
(ITEA 2 � 09013)

Model Based Open Source Development Environment

for Automotive Multi-Core Systems

Deliverable: D 3.4

Prototypical Implementation of Selected

Concepts

Work Package: 3

Target Mapping

Task: 3.3

Development of Scheduling Analysis and Partitioning/Mapping Support
Tools

Document type: Deliverable

Document version: Final

Document Preparation Date: 30.04.2014

Classi�cation: Public

Contract Start Date: 01.07.2011

Duration: 30.04.2014

History

Rev. Content Resp. Partner Date

1.0 Final Version FH Dortmund 2014-04-30

0.9 Draft Version C-LAB WIP

Final Approval Name Partner

Review Task Level WIP WIP

Review WP Level Kamsties FH Dortmund

Review Board Level Topp Bosch

ii

Contents

History ii

Executive Summary viii

1 Introduction 1

2 Overview on Tool Platform 3

2.1 Overview . 3
2.1.1 Models . 4
2.1.2 Tools . 5

2.2 Example Instantiation of Tool Platform 7

3 Demonstrator 9

3.1 HVAC Use Case . 9
3.2 Architecture . 10
3.3 HMI . 10

4 Requirements Engineering and Variability Modeling 13

5 Architectural and Behavioral Modeling 15

5.1 Speci�cation of Interfaces . 15
5.2 Speci�cation of Components . 15
5.3 Speci�cation of the Component's Behavior 17
5.4 Speci�cation of the System . 17
5.5 Transformation into AMALTHEA Models 18

6 Partitioning 21

6.1 Concept . 21
6.1.1 Terminology and Methodology . 22
6.1.2 Partitioning Introduction . 24
6.1.3 Feature Introduction . 25

6.2 Implementation . 27
6.2.1 Preliminary Features . 27
6.2.2 Independent Graph Identi�cation 29
6.2.3 Local Graph Partitioning (LGP) 30
6.2.4 Earliest Deadline First Partitioning 33
6.2.5 Other Features . 34

iii

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

7 Mapping 38

7.1 Concept . 38
7.2 Implementation . 40

7.2.1 Task generation . 40
7.2.2 Mapping Strategy 1: Heuristic DFG load balancing 40
7.2.3 Mapping Strategy 2: ILP based load balancing 41
7.2.4 Mapping Strategy 3: Minimizing Energy Consumption 41

7.3 Utilization of the AMALTHEAs Mapping Plugin 43
7.3.1 Con�guration and Preferences . 43
7.3.2 Generating a mapping . 45

8 Building 48

8.1 Concept . 48
8.2 Implementation . 49

8.2.1 System Generator . 49
8.2.2 OSEK Generator . 51

9 Tracing 54

9.1 Concept . 54
9.1.1 Hardware Trace Format . 54

9.2 Implementation . 59
9.2.1 Trace Generation on Platform . 59
9.2.2 Trace Receiver . 61
9.2.3 Trace Conversion . 61

10 Conclusion 64

iv

List of Figures

1.1 Overview on AMALTHEA Tool Platform 1

2.1 Overview on AMALTHEA Tool Platform 3
2.2 YAKINDU SCT within the AMALTHEA Tool Platform 7
2.3 AMALTHEA toolchain instantiated for HVAC case study 8

3.1 Architecture of HVAC Demonstrator . 11
3.2 Air Flow in HVAC Device . 12
3.3 HMI Control Application . 12

4.1 HVAC Requirements in ProR Tool . 13
4.2 HVAC Feature Model in AMALTHEA Variability Tool 14

5.1 Statechart of the TemperatureAdapter Component 17
5.2 AMALTHEA Components Model . 19
5.3 Labels in the AMALTHEA Software Model 20
5.4 Runnables in the AMALTHEA Software Model 20

6.1 Partitioning concept . 21
6.2 Node dependency . 22
6.3 Two di�erent DAG cut methods . 25
6.4 con�guration dependent �le generation �ow chart 26
6.5 RunnableSequencingConstraints . 28
6.6 E�cient graph forming within cycle elimination 29
6.7 DAWG with 9 nodes . 31
6.8 LGP Gantt chart result on example DAWG 6.7 32
6.9 EDF 2 Gantt chart result . 34
6.10 EDF 3 Gantt chart result . 34
6.11 AMALTHEA partitioning con�guration panel 35
6.12 Applet visualization . 36
6.13 TA �exible RSC generation . 36

7.1 Concept of the AMALTHEAs Mapping Plugin 39
7.2 AMALTHEA Mapping Plugin's Preferences Page 43
7.3 Perform Mapping GUI . 46

8.1 Overview building and integration process 48

v

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

8.2 Example function and API calls between component behaviors, system,
and OSEK . 50

8.3 Mapping of Task to Scheduler . 52

9.1 HTF trace generator in the embedded trace concept 59
9.2 HTF trace manager in the embedded trace concept 60
9.3 HTF trace transmitter in the embedded trace concept 60
9.4 Screenshot of the AMALTHEA trace receiver plugin 61
9.5 Menu item to convert trace data from HTF to OT1 data format. 62
9.6 Screenshot of the TA-Toolsuite with the Gantt chart view 63

vi

List of Tables

6.1 Processed information by partitioning strategy for minimizing execution
time . 37

7.1 Transformations performed by task generation algorithm 40
7.2 Processed information by heuristic DFG and ILP load balancing 42
7.3 Processed information by mapping strategy for minimizing energy con-

sumption . 47

8.1 OIL-AMALTHEA Mapping . 51

9.1 HTF maximum values of timestamps . 56

vii

Executive Summary

AMALTHEA is an ITEA 2 funded project that is developing an open and expandable tool
platform for automotive embedded-system engineering based on model-driven methodol-
ogy. Key features include the support for multi-core systems combined with AUTOSAR
compatibility and product-line engineering. The resulting AMALTHEA Tool Platform
is distributed under the Eclipse Public License.
This document is the fourth and �nal deliverable of Work Package 3 �Target Mapping�

of AMALTHEA. It is produced within Task 3.3 �Development of Scheduling Analysis
and Partitioning/Mapping Support Tools� and Task 3.4 �Integration and Development
of Code Generators for Embedded Targets�.
Content. This deliverable D 3.4 �Prototypical Implementation of Selected Concepts�

provides an overview of the AMALTHEA toolchain platform and introduces the HVAC
demonstrator built in WP3. The main part of this deliverable discusses the tool support
for the main technical activities, namely modeling, partitioning, mapping, building, and
tracing. Each tool is described by the concepts behind the tool, a discussion of the
prototypical implementation, and examples of concept/tool application drawn from the
HVAC demonstrator. Special focus is on partitioning, mapping, and tracing.
Intended readership. The target audience of this document is the project sponsors

and project members of the AMALTHEA project. Moreover, this document addresses
also project-external readers who are interested in software development for multi-core
CPUs in the embedded system domain, in particular in the automotive domain. For this
purpose, this document also includes some introductory material about AMALTHEA
and can be read without referring to other documents.
Overview. The document is structured in the following main chapters:

Chapter 1 �Introduction� provides a short introduction to the results of WP3 and the
relation to other parts of the AMALTHEA project.

Chapter 2 �Overview on Toolchain� provides an overview on the AMALTHEA toolchain
platform.

Chapter 3 �Demonstrator� introduces the HVAC (Heating, Ventilation, and Air Condi-
tioning) demonstrator, in particular, the use case, the technical architecture, and
its prototypical HMI (human machine interface).

Chapter 4 �Requirements Engineering and Variability Modeling� provides a brief overview
on the respective activities, which are prerequisite to target mapping, but subject
of other work packages (WP1 and WP2, respectively).

viii

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Chapter 5 �Architectural and Behavioral Modeling� describes the modeling of the archi-
tecture and behavior of an embedded multi-core system. The HVAC system is used
as an example for the various steps from interface and components speci�cation to
behavior modeling and model transformation.

Chapter 6 �Partitioning� introduces our abstract graph-based approach of modeling
multi-core software and describes the di�erent partitioning algorithms and their
implementation.

Chapter 7 �Mapping� illustrates the concept behind the mapping plugin and contains
details about the implementation and its algorithms.

Chapter 8 �Building� describes how the outputs of the previous steps are processed in
order to build an executable, which runs on a multi-core target platform. Two main
steps are addressed in AMALTHEA. First, generating code from the architectural
models, and second, generating an OSEK con�guration.

Chapter 9 �Tracing� provides a speci�cation of the AMALTHEA Hardware Trace For-
mat (HTF) and describes, how a trace is generated on the target platform and
converted into the OT1 format selected by WP3 (see Deliverable 3.3), and �nally
visualized using the Timing Architects Toolsuite.

Chapter 10 �Conclusion� closes this deliverable.

ix

1 Introduction

AMALTHEA is an ITEA 2 funded project that is developing an open and expandable
toolchain for automotive embedded-system engineering based on model-driven methodol-
ogy. Key features include the support for multi-core systems combined with AUTOSAR
compatibility and product-line engineering. The resulting AMALTHEA Tool Platform
is distributed under the Eclipse Public License.
The AMALTHEA Tool Platform consists of a basic infrastructure, that is a compre-

hensive data model and a generic execution environment (see [3]) and a set of open-source
tools forming a seamless toolchain (described in this document). The tool platform covers
all activities for developing embedded software for multi-core systems (see Figure 1.1).

Figure 1.1: Overview on AMALTHEA Tool Platform

During the requirements engineering (RE) phase, the requirements of the multi-core
system are gathered in an informal way. In variability modeling (VM), the software and
hardware variability is de�ned. Architectural modeling (AM) focuses on the identi�cation
and representation of components and their interconnections. The behavior of each
component is speci�ed in behavioral modeling (BM), di�erent modeling techniques can
be applied depending on the nature of the component (e.g., Matlab Simulink, Statecharts,

1

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

or plain C code).
Partitioning (P) and mapping (M) are speci�c activities required for multi-core sys-

tems. In partitioning, the system (modeled in the previous activities) is divided into
tasks. This step is automated and results in an optimal solution regarding particular
quality characteristics, which can be in�uenced by a developer. Mapping concerns the
distribution of tasks to cores, which is non-trivial as heterogeneous multi-core processors
are usually used in the embedded domain. Mapping is automatized as well and seeks to
optimize for instance energy-e�ciency. Code generation (CG) is straight forward from a
theoretical viewpoint. From a practical viewpoint, collecting source code from di�erent
sources (architectural modeling, behavioral modeling, OS con�guration) and feeding it
to a compiler is a bit of a challenge.
Finally, tracing (T) is the activity of collecting data about the execution of the software

on the multi-core hardware. The data acquired from the hardware allows to improve the
partitioning and mapping of the software, as these activities rely on informed guesses
�rst. Trace data provides a more solid base of information.
The support of the activities of the tool platform was distributed over the di�erent

work packages. Work Package 1 was concerned with requirements engineering, Work
Package 2 provided a tool for variability modeling. The focus of Work Package 3 (WP3)
was on the remaining six activities: AM, BM, P, M, CG, and T. Work Package 4 delivered
the basic infrastructure of the whole tool platform.
The following chapter provides an introduction to the AMALTHEA Tool Platform.

2

2 Overview on Tool Platform

This chapter provides an overview on the AMALTHEA Tool Platform. Furthermore,
it describes an instantiation of the AMALTHEA Tool Platform, which is extended by
further tools and used as an example toolchain throughout this deliverable.

2.1 Overview

The AMALTHEA Tool Platform, depicted in Figure 2.1, supports all development ac-
tivities described in Chapter 1. It is built on Eclipse. From a logical point of view, the
AMALTHEA Tool Platform consists of tools and models. From a technical point of view,
tools and models are so-called features in Eclipse. An Eclipse feature describes a list of
plug-ins and other features, which can be understood as a logical unit.1

Figure 2.1: Overview on AMALTHEA Tool Platform

The tools of the platform support particular activities. For example, the OSEK Con-
�guration Generator is used in code generation. We separate between tools developed
in AMALTHEA (green boxes) and additional tools (grey boxes), which are provided by

1Please refer to the deliverables of Work package 4 for a detailed discussion of the technical view, the
focus of this chapter is on the logical view of the AMALTHEA Tool Platform.

3

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

partners (independent of the AMALTHEA project) or by third-parties. All AMALTHEA
tools are published as open source under the Eclipse Public License, additional tools have
various licenses (see Section 2.1.2).
The AMALTHEA Tool Platform provides a set of models describing di�erent aspects

of a system. These models are descriptive; they are intended as abstractions of usually
proprietary, prescriptive models. For example, the hardware model describes properties
of the hardware independent of a speci�c implementation language such as SystemC or
VHDL. The hardware model is intended to inform several activities, e.g., mapping of
tasks to cores, but it is not intended to synthesize hardware. The models are available
in EMF from the AMALTHEA project page [7] and more information is available in the
deliverables of Work Package 4. Common to all AMALTHEA tools is that they work
on the AMALTHEA models as opposed to the additional tools, which do not require
AMALTHEA models.
An external tool is a tool that does not have Eclipse as a basis. That is, it cannot be

integrated into the AMALTHEA Tool Platform to form a homogeneous toolchain. An
exporter or importer is required to use such tools with the AMALTHEA Tool Platform.
At the time of writing, popular external tools such as Matlab/Simulink or ETAS/Ascet
are supported by importer/exporter or an OSLC integration, respectively. The following
subsections describe the models and tools brie�y.

2.1.1 Models

The AMALTHEA Tool Platform provides a set of models. This section brie�y describes
the purpose of selected models.
The software model is used to evaluate di�erent approaches for the distribution of

software and as a basis for the use of commercial (scheduling) simulation tools and covers
the abstraction of the software. Moreover, the software model informs the build process
in order to produce source code and executables. For this purpose it is necessary to
have more information about the software, like data structures, mapping information,
and target platform data. The basic and most important abstraction is called runnable
and represents a speci�c execution unit, which consumes calculation power and accesses
labels. For instance, a runnable can represent a single operational unit (such as MAC,
Add, Shift operations) from a Matlab control �ow model.
The hardware model is used to describe hardware systems that consist of ECUs,

microcontrollers, cores, memories, networks, additional peripherals and more.
The constraints model it is generated by the partitioning plugin and contains di�er-

ent kinds of constraints. The basis is formed by so called runnable sequence constraints
(RSCs) that can be used to de�ne a required order for the runnables. Moreover, the
a�nity constraints de�ne constraints for the purpose of mapping runnables, processes,
and schedulers. Furthermore, timing constraints provide the restriction of the time span
between events or the duration of event chains [2].
The operating system model mainly provides information on how access is given to

certain system resources. Therefore, the concepts of scheduling, bu�ering, and semaphores
are supported. A scheduler controls the execution of processes on a CPU. There can be

4

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

multiple schedulers in an operating system model. Each scheduler can manage one or
more hardware cores. The cores are mapped to the scheduler via the mapping model.
Each scheduler has one scheduling algorithm and a scheduling unit. The scheduling unit
can be either a hardware scheduling unit or a software scheduling unit.
The mapping model provides information about the mappings and allocations be-

tween elements of hardware and software models. In particular, this model contains
associations between schedulers and executable software, schedulers and cores, and data
and memories. Allocations assign executable software, cores, runnables or processes to
scheduler and mappings assign labels, sections or software to memories.
The property constraints model limits the design space by providing information

about the speci�c hardware properties or features required by software elements. Such
information is mandatory within the mapping process, since software elements can only
be executed on a hardware unit that provides the speci�c properties and features required
by the software element. Within the AMALTHEA HVAC demonstrator for instance,
property constraints arise from the fact that some software entities require FPU features
that only one core on the hardware platform (Freescale MPC 5668G) provides. Similar
to the mapping model, such constraints can address allocations to cores or mapping to
memories.

2.1.2 Tools

The following subsections introduce tools that can be used within the AMALTHEA Tool
Platform. We separate between tools developed in AMALTHEA and additional tools
(supplied by partners or third-parties), and external tools (that do built on Eclipse).

AMALTHEA Tools

The Variant Modeler was developed by Work Package 2. It supports the development of
hardware and software variability models [6]. Figure 4.2 shows the variant modeler within
the AMALTHEA Tool Platform and illustrates the HVAC variability model, whereas
some mandatory and some optional features are modeled.
The following tools were developed in WP3:

• Partitioning tool (see Chapter 6)

• Mapping tool (see Chapter 7)

• OSEK Con�guration Generator tool (see Chapter 8.2.2)

• System Generator tool (not shown in Figure 2.1, see Chapter 8.2.1)

• Trace Receiver tool (see Chapter 9.2.2)

• Transformators

� CoMo Transformator: Import of simpli�ed component model into the AMALTHEA
software model. More detail is provided in Chapter 5.

5

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

� Trace Converter: Converts a HTF trace into an OT1 trace. More detail is in
Chapter 9.2.3.

Additional Tools

There are a couple of external, third-party tools available that can be added to the
AMALTHEA Tool Platform. In the following, we name those that were used in the
AMALTHEA project. Others tools can be added as required.
ProR is a tool for requirements engineering, supporting the ReqIF Standard natively.

It is built for extensibility and provides traceability between requirements and formal
models. Requirements engineering is mandatory in most development processes and
describes the functionality of the product often provided by the OEM (or product man-
ager). Further, it de�nes what functions the product must be capable of, how di�erent
components work together, how safety is addressed, how constraints are met and many
more. Figure 4.1 shows the ProR tool with some HVAC requirements.
YAKINDU is a toolsuite based on Eclipse developed by itemis AG, which consists of

open-source and commercial tools. Several tools were used within AMALTHEA.
YAKINDU Traceability2 is used to establish traceability links between the various

development artifacts. It shows that AMALTHEA models also establish a common
ground for tracing all involved artifacts.
YAKINDU Components Model (CoMo) is a tool to model the architecture of a system

by components, connections between components, and by the declaration of a compo-
nent's behavior.
YAKINDU Statechart Tools (SCT)3 are open source and provide various features for

statechart based modeling, simulation, veri�cation, and code generation. Figure 2.2
shows a part of the HVAC statechart model within the YAKINDU SCT editor.
Timing Architects Toolsuite4 supports partitioning and mapping (simulation).

External Tools

External tools which are supported by AMALTHEA:

• Matlab Simulink for Behavioral Modeling. A respective importer is available to ex-
tract the information required for partitioning and mapping from Simulink models
(see D3.3).

• ERIKA Enterprise5: If the AMALTHEA Tool Platform is used for development, a
compiler toolchain for a speci�c embedded target is needed. AMALTHEA supports
the ERIKA Enterprise toolchain for OSEK based systems.

More extensions were undertaken by other work packages:

2http://www.yakindu.com/traceability/
3http://www.statecharts.org/
4http://www.timing-architects.com/ta-tool-suite.html
5http://erika.tuxfamily.org

6

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 2.2: YAKINDU SCT within the AMALTHEA Tool Platform

• ETAS: ASCET (WP4)

• Timing Architects: TA Toolsuite (WP4)

• University of Oulu: Requirements Tool (WP1)

• Bosch: AMALTHEA Tool Platform for motor control unit (WP4)

• Tofas: EV Cooling System Control (WP5)

2.2 Example Instantiation of Tool Platform

The AMALTHEA Tool Platform can be instantiated with di�erent tools for di�erent pur-
poses. We separate two main purposes that di�er in how far the AMALTHEA toolchain
replaces the current OEM/supplier toolchain:

• Analysis - a commercial toolchain is in place, e.g., based on MATLAB and AU-
TOSAR. An export into AMALTHEA models is done for the purpose of using the
analysis capabilities of the AMALTHEA toolchain (partitioning, mapping).

• Development - AMALTHEA tools form the complete development toolchain.

The AMALTHEA Tool Platform can be instantiated with AMALTHEA tools and
external, open source tools to provide a complete open source solution to the development
of embedded multi-core systems.

7

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Commercial tools may replace the open source tools if more functionality is required.
Figure 2.3 shows that external tools and AMALTHEA tools can be combined into a
seamless toolchain.
The speci�c selection of tools shown in Figure 2.3 was done with respect to an open

case study of an HVAC system (see Chapter 3). Thus, this instantiation employs mainly
open source tools.

Figure 2.3: AMALTHEA toolchain instantiated for HVAC case study

ProR was chosen as a pragmatic requirements management tool, which integrates well
into Eclipse. Requirements are outside the AMALTHEA data model, thus an importer
is not required. Figure 4.1 shows a screenshot of the ProR tool.
The ProR requirements are the starting point of traceability, which is maintained with

YAKINDU Traceability.
The next activity is to model the variability in case the system under consideration is

actually a product line. Figure 4.2 on page 14 shows a variability model. The special
focus within AMALTHEA is on the separation of software and hardware variability. More
details are described in Deliverable 2.5.
YAKINDU CoMo and SCT (Statecharts) are responsible for architectural and behav-

ioral modeling, respectively. All other tools are AMALTHEA tools were developed in
WP3.

8

3 Demonstrator

This chapter introduces the HVAC use case, which was provided by the AMALTHEA
partner BHTC, describes the technical architecture, and outlines the human-machine
interface (HMI) of the HVAC.

3.1 HVAC Use Case

In the context of this deliverable, a demonstrator and its corresponding use case must
show the feasibility of the AMALTHEA approach on the basis of an exemplary toolchain.
For this purpose, the use case has to be complex enough to require the steps and appropri-
ate tools of a typical software development process (requirements engineering, variability
modeling, architectural modeling, etc.) without being too complex to obscure what really
should be shown: the seamless functioning of the toolchain itself.
As a target platform BHTC provided a simpli�ed version of an automotive HVAC

(Heating, Ventilation and Air Conditioning) set up. Since the demonstrator should be
portable and ready to be used in an educational environment, the Air Conditioning part
(no need for a cooling circuit) and the Heating part (less demands on power supply) are
omitted. The remaining Ventilation part with its control of air �ow and air distribution
still posts enough challenges. The remaining functional parts of this setting are

• a touch display, mimicking the control panel of a climate control ECU,

• a temperature sensor, representing the measurement of the vehicle's internal tem-
perature,

• a blower, providing the air volume �ow through the HVAC system,

• several �aps, controlling the distribution of the air �ow inside the HVAC system,

• the evaluation board comprising a dual core processor for emulating the ECU,
targeted by the toolchain.

The physical installation and setting will be described in more detail further below in
this chapter.
Overall, this set up provides possibilities for

• Requirements Engineering for di�erent levels of detail (functionality),

• Variability Modeling regarding

� user interface (touch display internal to the ECU or data via CAN bus),

9

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

� control of �aps (directly via LIN bus or data via CAN bus),

• Architectural Modeling, comprising components for

� HMI communication, bus communication, reading sensor data, and actuator
control, and

� the higher-level HVAC application,

• Behavioral Modeling, implementing the functionality

• Partitioning, the de�nition of tasks and optimal assignment of runnables to tasks,

• Mapping, the optimal distribution of tasks onto di�erent cores,

• Building, generating and compiling code, and

• Tracing, which is the recording of timing events of the software execution on the
target.

The development steps from modeling (architectural and behavioral) down to tracing
will be elaborated in the following chapters of this deliverable.
It has to be kept in mind that the real demonstration object is not the HVAC use case,

but the exemplary toolchain by which means it is implemented.

3.2 Architecture

The demonstrator consists of several devices, Figure 3.1 shows the technical architecture.
At the heart is a Freescale MPC5668G based evaluation board. The MPC5668G is a dual-
core processor for automotive applications o�ering several communication interfaces such
as SPI, LIN, and CAN. The HMI is implemented on an Android tablet, which is linked to
a tablet connection device. The tablet connection is a device, which translates between
WLAN and SPI. The blower of the HVAC device is controlled over PWM. The �aps are
controlled over LIN. The evaluation board is connected to a temperature sensor over a
typical analog-digital converter.
The air �ow within the HVAC device is shown 3.2. Fresh air is taken in by the blower.

The fresh air is dried and cooled down by an evaporator. A �ap (�blend door�) circum-
vents the heater (which not used in our case study). The air �ow is �nally distributed to
several channels ("defrost", "vent", "�oor") depending on the position of several other
�aps.

3.3 HMI

The HMI is an application developed for Android tablets (screenshot shown in Figure
3.3). It allows a person to control the HVAC system and it displays the actual mode and
other information like indoor temperature.

10

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 3.1: Architecture of HVAC Demonstrator

The application starts in automatic mode. The user can select between defrost mode,
vent mode, amixed mode from defrost and �oor, automatic mode, bi-level mode (which is
a combination of vent and �oor mode), and �oor-only mode. In addition, the recirculation
and air condition can be activated. It is also possible to switch o� the full system. In
defrost mode, the blower runs on full power. The modes vent and �oor set the respective
door to the targeted level, depending on the mode. In automatic mode, the system
de�nes the right level depending on the environment.
The temperature for driver and assistant driver can be chosen separately. The speed

of the blower can be chosen and the actual level from the control unit is displayed in a
bar diagram.

11

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 3.2: Air Flow in HVAC Device

Figure 3.3: HMI Control Application

12

4 Requirements Engineering and

Variability Modeling

This chapter describes the �rst development activities supported by the AMALTHEA
tool platform. The discussion is brief, because Requirements Engineering (RE) and
Variability Modeling (VM) are in the focus of Work Package 1 and 2, respectively.
The HVAC case study was carried out beginning with the very �rst activity supported

by the AMALTHEA Tool Platform, namely requirements engineering. Figure 4.1 shows
a screenshot of the HVAC requirements.

Figure 4.1: HVAC Requirements in ProR Tool

The next activity is to model the variability, because the system under consideration
is actually a product line. Figure 4.2 shows a screenshot of the HVAC feature model.
More details are described in Deliverable 2.5.
The next two steps concern Architectural Modeling and Behavioral Modeling and are

described in the following chapter.

13

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 4.2: HVAC Feature Model in AMALTHEA Variability Tool

14

5 Architectural and Behavioral Modeling

In this chapter the modeling of the architecture and behavior of an embedded multi-core
system is described. The HVAC system is used as an example for the various steps from
interface and components speci�cation to behavior modeling and model transformation.
In the following, these steps are described in detail.

5.1 Speci�cation of Interfaces

When decomposing a system into several components, interfaces serve as glue between the
components. For the speci�cation of interfaces, the Franca Interface De�nition Language
(IDL) is integrated into the AMALTHEA tool chain. In the HVAC system, interfaces
are mainly used to specify data and events which are transferred between the various
components. The data is stored in the attributes of interfaces whereas broadcasts are
de�ned in interfaces to send events.

1 interface BlowerCtrl.power {

2 attribute UInt16 blwOutValue readonly noSubscriptions

3 }

4

5 interface TemperatureAdapter.Signals {

6 broadcast turnOn {}

7 broadcast turnOff {}

8 }

Listing 5.1: Interface De�nitions in Franca IDL

In Listing 5.1, the interface BlowerCtrl.power between the blower of the HVAC system
and its control is speci�ed. The attribute blwOutValue of type UInt16 stores the power the
blower will run with. It will be regularly read by the blower. This is why the attribute
is set to be readonly. In the interface Temparature.Signals, two broadcasts are de�ned to
turn the heating on and o�. These two interfaces are just an excerpt of 10 interfaces
speci�ed for the HVAC demonstrator.

5.2 Speci�cation of Components

For the HVAC demonstrator case study, a customized toolchain based on the AMAL-
THEA Tool Platform was used. The YAKINDU Component Model (CoMo) was added
to the AMALTHEA Tool Platform to specify components and the overall system. It is
currently developed as a commercial tool by the AMALTHEA project partner itemis.
The HVAC demonstrator served as a use case for the development of YAKINDU CoMo.
YAKINDU CoMo is one example for the dissemination of the AMALTHEA project.

15

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

1 component HVAC_Blower {

2 port power requires BlowerCtrl.power

3

4 behavior setPower

5 ports power

6 trigger every 100ms

7 }

Listing 5.2: De�nition of Component HVAC_Blower

In Listing 5.2, the component for the HVAC blower is speci�ed. It has a port that
requires the interface BlowerCtrl.power. This port is called power. Furthermore, it declares
the component's behavior setPower that reads the port power every 100ms and adjusts
the blower's power to speed it up or slow it down.
The actual implementation of the HVAC_Blower component could be done with any

tool, for example Matlab Simulink, or just manually in plain C. YAKINDU CoMo does
not depend on a certain implementation method for the components. Nearly any kind of a
component's implementation might be integrated into the component model. Currently,
the only limitation is that the component's implementation must be linkable to a C-
header that is generated from the component. In the embedded domain, this is usually
no limitation. The C-header de�nes amongst other things an interface for the behavior.
Anyhow, YAKINDU CoMo is designed to be modular, i.e. the code generation might be
changed easily to integrate components in any other way.

1 component TemperatureAdapter {

2 port ticks requires TemperatureAdapter.Ticks

3 port mode requires TemperatureAdapter.Signals

4 port temp provides Temperature

5

6 behavior runCycle

7 ports mode , temp , ticks

8 trigger every 20ms

9 pim

10 with statechart -> TemperatureAdapter {

11 ticks.commToggle -> temperatureSet

12 ticks.minusTicks -> minusTicks

13 ticks.plusTicks -> plusTicks

14

15 mode.turnOff -> off

16 mode.turnOn -> on

17

18 temp.temp -> temp

19 }

20 }

Listing 5.3: De�nition of a Component with a Statechart

Listing 5.3 shows the component speci�cation of the TemperatureAdapter. It has two
ports that require two di�erent interfaces and one port that provides a third one. The
component speci�es a behavior called runCycle that is triggered every 20ms. In this
example, the behavior is not only declared but it is also linked to its implementation by
a statechart. The statechart is also named TemperatureAdapter. Within the declaration
of the behavior, attributes and broadcasts of the three ports are mapped to variables
respectively events of the statechart. In the following, the statechart and its relation to
the component is explained in detail.

16

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

5.3 Speci�cation of the Component's Behavior

For the behavior speci�cation of some HVAC components the YAKINDU Statechart
Tools (SCT) were used. YAKINDU SCT is provided by itemis, too. Since it is open
source, it is already integrated into the o�cial AMALTHEA Tool Platform.

Figure 5.1: Statechart of the TemperatureAdapter Component

Figure 5.1 shows the statechart of the TemperatureAdapter. It is a pretty simple one
with only two states and a region. Furthermore, as a special feature of the YAKINDU
SCT, there is a declaration of the interface and of internal variables with types and
default values. The interface of the statechart is the interesting part. It is actually
linked to the component's speci�cation (see Listing 5.3). For example, the events on and
o� are mapped to the broadcast messages turnOn and turnO� de�ned in the interface
TemperatureAdapter.Signals which is required by the port mode.
The variable temp is calculated within the statechart. It is mapped to the port temp

that provides the interface Temperature. This interface de�nes itself an attribute temp.
Thus, the statechart receives data from other components via the variables plusTicks and
minusTicks, calculates the variable temp, and provides its value to other components.

5.4 Speci�cation of the System

Once the components are speci�ed, the overall system needs to be composed from the
components and their interfaces needs to be connected together. Listing 5.4 shows an
excerpt of the HVAC system.

17

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

1 system HVAC_YSCT {

2 instance hmi:HMI_Communicator;

3 instance coordinator: ModeCoordinator {

4 blwMaxSteps := 10

5 };

6 instance drvTempAdapter: TemperatureAdapter;

7 instance drvTempFlapCtrl: TemperatureFlapCtrl;

8

9 instance passTempAdapter: TemperatureAdapter;

10 instance passTempFlapCtrl: TemperatureFlapCtrl;

11

12 instance blowerCtrl: BlowerCtrl;

13

14 instance hvacBlower: HVAC_Blower;

15

16 connect drvTempAdapter.temp with blowerCtrl.drvTempSet;

17 connect drvTempAdapter.temp with hmi.drvTempSet;

18 connect drvTempAdapter.temp with drvTempFlapCtrl.setTemp;

19

20 connect blowerCtrl.blwPower with hvacBlower.power;

21 ...

22 }

Listing 5.4: Excerpt of the HVAC System Speci�cation

The system is composed of various component instances. A component might be
instantiated multiple times like TemperatureAdapter and TemperatureFlapCtrl for the
driver's and the passenger's seat. The component's ports are connected together. YAKIN-
DU CoMo has built-in consistency checks for the component model. It checks for example
whether all requiring ports are connected and whether requiring ports are only connected
to providing ports and vice versa. Furthermore, the user is supported by context-sensitive
auto-completion of keywords and identi�ers.

5.5 Transformation into AMALTHEA Models

There is already a component model that is part of the whole AMALTHEA model.
Nevertheless, in the HVAC demonstrator case study we used YAKINDU CoMo since it is
much more expressive. The AMALTHEA components model is partly a one-to-one copy
of YAKINDU CoMo but YAKINDU CoMo additionally includes amongst other things
the declaration of a component's behavior and the linking from behavior declaration to
its implementation by statecharts.
Though, further processing such as partitioning is purely based on the AMALTHEA

model. The YAKINDU component model will therefore be automatically transformed
into the AMALTHEA component and software model parts for further processing.
Figure 5.2 shows the AMALTHEA component model part after transformation from

the YAKINDU CoMo. It is a nearly one-to-one transformation without the behavior
speci�cation. The AMALTHEA component model contains all the components and its
ports de�ned in YAKINDU CoMo as well as the system composed of these components.
Since the Franca IDL is already part of the AMALTHEA Tool Platform, the ports in the
AMALTHEA component model are also linked to the interfaces de�ned in Franca IDL
just like the YAKINDU CoMo component ports.

18

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 5.2: AMALTHEA Components Model

The behavior speci�cations of the YAKINDU component model are transformed into
the AMALTHEA software model part. For each providing port, a label is added to the
software model. Labels are means to exchange data between software components. The
types of the labels are set according to the interface de�nitions. Figure 5.3 shows the
labels section within the AMALTHEA software model.
A component's behavior describes an atomic unit that is usually executed periodically.

Such an executable unit is called runnable. Several runnables are composed to a task
to be run on the embedded target system. Thus, for each component instance in the
system of Listing 5.4 and each of its behavior speci�cations a runnable is created in
the AMALTHEA software model. Figure 5.4 shows a screenshot of the AMALTHEA
model editor where the runnables are listed. To create a unique name for a runnable,
the runnable's name is composed of the system's name, the component instance's name,
and the behavior's name.
A behavior has a number of ports that it requires or provides. Since ports have been

transformed into labels, each runnable has a list of labels that it reads (required port) or
writes (provided port). Furthermore, each runnable has a property Execution Cycles that
is created and set to 0 by the transformation. It describes the cycles a runnable needs to
be executed once. The actual value of an Execution Cycle has to be set manually, either
by estimating the value or by measuring it. The value is basis for further processing of
the model in the partitioning phase where the runnables are composed to tasks.

19

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 5.3: Labels in the AMALTHEA Software Model

Figure 5.4: Runnables in the AMALTHEA Software Model

20

6 Partitioning

Partitioning in context of graph theoretical computing comes with a wide range of prob-
lems and methodologies, spread across a variety of applications. Besides most orienta-
tions, the partitioning in AMALTHEA rather focuses on directed acyclic graph (DAG)
structures than on �eld structures or undirected vertices sets. Most importantly, cost
functions de�ne the algorithms and their result, aiming on di�erent balanced sets, which
shall be computed on separated computation units. The partitioning problems require
e�cient methods that are described and evaluated by analytical results in the course of
this chapter.

6.1 Concept

Figure 6.1 shows an abstract view of the di�erent features and also denotes the parti-
tioning's idea, intention and necessity.

R2

R6
R4

R8
R5

R11 R12
R10

R13

R1

R14

R3

R9
R7

R0 R1

R0 R14

R13 R8

R6

R7

R4 R9

R12 R10

R3

R5 R11

R2

R1

R0 R14

R13

R8

R6

R7

R4 R9

R12 R10

R3

R5 R11

R2

Runnables
(smallest execution units)

Activation analysis

Label analysis
(e.g. memory access)

1ms 20
ms

10
ms5ms

Activations

R0 R14 R8

R4 R9

R12 R10

R3

R5 R11 R2

Graph analysis
(independent graph
identification + local
graph partitioning)

R13 R6R7

R1

Cycle elimination

tasks

Figure 6.1: Partitioning concept

Figure 6.1 also depicts the in- and output of the partitioning shown in the left (input)
and in the right (output) respectively. For illustration reasons, node weights are not

21

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

considered in the �gure. The cycle elimination in the middle is a mandatory step, which
has to be performed in advance of the independent graph partitioning and the local
graph partitioning. Such cycle elimination also considers cycles among multiple runnables
as stated in section 6.2.1. Moreover, the �gure 6.1 shows all �ve features namely the
Activation Analysis (AA), the Label access Analysis (LA), the Cycle Dissolution (CD,
also denoted as cycle elimination), the Global Graph Partitioning (GGP) and the Local
Graph Partitioning (LGP) partitioning approach. Adjacently to the graph partitioning,
ProcessPrototypes are transformed to tasks and �nally mapped to hardware speci�c
processors. These two steps are described in section 7, as they further consider mapping
and hardware constraints, which are part of the mapping process.
The partitioning approach has been integrated to the AMALTHEA Tool Platform and

tested with a democar example model, which has been transformed from an industrial
AUTOSAR model. Further examples for testing, problem de�nition and resolution are
shown in each section correspondingly.

6.1.1 Terminology and Methodology

Before starting to introduce the partitioning concept and its technologies, this section
gives a brief description of terminology and methodology in graph theory.
Graph theory plays important roles in computer science e.g. in program segmenta-

tion, sparse matrix reordering, �oor planning, circuit placement, cluster ranging from
computer vision, data analysis and other important disciplines. Directed acyclic graphs
are thereby used in various application �elds to model data dependencies (�ows), system
architecture, task constraints systems or similar approaches. One of the most commonly
used methodologies on DAGs are topological algorithms in order to perform various
functions e.g. sorting, graph position determination, source or sink identi�cation and
more. Breadth-�rst-search as well as depth-�rst-search algorithms are used with regard
to topological orders for instance.
Forming computation sets, which is the partitioning's intent, mostly concerns the

division of processes into subprocesses whereas each subprocess consists of computational
load. In terms of graph theory these subprocesses are denoted as nodes. A node often
reveals uni-directed communication with one or multiple other nodes, such that a directed
edge between them denotes dependency as shown in �gure 6.2.

Node A Node B

Figure 6.2: Node dependency

As seen in �gure 6.2, Node B depends on a result of Node A and thereby depends on
Node A. In case Node B is assigned to a di�erent computation unit i.e. processor, the
system must preserve the given ordering of both nodes. Otherwise Node B may be started
without Node A being �nished resulting in Node B termination violation. Such order may

22

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

be preserved via inter process activation concerning the process with Node A and explicit
synchronization points at Node A (set) and Node B (wait).
As stated previously, the partitioning considers DAGs: G = (V,E) , whereas V de-

�nes the set of vertices (nodes / runnables, ω(vi) = vertex i) and E de�nes the set of
edges (dependencies / RunnableSequencingConstraints). Each vertex is de�ned by its
computation cost (instruction cycles in terms of AMALTHEA) ω(vi). Such graphs can
be derived from task graphs as system-level descriptions. Edges in terms of AMALTHEA
are denoted as RunnableSequencingConstraints. Any edge e possesses a parent vp and
a child vc. However, RunnableSequencingConstraints provide further edge represen-
tation as stated in [2]. In case a node has no parent, it de�nes an entry node and a
node, which has no child is denoted as an exit node. The partitioning process assumes
communication cost between two nodes, which are assigned to the same task, to be zero.
Communication cost is derived from the label size, which the runnables access and that
de�nes the dependency between two runnables.
DAGs allow partial orderings to be derived from topological calculation such that

node A ⊆ node B i� A→ B, such that B depends on A. Furthermore, DAG structures
bene�t from signi�cantly faster algorithms compared with algorithms for arbitrary graphs
e.g. �nding the shortest path calculates in linear time within DAGs (O(|V | + |E|)) [8]
whereas the Dijkstra or the Bellman-ford algorithm for arbitrary graphs run in O(|V 2|)
[9] respectively O(|V | · |E|) [5] time.
In [8], several de�nitions are given upon graph data, which are used within the parti-

tioning plugin:

• span = length of the critical path

• work =
∑N

i=1RTvi with RTvi = runnable's instructions

• work law: TP ≥ T1
P , whereas TP is the complete runtime on a system with P

Processors and (T1 = sequential runtime)

• span law: TP ≥ T∞ → de�nes that the runtime of a system with P processors is
always ≥ the runtime on a system with an unlimited number of processors

• parallelism = T1
T∞

• slackness = T1
PT∞

(factor by which the parallelism exceeds the number of processors
in the system)

Amdahl's law de�nes that if a change improves a fraction f of the workload by a factor
K the total speedup is [4]:

Speedup =
Timebefore
Timeafter

=
1

f/K + (1− f)
(6.1)

This equation corresponds to the parallelism factor given in [8].
It is important to note that the runtime of a partitioned system not only depends

on the work and the span, but also on how many processors are available and how the

23

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

scheduler allocates partitions to processors. Furthermore, the more processors are used
beyond the parallelism value, the less perfect the speedup is [8].

6.1.2 Partitioning Introduction

Partitioning in�uences system performance. The more e�cient the partitioning process
forms computation sets distributed among computation units i.e. processors, the more
the systems bene�ts from meeting time restriction, energy demands or high performance
real time applications. These aspects are common topics of interest in almost all areas
of science and technology especially concerning the automotive research domain.
According to Foster [11], the partitioning step is intended to reveal parallel execution

opportunities of a problem by partitioning it into �ned-grained decompositions, providing
the greatest �exibility for parallel algorithms. However, it should be avoided to replicate
data or computations [1].
[14] lists a set of criteria which may be used to create tasks out of data-�ow graphs:

• Functions which are dependent on a speci�c I/O shall be a separate task, i.e. not
blocking other functions while waiting for input (addressed by the mapping process
in section 7)

• High-Priority functions shall be separate tasks (addressed by the mapping process
in section 7)

• Functions with a high amount of computations should be separate tasks with a low
priority

• Closely related functions should be merged into one task to prevent unnecessary
system overhead e.g. by context switches and/or data passing

• Periodic functions should be modeled as a separate task

Besides the fact that these guidelines were published in the mid-80s and focus on data-
�ow graphs, they still keep their signi�cance and may be applicable on other types of
software and behavioral models [1].
Most partitioning methods focus on equal computational loads across the partitions

and minimized communication between these partitions. In terms of DAGs, the cut sets
can be formed most likely focusing on two di�erent methodologies. On the one hand
a cut can be performed with horizontal orientation in order to form sets that compute
sequentially across iterations and di�erent iterations in parallel. On the other hand cuts
with vertical focus can form sets that can be computed in parallel for one iteration and
di�erent iterations sequentially. Figure 6.3 exposes the two di�erent cut methodologies
and corresponding processor scheduling.
The small indices indicate the computation iteration due to DAGs de�ne dependencies

within a system, which are executed consistently over time i.e. computed over several
iterations. The left i.e. horizontal cut method in �gure 6.3 shows that di�erent iterations
are computed at the same time slice (column). This method provides a great balanced

24

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Node A

Node C Node D

Node FNode E

Node G

Cut

Node B

Node H

Node A

Node C Node D

Node FNode E

Node G

Node B

Node H

Cut

Processor 2

Processor 1 A1, B1, C1, D1 A1, C1, E1, G1

B1, D1, F1, H1

A2, C2, E2, G2 A3, C3, E3, G3

B2, D2, F2, H2 B3, D3, F3, H3E1, F1, G1, H1

A2, B2, C2, D2A3, B3, C3, D3

E2, F2, G2, H2E3, F3, G3, H3

Figure 6.3: Two di�erent DAG cut methods

load but a delayed complete iteration calculation. In contrast, the right i.e. vertical cut
method provides early complete iteration calculation due to one iteration computation
of the complete graph being calculated in parallel. Each iteration is calculated in a
separated time slice (column). The vertical cut method is explored and evaluated within
the AMALTHEA partitioning approach whereas horizontal cut methodologies can be
investigated by further scheduling or mapping algorithms.
Besides ordering constraints, the following key performance overheads have to be con-

sidered:

• inter task control dependencies

• inter task data dependencies (register and memory)

• load imbalance

• serialization due to large tasks

Addressing these factors fundamentally a�ects the amount of exploited parallelism by
choosing the tasks. In some cases such problems are addressed by the system's compiler
due to their complex nature [18]. Nevertheless, the main cost functions for partitioning
purposes are performance, power, footprint and scalability (through con�guration).

6.1.3 Feature Introduction

Several features support the development of software for embedded multi-core systems
in context with partitioning within the AMALTHEA platform by providing methods for

25

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

activation analysis, label access analysis, cycle elimination, independent graph identi�-
cation, local graph partitioning and task number restriction based partitioning. These
features are able to adapt a software model and a constraints model for the purpose
of distributing software in an e�ective way, such that execution time and cross pro-
cess communication is minimized and load is distributed evenly among partitions. For
this purpose, runnable's activations (section 6.2.1) and label accesses (section 6.2.1)
are analyzed in order to create ProcessPrototypes within the software model and
RunnableSequencingConstraints within a new constraints model initially. At this de-
velopment stage, the ProcessPrototypes are used to group runnables by activations
and to facilitate AccessPrecedences. These AccessPrecedences are used to represent
dependency on the one hand but to keep the dependency invisible to graph analysis
on the other hand, in order to allow the edge's child node to work with older data for
bypassing cycles. Implementations in early system design phases, which are not yet com-
pleted at that time, can be veri�ed, structured and classi�ed by semantic and purpose
via such ProcessPrototypes. After the activation and label access analysis, directed
acyclic weighted graphs (DAWGs) are build via information given the software and the
constraints model, by using the JgraphT library. These graphs can be used in order
to distribute software among a multi-core system via analyzing the call graph (partial
orderings) and using algorithms to get the right order and parallelization of the elements
and dependencies. This results in new ProcessPrototypes respectively a �ner grained
model, which features a �rst e�ective utilization of parallel resources i.e. a reduction of
execution time.
Figure 6.4 depicts the con�guration dependent �le generation possibilities. Regarding

Activation Analysis

Label Analysis,
Cycle elimination

Label Analysis,
Cycle elimination

Activation
Analyis?

Global Graph
Partitioning?

Global Graph
Partitioning?

GGP

GGP

LGP / EDF?

LGP / EDF? LGP / EDF?

LGP / EDF?

AAGGPLGP AAGGPEDF

AALGP AAEDFLGP

LGP LGP

GGPLGP

LGP

LGP

yes

yes

yes

LGP

LGP LGP

LGP

no

no

EDF

EDF

no

EDF

EDF

AA

AALACD

LACD

GGPEDF

EDF

EDF EDF

EDF

EDF

Figure 6.4: con�guration dependent �le generation �ow chart

26

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

the democar example model ([12]) each con�guration path generates a model, which fea-
tures a di�erent exploitation of parallelism.
Rectangles �lled with diagonally lines (light blue) de�ne �les, which are generated,
whereas rectangles �lled with dashes (orange) de�ne operations, which are performed
within the path. The decisions among the graph, indicated by the rhombus objects,
access the con�guration parameters and thereby de�ne which operation (denoted within
orange rectangles) has to be performed. At the end, the user is able to con�gure the
partitioning in eight di�erent ways, whereas LACD or AA and AALACD �les are mandatorily
generated.

6.2 Implementation

6.2.1 Preliminary Features

In order to perform the actual partitioning on a DAWG (Directed Acyclic Weighted
Graph), various adaptions need to be performed on the given input formed by a set
of runnables with label accesses, instructions and activations. These adaptions create
ProcessPrototypes for grouping runnables by their activations (section 6.2.1), a con-
straints model with RunnableSequencingConstraints representing runnable dependen-
cies (section 6.2.1), AccessPrecedences for eliminating cycles within a graph (section
6.2.1) and ProcessPrototypes for identifying independent graphs (section 6.2.2).

Activation Analysis

Using industrial application abstractions, one realizes that runnables are given various
activation parameters. Typical for embedded software, code fragments are executed in
di�erent intervals due to timer, interrupts or events. Sensors or actuators for example
must often be read within short intervals for precise and accurate executions. Contrarily,
certain processing fragments independent from the system's stability can be executed at
greater intervals due to having less impact on the system's performance. Such activations
can either be referenced by tasks (that correspond the ProcessPrototypes) via the
stimulation model or by runnables via the software model. By assessing these model
entities and references, temporal classi�cation can be implied. These grouped runnables
can be seen in �gure 6.1, indicated by colored grouping (with respect to their activation).

Label Analysis

The next mandatory step in order to perform the partitioning is the analysis of each
runnable's label accesses. Detailed information about labels is given in [2]. The label
analysis comprises the comparison of read and write accesses of all runnables for identi-
fying dependencies. For example, in case runnable A writes a label and another runnable
B reads the same label, runnable B depends on runnable A. This dependency is saved as
a RunnableSequencingConstraint. A RunnableSequencingConstraint is the basis for
the DAG analysis and allows the determination of concurrency due to giving information

27

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

about fork and join dependencies respectively runnables that can be calculated in paral-
lel. Furthermore, the label analysis allows deriving memory structure via common data
accesses. The RunnableSequencingConstraints are stored within a new or an already
existing constraints model. The structure of a RunnableSequencingConstraint is given
in �gure 6.5.

A

B C

A B

A C

A

B

Figure 6.5: RunnableSequencingConstraints

Figure 6.5 shows a graph, consisting of three runnables on the left side and the cor-
responding RunnableSequencingConstraint constructs in the middle. For reasons of
simplicity, each dependency of a graph is modeled as a separate RunnableSequencing-

Constraint. Figure 6.5 also shows the corresponding model within the AMALTHEA
platform as a screenshot on the right side. Such a constraint possesses two groups, with
the source runnable in the �rst group and the target runnable in the second group.
At this point of development, the RunnableSequencingConstraints do not feature any
process scope (since no ProcessPrototypes are present at this time) nor other parame-
ters except the RunnableGroupEntry parameter "all of them", indicating, that all of the
runnable group's entries have to be called.

Cycle Elimination

The cycle elimination is a mandatory step for all subsequent methods and features.
Topological and graph theoretical calculations require DAWGs, such that a cycle elimi-
nation has to be performed in advance. The AMALTHEA partitioning approach features
directed graph cycle elimination via converting RunnableSequencingConstraints into
AccessPrecedences. This is used in order to retain a dependency and to tell later devel-
opment phases, that the AccessPrecedence's child node shall execute with values from
previous calculation iterations. A cycle may occur in case two runnables share the same
resource (label) in both directions, i.e. both runnables read and write the same label, or
in case runnable A reads label BA and writes label AB and runnable B reads label AB
and writes label BA. Furthermore, a cycle may be formed across multiple runnables. For
the purpose of �nding such cycles the JGraphT -library is used. After all cycles have been
identi�ed, a speci�c mechanism detects edges (dependencies), which occur in multiple
cycles. This mechanism iterates over edges within mutliple cycles descendingly, i.e. it
starts with an edge, which occurs in most cycles for ensuring minimal edge elimination. In
order to retain a dependency that has been selected for elimination, such edges are trans-
formed from a RunnableSequencingConstraint to an AccessPrecedence. Usually, in
industrial development, such AccessPrecedences are given from the OEM, respectively

28

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

the software developer, who is responsible for transmitting cycle free software. Hence,
this manual AccessPrecedence generation takes a lot of time and e�ort since there is no
explicit automation. This is where AMALTHEA highly bene�ts from the partitioning
plugin's cycle elimination. The current cycle elimination implementation works great
with smaller models without much e�ort. However, bigger models, featuring more than
a thousand runnables, often reveal structures, which take a lot of time for decomposition.
Various code optimizations shall be addressed in further work for industrial applicability.
After edge sharing cycles have been decomposed, all cycles, which do not share any

edges, have to be decomposed as well. For each of these cycles, an edge is identi�ed, that
provides an optimal retaining graph. Figure 6.6 outlines, how di�erent edge decomposi-
tions a�ect the resulting graph.

ITOS

HMI
Communicator

Mode
Coordinator

Temperature
Control

HVAC Flaps

Blower Control

Blower

ITOS

HMI
Communicator

Mode
Coordinator

Temperature
Control

HVAC Flaps

Blower Control

Blower

a)

b)

Figure 6.6: E�cient graph forming within cycle elimination

Figure 6.6 exposes two possible di�erent cycle elimination results of the HVAC model
at a speci�c development step. At that point of development, the HVAC model fea-
tures three bilateral communications, which constitute the lowest level of cycles. Red
transitions indicate edges, which are decomposed into AccessPrecedences for the cor-
responding solution. For illustration purposes, we assume equal execution time for each
runnable. The actual number of cycle elimination possibilities is 23 = 8, whereas 6
solutions are valid and two out of these six are shown in the �gure 6.6 as a) and b).
a) features a best minimal runtime for two tasks and b)features even a lower runtime
for three tasks. This assessment is made with respect to topological graph structure
respectively the span of a graph (Critical Path) compared with its parallelism.

6.2.2 Independent Graph Identi�cation

The independent graph identi�cation process, or sometimes also denoted as global graph
partitioning, can be executed after the cycle elimination in case the user selected the
corresponding entry in the con�gurations. This methodology looks for graphs or sin-
gle nodes, which do not access any label that other runnabels or graphs access as well.
Such methodology allows forming tasks, which can be totally distributed to either dif-
ferent cores or even to totally di�erent systems. Furthermore, such independent sections

29

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

can also be transformed into components, providing modularity and reusability. The
Democar example (see [12]) for instance features four independent graphs.

6.2.3 Local Graph Partitioning (LGP)

The LGP approach considers node weights (i.e. arbitrary computation) and partitions
DAWGs, whereas loads (weighted nodes) are equally distributed among an automati-
cally determined number of partitions (the prede�ned number of partitions approach is
described in section 6.2.4). The partitioning's objective is to reduce execution time and
inter task communication. The subsequent mapping methodology [16] further considers
resource constraints (availability of hardware and software resources namely program and
data memory).
As the LGP approach initially computes the critical path of a DAG, the following

de�nitions are outlined:
DEFINITION 1
A critical path of a task graph is a set of nodes and edges, forming a path from an entry
node to an exit node, of which the sum of computation costs and communication costs
is the maximum. [17]

DEFINITION 2
A critical path is a longest path through a DAG, corresponding to the longest time to
perform any sequence of jobs. Thus, the weight of a critical path provides a lower bound
on the total time to perform all the jobs. [8]

Mentioning both de�nitions here is important, because de�nition 1 explicitly expresses
the communication costs whereas de�nition 2 emphasizes on the fact, that the critical
path serves as the lower bound on the total graph's computation time.
According to the partitioning process, this critical path is assigned to the �rst parti-
tion and branches of the graph are subsequently assigned to additional partitions. The
approach has been chosen, because the critical path features mandatory sequential or-
dering, that can not be computed in parallel. However, another partitioning approach
could be possible, that does not feature the critical path, but horizontal cuts instead, as
stated in �gure 6.3 section 6.1.2. The following pseudo code illustrates the local graph
partitioning algorithm:

1 Sort Nodes topologically and gain information about earliest initial time (eit) and
latest initial time (lit)

2 Let T denote the set of tasks
3 Determine the graph’s critical path CP and assign it to the first task t in T
4 Let U denote all unassigned nodes
5 WHILE U is not empty
6 create task tx, set tt=0;
7 WHILE taskTime tt < CPTime
8 let an denote the set of assignable nodes according to tt and each node’s

timeframe
9 SWITCH an.size

10 CASE 0:
11 No assignable node → increase tt to eit of the next applicable node
12 CASE 1:
13 Assign the node (an[0]) to t and remove it from U
14 CASE >1:

30

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

15 let co denote the set of communication overheads of each node in an
16 let ts denote the set of timeslices, that each node is applicable to
17 determine the most effective node men in an, thats co value is small and

ts is most restricted according to eit and lit
18 assign men to t, increase tt correspondingly and remove men from U
19 ENDSWITCH
20 ENDWHILE
21 ENDWHILE

Listing 6.1: Pseudocode for local graph partitioning algorithm

The algorithm shown in listing 6.1 iterates among unassigned nodes (line 5) and time
slots (line 7). For each iteration, nodes (runnables) are identi�ed, that can be assigned
to the speci�c time slot according to the ordering constraints (line 8). Afterwards, in
lines 9 to 18, either the time slot is increased in case no node is assignable (lines 10-11),
the only assignable node is assigned to the task (lines 12-13), or one node out of the
previously calculated set of nodes is identi�ed as the most e�ective node and assigned to
the current task (lines 14-18). In the latter case, the determination of the most e�ective
assignable node is done with regard to the node's communication overhead (line 15) and
the time frame each nodes is assignable to (line 16).
In order to comprehend the node's time frame consideration process, an example shall
give a better understanding. We assume that at time slot t=1 nodes A, B, and C are
assignable. The node's time frames are: TFA = {1− 4}, TFB = {1− 3}, TFC = {1− 1}
and the weights are WA = 5,WB = 1,WC = 2. Due to each node is assignable to task
time 1, the algorithm selects node C initially, because its time frame is most restricted
(line 16-17). Afterwards, at task time 3, nodes A and B are still applicable and node B is
chosen again because of its time frame restriction. The result would be C −BA−−−−
(whereas the dashes indicate the previous node's execution).
In order to get the node's time frames, each node (runnable) is given an earliest initial
time eit and a latest initial time lit (line 1 in listing 6.1). At this point it is important
to mention, that lit requires a critical path, whereas eit does not. This requirement
is caused by the fact that the latest initial time refers to the critical path and can not be
computed without it. The necessity of a critical path for the determination of a node's
latest initial time respectively the calculation of G4lit, requires the critical path time as
shown in equation 6.3.

B3

G5
F2

H3

I2

E1

A1
C4

D9

J4

Figure 6.7: DAWG with 9 nodes

Figure 6.7 exposes the graph G = {A1, B2, C4, D9, E1, F2, G5, H3, I2, J4} with CP =⊂

31

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

G = {D9, J4} whereas the values after each notations also describes the node's weight
i.e. B3 features weight 3. The weight of a node is also indicated by the node's height.
For instance we want to calculate F2's eit and lit values. Eit is calculated with
regard to B3 only, that features a runtime of 3. So B3 consumes slots 0 − 2 such that
F2 can be started at the earliest slot of 3 due to the just mentioned runtime of B3. In
other words, with LPPRT () describing the longest parent path runtime we get:

F2eit = LPPRT (F2) =
n∑

i=1

RT (vLPPi) = RTB3 = 3 (6.2)

Since vertex F2 just features I2 as a child vertex, its lit value is calculated via

F2lit = CPtime− LSPRT (F2)−RTF2 = CPtime−
n∑

i=1

RT (vLSPi)−RTF2

= 13− 2− 2 = 9

(6.3)

whereas LSPRT () de�nes the longest succeeding path runtime. With these values, we
can say, that F2 can be started between time slots 3 and 9. By means of these values,
the algorithm determines which set of vertices shall be assigned to additional tasks in
what order. Having the algorithm performed on the graph shown in �gure 6.7, the result
looks like �gure 6.8.

D9

J4

B3

C4

E1
H3

I2

A1

G5

F2

task1 task2 task3

time

0

9

13

Figure 6.8: LGP Gantt chart result on example DAWG 6.7

Three tasks are shown in �gure 6.8 horizontally, whereas time proceeds vertically top
down. The LGP approach features minimal runtime due to critical path consideration,
but also a possible high amount of partitions. Depending on the graph structure, the LGP
always determines the number of tasks automatically, so that a task number restriction is
not possible. However, for task number restriction, the following section 6.2.4 describes
an implemented alternative to the LGP approach.
To sum up, the local graph partitioning approach features a theoretically optimal load
balancing among automatically generated partitions, which can be computed in parallel
with respect to ordering constraints. The optimal parallelism is achieved through a
unbounded number of tasks within this approach.

32

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

6.2.4 Earliest Deadline First Partitioning

The EDF partitioning was developed for allowing the user to restrict the number of tasks.
This may be important and useful in very large systems in order to keep the task creation
and task inter communication costs low. The EDF partitioning balances runnables across
partitions with respect to their logical orders expressed by the following pseudo code:

1 Let R denote the set of all runnables
2 Let T denote the set of tasks (+init)
3 Let A denote the set of assigned nodes
4 WHILE A.size < R.size
5 let edr denote the runnable with lowest eit
6 let tdi denote the indices of tasks, that edr is dependent of
7 SWITCH (tdi)
8 CASE 0:
9 assign edr to task, that features the lowest tt / utilization

10 CASE 1:
11 assign edr to task, that edr is dependent to
12 CASE >1:
13 assign edr to task with latest dependency
14 ENDSWITCH
15 ENDWHILE

Listing 6.2: Pseudocode for partitioning algorithm

The pseudo code in listing 6.2 exposes the mechanism of assigning a set of runnables
to a given number of tasks with respect to their logical orders. A speci�c feature of
the implementation is the consideration of runnables' time frames. The time frame
calculation is already expressed in section 6.2.3. This has been developed in order to not
randomly distribute the runnables, but taking orderings and inter communications into
account in a way, that the load is distributed most evenly. Line 5 determines the (earliest)
unassigned node. Line 6 expresses the task dependency determination. Therefore, all
current node's parents are compared with each latest assigned node at each task. In case
a parent equals a last task's node, lines 7-14 de�ne to which task the node is assigned to.
For illustration purpose, the example in �gure 6.7 shall be EDF partitioned into two
partitions featuring as even loads as possible. Working through the pseudo code with
this example, the algorithm starts with assigning (edr=)A1 to the �rst task, as it features
the earliest initial time (eitA) of 0 (lines 8 and 11 in listing 6.2). However nodes B3, C4
and D9 feature the same eit, but are not selected due to their longer runtime. Afterwards
B3 is detected in line 8 (eitB=0) and assigned to the second task. The next two iterations
assign C4 and D9 to tasks one and two again via line 11 in listing 6.2. The �fth iteration
detects E1 as the node with the lowest eit = 1. Its parent (A1) it not located at the
last time frame at any task, so E1 is assigned to task one, featuring the lower utilization
(5 instead of 12 at task two). Iterations 6 to 10 assign F2 to I2 to the task with lowest
utilization correspondingly due to the same reason compared with E1. The �nal result
is shown in �gure 6.9.
However using the EDF partitioning approach for de�ning three tasks the result is shown
in �gure 6.10.
Figure 6.10 denotes a special case as node I2 is assigned to task two instead of task three,
since it provides dependencies to nodes F2 and H3 at task two but only to G5 at task
three. This fact will be executed by line 13 in listing 6.2. Comparing this result with the

33

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

A1

C4

E1
F2

G5

J4

B3

D9

H3

I2

task2task1

time

0

8

13

17

Figure 6.9: EDF 2 Gantt chart result

A1
B3 C4

D9
E1
F2

G5
H3

J4
I2

task1 task2 task3
0

10

1

14 time

Figure 6.10: EDF 3 Gantt chart result

LGP result shown in �gure 6.8, an increased overall runtime of one slot (by task one)
but though less inter communication can be realized.
A special case occurs, when the activation analysis created two ProcessPrototypes for

instance, and the user wants three tasks to be created. In that case, the EDF partitioning
approach is able to determine, which of the two existing ProcessPrototypes features
more work or more parallelization potential and selects the activation Prototype for EDF
partitioning correspondingly.
To sum up, the EDF partitioning approach features an e�ective load balancing among

a given number of tasks with respect to node's ordering constraints.

6.2.5 Other Features

Besides the features described in the previous sections, the partitioning plugin provides
further features in order to enable visualization and con�guration to the user.

34

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Con�guration

Figure 6.11 shows the partitioning's con�guration panel within the AMALTHEA plat-
form.

Figure 6.11: AMALTHEA partitioning con�guration panel

The partitioning's con�guration panel shown in �gure 6.11 allows the user to select the
di�erent previously described features in order to generate �les according to paths in
�gure 6.4. Two editor �elds provide the de�nition of the number of tasks (only integer
values are valid, that is veri�ed during entering) that automatically enables the EDF
partitioning approach (LGP is performed if this �eld is 0) on the one hand, and the
de�nition of the output folder on the other hand. For future work, this con�guration
shall be combined with other AMALTHEA speci�c con�gurations, such as the mapping
or the tracing con�gurations.

Applet Generation

The Applet generation is a speci�c command, which calls writeApplet.java instead
of partitioningManager.java class. This class uses simple bu�ered writer object in
order to generate a java class, which can be started as an applet with the help of the
JgraphT library. For this purpose, two methods append static text to the generated
class and other methods append dynamic text according to the read software and con-
straints model. These dynamic parts address JgraphT speci�c method calls, such as ad-
dVertex(name), addEdge(name) and positionVertexAt(Vertex, x,y). The last part
(positionVertexAt(Vertex, x,y)) features a speci�c mechanism, since x and y coordi-
nates have to be generated in a way, that the applet provides a reasonable visualization.
For that purpose, the generation uses global counters in combination with multipliers,
which adjust their value with regard to the node's topological sorting.

35

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

The basic bene�t of an applet, compared with a Graphviz �le, is the ability to manually
edit the visualization within the applet viewer. Graphviz does not provide such editing
within the viewer.

Figure 6.12: Applet visualization

An example Applet can be seen in �gure 6.12 that expresses the HVAC demonstrator as
described in [?].

TA Input Generation

This TA input �le generation feature focuses on a constraints model approach, which
features a di�erent dependency representation compared with the result from the la-
bel analysis from section 6.2.1, that always features two RunnableGroups with each one
RunnableGroupEntry entity within a RunnableSequencingConstraint. The approach can
be adapted to feature more RunnableGroups and more RunnableGroupEntries and a less
amount of RunnableSequencingConstraints, derived from the same graph. An example
is expressed in �gure 6.13.

C

D

A

B

H

E

IF G

J

A B,J,F

B C,G

C D

F,G,D,H,I E

Figure 6.13: TA �exible RSC generation

Whereas the current implementation features a separate RunnableSequencingConstraint

36

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

for each arrow (edge / dependency) of �gure's 6.13 graph (11 RunnableSequencingCon-

straints), the RunnableSequencingConstraints above the graph (4 RunnableSequenc-
ingConstraints) reveal the more compact approach. The generation has already been
successfully implemented, although the reuse of such an approach requires various mech-
anisms and adaptions in order to cover more �exibility according to distributing the
nodes. Since the nodes in the group must be executed in the order of the group, re-
garding the top left RunnableSequencingConstraint in �gure 6.13, node A has to be
executed before B,J, and F. The runnable-order-type property and the process scope ref-
erence can be set accordingly. The order types are already discussed in [2]. With the help
of this generation the graph structure can be analyzed and optimized using industrial
optimization tools like the TA toolsuite.

Source Model Element Description

SW Runnable Runnables will be distributed among ProcessProto-

types based on their Instructions and LabelAccess

attributes

Activation The activation speci�es the recurrence of the
Runnable. The lowest recurrence is used to specify the
overall deadline of all Runnables, i.e. the max amount
of time for the sum of all Runnable executions

Process-

Prototype

Des�nes raw data of a task. Is used for partitioning
process, refers activations and features TaskRunnable-
Calls referring runnables.

Label De�ne values or memory structures, which runnables
can access. Accesses to Labels are used for Runnable-
Sequencing-Constraint generation

Constraints Process-

Runnable-

Group

Runnable-

Sequencing-

Constraint

Are used to determine the executional order of the
Runnables as well as their interdependencies

Stimulation Activation Maybe referenced by Tasks. Used for grouping
Runnables

Table 6.1: Processed information by partitioning strategy for minimizing execution time

37

7 Mapping

One of the essential steps during embedded software development for multi-core plat-
forms is the mapping from elements of the software to elements of the hardware, e.g.
Tasks to Schedulers, Labels to Memorys etc. This is usually a non trivial task, as an in-
�nite number of combinations arises if either the software or the hardware becomes very
complex. The purpose of AMALTHEAs Mapping Plugin is to determine such a mapping
and store it in a Mapping Model which will contain the allocations of elements of the
Software Model to elements of the Hardware Model.
This is chapter is structured as followed: The �rst section provides an overview about

the concept behind the mapping plugin. Section 7.2 contains details about the imple-
mentation and its algorithms. Last but not least, instructions how to utilize the plugin,
as well as a detailed walkthrough based on AMALTHEAs HVAC example, are given in
Section 7.3.

7.1 Concept

The conceptual implementation of AMALTHEAs Mapping Plugin is shown in Figure
7.1. As shown in the top of this �gure, it requires several models to operate. The
models for Software, Hardware and Constraints are mandatory while the Property
Constraints Model is optional.
Using AMALTHEAs Mapping Plugin, the user is able to choose between di�erent

mapping strategies. Currently these strategies are split into two categories: Heuristic
methods and Integer Linear Programming (ILP) based methods. Unlike ILP based meth-
ods, Heuristic methods, such as the Heuristic Data Flow Graph (DFG) load balancing,
will immediately create a mapping.
ILP based methods on the other hand will �rst need to generate an ILP model of

the mapping problem according to the selected mapping strategy, e.g. ILP based load
balancing or Energy aware mapping. Once the ILP model has been created, it will be
solved by one of the mathematical Solvers. Currently, the open source project Oj!Algo1

has been used in AMALTHEAs Mapping Plugin. Furthermore, the user can activate an
optional MPS generator, which will generate an MPS �le containing the ILP problem.
This �le may be used to solve the ILP problem by external (e.g. commercial) solvers,
which tend to be more e�cient in solving larger models compared to open source Java
implementations.
Once a mapping has been determined, it is displayed within the eclipse console and

following output models are generated:

1Oj!Algorithms, licensed under the MIT license, see: http://ojalgo.org

38

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

• Mapping Model, containing the allocations from Tasks to Schedulers

• OS Model, containing the Schedulers for each Core

• Stimuli Model, containing the Stimuli for the resp. Runnable and Task activa-
tions

Figure 7.1: Concept of the AMALTHEAs Mapping Plugin

39

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

7.2 Implementation

The following subsections give a short introduction about the di�erent algorithm imple-
mentations of AMALTHEAs Mapping Plugin. Section 7.2.1 describes the task generation
method which is used to convert process prototypes into tasks. It is meant to be used by
mapping algorithms which do not feature task generation by themselves. Sections 7.2.2
and 7.2.3 describe a heuristic and a mathematical load balancing approach for mapping
of tasks to cores. Last but not least, a more complex method for energy e�cient task
mapping with its own task creation algorithm is outlined in section 7.2.4.

7.2.1 Task generation

The task generation method in AMALTHEAs Mapping Plugin is a pragmatic way to
create tasks for other mapping algorithms which require Tasks, i.e. are not designed to
agglomerate Runnables into Tasks on their own. This step utilizes ProcessPrototypes
which are generated by the partitioning plugin (see Chapter 6) and transforms them into
Tasks. Furthermore, it will also create the Stimuli Model which contains the activation
elements for the Tasks, i.e. Periodic. An overview about the transformed elements and
their sources as well as destinations is shown in Table 7.1.

Source
Model

Source Element Target
Model

Target Element

SW ProcessPrototype SW Task

SW Activation Stimuli Stimulus

Constraints ProcessRunnableGroupEntry SW TaskRunnableCall

Table 7.1: Transformations performed by task generation algorithm

7.2.2 Mapping Strategy 1: Heuristic DFG load balancing

The Heuristic Data Flow Graph (DFG) load balancing algorithm aims at achieving an
equal utilization of a hardware platforms cores for DFG based software models.
The �rst step in this algorithm is to determine the most complex Task (usually rep-

resenting the critical path) and allocate it to the best �t core of a hardware platform.
The runtime for each Task will now be estimated for every Core within the System and
allocated to a Core which has the smallest increase of the longest overall runtime within
all cores.
One of the major bene�ts of this algorithm is its very low runtime. The information

which is processed by this mapping strategy and, as such, has to be present in the input
models, is shown in table 7.2.

40

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

7.2.3 Mapping Strategy 2: ILP based load balancing

A comparatively simple ILP based strategy to allocate tasks to processors while min-
imizing the total execution time is presented in [10]. This method supports multiple
processors with the same processing speed (e.g. homogeneous processors) and it does
not consider any dependencies between the tasks (e.g. waiting for the results of the
predecessor).
As described by the author, load balancing within this method is achieved by mini-

mizing the highest execution duration Cmax of all m processing units with n tasks (see
eq. 7.1 and 7.2). The variable xij is set to 1 if a task j is allocated to processor i and 0
otherwise. Eq. 7.3 guarantees that each task is allocated to exactly one processor while
7.4 limits variables xij type to boolean values. The duration of a task j is speci�ed by
pj .

minimize Cmax (7.1)

subject to
n∑

j=1

xijpj ≤ Cmax, i = 1, . . . , n (7.2)

m∑
i=1

xij = 1, j = 1, . . . , n (7.3)

xij ∈ 0, 1 (7.4)

One of the downsides in this algorithm is caused by pj in eq. 7.2 which forces an equal
processing duration of a task j on all cores. It is however possible to expand the method
to support heterogeneous processors (in this case: processors with di�erent processing
speeds) with a minor modi�cation2: replacing pj with pij , i.e. a separate processing
duration of task j for every core i, will solve this problem.
The minimal amount of information which is required to execute this algorithm is

outlined in Table 7.2.

7.2.4 Mapping Strategy 3: Minimizing Energy Consumption

This mapping algorithm is based on the work �Task Scheduling and Voltage Selection
for Energy Minimization� from Zhang et al. which presents a framework which aims at
minimizing the energy consumption of variable voltage processors executing real time
dependent tasks. This method is implemented as a two phase approach which integrates

• Task assignment: allocating each task to a core

• Task ordering: ordering the tasks in due consideration of their constraints and
deadlines

• Voltage selection: selecting a slower but less energy consuming processor mode
in order to save energy without harming any constraints or deadlines

2Mentioned, among others, in [15]

41

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Source Model Element Description

HW Core A Core represents the target of an allocation, an OS
Model with a Scheduler for each Core will be gener-
ated.

CoreType

Prescaler

Quartz

A Cores Prescaler, the referenced Quartz and the
CoreTypes attribute CyclesPerTick of a Core are used
to determine the number of processed Instructions

per second.

SW Task Tasks will be allocated to a Core (over the Cores
Scheduler)

Runnable Runnables are derived from a Tasks TaskRunnable-

Calls, their attribute Instructions is used during
the load calculation for each Core

Stimuli Stimulus

(Periodic)
The Periodic Stimulus is used to specify the Tasks
activation rate, i.e. the period between its calls

Table 7.2: Processed information by heuristic DFG and ILP load balancing

In the �rst phase, opportunities for energy minimization are revealed by ordering real-
time dependent tasks and assigning them to processors on the respective target platform.

• On single processor platforms, the ordering of tasks is performed by applying
an Earliest Deadline First (EDF) scheduling. An further allocation of tasks to
processors becomes needless, as only one allocation target exists.

• On multi processor platforms, a priority based task ordering is performed. The
allocation of tasks to processors is determined by a best �t processor assignment.

Once the scheduling is created, there will be time frames between the end of one task
and the start of another during which the processor is not being utilized (so called slacks).
These slacks the prerequisites for the second phase, which performs the voltage selection.
This phase aims at determining the resp. (optimal) processor voltage for each of its task
executions without harming the constraints and eventually minimizing the total energy
consumption of the system. In order to determine these voltages, the task scheduling
is transformed into a directed acyclic graph (DAG) that is used to model the selection
problem as integer programming (IP) problem. Once the model has been set up, it is
optimized by a mathematical solver.
This algorithm has been implemented with two constraints:

• Only multi-core systems may be chosen as target platform, single core is not sup-
ported.

• The algorithm is not meant to be used on heterogeneous cores, i.e. only multiple
instances of the same type of core are supported.

42

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Table 7.3 lists the minimal amount of information which has to be present in the input
models in order for this mapping strategy to work as well the special annotations which
are added to the mapping model.

7.3 Utilization of the AMALTHEAs Mapping Plugin

This section provides information on the utilization of the AMALTHEA Mapping Plugin,
i.e. its con�guration (section 7.3.1) and how to generate mappings (section 7.3.2).

7.3.1 Con�guration and Preferences

Figure 7.2: AMALTHEA Mapping Plugin's Preferences Page

The con�guration of AMALTHEAs Mapping Plugin can be performed through its pref-
erences page (see Figure 7.2). It is integrated into the AMALTHEA Tool Platform and
can be accessed through the menu bar under `Window'→ `Preferences'→ `AMALTHEA
Mapping'. The con�gurable �elds, their types and their descriptions are listed below.

43

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Enabling verbose logging

Checking the box `Enable verbose logging to console' will enable verbose logging to
stdout. This may help to identify problems if the mapping plugin should fail to generate
a mapping.

Specifying the output location

The radio buttons under `Select output location' allow to customize the directory
which where newly generated �les will be placed into.

• Default location speci�es the `output' directory within the respective projects
root folder as destination for all new generated �les.

• Custom location (relative to project root) will ensure that all new �les are
created in a custom directory of the respective projects root folder. The name of
this custom directory can be customized by changing the value in the text �eld
below the radio buttons.

• Custom location (absolute path) allows the user to specify a full custom desti-
nation for new generated �les. The destination can be speci�ed by either changing
the value of the text �eld below the radio buttons, or by using the "Select" button.

Hint: It should be noted, that using this option will NOT update the project explorers
folder list once the mapping is �nished. It should be avoided to use this option in
combination with a target location within the eclipse workspace.

Selecting a mapping algorithm

The radio buttons within `Select mapping algorithm' allow to customize the mapping
strategy which should be applied during the mapping process. Currently, there are three
valid options:

• Load balancing for DFG, described in section 7.2.2

• ILP based load balancing, described in section 7.2.3

• Energy e�cient mapping, described in section 7.2.4

Con�guring Mathematical Solver

Hint: The settings described in this section only a�ect ILP based algorithms!
The section Solver Settings allows to con�gure the solver which is used to approxi-

mate the ILP problems, specify the minimal accuracy of the found solution and activate
the MPS �le output of the - ready to solve - ILP problem.

• Generate MPS �le will activate MPS �le generation. The resulting MPS �le will
contain the actual ILP problem for the chosen mapping strategy.

44

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

• Max. Gap speci�es the maximal gap (percentage) between the LP relaxion and
a feasible solution before the solver considers it to be optimal.
Setting this value to 0.0 will order to solver to continue until either the �nal solution
reaches the same value as the LP relaxion or another limit (below) has been reached
while 1.0 will consider the �rst feasible solution being optimal.
Valid values: 0.0− 1.0

Furthermore, it is possible to specify the maximum number of iterations or time spend
on �nding an optimal solution.

• Max. Iterations (Abort) speci�es the maximal total number of iterations which
may be performed by the approximation algorithm in order to �nd an optimal
solution for the ILP problem.

• Max. Time (Abort) speci�es the maximal total amount of time (milliseconds)
that may be spend by the approximation algorithm in order to �nd an optimal
solution for the ILP problem.

• Max. Iteration (Su�ce) speci�es the maximal number of iterations which may
be performed by the approximation algorithm in order to improve a previously
found feasible solution.

• Max. Time (Su�ce) speci�es the maximal amount of time (milliseconds) that
may be spend by the approximation algorithm in order to improve a previously
found feasible solution.

Setting one of these values to zero will pass the value of INT_MAX to the solver,
technically removing the respective constraint.

7.3.2 Generating a mapping

Depending on the selected mapping strategy, it may be required to create tasks in advance
of the mapping algorithm. The method `Create Tasks', which is accessible through the
AMALTHEA Software Models �le context menu (right click on ∗.amxmi and ∗.amxmi-sw
�les), is capable of transforming partitioned3 software models into software models with
tasks.
The mapping can be performed once input models with the required amount of in-

formation are present4. Opening the context menu again (right click on ∗.amxmi and
∗.amxmi-sw �les) and selecting `Perform Mapping' will open the `Perform Mapping
GUI' (see Figure 7.3).
The �elds within the GUI are described below.

3A detailed guide on partitioning a model is available in Chapter 6
4see section 7.2 for detailed information about the mapping strategies and their required amount of
information

45

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 7.3: Perform Mapping GUI

• Name of the Project is automatically �lled and based on the selected software
model. This value is used to specify the base name of the output �les and may be
customized.

• Path to Software Model points to the location of the �le containing the AMALTHEA
Software Model which will be used during the mapping process. This path is au-
tomatically set, but may be changed if desired.

• Path to Hardware Model points to the location of the �le containing the
AMALTHEA Hardware Model which will be used during the mapping process.

46

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Source Model Element Description

HW Core A Core represents the target of an allocation, an OS
Model with a Scheduler for each Core will be gener-
ated.

CoreType

Prescaler

Quartz

A Cores Prescaler, the referenced Quartz and the
CoreTypes attribute CyclesPerTick of a Core are used
to determine the number of processed Instructions

per second.

The CoreTypes attributes (DoubleValue) starting
with the label EnEf-Volt_{SomeID} and EnEf-
Scale_{SomeID} are used to specify the voltage levels,
i.e. the performance of a core during a speci�c voltage.
Example: The attributes (values are in brackets)
EnEf-Volt_HIGH (1.15), EnEf-Scale_HIGH (1.0),
EnEf-Volt_LOW (1.05) and EnEf-Scale_LOW (0.5)
specify the two voltage levels
high with 1.15 Volt and full performance (Scale 1.0)
and
low with 1.05 Volt and half performance (Scale 0.5)

SW Runnable Runnables will be distributed on the Cores (over the
Cores Scheduler), their attribute Instructions is
used during the load calculation for each Core

Activation

(Periodic)
The Periodic activation speci�es the recurrence of the
Runnable. The lowest recurrence is used to specify the
overall deadline of all Runnables, i.e. the max amount
of time for the sum of all Runnable executions.

Constraints Process-

Runnable-

Group

Runnable-

Sequencing-

Constraint

Are used to determine the executional order of the
Runnables as well as their interdependencies

Mapping Runnable-

Allocation

Custom-

Property

LongValue

Speci�es the selected voltage level and the number of
ExecutionCycles at this voltage level. The annota-
tion is de�ned as followed:
Key: EnEf-VoltageLevel_{SomeID} (String)
Val: No. of the Runnables cycles at this voltage level
(long)

Table 7.3: Processed information by mapping strategy for minimizing energy
consumption

47

8 Building

This chapter describes how the outputs of the previous steps are processed in order to
build an executable, which runs on a multi-core target platform. Two main steps are
addressed in AMALTHEA. First, generating code from the architectural models, and
second, generating an OSEK con�guration.

8.1 Concept

The previous chapters have shown the modeling of software architecture and behavior
(Chapter 5), the subsequent partitioning of runnables into tasks (Chapter 6), and the
mapping of tasks onto cores (Chapter 7).

Figure 8.1: Overview building and integration process

48

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Two remaining main jobs have to be done before the �nal creation, i.e., compiling and
linking, of the binary �les can be started:

• the generation of code and header �les implementing the information contained in
the component model,

• the con�guration and generation of an operating system for managing and schedul-
ing the execution of the tasks on the target.

The overall building process is depicted in Figure 8.1. A system generator (described
in Section 8.2.1) generates code and header �les for the component behavior, the system
data structure and APIs for the access to this structure. An OSEK generator or, to
be more precise, an OSEK con�guration generator (described in Section 8.2.2) creates
the main �les for both cores and the con�guration �le for the OSEK. Out of these, in a
preprocessing step typical for all OSEKs, additional source �les are generated. The source
�les, including those who implement the functionality, are then compiled and linked. In
the case of the HVAC demonstrator the OSEK is the Erika Enterprise operating system
with the Eclipse-based tool RT-Druid [19]. RT-Druid executes the preprocessing step
and the �nal compilation.
The resulting ELF �les can be �ashed onto the target processor. Also shown in Figure

8.1 is the possibility to trace software events on the running hardware. This is further
elaborated in the following chapter.
The interactions between the artifacts generated in the processes described above are

shown in Figure 8.1.
The operating system manages the tasks by scheduling them. From within each task

runnables are called which implement the internal behavior of one or more components.
This behavior consists mainly of calling the APIs for read and write accesses to the
system data structure (resp. the port accesses of the component) an calls of functions
who work on this data, i.e. the actual functionality.

8.2 Implementation

8.2.1 System Generator

In Chapter 5 it has already been explained, how the architecture of an embedded multi-
core system is modeled with the YAKINDU CoMo component model. This system model
is used by the YAKINDU System Generator to generate the source code for a CoMo
system with the C programming language. The generator is a commercial development
of the AMALTHEA project partner itemis and not part of the published tool chain.
A feature of the generated system code is the independence of the operating system on

which it should run. It serves as a system API which can be used by operating system
speci�c elements.
The generator creates a header-�le for each type of component used in the system.

Within the header-�le for each component-port corresponding interface-functions are
de�ned, which can be used in the implementation of the component to retrieve data from

49

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 8.2: Example function and API calls between component behaviors, system, and
OSEK

the system or to write data into the system. The amount and type of these interface-
functions depends on the port type ('providing' or 'requiring') and on the elements within
the referenced Franca IDL interfaces. In addition for each behavior of a component
a function is created by the generator in which the actual functionality or behavior
must be implemented. This implementation can exchange data with the system via the
aforementioned interface-functions of the ports.
For a YAKINDU CoMo system, the generator creates a header- and a source-�le.

Within these �les the basic system data structures are de�ned and the previously men-
tioned interface-functions of the components ports are implemented, which provides the
accessibility to the system data structures for the components.
In addition, for each behavior of a component a corresponding function is generated.

For example these functions can be called from an operating system task. Furthermore
for Franca broadcasts appropriate callback functions are generated, which can be used
to map the Franca IDL broadcasts to operating system events. This approach makes it
possible to trigger the execution of a behavior by an operating system event.
In case of the HVAC demonstrator the operating system code, generated by the OSEK

generator, uses the CoMo system code by executing the behavior functions of the com-
ponents within respective OSEK tasks.

50

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

8.2.2 OSEK Generator

The OSEK Generator produces an OIL �le from the software model. OIL stands for
OSEK Implementation Language and is used to describe an OSEK operating system
con�guration. The OIL language employs objects to con�gure the di�erent elements of
the operating system. Table 8.1 shows these objects and their transformation from the
AMALTHEA models.

OSEK AMALTHEA

CPU Base container for all OSEK de�nitions. A special MAS-
TER_CPU de�nition is used to de�ne the master core. Addi-
tionally for each core from the target hardware, a CPU_DATA
object has to be set.

OS De�nitions of the operating system. For the Erika Enterprise OS,
several EE_OPT objects are used to de�ne the proprietary ele-
ments of the operating system.

APPMODE De�nes di�erent running modes for the operating system. There
is no special con�guration from the AMALTHEA models. This
object is user-de�ned.

ISR ISRs (Interrupt Service Routines) from the mapping model, refer-
enced in the software model. ISRs are derived from Process.

RESOURCE A resource can be used from a task. Resources can be mapped
from semaphores.

TASK Tasks from the mapping model are referenced from the software
model.

COUNTER A counter is a hardware or software tick-source for alarms. Counter
are represented through a stimulus form the stimulus model.

EVENT The event model supports several Events, for example Proces-

sEvent to activate a process. Events are in the software model
de�ned as OS Events.

ALARM Alarms base on counters and can activate a task set, an alarm, or
call an alarm callback routine. Alarms are set in the CallSequence
of a task in the software model.

Table 8.1: OIL-AMALTHEA Mapping

The con�guration is generated for the Erika Enterprise OSEK operating system. Input
to the OSEK Generator is a template which contains non-standardized, general de�ni-
tions speci�c to this operating system, which has to be written by hand. The OSEK
Generator adds all the speci�c information, which is related to the software system that
is build. In particular, the tasks generated in the partitioning process are transformed
into OSEK tasks.

51

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

The target system has two cores. Each core has to be de�ned for the Erika Enterprise
operating system. The following listing 8.1 shows the core de�nitions in the OIL �le.

1 CPU_DATA = PPCE200ZX {

2 ID = "master ";

3 MODEL = E200Z6;

4 APP_SRC = "master.c";

5 ...

6 };

7

8 CPU_DATA = PPCE200ZX {

9 MODEL = E200Z0;

10 ID = "slave";

11 APP_SRC = "slave.c";

12 ...

13 };

Listing 8.1: Core De�nition in OIL

Additionally, there is a mapping for the used source �les. These �les are generated by
the OSEK generator and contain the tasks with the respective runnables generated from
the CallSequence.
The tasks are mapped to a scheduler which is referenced in the hardware model. Figure

8.3 illustrates a mapping from a task to a scheduler. Then, a scheduler in the hardware
model is associated to a core from the target platform.

Figure 8.3: Mapping of Task to Scheduler

Listing 8.2 shows a generated OSEK task in the OIL �le. The task contains an assign-
ment to the core on which the task should run (CPU_ID).

1 TASK Task_CP0 {

2 CPU_ID = "master ";

3 PRIORITY = 0;

4 AUTOSTART = FALSE;

52

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

5 STACK = SHARED;

6 ACTIVATION = 0;

7 SCHEDULE = NON;

8 };

Listing 8.2: Generated Task in OIL

53

9 Tracing

In the following chapter the tracing will be explained. Tracing is the concept of recording
the software behavior of an embedded system during runtime.

9.1 Concept

In AMALTHEA, the tracing procedure typically follows four major steps:

• Recording trace data at runtime

• Save traces in Hardware Trace Format (HTF)

• Trace conversion from HTF to OT1

• Analyze with TA-Toolsuite

For the representation of the recorded tracing information, the Hardware Trace Format
(HTF) is used. More detailed information on the HTF is given below.

9.1.1 Hardware Trace Format

The HTF (Hardware Trace Format) is a result of the AMALTHEA project. It is a
compact trace format for the tracing of events on embedded systems, including multi-core
systems. Its binary representation shortens the execution time of the tracing instructions
and improves the storage e�ciency of the tracing data on the target system, compared
to other trace formats. On the host system, the target traces can be saved in a *.htf �le
without the need for any extra conversion. Still, it is compatible to other trace formats
(e.g. BTF1, OT12), so a conversion into these formats is possible.
HTF �les are divided into three sections. The �rst part is the header where meta data

can be found. Exemplary parameters are the creation date, a description and the target
system name. In the second section, reference tables are de�ned. These tables represent
the association between the recorded events and the AMALTHEA software components.
Every table entry consists of a speci�c hex value and a textual description. Subsequently,
reference tables allow the interpretation of the binary trace data. The last section of the
HTF �le contains the recorded trace datasets. Each HTF trace dataset consists of a
timestamp, an entity, and an event. When tracing single core systems, this part has
one data section, whereas the trace of multi-core systems can produce additional data
sections.
1http://wiki.eclipse.org/Auto_IWG#Publications
2https://gliwa.com/ot1

54

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Header

The header provides the global information of a tracing session. Each entry is headed
by a hash symbol for a simpli�ed parsing of the �le. The following list contains all de-
�ned parameters of the header, each with an explanation and a brief illustrative example.

Format: The �rst parameter is the Format, which has to have the value "HTF" in
a valid HTF �le.
Example: #Format HTF

Version: The parameter Version shows the version number of the used HTF speci-
�cation.
Example: #Version 1.0

URL: The parameter URL references a website where the HTF speci�cation document
can be found.
Example: #URL http://wiki.eclipse.org/Auto_IWG#Publications

Project: The Project parameter provides information about the project context of the
tracing session. For instance, the project, the respective department, or the institution
can be mentioned.
Example: #Project ITEA2 AMALTHEA

TargetSystem: Information about the target system, on which the tracing was done,
is saved in the parameter TargetSystem.
Example: #TargetSystem Freescale MPC5668G evaluation board

Description: In the parameter Description a short textual description of the software
can be given. Conceivably, the application name with some special features of the pro-
gram can be put in.
Example: #Description Test-Application with 7 tasks and 2 interrupts

NumberOfCores: The NumberOfCores parameter saves how many of cores of the
target system are traced.
Example: #NumberOfCores 2

CreationDate: The parameter CreationDate refers to the point in time when the trac-
ing session was started. The value contains the date as well as the time and requires the
following format:
Year-Month-Day Hour:Minute:Second (yyyy-mm-dd hh:mm:ss)
Example: #CreationDate 2014-04-04 13:15:25

TimeScale: The TimeScale parameter speci�es the unit of the timestamps in the
recorded trace. Applicable time units in an HTF are:

55

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

• picosecond (ps)

• nanosecond (ns)

• microsecond (us)

• millisecond (ms)

• second (s)

Example: #TimeScale ns

TimeScaleNumerator and TimeScaleDenominator: In order to generate times-
tamps scaled in the base unit of time (ps, ns, us, ms, s), the timestamps of the CPU
must be converted. The TimeScaleNumerator and TimeScaleDenominator parameters
are provided for this purpose. Via the TimeScaleNumerator a multiplier is de�ned, while
the TimeScaleDenominator provides a divisor. The CPU timestamps are multiplied with
the TimeScaleNumerator and then divided by the TimeScaleDenominator. The result is
a modi�ed timestamp with the required resolution.
Example:
#TimeScaleNumerator 4

#TimeScaleDenominator 1

TimestampLength: The parameter TimestampLength de�nes the byte size of the
timestamps. The value represents the number of used bytes. The following table provides
the maximum values for systems with 8-bit, 16-bit, 32-bit, and 64-bit architectures.

Number of bytes Maximum in hexadecimal Maximum in decimal

1 FF 256

2 FF FF 65.536

4 FF FF FF FF 4.294.967.296

8 FF FF FF FF FF FF FF FF 18.446.744.073.709.600.000

Table 9.1: HTF maximum values of timestamps

Example: #TimestampLength 4

EntityLength: The parameter EntityLength shows the number of bytes which an entity
ID consists of.
Example: #EntityLength 2

EventLength: The parameter EventLength shows the number of bytes which an event
ID consists of.
Example: #EventLength 1

56

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Reference tables

In the reference tables a hexadecimal value gets linked with a string. Hereby, the recorded
trace can be transformed into a legible format. Again, the hash sign is used as a starting
symbol, while a blank character separates the hexadecimal values from the referenced
string.

TypeTable: System events can be generated or invoked by diverse entities. For ex-
ample, operating system behaviors, the events of tasks, and interrupt service routines
can be recorded. The TypeTable assigns IDs to the entity types. An exemplary TypeTable
is shown in the extract of an HTF �le below.

#TypeTable

#-00 Task

#-01 ISR

#-02 Runnable

#-03 CodeBlock

#-04 Signal

#-05 Semaphore

EventTables: In the following reference tables the events are assigned to the respective
entity types.

#TaskEventTable

#-00 activate

#-01 start

#-02 resume

#-03 preempt

#-04 terminate

#-05 wait

#-06 release

#-07 poll

#-08 run_polling

#-09 park

#-0A poll_parking

#-0B release_parking

#ISREventTable

#-00 start

#-01 resume

#-02 preempt

#-03 terminate

#RunnableEventTable

#-00 start

#-01 suspend

#-02 resume

#-03 terminate

#CodeBlockEventTable

#-00 start

#-01 stop

#SignalEventTable

#-00 read

#-01 write

#SemaphoreEventTable

#-00 lock

#-01 unlock

EntityTable and EntityTypeTable: In the EntityTable each software entity gets an
ID, while in the EntityTypeTable a type is assigned to each entity. The following extract
of an HTF �le shows an example for both reference tables.

57

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

#EntityTable

#-0000 TaskZ6One

#-0001 TaskZ6Two

#-0080 TaskZ0One

#-0081 TaskZ0Two

#-0082 TaskZ0Three

#-0083 TaskZ0Four

#-00EE Z6_interrupt

#-00FF Z0_interrupt

#EntityTypeTable

#-0000 00

#-0001 00

#-0080 00

#-0081 00

#-0082 00

#-0083 00

#-00EE 01

#-00FF 01

Tracedata

In the last section of the HTF �le, the binary tracing data are �led. The beginning of this
section is marked with the keyword TraceData. After that keyword, the hash symbol is
only used to mark the beginning of a tracing session for each core. Every line contains one
dataset and an optional comment. Each dataset is a hexadecimal number. This number
comprises three columns which contain the information concerning the timestamp, the
entity ID, and the event ID. The actual width of each column is de�ned by the values of
TimestampLength, EntityLength, and EventLength. Every comment starts with a "//".
A example trace of a dual-core system is shown below.

#TraceData //| 4 Byte Timestamp | 2 Byte Entity ID | 1 Byte Event ID |

#-01 // Core 1

00000000000000 //Timestamp: 00000000 Entity: 0000->T1 Event: 00->activate

00000064000001 //Timestamp: 00000064 Entity: 0000->T1 Event: 01->start

00002710000100 //Timestamp: 00002710 Entity: 0001->T2 Event: 00->activate

00002774000003 //Timestamp: 00002774 Entity: 0000->T1 Event: 03->preempt

00002780000101 //Timestamp: 00002780 Entity: 0001->T2 Event: 01->start

0000417E000104 //Timestamp: 0000417E Entity: 0001->T2 Event: 04->terminate

000041E2000002 //Timestamp: 000041E2 Entity: 0000->T1 Event: 02->resume

00004EE7000004 //Timestamp: 00004EE7 Entity: 0000->T1 Event: 04->terminate

#-02 //Core 2

00000000000200 //Timestamp: 00000000 Entity: 0002->T3 Event: 00->activate

00000055000202 //Timestamp: 00000055 Entity: 0002->T3 Event: 02->start

00450145000205 //Timestamp: 00450145 Entity: 0002->T3 Event: 05->terminate

58

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

9.2 Implementation

9.2.1 Trace Generation on Platform

The trace generation on the target system is organized in a way, that besides the appli-
cation tasks three sections are implemented for the tracing functionality.

• Trace Generator

• Trace Manager

• Trace Transmitter

These three sections are brie�y explained below.

Trace Generator

The blocks in the source code where trace datasets are generated are part of the trace
generator. These blocks are called tracepoints and are put into e�ect with the command
putTrace() in this implementation. Figure 9.1 illustrates the methods containing these
tracepoints. On the upper left, Figure 9.1 shows how the events are traced by the schedule

trace generator

task schedule events

void PreTaskHook(void){

…

putTrace(TASK_EVENTS);

...

}

ISR events

void TIMER_ISR(void){

putTrace(ISR_START);

...

tracing_ActivateTASK(Task1);

tracing_ActivateTASK(Task2);

...

putTrace(ISR_TERMINATE);

}

task activate and terminate events

void tracing_ActivateTask(TaskType TaskID){

putTrace(TASK_AKTIVATE);

ActivateTask(TaskID);

}

void tracing_TerminateTask(void){

putTrace(TASK_TERMINATE);

TerminateTask();

}

void PostTaskHook(void){

…

putTrace(TASK_EVENTS);

...

}

Figure 9.1: HTF trace generator in the embedded trace concept

using the preTaskHook and PostTaskHook functions of the operating system. On the
upper right is shown how the Interrupt Service Routines are traced, while at the beginning
and end of each routine a tracepoint is set. The task events activate and terminate are
entered via additional functions, which is shown in the bottom part of the �gure.

59

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Trace Manager

The trace manager is accountable for the management of the tracing datasets. This task
can be divided into three sub-tasks which are collecting, caching and providing. Figure
9.2 shows a typical work�ow of the trace manager. Figure 9.2 describes how the collector

trace manager

collector

void putTrace

(tracing_Event*z)

{

...

}

cache

8 Byte

tracebuffer

write pointer read pointer

provider

tracing_Event *getTrace(void)

{

…

return &tracing_tracebuffer[tracingPos];

}

Figure 9.2: HTF trace manager in the embedded trace concept

lists each event in a tracebu�er. Moreover, it is shown how the provider reads the data
from the cache by the use of a read pointer.

Trace Transmitter

The trace transmitter covers the last �eld of tasks of the tracing functionalities. The
transmitter uses the provider function getTrace() in order to read traces from the cache.
The loaded data sets are provided sequentially by using the serial interface. The following
�gure illustrates the outlined process (see Figure: 9.3).

trace transmitter

Task(Task_TraceTransmitter){

while(tracebuffer_is_empty){

 getTrace();

 ...

 ...

}

TerminateTask();

}

Serialout

Byte 0

...

...

...

...

...

Byte7

Figure 9.3: HTF trace transmitter in the embedded trace concept

60

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

9.2.2 Trace Receiver

The trace receiver is a plugin of the AMALTHEA Tool Platform. The con�guration of
the recording can be set up in a dialog box. The following screenshot shows the user
interface of the trace receiver (see Figure 9.4). In this case, the software behavior of the
HVAC demonstrator was traced.

Figure 9.4: Screenshot of the AMALTHEA trace receiver plugin

9.2.3 Trace Conversion

Conversion of trace data from HTF to OT1 is implemented as Eclipse plug-in by means
of two projects:

traceconverter.ot1 contains the OT1 meta-model described by means of EMF. It is
based on the OT1 model description provided by Gliwa GmbH, e.g. as XML
schema, at [13].

traceconverter.converter implements the major functionality of the trace converter.
The implementation is split into three �les separating handler functionality of the
Eclipse plug-in, mapping of HTF-to-OT1 model elements, and conversion of trace
data read from HTF �le to OT1 format.

In contrast to the OT1 meta-model description that is provided in a separate project,
HTF elements and keywords are de�ned in the class Htf2Ot1Converter implemented
in the �le Htf2Ot1Converter.java. Keywords allowed or even required within the HTF

61

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

Figure 9.5: Menu item to convert trace data from HTF to OT1 data format.

header as well as entity types, type-speci�c events, and further keywords de�ned within
HTF speci�cation are de�ned by means of enum. This way, a new revision of the HTF
speci�cation can easily be implemented by adapting the corresponding enum de�nitions
within the class Htf2Ot1Converter. But this only covers modi�cations of the single model
speci�cations. To enable an easy adaption of the convert functionality � provided by the
trace converter plug-in � in case of modi�cations of the HTF as well as OT1 format, the
mapping of HTF model elements to OT1 model elements is encapsulated into a separate
�le named �Htf2Ot1Mapping.java�. Here static Map-Objects are de�ned, one covering
mappings of HTF events to OT1 events and another covering mapping of HTF entity
types to OT1 entity types.
Since this plug-in converts trace data provided by HTF �les to the OT1 �le format,

the context menu item �Convert to OT1 � is only available if a HTF �le is selected within
the Project Explorer (cf. Figure 9.5).
The output of the implemented trace converter plug-in is a XML-�le according to the

XML schema of the OT1 format provided by Gliwa GmbH [13]. The output �le is named
as the HTF input �le and di�ers only with respect to its �le extension. Thus, converting
trace data from a HTF �le �test.htf � results in an output �le named �test.xml �.
After the conversion of the trace into the OT1 format, the TA-Toolsuite can open the

trace �le. This toolsuite allows visualizing the traces with a Gantt chart view. Along
with the graphic presentation, the TA-Toolsuite o�ers the possibility of computing opti-

62

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

mization suggestions for the software. Figure 9.6 shows the Gantt chart of the recorded
software of the HVAC demonstrator.

Figure 9.6: Screenshot of the TA-Toolsuite with the Gantt chart view

63

10 Conclusion

Within this deliverable �D3.4 Prototypical Implementation of Selected Concepts�, we
described concepts that have been developed and prototypically implemented in the
context of the AMALTHEA project. To prove the applicability of these concepts, the
Heating, Ventilation, and Air Conditioning (HVAC) case study was carried out. Based on
the AMALTHEA Tool Platform, we built a customized toolchain within the HVAC case
study using external tools as well as tools developed within the AMALTHEA project. All
these tools were integrated into the AMALTHEA Tool Platform to enable a continuous
software development for an embedded multi-core system.
Using the HVAC as an example, we presented all steps covered by the AMALTHEA

Tool Platform described in Section 2. In detail, we �rst presented requirement engineering
and variability modeling for our HVAC case study. Afterwards, we described the software
architectural and behavioral modeling, i.e. speci�cation of interfaces, components, and
their behavior. The following steps, namely partitioning, mapping, code generation, and
tracing, were realized by AMALTHEA tools.
The methodological aspects of architectural modeling, partitioning, mapping (includ-

ing hardware modeling), and tracing, the implementation in terms of Eclipse plugins, and
the HVAC case study on an industry scale multi-core system are the main contributions
of Work Package 3 to the AMALTHEA project.

64

Bibliography

[1] AMALTHEA: Deliverable 3.2: Hardware model speci�cation and examples of hard-
ware models. January 2013

[2] AMALTHEA: Deliverable 4.2: Detailed design of the AMALTHEA data models.
January 2013

[3] AMALTHEA: Deliverable 4.4: Report on Model and Tool Exchange. April 2014

[4] Amdahl, Gene M.: Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. 1967

[5] Bellman, Richard: On a Routing Problem. In: Quarterly of Applied Mathematics
16 (1958), S. 87�90

[6] Brink, Christopher ; Kamsties, Erik ; Peters, Martin ; Sachweh, Sabine: On
Hardware Variability and the Relation to Software Variability. In: 40th Euromicro
Conference on Software Engineering and Advanced Applications. Verona, Italy, 2014

[7] consortium, Amalthea: www.amalthea-project.org. Webpage. April 2014

[8] Cormen, Thomas H. ; Stein, Cli�ord ; Rivest, Ronald L. ; Leiserson,
Charles E.: Introduction to Algorithms. 2nd. McGraw-Hill Higher Education,
2001. � ISBN 0070131511

[9] Dijkstra, E. W.: A Note on Two Problems in Connexion with Graphs. In:
NUMERISCHE MATHEMATIK 1 (1959), Nr. 1, S. 269�271

[10] Drozdowski, Maciej: Scheduling for Parallel Processing. Springer, 2009 (Com-
puter Communications and Networks). � i�xiii, 1�386 S. � ISBN 978-1-84882-309-9

[11] Foster, Ian: Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Boston, MA, USA : Addison-Wesley Longman Pub-
lishing Co., Inc., 1995. � ISBN 0201575949

[12] Frey, Patrick: A Timing Model for Real-Time Control-Systems and its Application
on Simulation and Monitoring of AUTOSAR Systems, Ulm University, Dissertation,
2010

[13] Gliwa: Open Timing 1. November 2012. � http://www.gliwa.com/ot1/index.

html

65

http://www.gliwa.com/ot1/index.html
http://www.gliwa.com/ot1/index.html

D3.4 � Final Partitioning and Mapping Tools ITEA 2 � 09013

[14] Gomaa, H.: A Software Design Method for Real-time Systems. In: Commun. ACM
27 (1984), September, Nr. 9, S. 938�949. � ISSN 0001-0782

[15] Grigoriev, Alexander ; Sviridenko, Maxim ; Uetz, Marc: Machine scheduling
with resource dependent processing times. In: Mathematical programming 110
(2007), Nr. 1, S. 209�228

[16] Krawczyk, Lukas ; Kamsties, Erik: Hardware Models for Automated Parti-
tioning and Mapping in Multi-Core Systems using Mathematical Algorithms. In:
International Journal of Computing (2014)

[17] Kwok, Yu-Kwong ; Ahmad, Ishfaq: Dynamic Critical-Path Scheduling: An Ef-
fective Technique for Allocating Task Graphs to Multiprocessors. In: IEEE Trans.
Parallel Distrib. Syst. 7 (1996), Mai, Nr. 5, S. 506�521. � ISSN 1045-9219

[18] Sohi, Gurindar S. ; Vijaykumar, T.N. ; Keckler, Stephen W. (Hrsg.) ; Oluko-
tun, Kunle (Hrsg.) ; Hofstee, H. P. (Hrsg.): Multicore Processors and Systems.
2009

[19] Srl, Evidence: Erika Enterprise and RT Druid. April 2014. � URL http://erika.

tuxfamily.org/drupal/

66

http://erika.tuxfamily.org/drupal/
http://erika.tuxfamily.org/drupal/

	History
	Executive Summary
	Introduction
	Overview on Tool Platform
	Overview
	Models
	Tools

	Example Instantiation of Tool Platform

	Demonstrator
	HVAC Use Case
	Architecture
	HMI

	Requirements Engineering and Variability Modeling
	Architectural and Behavioral Modeling
	Specification of Interfaces
	Specification of Components
	Specification of the Component's Behavior
	Specification of the System
	Transformation into AMALTHEA Models

	Partitioning
	Concept
	Terminology and Methodology
	Partitioning Introduction
	Feature Introduction

	Implementation
	Preliminary Features
	Independent Graph Identification
	Local Graph Partitioning (LGP)
	Earliest Deadline First Partitioning
	Other Features

	Mapping
	Concept
	Implementation
	Task generation
	Mapping Strategy 1: Heuristic DFG load balancing
	Mapping Strategy 2: ILP based load balancing
	Mapping Strategy 3: Minimizing Energy Consumption

	Utilization of the AMALTHEAs Mapping Plugin
	Configuration and Preferences
	Generating a mapping

	Building
	Concept
	Implementation
	System Generator
	OSEK Generator

	Tracing
	Concept
	Hardware Trace Format

	Implementation
	Trace Generation on Platform
	Trace Receiver
	Trace Conversion

	Conclusion

