
SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 1 (32)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP3 - Deliverable D3.3.2

Requirement specification for a multi-class

ECU concept

Due date of deliverable: 27/12/2014

Actual submission date: 28/03/2013

Start date of the task: 28/03/2012 Duration: 23 months

Project coordinator name: Stefan Voget (Conti-G)

Organization name of lead contractor for this deliverable: Continental France

Editor: Philippe Cuenot (Conti-F)

Contributors: Philippe Cuenot (Conti-F), Roland Geiger (ZF), Abdelillah Ymlahi-Ouazzani (Valeo)

Andreas Eckel (TTTech)

Reviewers: Lionel Guichard (Conti-F), Roland Geiger (ZF), Abdelillah Ymlahi-Ouazzani (Valeo)

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 2 (32)

Revision chart and history log

Version Date Reason

0.1 2012-07-24 Initialization of chapter (yellow part are out dated text)

0.2 2013-10-24 Integration of change from ZF and new chapter 7 organization

0.3 2013-12-03 Integration of Valeo contribution and review from chapter 7.3 new
requirement

0.4 2014-01-06 Conti-F update of document versus discussion status at 12/2013

0.5 2014-06-15 Incorporation of ZF inputs and selective reviews

0.6 2014-06-24 Incorporation of TTTech inputs by ZF

1.0 2014-06-30 Complete and final document review

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 3 (32)

1 Table of contents

1 Table of contents .. 3

2 List of figures .. 4

3 Executive Summary .. 5

4 Introduction and overview of the document .. 6

4.1 Detailed scope of WT 3.3.2 .. 6

4.2 Structure of the document .. 7

5 Overview on ISO 26262 .. 8

6 State of the art of AUTOSAR mixed criticality ECU systems ... 10

6.1 Independence and non-interference ... 10

6.2 Critical resources .. 10

6.3 AUTOSAR Document Reference ... 12

7 Architecture analysis for AUTOSAR mixed criticality ECU systems ... 14

7.1 Current status of AUTOSAR ... 14

7.2 New proposed Architecture .. 15

7.3 New Requirements ... 17

7.3.1 Failure Modes ... 17

7.3.2 Design pattern .. 21

7.3.3 Use case definition ... 21

8 Conclusions and Outlook .. 30

9 References ... 31

10 Acknowledgments... 32

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 4 (32)

2 List of figures

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) ... 8

Figure 2: AUTOSAR Safety Concept... 14

Figure 3: TTTECH Safety Concept based on partionining ... 15

Figure 4: Extended Safety Concept ... 16

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 5 (32)

3 Executive Summary

Main goal of the work task 3.3.2 is to provide requirements and concepts for technical bricks which
are necessary to achieve independence and non-interference in a multi-class concept for a single
ECU. A concept is attributed as multi-class if the concept allows several software functions of dif-
ferent ASIL or QM classification to coexist on the same ECU, while fulfilling all relevant require-
ments of ISO 26262.

Besides this, the document gives an overview on the relevant sections of ISO 26262 and on the
WT 3.3.2 dedicated requirements, which were derived from the ISO 26262 analysis of WT 2.1 and
from the use cases described in WT 2.3. In an additional section, the current achievements on the
requirements allocated to WT 3.3.2 are presented.

Existing AUTOSAR-based solutions rely on software partitions which are controlled by the operat-
ing system. They are defined by introducing and making use of so-called OS applications as new
OS-related design elements. The AUTOSAR specifications imply that the infrastructure software
(basic software plus RTE) then either fulfills ASILD (if safety relevant) or QM (if not safety rele-
vant), but nothing in between is possible. Because the classification in detail is project specific and
because a lower number of partitions can be handled easier this seems somehow natural, but it
implies that any safety relevant function needs to be analysed and implemented according to
methods and mechanisms related to ASIL D. The demands of ISO 26262 related to ASIL D are
from technical and from methodological point of view most demanding. This raises the question:
Does it make sense to treat many software parts according to higher demands than really neces-
sary?

The EUROSTAR project Safe-e [2] has developed a safety partition for single core and multicore
ECU to enable the use of AUTOSAR QM software building blocks in combination with safety-
relevant software modules for applications up to ASILD level. In such a case QM software building
blocks can be integrated in up to ASIL-D applications without running the danger of ASIL related
functions being impacted by non-safety-relevant QM functions/software building blocks.

Partitioning of the AUTOSAR basic software, especially when considering extensive use of ECU-
local IO with directly connected sensors and actuators, is still not supported as necessary. There-
fore WT3.3.2 aims at defining requirements to support a multi-class concept for a single ECU by
supporting the coexistence of several software architectural elements with concurrent ASIL levels
(A, B, C, D) and QM, including the basic software. Since the basic software safety requirements
strongly depend on the project, e. g. when defining which concrete resources need to fulfill a cer-
tain safety criticality class, AUTOSAR cannot provide “ready-to-use”- solutions.

The contribution of WT 3.3.2 to the SAFE meta-model is not considered in details as only con-
cepts are introduced, and as AUTOSAR IP right for publication has to be considered.

The contents of the document may serve as input to AUTOSAR.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 6 (32)

4 Introduction and overview of the document

The document at hand provides a state of the art analysis of the AUTOSAR mechanisms as being
considered in Release 4.0.3 and elements defined in the AUTOSAR safety work package, to sup-
port a safety partition and to guarantee the independence and non-interference of that partition
from the rest. Moreover, it will analyse standard ECU AUTOSAR architecture in order to identify
entities to be controlled to guarantee the freedom from interference with the scope of a multi-class
ECU. The safety mechanisms to control these entities are safety patterns that are today present in
the AUTOSAR specification, but there are still gaps which have to be filled, in particular for the
basic use of standard input/output signals.

The aim of this WT3.3.2 is to define design elements as additional requirements with respect to
existing AUTOSAR definitions to allow the control of safe execution in the sense that the execution
will be protected from failure propagation for independent software partitions, such that the re-
quirements of the ISO 26262 for safe execution are fulfilled.

Some patterns will then be briefly presented to be able to later elaborate further details on soft-
ware or hardware specification for implementation. The Safe-E demonstrator, related to the SAFE
project, will implement a partial solution to prove the feasibility of the concept.

4.1 Detailed scope of WT 3.3.2

As part of work package 3, WT3.3.2 deals with the definition of requirements to support an ECU
multi-class concept. The different ASIL software applications, clustered in separate software parti-
tions, have to guarantee freedom from interference as documented in ISO26262-6 annex D. The
technical concept, as low level requirement of hardware and software bricks, has to extend the
actual capabilities of the AUTOSAR R4.0.3 release. Mainly the concept and the interrelations are
considered. Before starting, some terms need to be defined

Software Partition

A software partition is an organization of several software elements, which can generally be con-
trolled and protected by the functions of an operating system and respective hardware features. It
guarantees the freedom from interference between the included software elements and others
belonging to a different partition, as memory accesses (code and data) are protected from other
partition access.

Timing supervision/protection

A timing fault supervision/protection monitors/defines the correctness of execution of a piece of
software with respect to timing, to detect or to prevent deadlock or livelock of software execution,
to ensure correct allocation of time execution or synchronization of software elements. The timing
supervision/protection can be realized by services in the operating system or in the infrastructure
by defining bounds for timing execution of software (e.g. this can be as a watchdog for aliveness,
or at task level or fine grain piece of code for deadlock or execution time).

Memory and Exchange

A memory fault protection mechanism prevents from corruption of contents or read/write data and
code incorrect access between software elements of different partitions. The exchange protection
ensures correct communication exchange between a sender and a receiver, to prevent repetition,
loss, delay or incorrect change in the information or sequence of information.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 7 (32)

Infrastructure

An AUTOSAR infrastructure defines the part of the software organization of the AUTOSAR plat-
form which is below the application layer. In AUTOSAR this is identical to the technical implemen-
tation of the Virtual Functional Bus (VFB) on a concrete ECU. The technical implementation of the
VFB, together with eventually necessary complex device drivers (CDD) defines the software infra-
structure. It includes Run Time Environment (RTE), to define and realize communication between
application SW components and all modules of a Basic Software which e. g. provides access to
hardware resources.

4.2 Structure of the document

Section 5 provides an overview on the parts of ISO 26262, which are relevant for the software par-
titioning and for achieving independence and non-interference, is given.

Section Erreur ! Source du renvoi introuvable. provides an explanation of the initial statement
for multi-class systems, assuming an independent software partition according to ISO 26262. To
do this, in a first step a precise definition and impact of software partition with independence and
non-interference is given (6.1). In addition to this, the software and hardware critical resources
involved in software partition are identified (6.2), and relevant AUTOSAR documents associated to
resources are elicited (6.2).

Section 7 deals with changes required in AUTOSAR to support the concept of multi-class systems.
The current version of AUTOSAR in particular with software partition is described and limitations
are documented (7.1). The actual AUTOSAR safety architecture will be challenged to propose an
improved concept, capable for multi-class and efficient safety control as depicted in (7.2). Typical
design patterns as new requirements for AUTOSAR are proposed in (7.3).

Finally conclusions and a discussion are given in section 8.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 8 (32)

5 Overview on ISO 26262

This section provides an overview on the relevant parts and safety process steps of the ISO
26262, which are related to safety partitions for guaranteeing the independence and non-
interference between the partitions. The selection of the presented parts is based on the source of
the SAFE requirements which were elicited in WT 2.1 and allocated to WT3.3.2.

Addressing the development process of electric / electronic components for passenger cars, the
ISO 26262 “Road vehicles – Functional safety” came into effect in November 2011. This standard
introduces a safety lifecycle which “encompasses the principal safety activities during the concept
phase, product development, production, operation, service and decommissioning” ([1], part 2,
p.3) and which can be seen as a guideline that demands a risk-based development approach with
seamless traceability. In Figure 1 an overview on the different parts of ISO 26262 is given.

Figure 1: Overview on ISO 26262 (Relevant parts highlighted)

The requirements relevant for the safety partition to guarantee the independence and non-
interference of software partitions and for safety activities and methods in software development
are provided in ISO 26262:2011, Part 6 (in particular in clause 7 which focuses on “Software archi-
tectural Design”. However, also in Part 9 (Automotive Safety Integrity Level (ASIL)-oriented and
safety-oriented analyses) requirements are given which affect directly or indirectly the safety parti-
tioning by the demonstration of dependent failure and safety analysis. In the following, an overview
on the relevant aspects from the respective parts is given.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 9 (32)

Part 6: Product Development – Software Level

During this phase the development of the item from the software perspective is performed. Similar
to system development and hardware development the software development process is assumed
to be based on a V-model, starting with the specification of software safety requirements, proceed-
ing with the software architectural design to guarantee freedom from interference between soft-
ware elements and following with implementation.

Software Architectural Design

Structure of software elements and software safety mechanisms has to be defined to achieve
freedom from interference between software partitions. The software architecture must be de-
signed to effectively prevent from fault propagation between the partitions, to guarantee timing and
to ensure protection of memory and information exchange. Additionally required are sufficiently
safe services from the AUTOSAR infrastructure and measures to prevent from common cause
failures.

Part 9: Automotive Safety Integrity Level (ASIL)-oriented and Safety-oriented Analyses

The relevant requirements for WT3.3.2 arise from two sections of [1], Part 9 “Automotive safety
integrity level (ASIL) -oriented and safety-oriented analyses”, namely from chapter 7 “Analysis of
dependent failures” and from chapter 8 “Safety analyses”.

Analysis of Dependent Failures

The standard provides “rules and guidance for the decomposition of safety requirements into re-
dundant safety requirements” ([1], Part 9). This allows an “ASIL tailoring at the next level of detail”
([1], Part 9).

A common cause failure and cascading failure analysis shall be performed for the architecture,
considering the operational life of the product. The analysis of dependent failures shall consider
the architectural design which is supposed to consist of partitioned software elements. This in-
duces on the architecture that specific measures are introduced and applied to architecture ele-
ments, such as redundancy, dissimilar development, safety mechanisms and physical barriers.

Safety Analyses

The safety analyses shall discover consequences of faults and failures on functions, behaviour
and design of items and elements. Fault propagation in the context of software partitions and re-
lated hardware elements are targeted in this task. Moreover, the analysis provides information on
causes and conditions that could lead to the violation of a safety goal or safety requirement. It also
provides argumentation for the introduction of additional safety requirements. This can be
achieved by an implementation of safety mechanisms to mitigate failure propagation and to ensure
freedom from interference.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 10 (32)

6 State of the art of AUTOSAR mixed criticality ECU systems

After looking at the relevant parts of ISO 26262 which are dedicated to independence and non-
interference for software partitions and safety measures, it seems consequent to analyse more
detailed the main factors influencing the deployment of a multi-class ECU system being based on
an AUTOSAR infrastructure. A precise definition of independence and non-interference shall be
given. The primary analysis shall explore the critical ECU resources and existing AUTOSAR speci-
fications within this context. In chapter 7, state of the art solutions being based on AUTOSAR will
be documented.

6.1 Independence and non-interference

The independence of elements guarantees the absence of dependent failures between two or
more elements and excludes common cause and cascading failures between the elements. With-
out the independence failures might propagate through the elements and lead to the violation of a
safety goal. For cascading failures this holds in bidirectional relation. The demonstration of free-
dom from interference shall exhibit the absence of cascading failures between two or more ele-
ments which might lead to the violation of a safety requirement.

Each software partition embedding the software elements of different integrity levels (from QM to
A, B, C and D) shall be protected by safety mechanisms to guarantee the independence and non-
interference between the associated software applications. The AUTOSAR infrastructure shall in-
clude safety mechanisms, either implemented by hardware or by software, to:

 Prevent timing violation from any lower integrity class to any higher integrity class

 Protect against timing violation for integration of object code in each integrity class

 Prevent data violation from any lower integrity class to any higher integrity class

 Protect against data violation for integration of object code in each integrity class

 Allow separate allocation of safety-objects per integrity class

6.2 Critical resources

This chapter lists software and hardware critical resources which need to be controlled in order to
ensure the Freedom from Interference in a multi-class ECU. The resources are grouped according
to the main issues “Power Supplies”, “Timing and Execution / Memory” and “Communication”
which, except the Power Supplies, are also considered in the informative Annex D of ISO 26262-6.

Power Supplies have been added since independence is stronger affected by the supplies in cur-
rent microcontroller technologies than in the past. Furthermore, execution and memory are
strongly related to one another, and are therefore considered together.

Several resources realize safety measures and are inherently safety relevant, these include

- Hardware test, supervision management and protection units

o ECC Unit

o internal / external Watchdog

o Memory Management / Protection Unit

o …

- Software test measures for hardware resources

o RAM test, ROM test, Stack test,

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 11 (32)

o Interrupt Controller test,

o Watchdog stack

o …

- Software test measures for communication

- E2E-Lib / Protection Wrapper

- CRC

- Timeout Monitoring

- …

Critical Power Supply resources are the supplies of the safety-relevant HW resources.

Critical Hardware resources related to Timing and Execution / Memory are

- PLL and OS timer resources

- Blocks of the Core (ALU, FPU, Coprocessor, Registers internal bus, Crossbar, Bridge…)

- Interrupt Controller and DMA

- RAM, Flash Memory, EEPROM (emulated)

- MMU/MPU region descriptor registers

- ADC for analogue sensor signals

Critical Software resources related to Timing and Execution / Memory are

- OS (protection mechanisms)

- Memory Stack (Flash, FEE)

- State Managers (ECU, Com, Bus, Boot, BSW, APP)

- FIM (safety-relevant error reactions)

- MCAL (modules supporting safety mechanisms)

- IO HW Abstraction (safety relevant IO)

- Complex Device Drivers (if dedicated to safety-relevant functions)

Critical Hardware resources related to Communication are

- Communication Busses (Flexray, CAN, LIN, Ethernet, …)

- Serial external Communication Busses (SPI, I
2
C, …)

- Communication Controllers and dedicated PLL, Transceivers

Critical Software resources related to Communication are

- RTE (calls of basic software services, checks of execution timing…)

- Inter Core Communication (only in multicore controllers)

- Com-Stacks (exchange of safety-relevant data)

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 12 (32)

6.3 AUTOSAR Document Reference

The AUTOSAR infrastructure specification provides means for the control of the above listed criti-
cal resources. The specifications will be listed first and then be analyzed in the next section to un-
derstand the actual safety mechanisms that are already present in the AUTOSAR standard.
Documents related to the respective critical resources are (SWS: software specification; SRS:
software requirements specification):

 AUTOSAR_SWS_OS for OS services, Memory Protection, Timing Protection, Multi-core

 AUTOSAR_SW_SynchronizedTimeBaseManager for synchronization of OS time with ex-
ternal timing

 AUTOSAR_SWS_RTE for RTE services and link to E2E services

 AUTOSAR_SRS_ModeManagement for link to RTE services

 AUTOSAR_SWS_WatchdogManager for watchdog services

 AUTOSAR_SWS_ECUStateManager and AUTOSAR_SWS_ECUStateManagerFixed for
ECU state Manager, Initialize and reinitialize OS, SchM, BswM, configure ECU for sleep
and shutdown, manage wakeup events

 AUTOSAR_SWS_BSWModeManager for Arbitrate mode requests from application layer
SW-Cs or other BSW modules

 AUTOSAR_SWS_CoreTest for Core Test

 AUTOSAR_SWS_RAMTest for RAM test

 AUTOSAR_SWS_E2ELibrary as E2E library and link to communication (RAM or COM)

 AUTOSAR_SWS_FlashTest for flash test

 AUTOSAR_SWS_COM and AUTOSAR_SWS_COMManager for control of the communi-
cation stack

 AUTOSAR_EXP_ErrorDescription for CAN communication and Memory Stack error detec-
tion and recovery

 AUTOSAR_EXP_ApplicationLevelErrorHandling for application specific error detection and
recovery with definition safety mechanism

 AUTOSAR_SWS_FunctionInhibitionManager for survey application level error handling by
specific mechanism pattern and definition of error reporting and propagation of inhibition of
function.

In addition, AUTOSAR documented the use of safety mechanisms in the following safety-related
documents

 Program Flow Monitoring Related Features (from AUTOSAR_SWS_CoreTest) in
AUTOSAR_TR_SafetyConceptStatusReport

 Timing Related Features (from AUTOSAR_SWS_OS and
AUTOSAR_SWS_WatchdogManager) in AUTOSAR_TR_SafetyConceptStatusReport

 Communication Stack Related Features (from AUTOSAR_SWS_COM) in
AUTOSAR_TR_SafetyConceptStatusReport

 End-to-End Communication Protection Related Features (from
AUTOSAR_SWS_E2ELibrary) in AUTOSAR_TR_SafetyConceptStatusReport

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 13 (32)

 Memory Partitioning and User/Supervisor-Modes Related Features (from
AUTOSAR_SWS_OS) in AUTOSAR_TR_SafetyConceptStatusReport

 BSW Trusted partition using mechanism OS AUTOSAR capabilities (from
AUTOSAR_SWS_OS) in AUTOSAR- internal documents on BSW partitioning.

The analysis of AUTOSAR documents with respect to technical gaps regarding independence and
non-interference for multi-class ECU’s was performed according to the list of topics that can be
taken from the left column of the following table. The table gives a summary of the performed
analysis and describes possible safety mechanisms and some hints in the right column. They may
be considered by the AUTOSAR standard for future extensions. Note that all state of the art tech-
niques as e. g. defensive techniques have to be applied.

Solution for independent software partition Validation of the software partition independence at
start up (minimum of HW test).

Solution for independent resources associ-
ated to partitions

OS timer HW resource correctness.

Possibility to create partition via AUTOSAR
service

Proof possibility to define service.

Possibility to protect partition from HW fail-
ure propagation

HW limitation for reliable detection and protection
(block of µC connected to core, single core …).
Limitation of data access by HW configuration, no
add-on by SW. For fine grain split using SW
mechanism.

Possibility to protect partition from software
failure

Use of Mode (from Mode Manager) not defined as
process related.

Possibility to protect partition from wrong
configuration

No definition of configuration parameters that are
safety relevant.

Possibility to protect partition from
AUTOSAR service failure

Case by case integrated in RTE (resource issue).
How to give a guarantee of failure coverage and
error code propagation.

Possibility to manage partition w.r.t. active
or passive redundancy

How to recommend usage of partition shut-down
based on criteria.

Possibility to detect common root cause of
failures between partitions

Supply and clock electronic design (exter-
nal/internal supply or clock supervision, overheating
protection).

Possibility to detect cascading failures be-
tween partitions

Measures to detect cascading failures.

Possibility to ensure correctness of re-
source access

Proof possibility to ensure correctness of resource
access.

Timing protection w.r.t. resource access Proof possibility of timing protection w.r.t. resource
access.

ISR1 & MCAL/HW protection Reliability of all safety peripheral in BIST or BSW
self-tests (today only data and flash).
HW Resource Manager in definition.
Definition and coordination of safe state for ECU
and BSW manager.

AUTOSAR services protection Proof possibility of services protection.

Summary of AUTOSAR Gap Analysis

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 14 (32)

7 Architecture analysis for AUTOSAR mixed criticality ECU systems

Within this section the current status of the AUTOSAR architecture proposal for mixed criticality is
shown and discussed. Then proposals for new AUTOSAR architecture extensions are given, in
particular the MicroSAR TTTECH architecture considered in the Safe-e project [2, and the en-
hanced version proposed in the SAFE project].

7.1 Current status of AUTOSAR

Nowadays, the AUTOSAR concept supports mixed ASIL in the same ECU, as depicted in the Fig-
ure 2. It is based on the concept of trusted BSW (basic software), as defined by a trusted verifica-
tion and validation (or from reuse), stating that no risk for failure propagation or introduction of er-
ror is guaranteed. The basic software and RTE (runtime environment) are completely trusted,
where the plug of the ASIL-x application and independence are guaranteed by the trusted concept.

Figure 2: AUTOSAR Safety Concept

The architecture raises several questions, such as:

 How to guarantee such trusted status and to ensure flexibility in AUTOSAR configuration?

 How to manage an upgrade of the platform?

 How would the cost situation look like for the complete trusted solution?

 Shall all applications pay a high price?

AUTOSAR favours the concept of software partitioning by introducing software partitions to be
separated by the AUTOSAR OS. This implies to define SW-Components according to their safety
classification. It opens an additional dimension in dealing with the OS since the OS in the past was
widely used to perform the schedule of several tasks. The problems of the concept go along with
e. g. needs for decompositions, including the IO signal paths realized within the basic software
and system dependent needs to mitigate common causes.

For ASIL D e. g. diverse software design as a mechanism for error detection at the software archi-
tectural level is highly recommended. Realizing every safety relevant function accordingly implies
high ECU resources consumption, but resources are always subject to limitations. There are also
other technical facts which may limit certain IO signals to maximum ASIL A because e. g. a spe-
cific sensor cannot be more reliable due to its failure characteristics.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 15 (32)

For typical IO-intensive automotive systems it is sufficient to detect critical errors and react within
fault latency time in a way that preserves the safe state for the system. Such safety behaviour is
classified as fail-silent, in contrary to fail-operational. In that case there are alternatives (like data
redundancy) to at least mostly replace the possibilities of memory protection to achieve the safe
operation of the system.

7.2 New proposed Architecture

The approach favoured by TTTECH in the MicroSAR architecture is extracted from a draft docu-
ment version and sketched in Figure 3. The Basic Software is built according to standard ASIL
decomposition rules and gives a safety partition as ASIL Max and a Basic SW as QM.

The safety partition is intended to separate components of different ASIL, and also QM compo-
nents. The Safety partition uses barriers for protection against memory, timing, or data errors. The
idea is based on “freedom from interference” as described in ISO 26262 Sec. 6, annex D. As long
as freedom from interference can be guaranteed, QM components can be operated in parallel and
in conjunction with safety-relevant ASIL components of a certain criticality. The solution proposed
uses separated RTE’s. The safety-relevant part uses its own, protected RTE, which is reduced in
some aspects.

Figure 3: TTTECH Safety Concept based on partionining

The hardware is supposed to be trusted as the safety partition does not mask any failures of the
hardware. Defensive coding is applied, and barriers for software error propagations are integrated.
The following three resources with respect to possible faults are considered:

 Time (CPU time gap) detected by PFM (component deadline)

 Memory (overwriting) detected by MPU, OS SC3 service and Safety context interface

 I/O data com (Bus error) detected by E2E Library and wrapper protection

No level 1 interrupts are authorized, except it is guaranteed by the user that the interrupts don’t
interfere with the sequence being interrupted. This seems difficult to be achieved, especially since
strong timing requirements always enforce the use of this kind of interrupts.

The barriers are described as follows:

 Barrier against timing errors, based on the Safe watchdog concept with a watchdog man-
ager supervising the collection of SW checkpoints, including timing checkpoints, and com-
municating with an external watchdog HW.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 16 (32)

 Barrier against I/O errors, based on E2E protection and relying on standard E2E-Library as
defined in AUTOSAR. Services are defined above the RTE to cover the complete commu-
nication path, including RTE and COM Stack.

 Barrier against memory errors, based on MPU and setting the task context accordingly.
During task (or interrupt) switch the new MPU configuration is set and all relevant registers
are checked (stack, PC …).

In case more than one ASIL level shall be supported in the target application, more than one safe-
ty-partition can be installed. Between two ASIL levels (ASIL-x and ASIL-y) in one system where
more than one safety partition shall be used, freedom from interference between the safety parti-
tions is guaranteed. Thus the safety measures can be scaled: QM building blocks will have low
safety measures to protect their application part, lower ASIL level partitions will have more
measures applicable and high ASIL partitions will be enabled to rely on the full amount of required
safety measures as required by ISO 26262.

A new extended proposal is depicted in Figure 4. It provides an improvement of the proposed
safety partitioning from the TTTECH safety concept and is explained further.

QM SW-C QM SW-C
ASIL-A

SW-C
ASIL-A

SW-C

ASIL-D

SW-C

Figure 4: Extended Safety Concept

The main characteristics of the concept are:

 ASIL decomposition results in safety partition as ASIL Max and generic Basic SW as QM.

 The Safety partition is supervising the application as in the other concepts, but additionally
also the BSW and RTE, all with respect to Control Flow and Data integrity. AUTOSAR to-
day already allows several mechanisms for Control Flow and Data integrity (out of E2E)
especially relevant for the data of the SW drivers of the HW abstraction layer.

 Mixed-criticality on application level is possible to be realized (the fact that this is not possi-
ble in the basic software shall be neglected here).

 Basic SW can be checked with the watchdog manager (Control flow or task context).

 The safety partition additionally detects HW Errors.

The potential limits of the architectures can be identified as:

 IO intensive systems are still not ideally supported. It is not easy possible to realise the ba-
sic software in different ASIL’s, independent from the application, e. g. as a result of nec-

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 17 (32)

essary decompositions within the basic software. This in fact raises the same questions as
in 7.1 about technical feasibility and costs.

 Fail operational applications are currently not supported. The solution provided as of today
will generally lead the system in a safe state even if caused by the QM part. This turns out
to become a future development area.

The next chapter describes the approach to improve the AUTOSAR-based solutions. Especially
the data integrity for I/O SW drivers may be improved and standardized which then may be a new
requirement for AUTOSAR. The proposal is to focus on I/O standard drivers and to define basic
mechanisms to check the data integrity.

7.3 New Requirements

With the safety concept as shown in Figure 4 and the AUTOSAR specification [4] including the
definition of safety mechanisms, most of the needs for control flow checkers are covered. But data
integrity requirements and in particular features required for standard Input//Output drivers are

less covered. Therefore the focus will be on requirement collection and especially on defining de-

sign patterns for checking data path integrity of signals passing I/O drivers, including po-

tential failures of associated peripherals. These design patterns, organized from AUTOSAR
BSW specification [3] by selection of I/O drivers, will permit to generate new requirements and
patterns for AUTOSAR applications.

The considered list of MCAL drivers is:

- ADC driver

- DIO driver

- Port Driver

- ICU driver

- OCU Driver

- PWM driver

- I/O HW abstraction

The following section will describe the related information necessary to identify these design pat-
terns as safety mechanism for I/O signal integrity control of MCAL and HW IP elements. The
analysis is performed in three steps. First the section 7.3.1 defines failure modes for the
AUTOSAR MCAL driver and associated peripherals, second section 7.3.2 describes the actual
state of the art of the safety mechanisms, and finally section 7.3.3 presents small uses cases of
application of safety mechanism in regards to MCAL driver and Peripheral failures.

7.3.1 Failure Modes

The following list of failure modes of the SPAL drivers, which means the part of the MCAL that
excludes ECU external communication (CAN-, LIN- and FR-Drivers are excluded), is based on
AUTOSAR driver specification analysis. The associated failure mode of the IP hardware is non
exhaustive because it is strongly related to IP peripheral and core controller architecture.

ADC driver

- ADC inputs signal failure modes:

o Out of range

o Oscillation

o Offsets

o Drifts

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 18 (32)

o Short circuit to GND

o Short circuit to VDD

o Open load

o Wrong Vref voltage

- ADC Internal peripheral Engine failure modes

o ADC convertor locked

o ADC convertor deviation

o ADC register memory corrupted

o ADC multiplexer failure

o ADC Vref corrupted

o ADC start wrong trigger

- ADC software driver failure modes

o Wrong ADC channel input selection

o Wrong clock configuration (frequency, pre-scaler…)

o Wrong conversion time configuration

o Wrong sampling time configuration

o Wrong resolution configuration

o Wrong ADC mode conversion selection (Single shot Vs Continuous)

o Wrong ADC channel group selection

o Wrong ADC initialization

o Starting Wrong channel or group conversion

o Collecting Wrong channel or group conversion results (e.g. Error in memory buff-
ers)

o Reporting Wrong channel or group conversion results (e.g. wrong notification)

DIO driver

- DIO input signals failure modes:

o Short to VDD

o Short to GND

o Open load

- DIO Internal peripheral failure modes

o I/O image register corrupted

o Signal distortion caused by Power supply disturbance

- DIO software driver failure modes:

o Wrong DIO configuration (direction, levels…)

o writing wrong channel or port

o reading wrong channel or port

Port Driver

- Port output/input signals failure modes:

o Short to VDD

o Short to GND

o Open Load

- Port Internal peripheral failure modes

o Input stage failure

o Output stage failure

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 19 (32)

o PAD pull up failure

o Port register control memory corrupted

o Multiplexer port failure

o Control port failure

- Port software driver failure modes:

o Wrong pin configuration

o Wrong external trigger pin configuration

o Wrong pin direction setting

ICU driver

- ICU input signals failure modes

o Short to VDD

o Short to GND

o Open Load

o Frequency drift

- ICU Internal peripheral failure modes

o Timer block

o Frequency error

o Control register memory corrupted

o Control capture cells failure

- ICU software driver failure modes:

o Wrong Clock or pre-scaler configuration

o Wrong Input capture interrupt configuration and handling

o Wrong port pin configuration

o Wrong ECU Mode Wakeup notification

o Wrong ICU configuration

o Wrong ICU mode management (Wakeup, sleep…)

o Wrong ICU notification reporting

o Wrong ICU activation conditions (Rising/Falling Edges…)

o Wrong ICU time stamps counting

o Wrong ICU signal management

OCU Driver

- OCU input signals failure modes

o Short to VDD

o Short to GND

o Open Load

o Frequency drift

- OCU Internal peripheral failure modes:

o Timer block

o Frequency error

o Control register memory corrupted

o Control capture cells failure

- OCU software driver failure modes:

o Wrong Clock or pre-scaler configuration

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 20 (32)

o Wrong Input capture interrupt configuration and handling

o Wrong port pin configuration

o Wrong ECU Mode Wakeup notification

o Wrong OCU configuration

o Wrong OCU notification reporting

o Wrong OCU activation conditions (Rising/Falling Edges…)

o Wrong OCU time stamps counting

o Wrong OCU signal management

PWM driver

- PWM input signals failure modes

o Short to VDD

o Short to GND

o Open Load

o Frequency drift

- PWM Internal peripheral failure modes

o Timer block

o Frequency error

o Control register memory corrupted

o Control capture cells failure

- PWM software driver failure modes:

o Wrong PWM duty cycle

o Wrong PWM period

o Wrong Timer calculation

I/O HW abstraction

- Input/output signals failure modes

o All signal failures related to I/O pins

- Internal peripheral failure modes

o All failure modes related to hardware IP (cannot be exhaustive)

- I/O HW software abstraction failure modes:

o I/O set to incorrect values

o Getting wrong peripheral notifications (e.g. Adc/Dio/Pwm)

o Wrong I/O HwAbs valid range for /I/O

o Wrong I/O HwAbs peripherals status on HW failures

 Short to GND

 Short to VDD

 Open Load

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 21 (32)

7.3.2 Design pattern

The state of the art safety mechanisms are listed below and can be used as design capable to
mitigate failure modes identified in the above section

Safety Mechanisms:
o HW built-in mechanisms:

 Signal, Channel and Port redundancy

 HW test patterns

 HW diagnostics

o SW Safety mechanisms:

 For Error detection

 Plausibility checks

 Majority voting (2 out of 3)

 Range checks of inputs and outputs

 SW diagnostic routines

 For Error handling

 Replacement values (NVRAM, FLASH)

 Configuration reset

 Graceful degradation

 …

7.3.3 Use case definition

The uses cases for the application of safety mechanisms regarding MCAL driver and Peripheral
failures are classified for selected AUTOSAR driver specification. They are detailed below.

In the below table the Safety mechanism in Bold are already present in AUTOSAR.

Analog Input

Module Safety Mechanism Failure Mode (FM) covered

ADC driver

Port Driver

…

The I/O signal integrity check of an analog acquisition from end to end signal control, from HW pin
to control of the application is defined by:

- IOSigIntegChk1 …

- IOSigIntegChkX

or to be covered by the application which uses safety mechanisms as :

- AppSM1 …

- AppSMY

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 22 (32)

Analogue Input/Output : ADC driver

Module Safety Mechanism(s) FM covered

ADC
Driver

 ADC inputs signal failure modes

Range checks Out of range

Compare with independent signal Oscillation

Compare with independent signal Offsets

Compare with independent signal Drifts

Compare value with thresholds Short circuit to GND

Compare value with thresholds Short circuit to VDD

Compare with independent signal
Precharge-ADC-Test (HW)

Open Load

Monitor defined static test signal(s)
Compare with independent ADC
channel using independent refer-
ence Voltage

Wrong Vref voltage

 ADC Internal peripheral Engine failure

modes

Monitor defined dynamic test sig-
nal(s)
Testpattern in RAM
Compare with independent ADC
channel

ADC convertor locked

Monitor defined dynamic test sig-
nal(s)
Compare with independent ADC
channel

ADC convertor deviation

ECC (HW)
Monitor defined dynamic test sig-
nal(s)

Readback register and compare
Compare with independent ADC
channel

ADC register memory corrupted

Monitor defined dynamic test sig-
nal(s)
Compare with independent ADC
channel

ADC multiplexer failure

Monitor defined static/dynamic test
signal(s)
Compare with independent ADC
channel using independent refer-
ence Voltage

ADC Vref corrupted

Independent timestamps for ADC
samples and check

ADC start wrong trigger

 ADC software driver failure modes

Monitor defined static/dynamic test
signal(s)
Compare with independent ADC
channel

Wrong ADC channel input selection

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 23 (32)

Independent timestamps for ADC
samples and check

Wrong clock configuration (frequency, pre-
scaler…)

Readback register and compare Wrong conversion time configuration

Readback register and compare Wrong sampling time configuration

Readback register and compare Wrong resolution configuration

Readback register and compare
Independent timestamps for ADC
samples and check
Compare with independent ADC
channel

Wrong ADC mode conversion selection (Sin-
gle shot Vs Continuous)

Monitor defined static/dynamic test
signal(s) with test signals using
different PINs at different ADC
groups
Compare with independent ADC
channel

Wrong ADC channel group selection

Readback register and compare Wrong ADC initialization

Monitor defined dynamic test sig-
nal(s)
Independent timestamps for ADC
samples and check
Compare with independent ADC
channel

Starting Wrong channel or group conversion

Monitor defined static/dynamic test
signal(s)
Compare with independent ADC
channel

Collecting Wrong channel or group conver-
sion results (e.g Error in memory buffers)

Monitor defined static/dynamic test
signal(s)
Compare with independent ADC
channel

Reporting Wrong channel or group conver-
sion results (e.g. wrong notification)

The I/O signal integrity check of an analog signal from end to end signal control, from application
to HW pin is protected by:

- Channel redundancies and plausibility checks at application level

- Complementary data redundancy / Memory protection on register level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 24 (32)

Digital Input/Output : DIO driver (Assumption: static high/low)

Module Safety Mechanism(s) FM covered

DIO
Driver

 DIO input signals failure modes

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal,
diagnostic voltage range

Short to VDD

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal
diagnostic voltage range

Short to GND

Output:
Monitor load current, etc.
Input:
Compare with independent signal,
diagnostic voltage range

Open Load

 DIO Internal peripheral failure modes

Output:
Monitor output signal(s) ,
Testpulse,
Readback register and compare
Input:
Compare with independent signal,
diagnostic voltage range

I/O image register corrupted

Voltage monitoring (HW) Signal distortion caused by Power supply
disturbance

 DIO software driver failure modes

Readback register and compare Wrong DIO configuration (direction, levels…)

Monitor output signal(s) writing wrong channel or port

Compare with independent signal,
diagnostic voltage range

reading wrong channel or port

The I/O signal integrity check of a digital IO signal from end to end signal control, from application
to HW pin is protected by:

- Channel redundancies and plausibility checks at application level

- Complementary data redundancy / Memory protection on register level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 25 (32)

µC Port: Port Driver

Module Safety Mechanism(s) FM covered

Port
Driver

 Port output/input signals failure modes

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal,
diagnostic voltage range

Short to VDD

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal
diagnostic voltage range

Short to GND

Output:
Monitor load current, etc.

Input:
Compare with independent signal,
diagnostic voltage range

Open Load

 Port Internal peripheral failure modes

Compare with independent signal,
diagnostic voltage range

Input stage failure

Monitor output signal(s),
Testpulse

Output stage failure

Specific testscenario PAD pull up failure

Readback register and compare Port register control memory corrupted

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal
diagnostic voltage range

Multiplexer port failure

Output:
Monitor output signal(s),
Testpulse
Input:
Compare with independent signal
diagnostic voltage range

Control port failure

 Port software driver failure modes

Readback register and compare Wrong pin configuration

Readback register and compare Wrong external trigger pin configuration

Readback register and compare Wrong pin direction setting

The I/O signal integrity check of a port signal from end to end signal control, from application to
HW pin is protected by:

- Channel redundancies and plausibility checks at application level

- Complementary data redundancy / Memory protection on register level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 26 (32)

Input Capture: ICU driver

Module Safety Mechanism(s) FM covered

ICU driver

ICU input signals failure modes

HW/SW Input signal diagnostic
Plausibility Check

Short to VDD

HW/SW Input signal diagnostic
Plausibility Check

Short to GND

HW/SW Input signal diagnostic
Plausibility Check

Open Load

HW/SW Frequency diagnostic
Plausibility Check

Frequency drift

 ICU Internal peripheral failure modes

HW Timer diagnostic checks Timer block

HW Frequency diagnostic checks
Plausibility Check

Frequency error

Peripheral Access Protection:
CPU supervisor Mode
MPU protection

Control register memory corrupted

ECC (Random HW faults) + HW di-
agnostic

Control capture cells failure

 ICU software driver failure modes:

Range checks Wrong Clock or pre-scaler configuration

Range + Plausibility checks Wrong Input capture interrupt configuration
and handling

CRC-Protected Configuration Wrong port pin configuration

Plausibility Checks Wrong ECU Mode Wakeup notification

CRC-Protected Configuration Wrong ICU configuration

Plausibility Checks Wrong ICU mode management (Wakeup,
sleep…)

Range Checks (Configura-
tion/Parameters)

Wrong ICU notification reporting

Range Checks (Configura-
tion/Parameters)

Wrong ICU activation conditions (Ris-
ing/Falling Edges…)

Plausibility Checks + CRC Protected
Data

Wrong ICU time stamps counting

Control Flow Monitoring Wrong ICU signal management

The I/O signal integrity check of an input capture acquisition from end to end signal control, from
HW pin to control of the application is protected by:

- CRC + Counter

- Redundancy (duplicated of the input signal processing)

- Plausibility checks at application level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 27 (32)

Output Compare: OCU Driver

Module Safety Mechanism(s) FM covered

OCU Driver

 OCU input signals failure modes

HW/SW Output signal diagnostic
Plausibility Check

Short to VDD

HW/SW Output signal diagnostic
Plausibility Check

Short to GND

HW/SW Output signal diagnostic
Plausibility Check

Open Load

HW/SW Frequency diagnostic
Plausibility Check

Frequency drift

 OCU Internal peripheral failure modes:

HW Timer diagnostic checks Timer block

HW Frequency diagnostic checks
Plausibility Check

Frequency error

Peripheral Access Protection:
CPU supervisor Mode
MPU protection

Control register memory corrupted

ECC (Random HW faults) + HW di-
agnostic

Control capture cells failure

 OCU software driver failure modes:

Range checks Wrong Clock or pre-scaler configuration

Range + Plausibility checks Wrong Input capture interrupt configuration
and handling

CRC-Protected Configuration Wrong port pin configuration

Plausibility Checks Wrong Ecu Mode Wakeup notification

CRC-Protected Configuration Wrong OCU configuration

Range Checks (Configura-
tion/Parameters)

Wrong OCU notification reporting

Range Checks (Configura-
tion/Parameters)

Wrong OCU activation conditions (Ris-
ing/Falling Edges…)

Plausibility Checks + CRC Protected
Data

Wrong OCU time stamps counting

Control Flow Monitoring Wrong OCU signal management

The I/O signal integrity check of an output capture from end to end signal control, from application
to HW pin is protected by:

- CRC + Counter

- Plausibility checks at application level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 28 (32)

PWM Output: PWM Driver

Module Safety Mechanism(s) FM covered

PWM Driver

 PWM input signals failure modes

HW/SW Input signal diagnostic
Plausibility Check

Short to VDD

HW/SW Input signal diagnostic
Plausibility Check

Short to GND

HW/SW Input signal diagnostic
Plausibility Check

Open Load

HW/SW Frequency diagnostic
Plausibility Check

Frequency drift

 PWM Internal peripheral failure modes

HW Timer block diagnostic checks Timer block

HW Frequency diagnostic checks
Plausibility Check

Frequency error

Peripheral Access Protection:
CPU supervisor Mode
MPU protection

Control register memory corrupted

ECC (Random HW faults) + HW
diagnostic

Control capture cells failure

 PWM software driver failure modes:

Range + Plausibiliy Checks Wrong PWM duty cycle

Range + Plausibiliy Checks Wrong PWM period

Plausibility Checks + CRC Pro-
tected Data

Wrong Timer calculation

The I/O signal integrity check of a PWM signal from end to end signal control, from application to
HW pin is protected by:

- CRC + Counter

- Plausibility checks at application level

- WdgM Program Flow Monitoring

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 29 (32)

IO Hardware Abstraction: I/O Hw Abstraction

Module Safety Mechanism(s) FM covered

I/O Hw
Abstraction

 Input/output signals failure modes

Range + Plausibility checks All signal failures related to I/O pins

 Internal peripheral failure modes

Range + Plausibility + external
status checks

All failure modes related to hardware IP
(cannot be exhaustive)

 I/O HW SW abstraction failure modes

Channel redundancies and plausi-
bility checks at application level,
Complementary data redundancy,
Memory protection,
Range checks,
Plausibility checks

I/O set to incorrect values

Channel redundancies and plausi-
bility checks at application level,
Complementary data redundancy,
Memory protection,
Range checks,
Plausibility checks

Getting wrong peripheral notifications (e.g
Adc/Dio/Pwm)

Channel redundancies and plausi-
bility checks at application level,
Complementary data redundancy,
Memory protection,
Range checks,
Plausibility checks

Wrong I/O HwAbs peripherals status on hw
failure “Short to GND”

Channel redundancies and plausi-
bility checks at application level,
Complementary data redundancy,
Memory protection,
Range checks,
Plausibility checks

Wrong I/O HwAbs peripherals status on hw
failure “Short to VDD”

Channel redundancies and plausi-
bility checks at application level,
Complementary data redundancy,
Memory protection,
Range checks,
Plausibility checks

Wrong I/O HwAbs peripherals status on hw
failure “Open Load”

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 30 (32)

8 Conclusions and Outlook

This document provides architecture and gap analysis with respect to AUTOSAR specifications
4.0.3. It provides use cases in terms of low level safety measures to be used in I/O intensive sys-
tems.

The actual AUTOSAR basic services allow for controlling the flow and data integrity, but the actual
I/O drivers and data integrity are less covered in the AUTOSAR specification, including also the
integrity with respect to HW errors. Therefore it seems necessary that AUTOSAR requirements,
architecture and specifications are to be improved with respect to such requirements.

The E2E protection can in principle cover local communication, but it is not optimized for it. The
protection of bus information above the RTE has disadvantages if the protected data units are not
identical with the signals provided by COM, which unfortunately is quite often the case. The reason
for this is that the protected data units then must be reconstructed on top of the RTE and signals
have to be resynchronized on application level. This implies a waste of resources, which increases
with increasing number of safety relevant signals as part of the communication matrix or implies
use of the alternative callout solution, which is possible but not defined in detail..

Current ideas for potential follow-on developments beyond the project scope aim at implementing
safety partitions, which are not only well protected but can also run autonomously (independent
from each other). In order to support such approach, some of the services need to be constructed
in a way that they can “survive” and remain fully disposable despite other parts/functions of the
system are terminated and closed down. For example, this can refer to OS/task scheduling, per-
sistent memory or I/Os. Multi-core based systems will support this in a very promising manner.
Referring to AUTOSAR, all cores are supposed to start in a synchronized manner, which currently
contradicts the approach. Nevertheless, such approach needs to be further discussed despite the
conflict with AUTOSAR requirements. Thus this is an issue to be solved in later developments be-
yond the SAFE project in order to make the solution viable for highly safety-relevant applications
such as in ADAS or autonomous driving.

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 31 (32)

9 References

[1] International Organization for Standardization: ISO 26262 Road vehicles - Functional safety.
(2011)

[2] Safe-E Eurostars project, D2.1 and D2.2 deliverable D2_1_Eurostars-E6095-Safe-E-
Mixed_Criticality_Platform_Approach_final.pdf and D2_2_Safe-E-Eurostas-6095-Deliverable-
Requirements_HW_Safety_ECU_final.pdf

[3] www.autosar.org, list of basic software module AUTOSAR_TR_BSWModuleList.pdf

[4] AUTOSAR_TR_Safety_ConceptreportStatus.pdf etc….

http://www.autosar.org/

SAFE – an ITEA2 project D3.3.2

 2011 The SAFE Consortium 32 (32)

10 Acknowledgments

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster pro-
gramme Σ! 3674. The work has been funded by the German Ministry for Education and Research
(BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy and Finance
(DGCIS). The responsibility for the content rests with the authors.

