing execution of software (e.g. this can be as a watchdog for aliveness, 
or at task level or fine grain piece of code for deadlock or execution time). 

Memory and Exchange 

A memory fault protection mechanism prevents from corruption of contents or read/write data and 
code incorrect access between software elements of different partitions. The exchange protection 
ensures correct communication exchange between a sender and a receiver, to prevent repetition, 
loss, delay or incorrect change in the information or sequence of information. 
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Infrastructure  

An AUTOSAR infrastructure defines the part of the software organization of the AUTOSAR plat-
form which is below the application layer. In AUTOSAR this is identical to the technical implemen-
tation of the Virtual Functional Bus (VFB) on a concrete ECU. The technical implementation of the 
VFB, together with eventually necessary complex device drivers (CDD) defines the software infra-
structure. It includes Run Time Environment (RTE), to define and realize communication between 
application SW components and all modules of a Basic Software which e. g. provides access to 
hardware resources.  

 

4.2 Structure of the document 

Section 5 provides an overview on the parts of ISO 26262, which are relevant for the software par-
titioning and for achieving independence and non-interference, is given. 

Section Erreur ! Source du renvoi introuvable. provides an explanation of the initial statement 
for multi-class systems, assuming an independent software partition according to ISO 26262. To 
do this, in a first step a precise definition and impact of software partition with independence and 
non-interference is given (6.1). In addition to this, the software and hardware critical resources 
involved in software partition are identified (6.2), and relevant AUTOSAR documents associated to 
resources are elicited (6.2). 

Section 7 deals with changes required in AUTOSAR to support the concept of multi-class systems. 
The current version of AUTOSAR in particular with software partition is described and limitations 
are documented (7.1). The actual AUTOSAR safety architecture will be challenged to propose an 
improved concept, capable for multi-class and efficient safety control as depicted in (7.2). Typical 
design patterns as new requirements for AUTOSAR are proposed in (7.3). 

Finally conclusions and a discussion are given in section 8. 
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5 Overview on ISO 26262 

This section provides an overview on the relevant parts and safety process steps of the ISO 
26262, which are related to safety partitions for guaranteeing the independence and non-
interference between the partitions. The selection of the presented parts is based on the source of 
the SAFE requirements which were elicited in WT 2.1 and allocated to WT3.3.2. 

Addressing the development process of electric / electronic components for passenger cars, the 
ISO 26262 “Road vehicles – Functional safety” came into effect in November 2011. This standard 
introduces a safety lifecycle which “encompasses the principal safety activities during the concept 
phase, product development, production, operation, service and decommissioning” ([1], part 2, 
p.3) and which can be seen as a guideline that demands a risk-based development approach with 
seamless traceability. In Figure 1 an overview on the different parts of ISO 26262 is given. 

 

 

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) 

The requirements relevant for the safety partition to guarantee the independence and non-
interference of software partitions and for safety activities and methods in software development 
are provided in ISO 26262:2011, Part 6 (in particular in clause 7 which focuses on “Software archi-
tectural Design”. However, also in Part 9 (Automotive Safety Integrity Level (ASIL)-oriented and 
safety-oriented analyses) requirements are given which affect directly or indirectly the safety parti-
tioning by the demonstration of dependent failure and safety analysis. In the following, an overview 
on the relevant aspects from the respective parts is given. 
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Part 6: Product Development – Software Level 

During this phase the development of the item from the software perspective is performed. Similar 
to system development and hardware development the software development process is assumed 
to be based on a V-model, starting with the specification of software safety requirements, proceed-
ing with the software architectural design to guarantee freedom from interference between soft-
ware elements and following with implementation. 

Software Architectural Design 

Structure of software elements and software safety mechanisms has to be defined to achieve 
freedom from interference between software partitions. The software architecture must be de-
signed to effectively prevent from fault propagation between the partitions, to guarantee timing and 
to ensure protection of memory and information exchange. Additionally required are sufficiently 
safe services from the AUTOSAR infrastructure and measures to prevent from common cause 
failures.  

 

Part 9: Automotive Safety Integrity Level (ASIL)-oriented and Safety-oriented Analyses 

The relevant requirements for WT3.3.2 arise from two sections of [1], Part 9 “Automotive safety 
integrity level (ASIL) -oriented and safety-oriented analyses”, namely from chapter 7 “Analysis of 
dependent failures” and from chapter 8 “Safety analyses”.  

Analysis of Dependent Failures 

The standard provides “rules and guidance for the decomposition of safety requirements into re-
dundant safety requirements” ([1], Part 9). This allows an “ASIL tailoring at the next level of detail” 
([1], Part 9). 

A common cause failure and cascading failure analysis shall be performed for the architecture, 
considering the operational life of the product. The analysis of dependent failures shall consider 
the architectural design which is supposed to consist of partitioned software elements. This in-
duces on the architecture that specific measures are introduced and applied to architecture ele-
ments, such as redundancy, dissimilar development, safety mechanisms and physical barriers. 

Safety Analyses 

The safety analyses shall discover consequences of faults and failures on functions, behaviour 
and design of items and elements. Fault propagation in the context of software partitions and re-
lated hardware elements are targeted in this task. Moreover, the analysis provides information on 
causes and conditions that could lead to the violation of a safety goal or safety requirement. It also 
provides argumentation for the introduction of additional safety requirements. This can be 
achieved by an implementation of safety mechanisms to mitigate failure propagation and to ensure 
freedom from interference.  
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6 State of the art of AUTOSAR mixed criticality ECU systems 

After looking at the relevant parts of ISO 26262 which are dedicated to independence and non-
interference for software partitions and safety measures, it seems consequent to analyse more 
detailed the main factors influencing the deployment of a multi-class ECU system being based on 
an AUTOSAR infrastructure. A precise definition of independence and non-interference shall be 
given. The primary analysis shall explore the critical ECU resources and existing AUTOSAR speci-
fications within this context. In chapter 7, state of the art solutions being based on AUTOSAR will 
be documented. 

6.1 Independence and non-interference  

The independence of elements guarantees the absence of dependent failures between two or 
more elements and excludes common cause and cascading failures between the elements. With-
out the independence failures might propagate through the elements and lead to the violation of a 
safety goal. For cascading failures this holds in bidirectional relation. The demonstration of free-
dom from interference shall exhibit the absence of cascading failures between two or more ele-
ments which might lead to the violation of a safety requirement.  

Each software partition embedding the software elements of different integrity levels (from QM to 
A, B, C and D) shall be protected by safety mechanisms to guarantee the independence and non-
interference between the associated software applications. The AUTOSAR infrastructure shall in-
clude safety mechanisms, either implemented by hardware or by software, to: 

 Prevent timing violation from any lower integrity class to any higher integrity class 

 Protect against timing violation for integration of object code in each integrity class 

 Prevent data violation from any lower integrity class to any higher integrity class 

 Protect against data violation for integration of object code in each integrity class 

 Allow separate allocation of safety-objects per integrity class 

6.2 Critical resources  

This chapter lists software and hardware critical resources which need to be controlled in order to 
ensure the Freedom from Interference in a multi-class ECU. The resources are grouped according 
to the main issues “Power Supplies”, “Timing and Execution / Memory” and “Communication” 
which, except the Power Supplies, are also considered in the informative Annex D of ISO 26262-6. 

Power Supplies have been added since independence is stronger affected by the supplies in cur-
rent microcontroller technologies than in the past. Furthermore, execution and memory are 
strongly related to one another, and are therefore considered together.  

Several resources realize safety measures and are inherently safety relevant, these include 

- Hardware test, supervision management and protection units  

o ECC Unit  

o internal / external Watchdog  

o Memory Management / Protection Unit 

o … 

- Software test measures for hardware resources  

o RAM test, ROM test, Stack test,  
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o Interrupt Controller test,  

o Watchdog stack 

o …  

- Software test measures for communication  

- E2E-Lib / Protection Wrapper  

- CRC  

- Timeout Monitoring 

- …  

 

Critical Power Supply resources are the supplies of the safety-relevant HW resources. 

 

Critical Hardware resources related to Timing and Execution / Memory are 

- PLL and OS timer resources 

- Blocks of the Core (ALU, FPU, Coprocessor, Registers internal bus, Crossbar, Bridge…) 

- Interrupt Controller and DMA 

- RAM, Flash Memory, EEPROM (emulated) 

- MMU/MPU region descriptor registers 

- ADC for analogue sensor signals 

 

Critical Software resources related to Timing and Execution / Memory are 

- OS (protection mechanisms) 

- Memory Stack (Flash, FEE) 

- State Managers (ECU, Com, Bus, Boot, BSW, APP)  

- FIM (safety-relevant error reactions) 

- MCAL (modules supporting safety mechanisms) 

- IO HW Abstraction (safety relevant IO) 

- Complex Device Drivers (if dedicated to safety-relevant functions) 

 

Critical Hardware resources related to Communication are 

- Communication Busses (Flexray, CAN, LIN, Ethernet, …) 

- Serial external Communication Busses (SPI, I
2
C, …) 

- Communication Controllers and dedicated PLL, Transceivers 

 

Critical Software resources related to Communication are 

- RTE (calls of basic software services, checks of execution timing…) 

- Inter Core Communication (only in multicore controllers) 

- Com-Stacks (exchange of safety-relevant data) 
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6.3 AUTOSAR Document Reference  

The AUTOSAR infrastructure specification provides means for the control of the above listed criti-
cal resources. The specifications will be listed first and then be analyzed in the next section to un-
derstand the actual safety mechanisms that are already present in the AUTOSAR standard. 
Documents related to the respective critical resources are (SWS: software specification; SRS: 
software requirements specification): 

 AUTOSAR_SWS_OS for OS services, Memory Protection, Timing Protection, Multi-core 

 AUTOSAR_SW_SynchronizedTimeBaseManager for synchronization of OS time with ex-
ternal timing 

 AUTOSAR_SWS_RTE for RTE services and link to E2E services 

 AUTOSAR_SRS_ModeManagement for link to RTE services 

 AUTOSAR_SWS_WatchdogManager for watchdog services 

 AUTOSAR_SWS_ECUStateManager and AUTOSAR_SWS_ECUStateManagerFixed for 
ECU state Manager, Initialize and reinitialize OS, SchM, BswM, configure ECU for sleep 
and shutdown,  manage wakeup events 

 AUTOSAR_SWS_BSWModeManager for Arbitrate mode requests from application layer 
SW-Cs or other BSW modules 

 AUTOSAR_SWS_CoreTest for Core Test 

 AUTOSAR_SWS_RAMTest for RAM test 

 AUTOSAR_SWS_E2ELibrary as E2E library and link to communication (RAM or COM) 

 AUTOSAR_SWS_FlashTest for flash test 

 AUTOSAR_SWS_COM and AUTOSAR_SWS_COMManager for control of the communi-
cation stack 

 AUTOSAR_EXP_ErrorDescription for CAN communication and Memory Stack error detec-
tion and recovery 

 AUTOSAR_EXP_ApplicationLevelErrorHandling for application specific error detection and 
recovery with definition safety mechanism 

 AUTOSAR_SWS_FunctionInhibitionManager for survey application level error handling by 
specific mechanism pattern and definition of error reporting and propagation of inhibition of 
function. 

 

In addition, AUTOSAR documented the use of safety mechanisms in the following safety-related 
documents 

 Program Flow Monitoring Related Features (from AUTOSAR_SWS_CoreTest) in 
AUTOSAR_TR_SafetyConceptStatusReport 

 Timing Related Features (from AUTOSAR_SWS_OS and 
AUTOSAR_SWS_WatchdogManager) in AUTOSAR_TR_SafetyConceptStatusReport 

 Communication Stack Related Features (from AUTOSAR_SWS_COM) in 
AUTOSAR_TR_SafetyConceptStatusReport 

 End-to-End Communication Protection Related Features (from 
AUTOSAR_SWS_E2ELibrary) in AUTOSAR_TR_SafetyConceptStatusReport 
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 Memory Partitioning and User/Supervisor-Modes Related Features (from 
AUTOSAR_SWS_OS ) in AUTOSAR_TR_SafetyConceptStatusReport 

 BSW Trusted partition using mechanism OS AUTOSAR capabilities (from 
AUTOSAR_SWS_OS ) in AUTOSAR- internal documents on BSW partitioning. 

 

The analysis of AUTOSAR documents with respect to technical gaps regarding independence and 
non-interference for multi-class ECU’s was performed according to the list of topics that can be 
taken from the left column of the following table. The table gives a summary of the performed 
analysis and describes possible safety mechanisms and some hints in the right column. They may 
be considered by the AUTOSAR standard for future extensions. Note that all state of the art tech-
niques as e. g. defensive techniques have to be applied. 

Solution for independent software partition Validation of the software partition independence at 
start up (minimum of HW test). 

Solution for independent resources associ-
ated to partitions 

OS timer HW resource correctness. 

Possibility to create partition via AUTOSAR 
service 

Proof possibility to define service. 

Possibility to protect partition from HW fail-
ure propagation 

HW limitation for reliable detection and protection 
(block of µC connected to core, single core …). 
Limitation of data access by HW configuration, no 
add-on by SW. For fine grain split using SW 
mechanism. 

Possibility to protect partition from software 
failure 

Use of Mode (from Mode Manager) not defined as 
process related. 

Possibility to protect partition from wrong 
configuration 

No definition of configuration parameters that are 
safety relevant. 

Possibility to protect partition from 
AUTOSAR service failure 

Case by case integrated in RTE (resource issue). 
How to give a guarantee of failure coverage and 
error code propagation. 

Possibility to manage partition w.r.t. active 
or passive redundancy 

How to recommend usage of partition shut-down 
based on criteria. 

Possibility to detect common root cause of 
failures between partitions 

Supply and clock electronic design (exter-
nal/internal supply or clock supervision, overheating 
protection). 

Possibility to detect cascading failures be-
tween partitions 

Measures to detect cascading failures. 

Possibility to ensure correctness of re-
source access 

Proof possibility to ensure correctness of resource 
access. 

Timing protection w.r.t. resource access Proof possibility of timing protection w.r.t. resource 
access. 

ISR1 & MCAL/HW protection Reliability of all safety peripheral in BIST or BSW 
self-tests (today only data and flash). 
HW Resource Manager in definition. 
Definition and coordination of safe state for ECU 
and BSW manager. 

AUTOSAR services protection Proof possibility of services protection. 

Summary of AUTOSAR Gap Analysis 
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7 Architecture analysis for AUTOSAR mixed criticality ECU systems 

Within this section the current status of the AUTOSAR architecture proposal for mixed criticality is 
shown and discussed. Then proposals for new AUTOSAR architecture extensions are given, in 
particular the MicroSAR TTTECH architecture considered in the Safe-e project [2, and the en-
hanced version proposed in the SAFE project]. 

7.1 Current status of AUTOSAR 

Nowadays, the AUTOSAR concept supports mixed ASIL in the same ECU, as depicted in the Fig-
ure 2. It is based on the concept of trusted BSW (basic software), as defined by a trusted verifica-
tion and validation (or from reuse), stating that no risk for failure propagation or introduction of er-
ror is guaranteed. The basic software and RTE (runtime environment) are completely trusted, 
where the plug of the ASIL-x application and independence are guaranteed by the trusted concept.  

 

Figure 2: AUTOSAR Safety Concept 

The architecture raises several questions, such as: 

 How to guarantee such trusted status and to ensure flexibility in AUTOSAR configuration? 

 How to manage an upgrade of the platform? 

 How would the cost situation look like for the complete trusted solution? 

 Shall all applications pay a high price? 

AUTOSAR favours the concept of software partitioning by introducing software partitions to be 
separated by the AUTOSAR OS. This implies to define SW-Components according to their safety 
classification. It opens an additional dimension in dealing with the OS since the OS in the past was 
widely used to perform the schedule of several tasks. The problems of the concept go along with 
e. g. needs for decompositions, including the IO signal paths realized within the basic software 
and system dependent needs to mitigate common causes.  

For ASIL D e. g. diverse software design as a mechanism for error detection at the software archi-
tectural level is highly recommended. Realizing every safety relevant function accordingly implies 
high ECU resources consumption, but resources are always subject to limitations. There are also 
other technical facts which may limit certain IO signals to maximum ASIL A because e. g. a spe-
cific sensor cannot be more reliable due to its failure characteristics. 
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For typical IO-intensive automotive systems it is sufficient to detect critical errors and react within 
fault latency time in a way that preserves the safe state for the system. Such safety behaviour is 
classified as fail-silent, in contrary to fail-operational. In that case there are alternatives (like data 
redundancy) to at least mostly replace the possibilities of memory protection to achieve the safe 
operation of the system. 

7.2 New proposed Architecture  

The approach favoured by TTTECH in the MicroSAR architecture is extracted from a draft docu-
ment version and sketched in Figure 3. The Basic Software is built according to standard ASIL 
decomposition rules and gives a safety partition as ASIL Max and a Basic SW as QM.  

The safety partition is intended to separate components of different ASIL, and also QM compo-
nents. The Safety partition uses barriers for protection against memory, timing, or data errors. The 
idea is based on “freedom from interference” as described in ISO 26262 Sec. 6, annex D. As long 
as freedom from interference can be guaranteed, QM components can be operated in parallel and 
in conjunction with safety-relevant ASIL components of a certain criticality. The solution proposed 
uses separated RTE’s. The safety-relevant part uses its own, protected RTE, which is reduced in 
some aspects. 

 

Figure 3: TTTECH Safety Concept based on partionining 

The hardware is supposed to be trusted as the safety partition does not mask any failures of the 
hardware. Defensive coding is applied, and barriers for software error propagations are integrated. 
The following three resources with respect to possible faults are considered: 

 Time (CPU time gap) detected by PFM (component deadline) 

 Memory (overwriting) detected by MPU, OS SC3 service and Safety context interface 

 I/O data com (Bus error) detected by E2E Library and wrapper protection 

No level 1 interrupts are authorized, except it is guaranteed by the user that the interrupts don’t 
interfere with the sequence being interrupted. This seems difficult to be achieved, especially since 
strong timing requirements always enforce the use of this kind of interrupts. 

The barriers are described as follows: 

 Barrier against timing errors, based on the Safe watchdog concept with a watchdog man-
ager supervising the collection of SW checkpoints, including timing checkpoints, and com-
municating with an external watchdog HW. 
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 Barrier against I/O errors, based on E2E protection and relying on standard E2E-Library as 
defined in AUTOSAR. Services are defined above the RTE to cover the complete commu-
nication path, including RTE and COM Stack. 

 Barrier against memory errors, based on MPU and setting the task context accordingly. 
During task (or interrupt) switch the new MPU configuration is set and all relevant registers 
are checked (stack, PC …). 

In case more than one ASIL level shall be supported in the target application, more than one safe-
ty-partition can be installed. Between two ASIL levels (ASIL-x and ASIL-y) in one system where 
more than one safety partition shall be used, freedom from interference between the safety parti-
tions is guaranteed. Thus the safety measures can be scaled: QM building blocks will have low 
safety measures to protect their application part, lower ASIL level partitions will have more 
measures applicable and high ASIL partitions will be enabled to rely on the full amount of required 
safety measures as required by ISO 26262. 

A new extended proposal is depicted in Figure 4. It provides an improvement of the proposed 
safety partitioning from the TTTECH safety concept and is explained further.  

QM SW-C QM SW-C
ASIL-A

SW-C
ASIL-A

SW-C

ASIL-D

SW-C

 

Figure 4: Extended Safety Concept 

 

The main characteristics of the concept are: 

 ASIL decomposition results in safety partition as ASIL Max and generic Basic SW as QM. 

 The Safety partition is supervising the application as in the other concepts, but additionally 
also the BSW and RTE, all with respect to Control Flow and Data integrity. AUTOSAR to-
day already allows several mechanisms for Control Flow and Data integrity (out of E2E) 
especially relevant for the data of the SW drivers of the HW abstraction layer. 

 Mixed-criticality on application level is possible to be realized (the fact that this is not possi-
ble in the basic software shall be neglected here). 

 Basic SW can be checked with the watchdog manager (Control flow or task context). 

 The safety partition additionally detects HW Errors. 

The potential limits of the architectures can be identified as: 

 IO intensive systems are still not ideally supported. It is not easy possible to realise the ba-
sic software in different ASIL’s, independent from the application, e. g. as a result of nec-
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essary decompositions within the basic software. This in fact raises the same questions as 
in 7.1 about technical feasibility and costs. 

 Fail operational applications are currently not supported. The solution provided as of today 
will generally lead the system in a safe state even if caused by the QM part. This turns out 
to become a future development area. 

The next chapter describes the approach to improve the AUTOSAR-based solutions. Especially 
the data integrity for I/O SW drivers may be improved and standardized which then may be a new 
requirement for AUTOSAR. The proposal is to focus on I/O standard drivers and to define basic 
mechanisms to check the data integrity.  

7.3 New Requirements 

With the safety concept as shown in Figure 4 and the AUTOSAR specification [4] including the 
definition of safety mechanisms, most of the needs for control flow checkers are covered. But data 
integrity requirements and in particular features required for standard Input//Output drivers are 

less covered. Therefore the focus will be on requirement collection and especially on defining de-

sign patterns for checking data path integrity of signals passing I/O drivers, including po-

tential failures of associated peripherals. These design patterns, organized from AUTOSAR 
BSW specification [3] by selection of I/O drivers, will permit to generate new requirements and 
patterns for AUTOSAR applications. 

The considered list of MCAL drivers is: 

- ADC driver 

- DIO driver 

- Port Driver 

- ICU driver 

- OCU Driver 

- PWM driver 

- I/O HW abstraction 

The following section will describe the related information necessary to identify these design pat-
terns as safety mechanism for I/O signal integrity control of MCAL and HW IP elements. The 
analysis is performed in three steps. First the section 7.3.1 defines failure modes for the 
AUTOSAR MCAL driver and associated peripherals, second section 7.3.2 describes the actual 
state of the art of the safety mechanisms, and finally section 7.3.3 presents small uses cases of 
application of safety mechanism in regards to MCAL driver and Peripheral failures. 

7.3.1 Failure Modes 

The following list of failure modes of the SPAL drivers, which means the part of the MCAL that 
excludes ECU external communication (CAN-, LIN- and FR-Drivers are excluded), is based on 
AUTOSAR driver specification analysis. The associated failure mode of the IP hardware is non 
exhaustive because it is strongly related to IP peripheral and core controller architecture. 

ADC driver 

- ADC inputs signal failure modes:  

o Out of range 

o Oscillation 

o Offsets 

o Drifts  
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o Short circuit to GND 

o Short circuit to VDD 

o Open load  

o Wrong Vref voltage  

- ADC Internal peripheral Engine failure modes  

o ADC convertor locked 

o ADC convertor deviation 

o ADC register memory corrupted 

o ADC multiplexer failure 

o ADC Vref corrupted 

o ADC start wrong trigger 

- ADC software driver failure modes 

o Wrong ADC channel input selection 

o Wrong clock configuration (frequency, pre-scaler…) 

o Wrong conversion time configuration 

o Wrong sampling time configuration 

o Wrong resolution configuration 

o Wrong ADC mode conversion selection (Single shot Vs Continuous)  

o Wrong ADC channel group selection 

o Wrong ADC initialization 

o Starting Wrong channel or group conversion 

o Collecting Wrong channel or group conversion results (e.g. Error in memory buff-
ers) 

o Reporting Wrong channel or group conversion results (e.g. wrong notification)  

DIO driver 

- DIO input signals failure modes:  

o Short to VDD 

o Short to GND 

o Open load 

- DIO Internal peripheral failure modes 

o I/O image register corrupted 

o Signal distortion caused by Power supply disturbance  

- DIO software driver failure modes:  

o Wrong DIO configuration (direction, levels…) 

o writing wrong channel or port 

o reading wrong channel or port 

Port Driver  

- Port output/input signals failure modes:  

o Short to VDD 

o Short to GND 

o Open Load  

- Port Internal peripheral failure modes 

o Input stage failure 

o Output stage failure 
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o PAD pull up failure 

o Port register control memory corrupted 

o Multiplexer port failure 

o Control port failure 

- Port software driver failure modes:  

o Wrong pin configuration 

o Wrong external trigger pin configuration 

o Wrong pin direction setting 

ICU driver 

- ICU input signals failure modes 

o Short to VDD 

o Short to GND 

o Open Load  

o Frequency drift 

- ICU Internal peripheral failure modes 

o Timer block 

o Frequency error  

o Control register memory corrupted 

o Control capture cells failure 

- ICU software driver failure modes:  

o Wrong Clock or pre-scaler configuration 

o Wrong Input capture interrupt configuration and handling 

o Wrong port pin configuration 

o Wrong ECU Mode Wakeup notification 

o Wrong ICU configuration 

o Wrong ICU mode management (Wakeup, sleep…) 

o Wrong ICU notification reporting 

o Wrong ICU activation conditions (Rising/Falling Edges…) 

o Wrong ICU time stamps counting 

o Wrong ICU signal management 

OCU Driver 

- OCU input signals failure modes 

o Short to VDD 

o Short to GND 

o Open Load  

o Frequency drift 

- OCU Internal peripheral failure modes:  

o Timer block 

o Frequency error  

o Control register memory corrupted 

o Control capture cells failure 

- OCU software driver failure modes:  

o Wrong Clock or pre-scaler configuration 
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o Wrong Input capture interrupt configuration and handling 

o Wrong port pin configuration 

o Wrong ECU Mode Wakeup notification 

o Wrong OCU configuration 

o Wrong OCU notification reporting 

o Wrong OCU activation conditions (Rising/Falling Edges…) 

o Wrong OCU time stamps counting 

o Wrong OCU signal management 

PWM driver 

- PWM input signals failure modes 

o Short to VDD 

o Short to GND 

o Open Load  

o Frequency drift 

- PWM Internal peripheral failure modes 

o Timer block 

o Frequency error  

o Control register memory corrupted 

o Control capture cells failure 

- PWM software driver failure modes:  

o Wrong PWM duty cycle 

o Wrong PWM period 

o Wrong Timer calculation 

I/O HW abstraction 

- Input/output signals failure modes 

o All signal failures related to I/O pins 

- Internal peripheral failure modes 

o All failure modes related to hardware IP (cannot be exhaustive) 

- I/O HW software abstraction failure modes:  

o I/O set to incorrect values 

o Getting wrong peripheral notifications (e.g. Adc/Dio/Pwm)  

o Wrong I/O HwAbs valid range for /I/O 

o Wrong I/O HwAbs peripherals status on HW failures 

 Short to GND 

 Short to VDD 

 Open Load 
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7.3.2 Design pattern 

The state of the art safety mechanisms are listed below and can be used as design capable to 
mitigate failure modes identified in the above section  

Safety Mechanisms:  
o HW built-in mechanisms: 

 Signal, Channel and Port redundancy  

 HW test patterns 

 HW diagnostics 

 

o SW Safety mechanisms: 

 For Error detection 

 Plausibility checks 

 Majority voting ( 2 out of 3 )  

 Range checks of inputs and outputs 

 SW diagnostic routines 

 For Error handling 

 Replacement values ( NVRAM, FLASH ) 

 Configuration reset 

 Graceful degradation 

 … 

 

7.3.3 Use case definition 

The uses cases for the application of safety mechanisms regarding MCAL driver and Peripheral 
failures are classified for selected AUTOSAR driver specification. They are detailed below. 

In the below table the Safety mechanism in Bold are already present in AUTOSAR.  

Analog Input  

Module Safety Mechanism Failure Mode (FM) covered 

ADC driver   

Port Driver   

…   

 

The I/O signal integrity check of an analog acquisition from end to end signal control, from HW pin 
to control of the application is defined by: 

- IOSigIntegChk1 … 

- IOSigIntegChkX 

or to be covered by the application which uses safety mechanisms as : 

- AppSM1 … 

- AppSMY 
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Analogue Input/Output :  ADC driver 

Module Safety Mechanism(s) FM covered 

ADC  
Driver 

 ADC inputs signal failure modes 

Range checks Out of range 

Compare with independent signal Oscillation  

Compare with independent signal Offsets  

Compare with independent signal Drifts  

Compare value with thresholds  Short circuit to GND  

Compare value with thresholds  Short circuit to VDD  

Compare with independent signal 
Precharge-ADC-Test (HW) 

Open Load  

Monitor defined static test signal(s) 
Compare with independent ADC 
channel using independent refer-
ence Voltage 

Wrong Vref voltage  

 ADC Internal peripheral Engine failure 

modes  

Monitor defined dynamic test sig-
nal(s) 
Testpattern in RAM 
Compare with independent ADC 
channel 

ADC convertor locked 

Monitor defined dynamic test sig-
nal(s) 
Compare with independent ADC 
channel 

ADC convertor deviation 

ECC (HW) 
Monitor defined dynamic test sig-
nal(s) 

Readback register and compare 
Compare with independent ADC 
channel 

ADC register memory corrupted 

Monitor defined dynamic test sig-
nal(s) 
Compare with independent ADC 
channel 

ADC multiplexer failure 

Monitor defined static/dynamic test 
signal(s) 
Compare with independent ADC 
channel using independent refer-
ence Voltage 

ADC Vref corrupted 

Independent timestamps for ADC 
samples and check 

ADC start wrong trigger 

 ADC software driver failure modes 

Monitor defined static/dynamic test 
signal(s) 
Compare with independent ADC 
channel 

Wrong ADC channel input selection 
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Independent timestamps for ADC 
samples and check 

Wrong clock configuration (frequency, pre-
scaler…) 

Readback register and compare Wrong conversion time configuration 

Readback register and compare Wrong sampling time configuration 

Readback register and compare Wrong resolution configuration 

Readback register and compare 
Independent timestamps for ADC 
samples and check 
Compare with independent ADC 
channel 

Wrong ADC mode conversion selection (Sin-
gle shot Vs Continuous)  

Monitor defined static/dynamic test 
signal(s) with test signals using 
different PINs at different ADC 
groups 
Compare with independent ADC 
channel 

Wrong ADC channel group selection 

Readback register and compare Wrong ADC initialization 

Monitor defined dynamic test sig-
nal(s) 
Independent timestamps for ADC 
samples and check 
Compare with independent ADC 
channel 

Starting Wrong channel or group conversion 

Monitor defined static/dynamic test 
signal(s) 
Compare with independent ADC 
channel 

Collecting Wrong channel or group conver-
sion results (e.g Error in memory buffers) 

Monitor defined static/dynamic test 
signal(s) 
Compare with independent ADC 
channel 

Reporting Wrong channel or group conver-
sion results (e.g. wrong notification) 

 

The I/O signal integrity check of an analog signal from end to end signal control, from application 
to HW pin is protected by: 

- Channel redundancies and plausibility checks at application level 

- Complementary data redundancy / Memory protection on register level 

- WdgM Program Flow Monitoring 
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Digital Input/Output :  DIO driver (Assumption: static high/low) 

Module Safety Mechanism(s) FM covered 

DIO  
Driver 

 DIO input signals failure modes 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal,  
diagnostic voltage range   

Short to VDD 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal  
diagnostic voltage range  

Short to GND 

Output:  
Monitor load current, etc.  
Input:  
Compare with independent signal,  
diagnostic voltage range   

Open Load 

 DIO Internal peripheral failure modes 

Output: 
Monitor output signal(s) ,  
Testpulse,  
Readback register and compare 
Input: 
Compare with independent signal,  
diagnostic voltage range   

I/O image register corrupted 

Voltage monitoring (HW) Signal distortion caused by Power supply 
disturbance 

  DIO software driver failure modes 

Readback register and compare Wrong DIO configuration (direction, levels…) 

Monitor output signal(s) writing wrong channel or port 

Compare with independent signal,  
diagnostic voltage range   

reading wrong channel or port 

 

The I/O signal integrity check of a digital IO signal from end to end signal control, from application 
to HW pin is protected by: 

- Channel redundancies and plausibility checks at application level 

- Complementary data redundancy / Memory protection on register level 

- WdgM Program Flow Monitoring 
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µC Port: Port Driver 

Module Safety Mechanism(s) FM covered 

Port  
Driver 

 Port output/input signals failure modes 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal,  
diagnostic voltage range   

Short to VDD 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal  
diagnostic voltage range  

Short to GND 

Output:  
Monitor load current, etc. 

Input:  
Compare with independent signal,  
diagnostic voltage range   

Open Load 

 Port Internal peripheral failure modes 

Compare with independent signal,  
diagnostic voltage range 

Input stage failure 

Monitor output signal(s),  
Testpulse 

Output stage failure 

Specific testscenario PAD pull up failure 

Readback register and compare Port register control memory corrupted 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal  
diagnostic voltage range  

Multiplexer port failure 

Output:  
Monitor output signal(s),  
Testpulse 
Input:  
Compare with independent signal  
diagnostic voltage range  

Control port failure 

 Port software driver failure modes 

Readback register and compare Wrong pin configuration 

Readback register and compare Wrong external trigger pin configuration 

Readback register and compare Wrong pin direction setting 

 

The I/O signal integrity check of a port signal from end to end signal control, from application to 
HW pin is protected by: 

- Channel redundancies and plausibility checks at application level 

- Complementary data redundancy / Memory protection on register level 

- WdgM Program Flow Monitoring
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Input Capture: ICU driver 

Module Safety Mechanism(s) FM covered 

ICU driver 

  
ICU input signals failure modes 

HW/SW Input signal diagnostic 
Plausibility Check 

Short to VDD 

HW/SW Input signal diagnostic 
Plausibility Check 

Short to GND 

HW/SW Input signal diagnostic 
Plausibility Check 

Open Load  

HW/SW Frequency diagnostic 
Plausibility Check 

Frequency drift 

  ICU Internal peripheral failure modes 

HW Timer diagnostic checks Timer block 

HW Frequency diagnostic checks 
Plausibility Check 

Frequency error  

Peripheral Access Protection:  
CPU supervisor Mode 
MPU protection  

Control register memory corrupted 

ECC (Random HW faults) + HW di-
agnostic 

Control capture cells failure 

   ICU software driver failure modes:  

Range checks Wrong Clock or pre-scaler configuration 

Range + Plausibility checks Wrong Input capture interrupt configuration 
and handling 

CRC-Protected Configuration  Wrong port pin configuration 

Plausibility Checks Wrong ECU Mode Wakeup notification 

CRC-Protected Configuration  Wrong ICU configuration 

Plausibility Checks Wrong ICU mode management (Wakeup, 
sleep…) 

Range Checks (Configura-
tion/Parameters)  

Wrong ICU notification reporting 

Range Checks (Configura-
tion/Parameters)  

Wrong ICU activation conditions (Ris-
ing/Falling Edges…) 

Plausibility Checks + CRC Protected 
Data 

Wrong ICU time stamps counting 

Control Flow Monitoring  Wrong ICU signal management 

 

The I/O signal integrity check of an input capture acquisition from end to end signal control, from 
HW pin to control of the application is protected by: 

- CRC + Counter  

- Redundancy ( duplicated of the input signal processing )  

- Plausibility checks at application level 

- WdgM Program Flow Monitoring 
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Output Compare: OCU Driver  

Module Safety Mechanism(s) FM covered 

OCU Driver 

  OCU input signals failure modes 

HW/SW Output signal diagnostic 
Plausibility Check 

Short to VDD 

HW/SW Output signal diagnostic 
Plausibility Check 

Short to GND 

HW/SW Output signal diagnostic 
Plausibility Check 

Open Load  

HW/SW Frequency diagnostic 
Plausibility Check 

Frequency drift 

  OCU Internal peripheral failure modes:  

HW Timer diagnostic checks Timer block 

HW Frequency diagnostic checks 
Plausibility Check 

Frequency error  

Peripheral Access Protection:  
CPU supervisor Mode 
MPU protection  

Control register memory corrupted 

ECC (Random HW faults) + HW di-
agnostic 

Control capture cells failure 

  OCU software driver failure modes:  

Range checks Wrong Clock or pre-scaler configuration 

Range + Plausibility checks Wrong Input capture interrupt configuration 
and handling 

CRC-Protected Configuration  Wrong port pin configuration 

Plausibility Checks Wrong Ecu Mode Wakeup notification 

CRC-Protected Configuration  Wrong OCU configuration 

Range Checks (Configura-
tion/Parameters)  

Wrong OCU notification reporting 

Range Checks (Configura-
tion/Parameters)  

Wrong OCU activation conditions (Ris-
ing/Falling Edges…) 

Plausibility Checks + CRC Protected 
Data 

Wrong OCU time stamps counting 

Control Flow Monitoring  Wrong OCU signal management 

 

The I/O signal integrity check of an output capture from end to end signal control, from application 
to HW pin is protected by: 

- CRC + Counter  

- Plausibility checks at application level 

- WdgM Program Flow Monitoring 
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PWM Output: PWM Driver 

Module Safety Mechanism(s) FM covered 

PWM Driver 

 PWM input signals failure modes 

HW/SW Input signal diagnostic 
Plausibility Check 

Short to VDD 

HW/SW Input signal diagnostic 
Plausibility Check 

Short to GND 

HW/SW Input signal diagnostic 
Plausibility Check 

Open Load  

HW/SW Frequency diagnostic 
Plausibility Check 

Frequency drift 

  PWM Internal peripheral failure modes 

HW Timer block diagnostic checks Timer block 

HW Frequency diagnostic checks 
Plausibility Check 

Frequency error  

Peripheral Access Protection:  
CPU supervisor Mode 
MPU protection  

Control register memory corrupted 

ECC ( Random HW faults) + HW 
diagnostic 

Control capture cells failure 

  PWM software driver failure modes:  

Range  + Plausibiliy Checks  Wrong PWM duty cycle 

Range  + Plausibiliy Checks Wrong PWM period 

Plausibility Checks + CRC Pro-
tected Data 

Wrong Timer calculation 

 

The I/O signal integrity check of a PWM signal from end to end signal control, from application to 
HW pin is protected by: 

- CRC + Counter  

- Plausibility checks at application level 

- WdgM Program Flow Monitoring 
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IO Hardware Abstraction: I/O Hw Abstraction 

Module Safety Mechanism(s) FM covered 

I/O Hw  
Abstraction 

 Input/output signals failure modes 

Range + Plausibility checks All signal failures related to I/O pins 

 Internal peripheral failure modes 

Range + Plausibility + external 
status checks 

All failure modes related to hardware IP 
(cannot be exhaustive) 

 I/O HW SW abstraction failure modes  

Channel redundancies and plausi-
bility checks at application level, 
Complementary data redundancy, 
Memory protection, 
Range checks, 
Plausibility checks 

I/O set to incorrect values 

Channel redundancies and plausi-
bility checks at application level, 
Complementary data redundancy, 
Memory protection, 
Range checks, 
Plausibility checks 

Getting wrong peripheral notifications ( e.g 
Adc/Dio/Pwm) 

Channel redundancies and plausi-
bility checks at application level, 
Complementary data redundancy, 
Memory protection, 
Range checks, 
Plausibility checks 

Wrong I/O HwAbs peripherals status on hw 
failure “Short to GND”  

Channel redundancies and plausi-
bility checks at application level, 
Complementary data redundancy, 
Memory protection, 
Range checks, 
Plausibility checks 

Wrong I/O HwAbs peripherals status on hw 
failure “Short to VDD” 

Channel redundancies and plausi-
bility checks at application level, 
Complementary data redundancy, 
Memory protection, 
Range checks, 
Plausibility checks 

Wrong I/O HwAbs peripherals status on hw 
failure “Open Load” 
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8 Conclusions and Outlook 

This document provides architecture and gap analysis with respect to AUTOSAR specifications 
4.0.3. It provides use cases in terms of low level safety measures to be used in I/O intensive sys-
tems. 

The actual AUTOSAR basic services allow for controlling the flow and data integrity, but the actual 
I/O drivers and data integrity are less covered in the AUTOSAR specification, including also the 
integrity with respect to HW errors. Therefore it seems necessary that AUTOSAR requirements, 
architecture and specifications are to be improved with respect to such requirements. 

The E2E protection can in principle cover local communication, but it is not optimized for it. The 
protection of bus information above the RTE has disadvantages if the protected data units are not 
identical with the signals provided by COM, which unfortunately is quite often the case. The reason 
for this is that the protected data units then must be reconstructed on top of the RTE and signals 
have to be resynchronized on application level. This implies a waste of resources, which increases 
with increasing number of safety relevant signals as part of the communication matrix or implies 
use of the alternative callout solution, which is possible but not defined in detail.. 

Current ideas for potential follow-on developments beyond the project scope aim at implementing 
safety partitions, which are not only well protected but can also run autonomously (independent 
from each other). In order to support such approach, some of the services need to be constructed 
in a way that they can “survive” and remain fully disposable despite other parts/functions of the 
system are terminated and closed down. For example, this can refer to OS/task scheduling, per-
sistent memory or I/Os. Multi-core based systems will support this in a very promising manner. 
Referring to AUTOSAR, all cores are supposed to start in a synchronized manner, which currently 
contradicts the approach. Nevertheless, such approach needs to be further discussed despite the 
conflict with AUTOSAR requirements. Thus this is an issue to be solved in later developments be-
yond the SAFE project in order to make the solution viable for highly safety-relevant applications 
such as in ADAS or autonomous driving. 
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