

WP Leader / Task Leader DOCUMENT NUMBER PAGE
UCL / UND 61 566 104/179/34 1/24

 - REVISION
Template UsiXML version 1.0 � UsiXML Consortium 2013

WORKPACKAGE 2: METHOD ENGINEERING

D2.4

DEFINITION OF THE METHOD UNDERLYING SOFTWARE
ARCHITECTURE

Project acronym: UsiXML

Project full title: User interface eXtensible Mark-up Language

ITEA label n° 08026

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 2/24
� UsiXML Consortium 2013

DOCUMENT CONTROL

Deliverable N° : D2.4

Due Date: 10/2011

Delivery Date : 10/2011

Short Description : Task 2.4 aims to define a software architecture for enacting a UI development method
based on the principles of Service Oriented Architecture (SOA).The architecture supports the following process:
the method is specified by the SPEM4UsiXML meta-model (proposed in Task 2.1); the SPEM4UsiXML
definition is transformed into a BPEL process in order to describe the method enactment; the BPEL process
result is then processed by a BPEL engine that invokes the different UsiXML model transformation services via
a SOAP protocol.

Lead Partner : UND

Contributors: UND

Made available to :

Rev Date Author Checked by Internal
Approval

Description

1.0 30/09/11 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Initial version

1.1 27/04/12 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

D. Faure,
THA

 Reviewed after the review of
Nathalie Aquino (UPV)

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 3/24
� UsiXML Consortium 2013

CONTENTS

�� � ������	
��� ��� ��������� �

�� � �� ��� �������������� �

���� � ���������	��� ��� ���������������������	
 �

�� � ���������	��� ��� ��������������� �

�� � �������������	�������������������	��� �	!"#������� ���$ �

���� � ����������	��������������������������������������� ��� ��������������������	� �

���� � ���������������	����������������������������������� ��� ���������������	� �

��
� � �������	��� ��� �������������������	�� �

$�� %���������������� �	!"#������������������&�������� ��� �

'� � (���&��	�����������������)������������������������� ��� ����� �

*� � +�� ��� ��������������� �

,�����	��,��� ��� ����������������������� �

�� � ,-�.+,(.��� ��� �������������� �

���� � /�� ��� �������������� �

�� � ��.+0� (.�0�� ��� ��������� �

�� � �	!"#�� ��� ���������$ �

�� � �%�"� �	!"#�� ��� ���������* �
���� � ����	

�������	�������	�������������������������� ��� ������������������������������� �

$�� �	!"#��� ��� ��1 �

'� � �	!"#������������������&������������������������� ��� ��� �

*� � (���&��	��������	�����	���������������������������� ��� ������ �

2�� +�� ��� ��������������� �

	

�
	 	

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 4/24
� UsiXML Consortium 2013

1. EXECUTIVE SUMMARY

Task 2.4 aims to define a software architecture that supports the UsiXML methods. This
architecture allows the definition and the enactment of the UsiXML methods based on
SPEM4UsiXML, the meta-model proposed in Task 2.1. This meta-model relies on the OMG
standard SPEM 2.0 meta-model, which uses a UML profile to define the elements of a method.
SPEM4UsiXML allows expressing the core elements of the UsiXML methods (like the
development path, the development step, and the development sub-step). In addition, the meta-
model separates the static aspect of a UsiXML method (the method content), from the dynamic
aspect of a method (the process structure). Like in SPEM, there is a lack of support for method
enactments in SPEM4UsiXML. To deal with this limitation, we propose an architecture that
supports the enactment of the UsiXML methods. The enactment consists in transforming a
SPEM4UsiXML model to a BPEL model so that it can be executed by any BPEL engine.

2. DOCUMENTS

1.1. Reference

D2.4 UsiXML

3. INTRODUCTION

A UsiXML method represents a process that stepwise transforms UsiXML models in order to
obtain specifications that are detailed and precise enough to be rendered or transformed into
code [4]. A UsiXML method is also used to synthesize abstract models from detailed models. To
achieve the UsiXML transformations, different types of transformation mechanisms can be used
like the reification, the abstraction and the code generation Beuvens These different UsiXML
transformation types are instantiated by development steps [4]. These development steps may be
combined to form a UsiXML method. The process of combining development steps into a UsiXML
method is called a development path. Vanderdonckt et al., in [4], identify several types of
development paths, like the forward engineering, the reverse engineering and context of use
adaptation.

To reap all the benefits, a UsiXML method needs to formally describe its content (its semantics)
and its form (its abstract/concrete syntax). For this reason, a UsiXML method needs to be
compliant with a well-defined meta-model so that the core elements of UsiXML methods (e.g., the
development path, the development step and the development sub-step) can be formally defined.
In addition, the enactment of the UsiXML methods needs to be supported by a tool. By enactment
of a UsiXML method, we mean the ability of a tool to support UsiXML model transformations
according to the method specification.

In this document, we propose a software architecture that supports UsiXML methods. This
architecture allows the definition and the enactment of UsiXML methods. The definition of a
UsiXML method (in this architecture) is based on the SPEM4UsiXML meta-model that is
proposed as a deliverable of the UsiXML project, Task 2.1 [7]. This meta-model extends SPEM

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 5/24
� UsiXML Consortium 2013

2.0 ([5]), a standard from OMG, by adding new classes that support the specific key elements of
the UsiXML methods (e.g. development path, development step and development sub-step). So
that, SPEM4UsiXML inherits from SPEM a great usability since it is a UML profile. Unfortunately,
like SPEM, the SPEM4UsiXML meta-model cannot support the enactment of a UsiXML method
on a specific endeavor. Indeed, the SPEM4UsiXML meta-model allows the description of a
method process structure without introducing its own formalism to precisely describe the process
behavior models. [5] argues that the separation of the SPEM method structure from the behavior
of the method opens up the possibility to reuse existing externally-defined behavior models. A
method described with the SPEM 2.0 meta-model can be enacted by mapping it to a business
flow or an execution language such as BPEL [1] or XPDL [10] and then executing this
representation of processes using enactment engines such as a BPEL engine [5]. Our software
architecture for supporting the UsiXML methods allows the enactment of a UsiXML method by
transforming a SPEM4UsiXML model to a BPEL specification based on a set of mapping rules
and by executing the BPEL specification using a BPEL engine.

The rest of the document gives an overview of the software architecture that supports UsiXML
methods by presenting the definition, the deployment and the enactment of UsiXML methods.

4. SOFTWARE ARCHITECTURE FOR SUPPORTING USIXML METH ODS

In this section, we describe our proposed software architecture that allows the definition and the
enactment of UsiXML methods. The architecture is based on the principles of Service Oriented
Architecture (SOA) since a UsiXML method can be seen as a Web services composition. Indeed,
in our proposed architecture, UsiXML model transformations are implemented as Web services.
Each Web service enacts a specific development sub-step by using associated transformation
rules so that, the UsiXML model transformation is more flexible and independent to any
transformation system. To achieve this objective, the proposed architecture, depicted in Figure 1,
supports the following processes: a UsiXML method is defined, at design-time, based on the
SPEM4UsiXML meta-model; the SPEM4UsiXML definition is then transformed, at deployment-
time, into a BPEL process in order to describe the method enactment; the BPEL process result is
then processed, at runtime, by a BPEL engine that invokes the different transformation Web
services via a SOAP protocol; finally, the method enactment is controlled, at diagnostic-time, so
that problems are detected whenever they occur.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 6/24
� UsiXML Consortium 2013

��������	�
������������������������������������� �����������������������������

The proposed software architecture for supporting the UsiXML methods is made up of the
following components:

1. UsiXML Method editor: allows the definition of a UsiXML method based on the
SPEM4UsiXML meta-model.

2. BPEL transformation tool: allows the transformation of a SPEM4UsiXML definition into a
BPEL process based on predefined transformation rules.

3. BPEL engine: allows the execution of the BPEL process by invoking the different
transformation Web services.

4. UsiXML method monitoring: allows to control the enactment of SPEM4UsiXML methods
based a historic model (log files). This historic model keeps trace of the enactment operations
whenever they occur so that problems in a method can be identified based on predefined
patterns (e.g. a delay in the execution of a step). Note that the description of this component
and of the diagnostic-time is out of scope of this document.

In the next sections, we detail the different phases of the architecture.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 7/24
� UsiXML Consortium 2013

1.2. Design-time

At design-time, the UsiXML method is defined by using the UsiXML Method editor. This definition
needs to rely on a robust and well defined method meta-model in order to specify the elements of
a UsiXML method. In the deliverable of the UsiXML project Task 2.1 [7], an analysis study has
been conducted in order to compare the three method meta-model standards: OMG SPEM [5],
OPEN [3] and ISO 247244 [6]. This study has concluded that these standard meta-models can be
adopted to describe the UsiXML methods. However, it is more suitable to define a specific
method meta-model in order to support the specific key elements of UsiXML methods (e.g.
development path, development sub-step). For this reason, we have proposed in [7] a new meta-
model for UsiXML methods. The proposed meta-model is based on SPEM 2.0. This choice is
justified by the fact that SPEM 2.0 provides a great usability since it is a UML profile. Moreover,
SPEM 2.0 contains generalization classes that allow the refinement of the vocabularies used to
describe the concepts or the relationships between concepts. These abstract generalization
classes allow creating a meta-model specific to the description of a UsiXML method. This specific
meta-model is called SPEM4UsiXML. The SPEM4UsiXML extends the SPEM 2.0 ([5]) by adding
new classes that allow describing the elements of UsiXML methods (e.g. development path,
development sub-step).

The goal of the proposed meta-model, SPEM4UsiXML (SPEM for UsiXML), is to define the
elements necessary for the description of any UsiXML method. In addition, like SPEM,
SPEM4UsiXML separates the static aspect of a UsiXML method from the dynamic aspect of a
UsiXML method. This means that SPEM4UsiXML reuses the UML diagrams (e.g. Class diagram,
Activity diagram) for the definition of various UsiXML method concepts.

In this document we focus only on the description and the enactment of the dynamic aspect of the
method. For this reason, we present in the following, the process structure package that
represents the dynamic aspect of the SPEM4UsiXML meta-model. Note that a complete
description of the SPEM4UsiXML meta-model is provided in the deliverable of the UsiXML project
Task 2.1 [7].

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 8/24
� UsiXML Consortium 2013

��������	����� ���������������������������!����

As shown in Figure 2, SPEM4UsiXML adds new classes to the original SPEM process structure
package in order to specify the control flow of the development steps and sub-steps and also the
different products and producers used in the method process. The important classes of the
SPEM4UsiXML process structure package are: Development Path defines the properties of a
UsiXML method; Development Step Use defines the transformation steps of the UsiXML method
that are performed by Role Use instances; Development Sub-Step Use that defines the sub-steps
of a Development Step Use which can be achieved using a transformation Web service (Service
Use), so that the enactment of the development sub-step is independent of any transformation
system; Role Use represents a performer of a Development Step Use or a Development Sub-
Step Use; and Work Product Use represents an input and/or output type for a Development Step
(e.g. a model or UI code). The SPEM4UsiXML Method process structure package contains also
some useful elements inherited from SPEM 2.0 like the Work Sequence class that represents a
relationship between the different development (sub)steps in which one development (sub)step
depends on the start or finish of another development (sub)step in order to begin or end.

Figure 3 gives an example of the UsiXML forward engineering method [4] expressed in
SPEM4UsiXML. The starting point of this method is UsiXML task and domain models. These two
models are then transformed into an abstract UI model which is then transformed into a concrete
UI model. The concrete UI model is then used to generate UI code. For this reason, the UsiXML
forward engineering method is composed of three development steps (two reifications and one

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 9/24
� UsiXML Consortium 2013

code generation). Theese development steps are represented, in Figure 3, by rectangles. Each
development step is composed by a set of development sub-steps. Development sub-steps are
represented by pentagons (e.g., identification of abstract UI structure, etc.). The development
steps (and the development sub-steps) can be assigned to a producer who has a responsibility to
execute or control the execution of the different development (sub)steps.

�������"	����������������������������������#������ ��������� �������

This UsiXML method needs to be enacted by a tool in order to support the transformation of the
UsiXML models according to the method specification. However, the SPEM4UsiXML method
meta-model provides a high level description, which is not precise enough to allow the execution
of the UsiXML transformation. For this reason, in the deployment-time, the SPEM4UsiXML
process needs to be mapped to a Web service composition execution language (called BPEL), as
we will explain in the next section.

1.3. Deployment-time

The SPEM4UsiXML process package allows the description of a method process structure, but it
does not introduce the formalism for enacting a method process. It rather proposes to reuse an
existing externally-defined enactment model such as BPEL. Indeed, the separation of
SPEM4UsiXML (like SPEM) method process structure from the behavior of the method process
gives a method designer options to choose process behavior models that fits his/her needs.
Although, the separation provides a flexible way to represent the behavioral aspects of SPEM
processes, it does not define the mapping rules to link the elements of SPEM processes with the
behavioral models. In the literature, several initiatives have been conducted to define mapping
rules that allow automatically generating a specific executable model from a SPEM process (see
[2] and [11]). For example, Feng et al. [11] propose a set of well-defined mapping rules to
transform a SPEM process to a workflow expressed in XPDL [10]. Another example is the work
proposed by Bendraou et al. in [2], which introduces transformation rules into BPEL.

According to the UsiXML FPP [9], the transformation engine will be implemented as a set of
services. Each service enacts a specific development sub-step by using the associated

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 10/24
� UsiXML Consortium 2013

transformation rules. In this way, a UsiXML method can be seen as a Web services composition
that can be enacted by using a BPEL engine. For this reason, a set of mapping rules should be
defined in order to transform, at deployment-time, the elements of SPEM4UsiXML processes into
elements of the OASIS standard BPEL [1]. In light of this, Table 1 proposes a set of mapping
rules that map a subset of SPEM4UsiXML concepts with concepts of the BPEL language. These
mappings rules are used by the BPEL transformation tool to transform SPEM4UsiXML
specifications into BPEL processes.

Table 1: Mapping from SMEP4USiXML to BPEL

 SPEM4USiXML BPEL Description

C
on

ce
pt

Development Path Process
A development path in SPEM4USiXML can be
mapped to process in BPEL.

Development Step Scope Activity
Development step is a block which is composed
of one or more development sub-steps. It can be
mapped to scope activity in BPEL.

Development Sub-
step Invoke Activity

A development sub-step is a concrete step
where a service(s) is invoked (hence, it can be
mapped to invoke activity in BPEL).

Role Partner Link
A role is an actor who executes an action(s). A
role could be mapped to a Partner Link in BPEL.

Product Variable
Products of SPEM4USiXML are models and
source code which can be represented using
variables in BPEL.

R
el

at
io

ns
hi

p

Start to Start Flow Activity with
Links

In order to start development step A,
development step B must start first. This
relationship can be expressed using flow and
links.

Start to Finish Flow Activity with
Links

Development step A needs to start before
development step B finishes its activity. This
relation could also be expressed using flow and
links.

Finish to Start Sequence Activity A sequence represents the sequences of
execution of development sub-steps. It can be
mapped to a sequence activity in BPEL.

Finish to Finish Flow Activity with

Links

This relationship can also be expressed using
flow and links to specify that development step A
needs to be finished so as to B finish its activity.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 11/24
� UsiXML Consortium 2013

Condition to Start If Activity Only the subsequent activities whose condition
evaluates to true are started. This relationship
can be expressed as an BPEL If Activity.

Figure 4 illustrates the generated BPEL process for the UsiXML forward engineering method that
was explained above.

�

�

������� 	��#���$����������������������������� �� �������%�����

In the next section, we explain how the generated BPEL process is executed by using a BPEL
engine.

1.4. Runtime

At runtime, a BPEL engine interprets the fulfillment specification of the BPEL process of the
UsiXML method. This interpretation is performed by invoking the different services that implement
the UsiXML model transformation rules. The document [8] proposes a catalog of these
transformation services. The proposed catalog considers two transformation services groups:

� Vertical services transform UsiXML models vertically according to the abstraction levels
of the Cameleon Reference Framework, starting from the most abstract level to the most
concrete one (Top-Down) or vice-versa (Bottom-up). An example of such services is the
TransformTDtoAUI service (Top-Down) that transforms a task model and a domain model
into an Abstract User Interface (AUI) model. Another example is the TransformCUItoAUI
service (Bottom-up) that transforms a Concrete User Interface model (CUI) into an AUI
model.

� Horizontal services transform UsiXML models horizontally according to the abstraction
levels of the Cameleon Reference Framework, based on the user context. An example of

��������	�
	��������������������������
���

��������	��	���������������������������
�������������������������������������

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 12/24
� UsiXML Consortium 2013

such services is the TransformCAUItoAUI service that implements the transformation
from AUI model into another AUI model based on a Context model.

5. PROTOTYPE OF THE USIXML METHOD SUPPORT TOOL

To validate our proposed software architecture for supporting the UsiXML methods, we have
developed a support tool that is dedicated to define and enact a UsiXML method. The tool is
developed as an Eclipse plug-in that includes a SPEM4UsiXML model editor as well as a
SPEM4UsiXML-to-BEPEL transformer engine. The speciation of this tool was published in the
UIDL 2011 UsiXML workshop (See Annex A). Note that, the current version of the tool allows
generating an abstract BPEL process without specifying the concrete transformation services.
This is motivated by the fact that the UsiXML model transformation services are not implemented
yet.

6. CONCLUSION AND FUTURE WORK

In this document, we proposed a software architecture for the definition and the enactment of the
UsiXML methods. The architecture is based on the meta-model that is proposed in the Task 2.1
[7] for UsiXML method description (SPEM4UsiXML). This meta-model is based on the OMG
standard, SPEM 2.0, which uses a UML profile to define elements of a method. The core
elements of the SPEM4UsiXML are the development steps that are instances of transformation
types. Development steps are decomposed into development sub-steps. A development sub-step
can be executed by using a service. SPEM4UsiXML separates the operational aspect of a
method (Method Content), from the temporal aspect of a methodology (Process Structure). This
allows using any modeling language to describe the process behavior, like BPEL. Unfortunately,
the SPEM4UsiXML meta-model cannot support the enactment of a UsiXML method on a specific
endeavor. To deal with this limit, the proposed architecture transforms a SPEM4UsiXML model to
a BPEL process so that a UsiXML method is considered as a Web service composition where
each Web service enacts a specific development sub-step of the method. Consequently, a BPEL
engine can be used to execute the SPEM4UsiXML models. However, BPEL language expresses
a UsiXML method process in a fully automated way meaning that a human producer is not able to
interact with the development sub-steps until the end of the process execution. For example, a
human producer is not able to monitor the input to a development sub-step at runtime, s/he
cannot cancel the process execution or s/he is not able to execute a development sub-step. For
this reason, in the future work, we plan to address this problem by extending BPEL with a set of
human interactions points in order to allow a human producer to interact with the method
execution. This extension should allow the generation of a user interface for the UsiXML method
in order to help the human producer to interact with the method at runtime. In addition, in the
future, we also plan to develop a monitoring tool that allows to control the enactment of the
SPEM4UsiXML methods based on a historic model. This historic model keeps trace of enactment
operations whenever they occur so that problems in a method can be identified and corrected
based on predefined patterns (e.g. a delay in the execution of a step).

7. REFERENCE

[1] Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gu� zar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web services business

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 13/24
� UsiXML Consortium 2013

process execution language version 2.0 (OASIS standard). WS-BPEL TC OASIS,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

[2] Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Definition of an

executable SPEM 2.0. IEEE Computer Society (2007)

[3] Consortium, O.: OEPN (2010), http://www.open.org.au/

[4] Limbourg, Q., Vanderdonckt, J.: Multipath transformational development of user

interfaces with graph transformations. In: Seffah, A., Vanderdonckt, J., Desmarais,
M.C. (eds.) Human-Centered Software Engineering, pp. 107–138. Human-
Computer Interaction Series, Springer London (2009),
http://dx.doi.org/10.1007/978-1-84800-907-3\s\do5(6), 10.1007/978-1-84800-907-
3\s\do5(6)

[5] OMG: Software Systems Process Engineering Meta-Model Specification

version 2.0 (2008), In OMG Document Number: formal/08-04-02. Standard
document URL: http://www.omg.org/spec/SPEM/2.0/PDF

[6] International Organization for Standardization / International Electrotechnical

Commission, 2007. “ISO/IEC 24744. Software Engineering - Metamodel for
Development Methodologies”, JTC 1/SC 7, 2007

[7] UsiXML Project, 2011, “UsiXML methodology specification”. In the deliverable of

the Work package 2: Task 2.1, version 1.1, September 2011

[8] UsiXML Project, 2009, “Definition of a catalog of UsiXML services”. In the

deliverable of the Work package 2: Task 2.5, Version 0.1, August 2009

[9] UsiXML Project, 2010, UsiXML Full Project Proposal, Version 2.0, March 2010

[10] WFMC: Workflow management coalition workflow standard: Workflow process

definition interface – XML process definition language (XPDL) (WFMC-TC-1025).
Tech. rep., Workflow Management Coalition, Lighthouse Point, Florida, USA
(2002)

[11] Yuan, F., Li, M., Wan, Z.: SEM2XPDL: Towards SPEM model enactment. In:

Arabnia, H.R., Reza, H. (eds.) Software Engineering Research and Practice. pp.
240–245. CSREA Press (2006)

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 14/24
� UsiXML Consortium 2013

APPENDIX A

SUPPORT TOOL FOR THE DEFINITION & ENACTMENT
OF THE USIXML METHODS

1. ABSTRACT

In this paper, we propose a supporting tool for
UsiXML methods based on a new meta-model called
SPEM4UsiXML. This meta-model relies on the OMG
standard SPEM 2.0 meta-model, which uses a UML
profile to define the elements of a method.
SPEM4UsiXML allows to express the core elements
of the UsiXML methods (like development path,
development step, and development sub-step). In
addition, the meta-model separates the operational
aspect of a UsiXML method (Method Content), from
the temporal aspect of a method (Process Structure).
Like SPEM, there is a lack of method enactments
supporting in SPEM4UsiXML. To deal with this
limitation, the proposed tool allows the enactment of
the UsiXML methods by transforming a
SPEM4UsiXML model to a BPEL model so that the a
BPEL engine can be used to execute the transformed
SPEM4UsiXML models.

1.1. KEYWORDS

UsiXML, SPEM, Method enactment, BPEL

2. INTRODUCTION

UsiXML (USer Interface eXtensible Markup
Language) is a User Interface Description Languages
(UIDL) that describes the user interface (UI)
independently of any computing platform [13]. This
independency is achieved by relying on the
CAMELEON framework, which describes the UI at

four main levels of abstractions: task & domain,
abstract UI, concrete UI, and final UI. In UsiXML, the
CAMELEON framework is realized by adopting a
Model Driven Engineering (MDE) approach to specify
a set of models representing the UI at different levels
of abstraction. Besides, UsiXML uses a sets of
transformations to derive a UI model from another
model. For example, a high-level model (e.g. task &
domain model) can be transformed into low-level
analysis or design model (e.g. concrete UI model) [8].
Another example of a UsiXML transformation is the
extraction of high-level model from a set of low-level
models or from code [8].

According to Limbourg et al. in [8], UsiXML
transformations may be combined to form a UsiXML
method. A UsiXML method, which is also called
development path [8], is the process to follow for
developing a user interface based on UsiXML models.
In a UsiXML method, transformations are considered
as development steps that can be decomposed into
nested development sub-steps. In turn, a
development sub-step realizes a basic goal assumed
by a developer while constructing a UI.

To reap all the benefits, a UsiXML method needs
to be designed and evaluated by describing formally
its content (its semantics) and its form (its
abstract/concrete syntax). For this reason, a UsiXML
method needs to be compliant with a well-defined
meta-model so that the core elements of UsiXML
methods (e.g. development path, development step
and development sub-step) can be formally defined.
In addition, the enactment of UsiXML methods needs
to be supported by a tool. By enactment of a UsiXML
method we mean the ability of a tool to support the
UsiXML models transformation according to the
method specification.

Mohamed Boukhebouze, Waldemar P. Ferreira Neto, Amanuel Koshima,
Philippe Thiran, Vincent Englebert

PReCISE research center, University of Namur, Belgium,
 {mboukheb, waldemar.neto, amanuel. koshima, philippe.thiran, vincent.englebert}@fundp.ac.be

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 15/24
� UsiXML Consortium 2013

In order to achieve the UsiXML method enactment

with a tool, the UsiXML method meta-model needs to
be expressiveness to allow the execution of the
UsiXML transformation.

In this paper, we propose a support tool method
that allows the definition and the enactment of
UsiXML methods. The definition of a UsiXML method
(in this tool) is based on a SPEM meta-model [10].
SPEM is an OMG standard that provides a great
usability using UML profiles. In addition, it contains
generalization classes that allow the refinement of the
vocabularies used to describe the concepts or the
relationships between concepts. In order to support
the specific key elements of the UsiXML methods
(e.g. development path, development step and
development sub-step), our proposed tool uses a
SPEM meta-model specific to UsiXML methods. This
specific meta-model is called SPEM4UsiXML.

Like SPEM, the SPEM4UsiXML meta-model
allows the description of a method process structure
without introducing its own formalism to precisely
describe the process behavior models. [10] argues
that the separation of SPEM method structure from
the behavior of the method opens up the possibility to
reuse existing externally-defined behavior models. A
method described with the SPEM 2.0 meta-model can
be enacted by mapping it to a business flow or an
execution language such as BPEL [1] or XPDL [14]
and then executing this representation of processes
using enactment engine such as a BPEL engine [10].
In order to provide a flexible and independent
transformation systems, this work implements UsiXML
model transformation engine as Web services. Each
Web service enacts a specific development sub-step
by using associated transformation rules. In this way,
a UsiXML method can be seen as a Web services
composition. Our method support tool allows the
enactment of a UsiXML method by transforming a
SPEM4UsiXML model to a BPEL based on a set of
mapping rules and by executing it using a BPEL
engine.

The rest of the paper is organized as follows.
Section 2 gives an overview of UsiXML methods.
Section 3 introduces the SPEM4UsiXML meta-model.
Section 4 presents the transformation of a
SPEM4UsiXML model to a BPEL. Section 5
demonstrates the prototype of the support tool for the
UsiXML methods. Finally, the paper end with a
conclusion and future works.

3. USIXML METHODS

In this section, the background definition for UsiXML
methods is given. A UsiXML method is a process that
transforms progressively the UsiXML models in order
to obtain specifications that are detailed and precise
enough to be rendered or transformed into code [8]. A
UsiXML method is also used to synthesize abstract
models from detailed models. To achieve the UsiXML
transformations, different types of transformation
mechanisms can be used [8]:

· Reification is a transformation of a high-level
model into a low-level model.

· Abstraction is a transformation that extracts a
high level model from a set of low-level models.

· Translation is a same level models transformation
based on a context of use change. In this work,
the context of use is defined as a triple of the form
(E, P,U) where E is a possible or actual
environments considered for a software system, P
is a target platform, U is a user category.

· Code generation is a process of transforming a
concrete UI model into a source code.

· Code reverse engineering is the inverse process
of code generation.

These different UsiXML transformation types are
instantiated by development steps [8]. These
development steps may be combined to form a
UsiXML method. The process of combining
development steps into a UsiXML method is called a
development path. Vanderdonckt et al. identifies
several types of development paths, for example [8]:

· Forward engineering is a composition of
reification(s) and code generation enabling a
transformation of a high-level viewpoint into a
lower level viewpoint.

· Reverse engineering is a composition of
abstraction(s) and code reverse engineering,
which enables a transformation of a low-level
viewpoint into a higher-level viewpoint.

· Context of use adaptation is a composition of a
translation with another type of transformation
that enables a viewpoint to be adapted in order to
reflect a change of context of use of a UI.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 16/24
� UsiXML Consortium 2013

Figure A.1 represents an overview of the UsiXML
method meta-model. This meta-model assumes that
the development steps are decomposed into nested
development sub-steps. A development sub-step may
consist of activities to select concrete interaction
objects, navigation objects, etc. This could be realized
by a transformation mechanism (e.g. graph
transformation [11] and [3]) based on sets of
transformation rules [11]. Composite Step is a
generalization class that is used to express a
development path in a tree-structure. It represents a
set of development sub-steps as leafs and a
development step as root of a tree.

Based on the meta-model shown in Figure A.1,
three major elements of the UsiXML method are
considered such as work, product and producer.

· The work represents what must be done. It is
defined in terms of development step and
development sub step

· The product represents the artifact that must be
manipulated by a development step and a
development sub step (i.e. created, used or
changed). It can concern a UI model or a UI code.
In turn, a model can be a UsiXML model that is
used/generated by a development step or a sub-
step model that is used/generated by a
development sub-step.

· The producer represents the agent that has the
responsibility to execute a work unit. It is defined
in terms of person, role, team, tool, service, etc.

Figure A.2 shows an illustration of the forward
engineering method. This method is fully explained in
[11]. The starting point of the forward engineering is a
task and a domain model (products). These models
are transformed into an abstract UI based on the
transformation rules specified in works. Afterwards,
the abstract UI model is transformed into a concrete
UI model (products). Finally, the code is generated
(products). In order to achieve these transformations,
a sequence of development steps (sequence of
reification and code generation) needs to be
performed. Each development step may involve a set
of development sub-steps. For example, the first
development step involves a development sub-step
like identification of Abstract UI structure. This sub-
step consists in the definition of groups of abstract
interaction objects (an element of the abstract user
interface). Each group of abstract interaction objects
corresponds to a group of tasks (in task model), which
are tightly coupled together. To achieve its work, the
sub-step can use a sequence of rules. For example,
identification of Abstract UI structure uses sequences
of two rules; R1: for each leaf task of a task tree,
create an Abstract Individual Elements; and R2:
create an Abstract Container structure similar to the
task decomposition structure. Indeed, each
development step takes a UsiXML model(s) as input
and transform it to another UsiXML model(s) by
involving a set of development sub-steps, which in
turn manipulates sub-steps models by using a set of
rules. Note that, each development step (and
development sub-step) has a producer responsible of
their execution. For example, the first development
step can have a human actor who verifies the
transformation done in this step. Whereas a
transformation tool can execute the rules sequence of
the sub-step "identification of abstract UI structure".

In the next section, we present our proposed
meta-model for the UsiXML method, SPEM4UsiXML.

Figure A.1. Transformation path, step and sub- step [8]

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 17/24
� UsiXML Consortium 2013

4. SPEM4USIXML

UsiXML User interface designers need to rely on
robust and well defined method meta-model in order
to specify the elements of a UsiXML method. In the
literature, several method standard meta-models have
been introduced like SPEM [10], OPEN [4] and ISO
24744 [12]. These standards describe the core
elements of a method in different ways. Each
standard is built on different main principles. SPEM
2.0 [OMG 2008] is an OMG standard that reuses the
UML diagrams to describe the elements of a method.
Whereas OPEN [OPF 2005] defines an industry-
standard meta-model that provides a significant detail
to describe different elements of a method. However,
both SPEM and OPEN standards do not support the
method enactment. ISO 72444 [12] uses a dual-layer
modelling to allow the method engineer to configure
the enactment of the method from the meta-model
level by using the Clabject and the Powerptype
concepts. However, the object-oriented programming
languages (like JAVA) do not support the dual-layer
([5] and [7]).

Although these standard meta-models can be
adopted to describe the UsiXML methods, it is more
suitable to define a specific method meta-model in
order to support the specific key elements of the
UsiXML methods (e.g. development path,
development sub-path). For this reason, we propose
in this paper a new meta-model for the UsiXML
methods.

The proposed meta-model is based on SPEM 2.0.
This choice is justified by the fact that SPEM 2.0
provides a great usability since it is a UML profile.
Moreover, SPEM 2.0 contains generalization classes
that allow the refinement of the vocabularies used to
describe the concepts or the relationships between
concepts. These abstract generalization classes allow
creating a UsiXML method meta-models specific to a
certain domain (e.g. User Interface Development)

Figure A.3. Structure of the SPEM4UsiXML meta-model

Figure A.2. Forward Transformational Development of UIs

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 18/24
� UsiXML Consortium 2013

The goal of the proposed meta-model,
SPEM4UsiXML (SPEM for UsiXML), is to define the
elements necessary for the description of any UsiXML
method. The SPEM4UsiXML extends the SPEM 2.0
([10]) by adding new classes. In addition, like SPEM,
SPEM4UsiXML separates the operational aspect of a
UsiXML method from the temporal aspect of a
UsiXML method. This means that SPEM4UsiXML
reuses the UML diagrams for the presentation of
various UsiXML method concepts. As depicted in
Figure A.3, the SPEM4UsiXML meta-model uses
seven main meta-model packages inherited from
SPEM: Method Content describes the operations
aspect of a UsiXML method; Process Structure and
Process Behaviour describes the temporal aspect of a
UsiXML method, Process With Methods describes the
link between these two aspects; Core provides the
common classes that are used in the different
packages; Method Plug-in describes the configuration
of a UsiXML method; Managed Content describes the
documentation of a UsiXML method.

SPEM4UsiXML extends the classes of the Method
Content and the Process Structures. Indeed,
SPEM4UsiXML adds new classes for the SPEM
method content meta-model package in order to
specify several development steps, sub sub-steps,
products and producers. Moreover, SPEM4UsiXML
adds new classes in the SPEM process structure
package in order to specify the control flow of
development steps, sub-steps, products and
producers that are used in the UsiXML method
process.

In this paper we focus only on the description and
the enactment of the dynamic aspect of the method
(i.e. method process). For this reason, we present,
the Process Structure package of SPEM4UsiXML in
the next section.

4.1. Process Structure Package

As shown in Figure A.4, SPEM4UsiXML adds new
classes to the SPEM Process Structure package. The
white classes represent the classes of SPEM that are
not modified, whereas the yellow classes represent
the classes extended by SPEM4UsiXML.

� Breakdown Element: is a generalization class
that defines a set of properties used by the
element of a UsiXML method (Product,
Development step and producer).

� Development Path: defines the properties of a
UsiXML method.

� Work Breakdown Element: provides specific
properties for Breakdown Elements that
represent a Development Step and a
Development Sub-Step.

� Step Use: is a generalization class that
defines a set of properties used by the
element of the Development Step, the
Composite Step and the Development Sub-
Step.

� Composite Step Use: is a generalization class
that is used to define a tree-structure with a
set of development sub-step as a leaf and a
development step as the root.

� Development Step Use: defines the
transformation steps of the UsiXML method
that are performed by Roles Use instances. A
Development Step Use is associated to an
input and an output Work Products Use.

� Development Sub-Step Use: defines the sub-
steps of a Development Step Use. As sub-
step can be achieved using a autonomous
component called service (Service Use), so
that the enactment of the development sub-
step is independent of any transformation
system.

� Role Use: represents a performer of a
Development Step Use or a Development
Sub-Step.

� Work Product Use: represents an input and/or
output type for a Development Step. It can
concern a model (Model Use) or a code
(Code Use).

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 19/24
� UsiXML Consortium 2013

The SPEM4UsiXML Method process structure
package contains also some useful elements
inherited from SPEM 2.0 like:

� Process Responsibility Assignment: links
Role Uses to Work Product Uses by
indicating that the Role Use has a
responsibility relationship with the Work
Product Use.

� Process Performer: links Role Uses to
Development Step Use by indicating that
these Role Use instances participate in the
work defined by the Development Step Use.

� Work Sequence: represents a relationship
between two Work Breakdown Elements in
which one Work Breakdown Elements
depends on the start or finish of another Work
Breakdown Elements in order to begin or end.
Indeed, a Work Sequence has 4 kinds:

· StartToStart expresses that a Work
Breakdown Element (B) cannot start until a
Work Breakdown Element (A) start;

· StartToFinish expresses that a Breakdown
Element (B) cannot finish until a Work
Breakdown Element (A) starts;

· FinishToStart expresses that a Work
Breakdown Element (B) cannot start until a
Work Breakdown Element (A) finishes;

· FinishToFinish expresses that a Work
Breakdown Element (B) cannot finish until a
Work Breakdown Element (A) finishes.

· ConditionToStart expresses that a Work
Breakdown Element can be started only if the
condition is satisfied.

Figure A.4. SPEM4UsiXML Process Structure package

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 20/24
� UsiXML Consortium 2013

Figure A.5. UsiXML Forward Engineering method
expressed in SPEM4UsiXML

Figure A.5 gives an example of a forward

engineering method expressed in SPEM4UsiXML. In
this method, various development steps are
represented by dashed rectangles. Each development
step can be composed by a set of development sub-
steps. Development sub-steps are represented by
pentagon (e.g. identification of an abstract UI
structure, etc.) The development steps (and the
development sub-steps) can be assigned to a
producer who has a responsibility to execute or
control an execution of the different development
(sub)steps.

This UsiXML method needs to be enacted by a
tool in order to allow supporting the transformation of
the UsiXML models according to the method
specification. However, the SPEM4UsiXML method
meta-model provides a high level description, which is
not precise enough to allow the execution of the
UsiXML transformation. For this reason, the
SPEM4UsiXML process needs to be mapped to an
execution language. In the next section, we detail the
mapping of SPEM4UsiXML process to a BPEL
process.

5. USIXML METHOD ENACTMENT

SPEM4UsiXML process package allows the
description of a method process structure, but it does
not introduce the formalism for enacting a method
process. It rather proposes to reuse an existing
externally-defined an enactment model such as
BPEL.

For this reason, in the next section, we detail how we
can map SPEM4UsiXML process to a BPEL process.
The separation of SPEM4UsiXML (like SPEM)
method process structure from the behavior of the
method process opens up the possibility to utilize
enactment machines for many different kinds of
behavior modeling approaches [10]. The motivation
behind this separation is to give a method designer
options to choose process behavior models that fits
his/her needs. Although, the separation provides a
flexible way to represent the behavioral aspects of
SPEM processes, it does not define the mapping
rules to link the elements of SPEM process with the
behavioral models. In the literature, several initiatives
have been conducted to define mapping rules that
allow automatically generating a specific executable
model from a SPEM process [15] and [2]. For
example, Feng et al. [15] propose a set of well-
defined mapping rules to transform a SPEM process
to a workflow expressed in XPDL [14]. Another
example is the work proposed by Bendraou et al. in
[2], which introduces transformation rules into BPEL.

Because SPEM4UsiXML extends SPEM with
additional classes that specify elements of a UsiXML
method (e.g. development steps and sub sub-steps),
a set of mapping rules should be defined in order to
link the elements of SPEM4UsiXML process with the
OASIS standard BPEL. Indeed, a UsiXML process
can be considered as a Web service composition
orchestration where each Web service enacts a
specific development sub-step transformation so that
the transformation will be flexible and independent to
any transformation system. As a result, an enactment
machine for BPEL models can be used to run a
UsiXML method. In light of this, we propose a set of
mapping rules between a subset of SPEM4UsiXML
concepts and the BPEL language in Table 1.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 21/24
� UsiXML Consortium 2013

6. USIXML METHOD SUPPORT TOOL

This section describes the UsiXML support tool that is
dedicated to define and enact a UsiXML method. The
tool is developed as an Eclipse plug-in that includes a
SPEM4UsiXML model editor as well as a
SPEM4UsiXML-to-BEPEL transformer engine.

Figure A.6 shows a screenshot of the
SPEM4UsiXML model editor that is build based on
the Eclipse Graphical Modeling Framework (GMF) [9].
This framework provides a generative component and
a runtime infrastructure for developing graphical
editors based on a well-defined meta-model.

Figure A.6. Screenshot of the SPEM4UsiXML model
editor

&�'$���(����������������� ���������%����

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 22/24
� UsiXML Consortium 2013

The UsiXML support tool is based on an ATL
transformation language to specify the mapping
between a SPEM4UsiXML method and a BPEL
process. The mapping rules are described and
executed using the ATL toolkit. The ATL toolkit [6] is a
model transformation tool that allows to generate a
target model from a source model based on mapping
rules. Figure A.7 illustrates the generated BPEL
process for the UsiXML forward engineering method
that was explained above.

7. CONCLUSION AND DISCUSSIONS

In this paper, we proposed a support tool for the
definition and the enactment of the UsiXML methods.
The tool is based on a new meta-model for UsiXML
method description, called SPEM4UsiXML. This
meta-model is based on the OMG standard, SPEM
2.0, which uses a UML profile to define elements of a
method. The core element of the SPEM4UsiXML is
the development steps that are instances of
transformation types. Development steps are
decomposed into development sub-steps. A
development sub-step can be executed by using a
Web service. SPEM4UsiXML separates the
operational aspect of a method (Method Content),
from the temporal aspect of a methodology (Process
Structure). This allows using any modeling language
to describe the process behavior like BPEL.
Unfortunately, the SPEM4UsiXML meta-model cannot
support the enactment of a UsiXML method on a
specific endeavor. To deal with this limit, the
proposed support tool (for UsiXML methods)
transforms a SPEM4UsiXML model to a BPEL
process so that a UsiXML method is considered as a
Web service composition where each Web service
enacts a specific development sub-step of the
method. Consequently, a BPEL engine can be used
to execute the SPEM4UsiXML models. However,
BPEL language expresses a UsiXML method process
in a fully automated way meaning that a human
producer is not able to interact with the development
sub-steps until the end of the process execution.

Figure A.7. The BPEL Process of the UsiXML forward

engineering method.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 23/24
� UsiXML Consortium 2013

For example, a human producer is not able to monitor
the input to a development sub-step at runtime, s/he
cannot cancel the process execution or s/he is not
able to execute a development sub-step. For this
reason, in the future work, we plan to address this
problem by extending BPEL with set of human
interactions points in order to allow a human producer
to interact with the method execution. This extension
should allow the generation of a user interface for the
UsiXML method in order to help the human producer
to interact with the method at runtime. In addition, in
the future, we also plan to develop a monitoring tool
that allows to control the enactment of the
SPEM4UsiXML methods based a historic model. This
historic model keeps trace of enactment operations
whenever they occur so that problems in a method
can be identified and corrected based on predefined
patterns (e.g. a delay in the execution of a step).

8. REFERENCES

[1] Alves, A., Arkin, A., Askary, S., Barreto, C.,
Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Gu� zar, A., Kartha, N., Liu, C.K., Khalaf, R.,
Koenig, D., Marin, M., Mehta, V., Thatte, S., Rijn,
D., Yendluri, P., Yiu, A.: Web services business
process execution language version 2.0 (OASIS
standard). WS-BPEL TC OASIS,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html (2007)

[2] Bendraou, R., Combemale, B., Crégut, X.,

Gervais, M.P.: Definition of an executable SPEM
2.0. IEEE Computer Society (2007)

[3] Calvary, G., Coutaz, J., Thevenin, D., Limbourg,

Q., Bouillon, L., Vanderdonckt, J.: A unifying
reference framework for multi-target user
interfaces. Interacting with Computers 15(3),
289–308 (2003),
http://dx.doi.org/10.1016/S0953-5438(03)00010-
9

[4] Consortium, O.: OEPN (2010),

http://www.open.org.au/

[5] Gutheil, M., Kennel, B., Atkinson, C.: A

systematic approach to connectors in a multi-
level modeling environment. In: Czarnecki, K.,
Ober, I., Bruel, J.M., Uhl, A., Völter, M. (eds.)
MoDELS. Lecture Notes in Computer Science,
vol. 5301, pp. 843–857. Springer (2008),
http://dx.doi.org/10.1007/978-3-540-87875-
9\s\do5(5)8

[6] Jouault, F., Kurtev, I.: Transforming models with

atl. In: Bruel, J.M. (ed.) Satellite Events at the
MoDELS 2005 Conference, Lecture Notes in
Computer Science, vol. 3844, pp. 128–138.
Springer Berlin / Heidelberg (2006),
http://dx.doi.org/10.1007/11663430\s\do5(1)4,
10.1007/11663430\s\do5(1)4

[7] Kuehne, T., Schreiber, D.: Can programming be

liberated from the two-level style: multi-level
programming with deepjava. In: OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming
systems and applications. pp. 229–244. ACM,
New York, NY, USA (2007),
http://dx.doi.org/10.1145/1297027.1297044

[8] Limbourg, Q., Vanderdonckt, J.: Multipath

transformational development of user interfaces
with graph transformations. In: Seffah, A.,
Vanderdonckt, J., Desmarais, M.C. (eds.)
Human-Centered Software Engineering, pp.
107–138. Human-Computer Interaction Series,
Springer London (2009),
http://dx.doi.org/10.1007/978-1-84800-907-
3\s\do5(6), 10.1007/978-1-84800-907-3\s\do5(6)

[9] Moore, B., Organization, I.B.M.C.I.T.S., ebrary,

I.: Eclipse development using the graphical
editing framework and the eclipse modeling
framework. IBM, International Technical Support
Organization (2004)

[10] OMG: Software Systems Process

Engineering Meta-Model Specification version
2.0 (2008), In OMG Document Number:
formal/08-04-02. Standard document URL:
http://www.omg.org/spec/SPEM/2.0/PDF

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 24/24
� UsiXML Consortium 2013

[11] Stanciulescu, A.: A Methodology for Developing

Multimodal User Interfaces of Information
System. Ph.D. thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium (June 2008)

[12] International Organization for Standardization /

International Electrotechnical Commission,
2007. “ISO/IEC 24744. Software Engineering -
Metamodel for Development Methodologies”,
JTC 1/SC 7, 2007

[13] UCL: Usixml v1.8 reference manual (February

2007), iTEA2, UsiXML Full Project Proposal

[14] WFMC: Workflow management coalition

workflow standard: Workflow process definition
interface – XML process definition language
(XPDL) (WFMC-TC-1025). Tech. rep., Workflow
Management Coalition, Lighthouse Point,
Florida, USA (2002)

[15] Yuan, F., Li, M., Wan, Z.: SEM2XPDL: Towards

SPEM model enactment. In: Arabnia, H.R.,
Reza, H. (eds.) Software Engineering Research
and Practice. pp. 240–245. CSREA Press (2006)

