GreenCode Deliverable D3.1

\
GREEN
Z7 = CODE

Al/ML Driven Software Optimisation
to Reduce Cost and Climate Impact

DELIVERABLE D3.1

(2025) Annual SotA review of the static code analysis and QA
tools, with focus on NLP/GenAl solutions and the application
of green considerations as a quality metric

— Restricted —

Authors:

Andreas Jedlitschka (WP3 Leader), Michele Albano - Aalborg Universitet, Chris Dean -
Digital Tactics, Asger Posborg Jeehger - Edora A/S, Adam Trendowicz - Fraunhofer, Anna
Maria Vollmer - Fraunhofer, Julien Siebert - Fraunhofer, Patricia Kelbert - Fraunhofer, Sven
Theobald - Fraunhofer, Violeta Bonet Vila, Fraunhofer, Daniel Carlos Do Vale Ramos -
ISEP, Pedro Faria - ISEP, Rita Inés Correia Da Costa - ISEP, Zita Vale - ISEP, Amir Soltani
- KAN Engineering, Alireza Mehri - KAN Engineering, Gunel Jahangirova - Kings College,
Jie Zhang - Kings College, Mohammad Mousavi - Kings College, Hugo Araujo - Kings
College, Marcos Checa - Panel Sistemas, Cosme Gonzalez - Panel Sistemas, Christian
Koerner - Siemens Germany, Ezgi Sarikayak - Siemens Germany, Matthias Saft - Siemens
Germany, Angel Cataron - Siemens Romania, Fridtjof Siebert - Tokiwa, Michael Lill - Tokiwa,
Daniel Esteban Villamil - UC3M, Juanmiguel Gomez - UC3M, Andrea Pabon - UC3M, Haluk
Gokmen - VBT, Osman Cayli - VBT, Sinan Kili¢ - VBT, Yucel Sentiurk - VBT, Constantin
Deneke - ZAL Aero, Johannes Passand - ZAL Aero, Mario Paja - ZAL Aero, Steffen Ruesch
- ZAL Aero, Stephan Rediske - ZAL Aero

ITEA Call 2023
Project 23016 GreenCode
Version, Date V1.023.12.2025

Page 1 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

Version history

Version Authors Content Date

0.1 Andreas Jedlitschka Document creation and document structure 01.06.2025
0.2-0.7 Diverse authors Individual contributions 31.10.2025
0.75 Patricia Kelbert Reorganization of document structure 10.10.2025
0.8 All authors Initial version ready for internal review 30.11.2025
0.9 All authors Final review of individual contributions 16.12.2025
1.0 Andreas Jedlitschka | Review, cosmetics, and finalization 23.12.2025

and Daniel Villamil
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 2

GreenCode Deliverable D3.1

Content
S 10T LT3 1T o T 5
2 I 1= .4 F= L o3 =Y = PP 6
2.1 Mapping of software system’s Codebase ... 6
211 L= oS8 [o 1= 0 1111 PSSR 7
2.1.2 Summary and Future Opportunities for GreenCode............ccooiiiiiiiieiee e 7
2.2 Static Code Analysis With TOCUS ON ENEIQYcciciiiiiiiiiiiiii et e e e e ae e e e 8
221 T Ted (o | (o1 o To I PP PPT PR 8
222 Current State Of the Arto e e e e e e e e e e e e e e eeeeeeeeanns 8
223 KBY FINAINGS i —— 9
224 GapS Identified.........ouiiiiiiiiice e e e e e e e e e —reaaaeeaaaanes 10
22,5 Summary and Future Opportunities for GreenCode...........coooiiiiiiiiiiiiiiiie e 10
2.3 BenChmark ANGIYSISoooiiiiiieiiiiie ettt et e e b e e e r e e e b e e e e e eanes 11
2.3.1 = o3 (0| 0T Lo 11
2.3.2 Current State Of the Alt e e s e e s e e e neeee s 11
233 KEY FINAINGS ...ttt sttt e s ra et e e e et e e e e nnbe e e e annreee s 11
234 To L= o111 l=To I C =T oL RO PRPUPPRRE 12
2.3.5 Summary and Future Opportunities for GreenCode...........cccuveiieiiiiiiiiiiiieece e 12
2.4 Quality Assessment of GENAI OUICOMEScooiiiiiiii ittt e e e enae e e e ennes 13
241 = F= Ted (| (o101 o To I PP PR P 13
242 Current State Of the Alo e s e e e e e e s reeeeeeeeeas 13
243 LRV T T 11 T PP RPN 14
244 IAENEIFIEA GAPS ..ttt s 14
245 Future Opportunities for GreenNCoOecooiiuiiiiiiiiii e 14
2.5 Static code analysers for compiled SOftWareoocuiiiiiiii i 15
251 [F=Ted (o {0 U] T I PR 15
252 Current State Of the Art ... et e e 15
253 KEY FINAINGS ...ttt eeeeas 15
254 Limitations @nd Gapseeiiiiiiiiie it 15
255 Summary and Future Opportunities for GreenCode............cooiiiiiiiiiiiiiiie e 16
3 CoNCIUSION AN SYNTNESISeeiiiiiiiiiieieeeeee ettt ese e s e s s asse e sssesesssnsssnsssnssnnsnsnnnnnnes 17
AANNIEX e 18
4.1 Mapping of software System’s COUEDASEcoiiiiiiiiiiiiii e 18
411 The ANTLR4 Methodology for Automated Model Extraction..............cccooeeeiiiiiiiiiinee, 18
41.2 Practical Implementation: The SACA ModUIEccoooiiiiiiiieeeeeeeeeeee e 18
4.2 Static code analysis With fOCUS ON ENEIGY........coiiiiiiiiiiiiiiii e seeeeee e 20
4.3 BenChmark ANGIYSISuiiiiiiiiiiiiiie et e e et e e e e e e e et e e e e e e e e e e e a e 33
4.4 Quality assessment Of GENAT OUICOMESuuiiiiiiiiiiiiiiiee e 36
Figures
Figure 1. SACA Module ArChIECIUIE...........eiii e e e s 19
Figure 2. Systematic literature revViEW PrOCESS.........c.uiiiiiiiii et e 21

Page 3 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

Figure 3. Type of software and programming languages considered in the related literature 22
Figure 4. Prediction method (left) and the granularity of prediction (right)cccooociiii i, 24
Figure 5. Output of energy prediction MOEISc..viiiiiiii i e e e 25
Figure 6. Models used for predicting energy CoNnSUMPLIONovviiiiiiiiiiiiiieee e 26
Figure 7. Model types regarding the input for predictionueeeii i 28
Figure 8. Methods and tools for measuring actual energy consumpPlion...........ccccooviee e 30
Figure 9. Energy prediction environments and Settingscciiiiiiii i 32

Tables

Table 1. Key features of the SACA MOAUIE...........ouuiiiiii i e e e e e e eae s 19
I o LI S 1o T ol o e [U= SRRSO 20
Table 3. Inclusion and eXCIUSION CIEEIIAooi i e 21
Table 4. Gaps regarding the prediction of software energy consumption............cccccceeeiiiiici e, 32
Table 5. Benchmark Landscape, Language Coverage, and Data TYPescccovuveieiiiiiieiniiiee e 33
Table 6. Evaluation Criteria ACross BENCAMAIKSc.oiiiiiiiiiiiiie et e e e e e e 35

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 4

GreenCode Deliverable D3.1

1 Introduction

The GreenCode project is focused on Al/ML-driven software optimisation to reduce the cost and
climate impact of software systems (software and the infrastructure it runs upon), and by implication
the carbon impact of the IT sector at scale.

This is a large and growing subject area with various actors also now taking steps to improve
elements of software sustainability and the efficiency of the software development lifecycle (SDLC)
through education and Al interventions, some notable names being: the Green Software
Foundation' (GSF) who focusses on international standards, best practice policy and community
building; academic organisations such as the Software Sustainability Institute (SSI) at The
University of Edinburgh? and the Digital Sustainability Centre at Vrije University, Amsterdam® who
focus on education and outreach; numerous startups and other RD&I initiatives like the GENIUS*
project focussing on Al tools for the SDLC.

Instead of replicating the efforts already undertaken by other organisations, we aim to build upon
their work alongside our own initiatives to address the interconnected topics of software quality,
sustainability, and performance improvement. Our goal is to offer a clear, measurable pathway
towards reducing the energy consumption of software systems and certifying them according to
established international standards, such as the Software Carbon Intensity (SCI) benchmark.
Specifically, we are developing a modular Al application pipeline, accompanied by supporting tools,
to automate the optimisation of software systems for both quality and energy efficiency. This
approach allows for continuous tracking and upgrading in line with advances in the field, ensuring
our solutions remain aligned with the current state of the art.

Furthermore, given that 60-80% of all software is regarded as legacy software and given that many
market players are focussed on the generation of new software applications from scratch through
Al, we intend to address the low-hanging fruit of legacy system maintenance, rationalisation,
optimisation and upgrade/porting.

Our work aims to deliver measurable reductions in total cost of ownership (TCO) and technical debt
for owners of existing systems, as well as verified green credentials and other benefits that may
enhance market competitiveness. From a climate perspective, software optimisation can contribute
to reducing emissions and energy consumption efficiently, particularly when applied to applications
already deployed at scale.

This document reviews the latest in static code analysis and QA tools, emphasising NLP and GenAl
solutions, and includes green considerations as a quality metric.

' https://greensoftware.foundation/

2 https://www.software.ac.uk/

3 https://vu.nl/en/about-vu/research-institutes/amsterdam-sustainability-institute/more-about/digital-
sustainability-center

4 https://itea4.org/project/genius.html
Page 5 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

2 Thematic Review

The following sections present the current state of the art across the project’s core themes, as
identified through a comprehensive review of business and technology domains. The document
complements deliverable “D2.1 State-of-the-Art" with specific themes, which form the basis for gap
analysis and later for the specification of innovative business models:

» Task 3.1: Mapping of software system’s codebase
» Task 3.2: Sustainability/energy focussed static code analysis and report
o Static Code Analysis with focus on Energy
o Benchmark Analysis
» Task 3.3: Code Artefact Generation
o Test Code Generation
e Documentation Generation
» Task 3.4: Quality Assessment of GenAl outcomes
» Task 3.5 Analysis of code artefacts as quality metrics
» Task 3.6: Static code analysers for compiled software

2.1 Mapping of software system’s codebase

Modern software systems are vast and complex, often spanning millions of lines of code developed
by large teams over many years. Documentation is frequently incomplete or outdated, making the
source code itself the only reliable reference for understanding system behavior. As a result,
“codebase mapping” — the creation of high-level, structured representations from raw source code
— has become essential for effective maintenance, modernization, and quality assurance.

Key Findings

» Visual and Structural Mapping Techniques: A significant body of research focuses on
creating high-level representations of software to aid human understanding, often
employing metaphors to make complex systems more intuitive. The CodeSurveyor tool is a
prime example, generating an interactive map where architectural components appear as
continents and source files as countries. This method's sophistication lies in its underlying
technique — a composition of force-directed graph layout and Voronoi tree-mapping — which
demonstrates proven scalability by mapping massive codebases like the Linux kernel (1.4
MLOC) in just 1.5 minutes®. These approaches help developers quickly comprehend
complex architectures and have demonstrated scalability on projects as large as the Linux
kernel.

» Architecture Recovery via Dependency Analysis: Techniques that analyze dependencies
between code elements can group related components into modules®, providing a high-level
architectural view. Integrating structural, semantic, and directory information leads to more
accurate clustering and a better understanding of system structure.

» Systematic Reviews of Parallel Code Analysis Domains: Several mature research areas
complement codebase mapping:

5N. Hawes, S. Marshall, C. Anslow (2015) "CodeSurveyor: Mapping large-scale software to aid in code
comprehension," 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), Bremen,
Germany, pp. 96-105, doi: 10.1109/VISSOFT.2015.7332419.

6 S.P.R. Puchala, J.K. Chhabra, A. Rathee (2022) "Software Architecture Recovery Using Integrated
Dependencies Based on Structural, Semantic, and Directory Information", International Journal of
Information System Modeling and Design, Volume 13, Issue 1, ISSN 1947-8186,

https://doi.org/10.4018/IJISMD.297060.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 6

GreenCode Deliverable D3.1

e Software Test-Code Engineering: A systematic mapping by Garousi et al.” classified
60 studies to provide a comprehensive overview of trends and techniques in test-
code development and quality assessment;

e Metrics-Based Clone Detection: A review by Rattan & Kaur® analysed techniques
that use software metrics to identify similar or identical code fragments, which are
critical to manage for system maintenance and quality;

e Log and Source Code Matching: A study by Bushong et al.® systematically reviewed
methods for matching information from program logs and stack traces back to the
source code, a crucial step for fault localization;

e Code Clone Management: A systematic literature review by Kaur et al.'® identified
tools and methods for managing code clones through refactoring, a key activity for
improving overall code quality;

» Al for Code Understanding: Systematic mapping studies also exist for the application of
artificial intelligence to source code understanding tasks, indicating a mature and active
area of research'’.

While these domains offer powerful tools, each address only part of the overall challenge. For
example, visual tools are optimized for human understanding, while architectural recovery lacks the
precision needed for automated refactoring.

2.1.1 Gaps Identified

» Existing approaches do not provide a universal, machine-readable model of code structure
suitable for automated optimization and transformation.

» There is a lack of integration between high-level visualizations and the detailed, formal
representations required for automated tools.

» Current methods often require manual intervention or are not scalable to the largest, most
complex codebases.

2.1.2 Summary and Future Opportunities for GreenCode

The GreenCode project’s implementation of a model-based reverse engineering approach,
powered by ANTLR4 (more details in the annex), provides a strong and reliable framework for
automated, precise, and standardised mapping of codebases spanning several programming
languages. This strategy not only simplifies the process of extracting formal models from source

7 V. Garousi, Y. Amannejad, A.B. Can (2015) "Software test-code engineering: A systematic mapping",
Information and Software Technology, Volume 58, Pages 123-147, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2014.06.009.

8 D. Rattan, J. Kaur (2016) "Systematic Mapping Study of Metrics based Clone Detection Techniques",
AICTC '16: Proceedings of the International Conference on Advances in Information Communication
Technology & Computing, Bikaner, India, https://doi.org/10.1145/2979779.2979855.

9V. Bushong, R. Sanders, J. Curtis, M. Du, T. Cerny, K. Frajtak, M. Bures, P. Tisnovsky, D. Shin, Dongwan
(2020) "On Matching Log Analysis to Source Code: A Systematic Mapping Study". RACS '20: Proceedings
of the International Conference on Research in Adaptive and Convergent Systems, Gwangju, Republic of
Korea, pp. 181-187. https://doi.org/10.1145/3400286.3418262.

10 M. Kaur, D. Rattan, M. Lal (2025) "Insight into code clone management through refactoring: a systematic
literature review", Computer Science Review, Volume 58, 100767, ISSN 1574-0137,
https://doi.org/10.1016/j.cosrev.2025.100767.

" D.R. Fudholi, A. Capiluppi (2025) "Artificial intelligence for source code understanding tasks: A
systematic mapping study", Information and Software Technology, Volume 189, 107915, ISSN 0950-5849,

https://doi.org/10.1016/j.infsof.2025.107915.
Page 7 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

code but also guarantees high accuracy and seamless interoperability, underpinning the entire
GreenCode workflow from quality assurance through to Al-driven optimisation.

Cobol language is widely used in IBM mainframe systems but it's not among the languages fully
supported by ANTLR4. Even if there are Cobol85 grammar available for use with ANTLR4, because
IBM mainframe Cobol includes specific structures such as z/OS extensions, compiler directives,
conditional compilation, EXEC CICS/SQL constructs, GreenCode will include a Preprocessing &
Normalization step for IBM mainframe Cobol sources, to process these structures before ANTLR
parsing.

Looking to the future, there is significant potential to enhance SACA (Static Analysis of Code with
ANTLR 4) by broadening its support to encompass additional programming languages, adopting
more detailed feature extraction for in-depth analysis, and harnessing these comprehensive models
to facilitate sophisticated predictions and improvements in energy consumption much earlier in the
software development process.

2.2 Static Code Analysis with focus on Energy
2.2.1 Background

Traditional work on estimating a program’s energy consumption (EC) either measures it with a
profiler or predicts it dynamically. Both approaches require running the software — often with
representative inputs, sufficient time, and an available platform. These methods yield accurate
results but are computationally expensive, time-consuming and applicable in late phases of
software development process, when software can be run. Dynamic prediction typically returns a
single total-energy value; few approaches provide fine-grained estimates or EC time series. One
solution to this problem is predicting software runtime energy consumption based on the analysis
of software artifacts, such as source code, available already in the early stages of software
development process.

Historically, these approaches seldom targeted Python, which was less popular when they were
developed. In recent years, however, Python has become the most widely used programming
language. According to the PopularitY of Programming Languages (PYPL) index from September
2025"2, Python held a 29.69% share compared with 14.72% for Java and 9.27% for C/C++. Al
projects predominantly use Python thanks to its rich libraries, ease of use and interpretation, and
cross-platform support, among other advantages'®. The Al Index Report 2025 notes that Al-related
GitHub repositories grew from 1,549 in 2011 to approximately 4.3 million in 2024, underscoring
Python’s importance as a target.

2.2.2 Current State of the Art

A systematic literature review' was conducted to explore existing methods for predicting software
energy consumption through static code analysis. The review was structured around six research
questions, covering software types, features used for prediction, model outputs, predictive models,
measurement tools, and operational environments. The Scopus database was used as the primary
source, complemented by backward and forward snowballing from seed papers. Publications were
identified through a carefully constructed search query, screened for relevance, and assessed

2 Popularity of Programming Language (PYPL): https://pypl.github.io/PYPL.html. [Accessed: 2025-10-
15].

3 Michael lyam. The Importance of Python in Artificial Intelligence. https://michael-lyamm.medium.
com/the-importance-of-python-in-artificial-intelligence-341c7af1fb94. [Accessed: 2025-12-11].

4 Nestor Maslej et al. Artificial Intelligence Index Report 2025. 2025. arXiv: 2504.07139 [cs.Al]. url:
https://arxiv.org/abs/2504.07139.

5 To be published.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 8

GreenCode Deliverable D3.1

against predefined criteria. Full texts of relevant studies were reviewed to extract data addressing
the research questions. Details with citations are provided in the annex.

2.2.3 Key Findings

» Diversity of Software and Languages Studied

Most studies concentrate on benchmark suites such as AnghaBench'®, BEEBS'’, PolyBench's,
Rodinia’, and SPEC CPU2006%° (retired in Jan. 2018), while also considering GPU-intensive
workloads and Android applications. C and C++ are the primary languages examined, especially in
the context of desktop, server, and GPU-based programs. Java is frequently used for analyses
related to mobile environments, whereas Python and Fortran are less commonly featured. In some
cases, the programming language is not explicitly stated, particularly in research where user
behaviour is the central aspect being investigated.

» Features Used for Energy Prediction: There are three primary categories of input features:

e Utilization-based: Measures of hardware resource consumption, such as CPU,
memory, and cache usage;

o Event-based: Information derived from system activities like system calls, protocol
transitions, and performance counters; event-based features are used most
frequently, followed by utilization-based and then code-analysis-based features. The
granularity of prediction differs: most models estimate energy use at the application
level, while a smaller number focus on kernels, basic blocks, or specific time
intervals.

o Code-analysis-based: Static attributes extracted from code, including opcode
counts, LLVM characteristics, and software metrics.

» Model Outputs: Most models predict power (watts) or energy (joules), while some estimate
performance metrics like execution time or instructions per second. A few studies focus on
worst-case metrics (WCET, WCEC), particularly for embedded or real-time systems.

» Types of Predictive Models: There are five main model categories: linear, tree-based, neural
networks, kernel-based, and distance-based. Linear models offer simplicity and
interpretability, while advanced options like ensembles and neural networks address
complex patterns. Hybrid models improve accuracy and clarity. Event-based models are
used most often, followed by code-analysis and utilization-based types.

» Static vs. Dynamic Prediction: Most studies rely on dynamic prediction (via software
execution), while fewer use static analysis (code inspection without running). Some models
handle both static and dynamic inputs.

» Measurement Methods: Although software-based energy measurement tools like perf,
NVML, and Intel Power Gadget are widely favoured for their flexibility and convenience,
they tend to be less precise than hardware-based approaches. In contrast, hardware-based
measurements — which rely on PMUs or external sensors — provide greater accuracy but

16 A. Faustino da Silva et al. , ANGHABENCH: A Suite with One Million Compilable C Benchmarks for
Code-Size Reduction”. In: 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). 2021, pp. 378-390. doi: 10.1109/CG0O51591.2021.9370322.

7 J. Pallister, S. Hollis, and J. Bennett. BEEBS: Open Benchmarks for Energy Measurements on
Embedded Platforms. 2013. arXiv: 1308.5174 [cs.PF]. url: https://arxiv.org/abs/1308.5174.

8 Pouchet Louis-Noel. Polybench: The polyhedral benchmark suite. https://www.cs.colostate.edu
/~pouchet/software/polybench/. [Accessed: 2025-10-13]. 2012

9 Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In: 2009 IEEE International
Symposium on Workload Characterization (IISWC). 2009, pp. 44-54. doi: 10.1109/1ISWC.2009.5306797.
20 Standard Performance Evaluation Corporation. SPEC CPU 2006 benchmark (Retired: January 2018).

https://www.spec.org/cpu2006/. [Accessed: 2025-10-13].
Page 9 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

are used less frequently due to their complexity and higher cost. Additionally, some research
utilises hybrid or simulation-based tools.

» Evaluation Platforms: Research on energy consumption spans many types of platforms,
including microcontrollers, Android smartphones, embedded ARM clusters, GPUs, servers,
and consumer electronics. Among these, microcontrollers and mobile devices are studied
most often, highlighting how crucial energy efficiency is in those areas.

2.2.4 Gaps ldentified

» Limited focus on static code analysis: Most existing models rely on dynamic features (i.e.,
data collected during program execution), with relatively few studies exploring purely static,
code-based prediction methods.

» Lack of standardization: There is no unified approach for feature selection, model
evaluation, or reporting, making it difficult to compare results across studies.

» Underrepresentation of certain languages and platforms: Python, Fortran, and some
embedded platforms are rarely studied, despite their growing importance — especially
Python in data science and Al.

» Accuracy vs. practicality trade-off: Hardware-based measurement methods are more
accurate but less practical for widespread use; software-based methods are more common
but generally less precise.

» Granularity limitations: Most models predict energy consumption at the application level.
Finer-grained predictions (e.g., at the function or basic block level) are much less common,
limiting the ability to pinpoint energy-intensive code segments.

» Hybrid and multimodal approaches are rare: Few studies combine static and dynamic
features or support both types of prediction within a unified framework.

» Limited transparency in model specification: Some studies do not provide detailed
descriptions of their models, especially hybrid or multimodal approaches, making
reproducibility and evaluation challenging.

» Environmental diversity: While a range of platforms is covered, certain environments — such
as real-time embedded systems and heterogeneous clusters — are less frequently
addressed.

2.2.5 Summary and Future Opportunities for GreenCode

Analysis of the related literature indicates several gaps, which create opportunities for research and
development in the GreenCode project. The main opportunity concerns estimating and optimizing
the energy consumption of data-intensive software applications. This requires addressing the
deficits regarding the fine-grained static analysis of Python source code and creating explainable
energy consumption prediction models.

GreenCode presents several opportunities for advancing energy-efficient software development. It
can conduct static analysis of Python code, systematically benchmark energy consumption across
extensive sets of real and LLM-generated code samples to establish robust baseline
measurements, enable fine-grained predictions of energy usage, and support the development of
transparent, explainable prediction models tailored to code energy performance.

Furthermore, GreenCode provides an ideal framework for the empirical evaluation and refinement
of existing sustainable programming standards?'. By rigorously testing established green software
guidelines, the project aims to contribute to their evolution, ensuring that best practices are
validated against real-world data and enriched through continuous iterative improvement.

21 https://sci.greensoftware.foundation/
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 10

GreenCode Deliverable D3.1

2.3 Benchmark Analysis
2.3.1 Background

The increasing complexity and scale of software systems, coupled with the rise of Large Language
Models (LLMs) for code generation, has intensified the need for sustainable and efficient software
engineering practices. Within this context, Software Engineering advocates optimizing software
systems to improve code efficiency and resource efficiency by energy efficiency, reduce runtime
and memory usage, and extend hardware longevity?>23. However, while LLMs can automate code
generation and optimization, their efficiency-aware behaviour remains underexplored. Evaluating
such efficiency requires stable benchmarks and standardized measurement methods.

Recent studies have introduced a new generation of LLM code generation and optimization
benchmarks, each addressing different aspects of performance, correctness, and energy
awareness. these efforts collectively establish a foundation for systematic, efficiency-oriented
evaluation of LLMs, enabling measurable progress toward sustainable and energy-aware software
development?.

2.3.2 Current State of the Art

Recent advances in benchmarking for Large Language Model (LLM) code generation and
optimisation have produced a diverse but fragmented landscape. Most benchmarks focus on
evaluating LLMs' ability to generate efficient and sustainable code, with particular emphasis on
function-level tasks due to their simplicity and reproducibility. Python is the predominant language,
though some benchmarks extend to C/C++, Java, Verilog, JavaScript, Ruby, and Go. Evaluation
criteria are largely centred on runtime and memory efficiency, with some benchmarks incorporating
qualitative metrics such as readability and maintainability, and a few considering hardware-level
performance. There is a growing trend towards multi-dimensional and developer-centric metrics,
and some frameworks now support more complex, program-level or repository-level evaluations.
However, energy consumption and broader sustainability metrics remain largely absent. A recent
study by Castario et al. revealed that for 99% of the Hugging Face ML models (N>170.000), for
about 200 model only key-emissions-related context is reported, for about 1350 models carbon
emission is reported without context or optimization, for about 75 models emission data is provided
together with the related context, and zero models met certified energy efficiency standards?°.
Furthermore, benchmarking practices and environments are inconsistent, limiting comparability and
reproducibility.

2.3.3 Key Findings

> Dominance of Function-Level Benchmarks: Most studies assess LLMs at the function level,
which enables controlled experiments but does not reflect real-world complexity.

» Python as the Central Language: Most benchmarks use Python, underlining its significance
in LLM code research.

22 SWE-Perf: Can Language Models Optimize Code Performance on Real-World Repositories?

23 Mingzhe Du, Luu Anh Tuan, Bin Ji, Qian Liu, and See-Kiong Ng. 2024. Mercury: a code efficiency
benchmark for code large language models. In Proceedings of the 38th International Conference on Neural
Information Processing Systems (Vancouver, BC, Canada) (NIPS ’24).

24 Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. 2023. Estimating the carbon footprint
of BLOOM, a 176B parameter language model. J. Mach. Learn. Res. 24, 1, Article 253 (January 2023), 15
pages.

25 J. Castario, S. Martinez-Fernandez, X. Franch and J. Bogner, "Exploring the Carbon Footprint of Hugging
Face's ML Models: A Repository Mining Study," 2023 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), New Orleans, LA, USA, 2023, pp. 1-12, doi:

10.1109/ESEM56168.2023.10304801.
Page 11 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

» Diverse Evaluation Metrics: While runtime and memory usage are the primary metrics, some
benchmarks (e.g., RACE?, CodeEditorBench?’) also consider readability, maintainability,
and complexity.

> Hardware and Platform Awareness: Benchmarks like EvalPerf?, Coffe??, and ResBench®
employ hardware counters and instruction-based measures for reproducibility.

> Emergence of Realistic Benchmarks: SWE-Perf?' and MARCO?* represent efforts to
benchmark LLMs using full codebases and realistic execution environments.

» Lack of Direct Energy Measurement: No benchmarks currently provide standardised, direct
measures of energy consumption or carbon impact, relying instead on proxies like runtime
or hardware counters.

2.3.4 Identified Gaps

» Limited Realism and Granularity: Most benchmarks do not assess program- or repository-
level tasks, missing out on real-world software system complexity.

» Absence of Sustainability Metrics: There is a notable lack of direct evaluation for energy
efficiency, power usage, and environmental impact.

» Data Contamination: Overlap between benchmark datasets and LLM training corpora risks
bias and overestimation of LLM performance.

> Inconsistent Experimental Setups: Variability in hardware and non-standardised
environments undermines reproducibility and comparability.

» Narrow Evaluation Focus: Benchmarks predominantly target correctness and performance,
often neglecting maintainability, readability, and robustness — qualities essential for
sustainable code.

Overall, while the benchmarking ecosystem for LLM-driven code generation is advancing, it
remains fragmented and primarily focused on computational performance. There is a pressing need
for standardised, reproducible benchmarks that integrate sustainability, environmental impact, and
real-world software engineering objectives.

2.3.5 Summary and Future Opportunities for GreenCode

The review of existing LLM-based benchmarks reveals a growing yet fragmented ecosystem. Most
studies emphasize function-level efficiency and measure performance primarily through runtime
and memory metrics. While these offer a solid foundation for evaluating computational
performance, they neglect broader aspects such as energy efficiency and environmental impact.

26 Zheng, J., Cao, B., Ma, Z., Pan, R,, Lin, H,, Lu, Y., ... & Sun, L. (2024). Beyond correctness:
Benchmarking multi-dimensional code generation for large language models. arXiv preprint
arXiv:2407.11470.

27 Jiawei Guo et al.; CodeEditorBench: Evaluating Code Editing Capability of LLMs; Proceedings of ICLR
2025 Third Workshop on Deep Learning for Code; 2025; https://openreview.net/forum?id=6yTgoh0J0X

28 |ju, J., Xie, S., Wang, J., Wei, Y., Ding, Y., & Zhang, L. (2024). Evaluating language models for efficient
code generation. arXiv preprint arXiv:2408.06450.

2 Peng, Y., Wan, J., Li, Y., & Ren, X. (2025). Coffe: A code efficiency benchmark for code generation.
Proceedings of the ACM on Software Engineering, 2(FSE), 242-265.

30 Guo, C., & Zhao, T. (2025). Resbench: Benchmarking lim-generated fpga designs with resource
awareness. arXiv preprint arXiv:2503.08823.

31 He, X, Liu, Q., Du, M., Yan, L., Fan, Z., Huang, Y., ... & Ma, Z. (2025). Swe-perf: Can language models
optimize code performance on real-world repositories?. arXiv preprint arXiv:2507.12415.

32 Asif Rahman, Veljko Cvetkovic, Kathleen Reece, Aidan Walters, Yasir Hassan, Aneesh Tummeti, Bryan
Torres, Denise Cooney, Margaret Ellis, and Dimitrios S. Nikolopoulos. [n. d.]. Performance Evaluation of
Large Language Models for High-Performance Code Generation: A Multi-Agent Approach (MARCO).

https://api.semanticscholar.org/Corpus|D:280547604
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 12

GreenCode Deliverable D3.1

Evaluation practices remain inconsistent, and direct energy measurements are rarely included. LLM
integration patterns are also limited, dominated by static, single-turn text-to-code generation, with
few frameworks supporting iterative or agentic refinement.

Overall, current benchmarks capture only a partial view of software efficiency. Future efforts within
GreenCode should build upon these findings by developing standardized, reproducible, and
energy-aware benchmarks that link performance with sustainability. This direction will strengthen
the methodological basis for evaluating LLM-generated code and sustainable software engineering
practices.

2.4 Quality Assessment of GenAl outcomes

2.4.1 Background

The evaluation of generative Al (GenAl) outputs has emerged as a pivotal concern across multiple
domains, including computer science, healthcare3®, law34, and, notably, software engineering®.
Recent research highlights that quality in GenAl is inherently multidimensional, encompassing
factual accuracy, completeness, reasoning coherence, clarity, style, safety, and trustworthiness. In
technical fields such as software engineering and automotive systems, these criteria expand further
to address domain-specific requirements, including compliance with safety standards and real-
world hardware constraints. This complexity underscores the necessity for tailored evaluation
frameworks capable of capturing the full breadth of GenAl output quality. Full version can be found
in the annex.

2.4.2 Current State of the Art

Traditional evaluation metrics, such as BLEU and ROUGE, are increasingly recognised as
insufficient for assessing open-ended or creative GenAl tasks. These metrics primarily reward
textual similarity, failing to account for faithfulness, usefulness, or deeper semantic qualities. To
address these shortcomings, the field has seen a shift towards "LLM-as-a-judge"*® methodologies,
wherein powerful language models are employed to assess the outputs of other models.
Frameworks like G-Eval®” have demonstrated improved alignment with human judgements
regarding factuality and coherence, though concerns remain regarding evaluator bias and self-
agreement.

In software engineering, evaluation now extends beyond fluency and task completion to include
maintainability, security vulnerabilities, and static-analysis defects. Notable domain-specific
frameworks such as CODEJUDGE?®® leverage large language models to assess semantic
correctness, moving beyond reliance on test cases alone. Similarly, benchmarks like L2CEval®®
focus on calibration and error analysis in code generation, revealing that correctness is just one

33 Daniel Rodger, Sebastian Porsdam Mann, Brian Earp, Julian Savulescu, Christopher Bobier, Bruce P.
Blackshaw,Generative Al in healthcare education: How Al literacy gaps could compromise learning and
patient safety,Nurse Education in Practice,Volume 87,2025,104461,ISSN 1471-5953,
https://doi.org/10.1016/j.nepr.2025.104461.

34 https://www.theguardian.com/us-news/2025/may/31/utah-lawyer-chatgpt-ai-court-brief

35 Shukla, Shubham, Gen Al for Code Vulnerability Detection and Risk Analysis (December 02, 2023).
Available at SSRN: https://ssrn.com/abstract=5173531 or http://dx.doi.org/10.2139/ssrn.5173531

36 Gu, J., et al. “A Survey on LLM-as-a-Judge”, <i>arXiv e-prints</i>, Art. no. arXiv:2411.15594, 2024.
doi:10.48550/arXiv.2411.15594.

37 https://deepeval.com/docs/metrics-lim-evals

38 https://github.com/VichyTong/CodeJudge

39 Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu, Semih
Yavuz, Caiming Xiong, Shafiq Joty, Yingbo Zhou, Dragomir Radev, Arman Cohan, Arman Cohan; L2CEval:
Evaluating Language-to-Code Generation Capabilities of Large Language Models. Transactions of the

Association for Computational Linguistics 2024; 12 1311-1329. doi: https://doi.org/10.1162/tacl_a_00705
Page 13 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

aspect of overall quality. Static code analysis tools are increasingly used to evaluate maintainability
and reliability, identifying issues such as code smells and security flaws in GenAl-generated
artefacts.

2.4.3 Key Findings

» There is a weak correlation between functional correctness and code quality in GenAl-
generated software; code that passes functional tests may still harbour maintainability or
reliability issues.

» Persistent hallucination — defined as the confident generation of false or unsupported
content — remains a significant quality defect, with empirical audits revealing ongoing
challenges across models and domains.

» Domain-specific advances, particularly in safety-critical areas like automotive software,
demonstrate the viability of integrating GenAl evaluation with formal verification,
requirements analysis, and system-level validation.

» Novel frameworks and empirical studies increasingly recognise the need to evaluate GenAl
outputs against a broader set of criteria, including security, integration correctness, and
compliance with domain standards.

2.4.4 |dentified Gaps

> Surface-similarity metrics (e.g., BLEU*°, ROUGE*') are inadequate for capturing the full
spectrum of GenAl output quality, particularly regarding semantic faithfulness and utility.

» Evaluator bias and self-agreement in LLM-based evaluation frameworks present ongoing
challenges to objective assessment.

» There is a lack of comprehensive, standardised benchmarks that holistically assess GenAl
outputs across multiple quality dimensions, including sustainability and energy efficiency.

» Integration of energy and sustainability metrics into GenAl evaluation remains limited,
despite growing recognition of their importance.

2.4.5 Future Opportunities for GreenCode

Building on these findings, GreenCode is well-positioned to advance the field through the following
targeted actions:

» Develop standardised, reproducible, and energy-aware benchmarks that connect GenAl
performance with sustainability objectives.

» Integrate advanced, multidimensional quality metrics — encompassing maintainability,
security, and domain compliance — into evaluation frameworks for GenAl-generated code.

» Address hallucination detection and calibration by adopting uncertainty estimation
approaches and entropy-based confidence measures to flag unreliable outputs.

» Expand and refine domain-specific evaluation frameworks, particularly for safety-critical and
embedded systems, to ensure trustworthy and robust GenAl integration in software
engineering workflows.

40 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu; BLEU: a Method for Automatic Evaluation
of Machine Translation; Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), Philadelphia, July 2002, pp. 311-318; https://aclanthology.org/P02-1040.pdf

41 Chin-Yew Lin; ROUGE : A Package for Automatic Evaluation of Summaries; In Proceedings of Workshop
on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/was2004.pdf
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 14

GreenCode Deliverable D3.1

By pursuing these opportunities, GreenCode can establish itself at the forefront of sustainable,
high-quality GenAl evaluation in software engineering, thereby strengthening both methodological
rigour and practical impact.

2.5 Static code analysers for compiled software

2.5.1 Background

Static code analysis is the compile time analysis of an application to verify certain aspects of the
code. It is typically applied to verify certain correctness criteria like the absence of run-time errors,
the protection of sensitive information or the functional correctness of the code.

Static analysis can, however, also be applied to trace resource usage like CPU time or memory
usage. This provides a compile-time mechanism to estimate or even limit the resources required
by an application.

2.5.2 Current State of the Art

Static code analysis methods are broadly grouped into three categories: formal verification (using
tools like Rocg*? or Isabelle*®), model checking, and abstract interpretation. Formal verification
relies on developers to provide detailed annotations (such as pre- and postconditions) that define
the behaviour to be verified, but the process is often too labour-intensive for practical use. Model
checkers systematically examine the possible states a program can reach to determine, for
instance, whether error states are accessible; however, this approach struggles with the vast state
spaces found in real-world software, making it frequently impractical. Abstract interpretation,
meanwhile, simulates program execution using abstract values to cover all potential execution
paths and values, typically without needing developer input. It employs a fixed-point algorithm to
analyse data flow until stable conditions are met but may still suffer from state explosion depending
on the abstraction’s granularity.

2.5.3 Key Findings

» Formal verification provides strong guarantees but requires significant developer effort for
annotation, limiting its practical adoption.

» Model checking can offer rigorous state-space analysis, but its applicability is curtailed by
the exponential growth of possible program states in complex systems.

» Abstract interpretation automates analysis and does not depend on developer annotations,
making it more scalable, but it risks state explosion when value representations are too
detailed.

2.5.4 Limitations and Gaps

Static code analysis is typically limited to the verification of functional correctness and does not
trace any metrics related to resource usage.

Formal verification and Model checking in general cannot be easily applied to arbitrary code.
Abstract interpretation, however, may be used to analysis whole applications.

In a system that uses effects to model resource usage, effect handler values could be used to
analyse, trace and verify resource constraints. A static analyser using abstract interpretation that
represents values of effects that model resources could provide a means to fill this gap.

42 Rocq Prover (2025), https://rocq-prover.org/

43 |sabelle Contributors: Isabelle proof assitant. https://isabelle.in.tum.de/
Page 15 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

2.5.5 Summary and Future Opportunities for GreenCode

Abstract Interpretation used to trace effect handlers that model resource usage could provide a
means to statically analyse and manage the resource usage of application code.

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 16

GreenCode Deliverable D3.1

3 Conclusion and Synthesis

The GreenCode partners examined the strengths and limitations of static code analysis techniques
— specifically formal verification, model checking, and abstract interpretation — with a focus on their
applicability to managing and verifying resource usage in software. The state-of-the-art reviews
identify that formal verification and model checking, while rigorous, struggle with scalability and are
not easily applicable to arbitrary code due to the exponential growth of program states. Abstract
interpretation, on the other hand, is more scalable and does not require developer annotations, but
may also encounter state explosion if value representations become overly detailed. Importantly,
conventional static analysis primarily addresses functional correctness and often overlooks
resource usage metrics.

A notable gap in current methods is the inability to statically trace or verify resource consumption
directly within application code. The document highlights a promising opportunity: leveraging effect
handlers and abstract interpretation to model and analyse resource usage. By representing effect
values that correspond to resource consumption, it becomes feasible to statically analyse, trace,
and even enforce resource constraints within software. This approach could significantly improve
the static management of energy and other resources, directly addressing the shortcomings of
traditional methods.

To further inform this direction, a literature review was also conducted to explore existing
approaches for predicting software energy consumption through static analysis. The review was
driven by targeted research questions, robust inclusion and exclusion criteria, and a hybrid search
methodology combining Scopus database queries with backward and forward snowballing. This
comprehensive strategy ensured a thorough identification and assessment of relevant publications,
thus mapping the current landscape of software energy prediction techniques. Another notable
limitation identified is the absence of robust, widely accepted benchmarks for evaluating and
comparing the effectiveness of these energy prediction methods. The lack of standardised
benchmarks impedes the ability to consistently measure tool performance, validate results, and
drive reproducible research in this area. Addressing this gap will be crucial for future work aiming
to advance the reliability and comparability of static energy analysis approaches.

For the GreenCode project, the key opportunity lies in advancing static analysis by integrating effect
handlers and abstract interpretation to enable more precise and scalable resource usage analysis.
This not only fills a critical gap in the state of the art but also positions GreenCode to contribute
novel solutions for the static management of energy and resource consumption within software
applications.

Page 17 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

4 Annex

4.1 Mapping of software system’s codebase

To address the gaps identified in the analysis of the state of the art, GreenCode adopts a state-of-
the-art, parser-driven methodology based on Model-Driven Reverse Engineering (MDRE) using
ANTLRA4. This approach:

» Automates the extraction of detailed, formal models from source code, enabling iterative
optimization.

» Ensures accuracy by relying on formal grammar for parsing, reducing errors and
ambiguities.

» Produces standardized, machine-readable outputs (e.g., XMI), facilitating interoperability
with other engineering tools.

» Implements the SACA module, which operationalizes this methodology for multiple
programming languages, generating comprehensive, structured maps of codebases as the
foundation for further quality assurance and Al-driven optimization.

4.1.1 The ANTLR4 Methodology for Automated Model Extraction

The core of the GreenCode proposed mapping strategy is an ANTLR4-driven MDRE methodology,
as presented in Khachouch et al.**. ANTLR4 (ANother Tool for Language Recognition) is a parser
generator that can process source code based on a formal language grammar. The methodology
leverages an ANTLR4-generated "visitor" pattern to programmatically traverse the parse tree (or
syntax tree) created from the source code. As the visitor encounters each grammatical construct —
such as a class declaration, a method definition, or a variable assignment — it systematically
instantiates a corresponding element in a target metamodel, such as the Knowledge Discovery
Metamodel (KDM). The process culminates in the serialization of this model into a standardized
format like XMI (XML Metadata Interchange), making it machine-readable and interoperable.

This ANTLR4-driven MDRE approach offers several key advantages for the GreenCode pipeline,
namely:

» Accuracy: It addresses the challenge of correctly parsing complex source languages by
relying on formal, unambiguous grammars, ensuring a precise interpretation of the code.

» Automation: It streamlines the reverse engineering workflow by automating the
transformation from raw source code to a structured model, eliminating the need for manual
and error-prone interpretation.

» Fidelity: It enables the generation of faithful target models that accurately represent the
original system's structure and semantics, providing a reliable foundation for subsequent
analysis.

» Standardization: It facilitates the creation of models in standardized formats, such as XMl
(XML Metadata Interchange), ensuring interoperability with a wide range of model-driven
engineering tools and platforms.

4.1.2 Practical Implementation: The SACA Module

This academically validated methodology is being put into practice within the GreenCode project
through the SACA module (Figure 1). SACA is the specific component responsible for executing

44 M.K. Khachouch, A. Korchi, M. Bekkali, Y. Lakhrissi (2024) "ANTLR4-Driven Model-Driven Reverse
Engineering: Bridging Source Language Parsing and Metamodel Instantiation", Journal of Logistics,
Informatics and Service Science, Volume 11, Issue 11, pp. 426-446, ISSN 2409-2665,

https://doi.org/10.33168/JLISS.2024.1123.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 18

GreenCode Deliverable D3.1

the detailed codebase mapping. It operationalizes the ANTLR4-driven approach to produce the
foundational codebase model for the GreenCode pipeline. For its part, ANTLR4 is a powerful and
flexible parser generator that is integral to the development of compilers and language processing
tools. Its proven ability to systematically parse complex source languages makes it an ideal
foundation for building a precise, scalable, and automated codebase mapping tool that can meet
the project's static analysis needs.

SACA

«

JS

—~[©

SACA Report

Figure 1. SACA Module Architecture

The ANTLR4-driven process transforms unstructured source code into a detailed, hierarchical

representation. This transformation occurs in a sequence of well-defined steps:

» Language Grammars: The process begins with a formal grammar file (with a .g4 extension)

for each programming language to be analyzed. These grammars define the language's
syntax rules and are often sourced from established public repositories, such as
https://github.com/antlr/grammars-v4.

Lexer (Tokenization): The Lexer scans the raw source code and breaks it into a sequence
of categorized tokens. Each token represents a piece of the code, such as a keyword (if),
an identifier (my_variable), or an operator (+).

Parser and Parse Tree Construction: The Parser consumes the stream of tokens generated
by the Lexer to construct a Parse Tree, also known as a Concrete Syntax Tree (CST). This
tree is a detailed, hierarchical representation of the code's grammatical structure, mirroring
the rules defined in the language grammar.

Listeners and Visitors: To extract meaningful information, a Listener or Visitor pattern is
used to "walk" the parse tree. As the listener enters and exits specific nodes in the tree (e.g.,
a classDeclaration or methodDeclaration), custom logic is executed to identify and count
features or instantiate elements in a target metamodel.

The key features of the SACA module are summarized in Table 1:

Table 1. Key features of the SACA module

Feature

Description

Core Technology

Implements the ANTLR 4 library in Python.

Supported Languages

Designed to analyze and map source code for Python, C, C++, JavaScript, and Java.

Core Logic

A Handler class scans a folder of source code, identifies the language of each file, and

dynamically selects the appropriate ANTLR 4 Lexer and Parser.

Primary Output

A JSON report detailing the features found in each analysed file, creating a machine-

readable index of the codebase.

Mapped Features

Identifies and counts structural elements such as the number of classes, methods,

statements, and keywords.

Page 19

D3.1. GreenCode SOTA Review WP3 2025

29.12.2025

GreenCode Deliverable D3.1

This detailed, structured map of the codebase serves as the foundational input for all subsequent
stages within the GreenCode pipeline, including advanced quality assurance, infrastructure
assessment, and the Al-driven optimization cycles that are central to the project's goals.

4.2 Static code analysis with focus on energy

To learn about existing approaches for predicting software energy consumption based on the static
analysis of software code, we performed systematic literature review. The review was guided by
the following research questions (RQ):

RQ1: What kind of software is considered?

RQ2: What features are considered for energy prediction?

RQ3: What is the output of the energy prediction?

RQ4: What type of models are used to make the predictions?

RQ5: How and with what tools is the actual energy consumption measured?
» RQ6: What environment is the software operating in and how it is configured?

YV VYV VYV

To identify relevant publications, we first selected a literature database and defined an appropriate
search strategy. We used the Scopus database®. To reduce the risk of missing relevant work, we
performed backward and forward snowballing*® starting from seed papers identified via the Scopus
search — a hybrid approach we denote as “Scopus + BS*FS”’. Based on the research questions,
we constructed the search query (see Table 2) to identify potentially relevant publications, which
we first screened for relevance by reviewing their title and abstract. To assess the relevant of the
publication we used predefined inclusion and exclusion criteria (see Table 3). We reviewed the
remaining relevant publications in full text and extracted data necessary for answering the research
questions. We took the relevant papers as seed for snowballing, which identified additional relevant
publications. Figure 2 summarizes the entire review process and the number of publications
resulting from each step.

Table 2. Search query

TITLE-ABS-KEY (
(((software OR code) PRE/2 (energy OR power) PRE/2 (consumption OR usage))
AND (predict* OR estimat* OR forecast* OR model*)) OR
((static PRE/1 analysis) AND ((energy OR power) PRE/2 (consumption OR usage))
AND (predict* OR estimat* OR forecast* OR model*)))
AND
TITLE (
(software OR code OR application*) AND (energy OR power) AND (consumption OR
usage) AND
(predict* OR estimat* OR forecast* OR model*))

AND

PUBYEAR > 2014 AND PUBYEAR < 2026 AND (LIMIT-TO (DOCTYPE,"cp") OR LIMIT-TO
(DOCTYPE, "ar"))

AND (LIMIT-TO (SUBJAREA,"COMP") OR LIMIT-TO (SUBJAREA,"ENGI") OR LIMIT-TO
(SUBJAREA, "MATH")

OR LIMIT-TO (SUBJAREA,"ENER")) AND (LIMIT-TO (LANGUAGE,"English"))

45 https://www.scopus.com/

46 Claes Wohlin, Marcos Kalinowski, Katia Romero Felizardo, Emilia Mendes; Successful combination of
database search and snowballing for identification of primary studies in systematic literature studies,
Information and Software Technology, Volume 147, 2022, 106908, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2022.106908.

47 Erica Mour"ao et al. “On the performance of hybrid search strategies for systematic literature reviews in
software engineering”. In: Information and Software Technology 123 (July 2020), p. 106294. issn: 0950-

5849. doi: 10.1016/j.infsof.2020.106294. url: http://dx.doi.org/10.1016/j.infsof.2020.106294.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 20

Criteria
Inclusion (IC1)

Exclusion (EC1)

Exclusion (EC2)
Exclusion (EC3)

Exclusion (EC4)
Exclusion (EC5)
Exclusion (EC6)

GreenCode Deliverable D3.1

Table 3. Inclusion and exclusion criteria

Description
The work concerns predicting software energy consumption based on the source code.

The work does not consider a model, e.g., statistical or machine learning, for the predicting
energy consumption.

The work is not accessible.

The work is a secondary study, i.e., survey, systematic literature review or systematic
mapping study.

The work has been published before 2015 or after 11.09.2025%,

The work is not written in English.

The work is grey literature.

/g
(Snowballing)

1 \

Search string in Scopus

Backward: Forward:
261 references 200 citations
28 papers
[| |
Selection on abstract Selection on title and abstract
and title
12 papers{ {11 papers
[16 papers
Selection on full-read
Selection on full-read
l 8 pa pers{ {8 papers

10 papers
\ J

— \

Total of 26 papers

16 papers

Figure 2. Systematic literature review process

The following sections present the results of the literature survey according the the research
questions.

> RQ1: What kind of software is considered?

The software analysed in the reviewed studies covers a wide range sources, types and languages.
Figure 3 shows that the most common type of software originates from benchmark suites (12
studies), including AnghaBench*®, BEEBS®°, PolyBench®!, Rodinia®?, and SPEC CPU2006%. Two
of these 12 studies combine synthetic software for training with benchmark programs for testing®4.

48 On this date the literature database search was closed.
49 A. Faustino da Silva et al. ,ANGHABENCH: A Suite with One Million Compilable C Benchmarks for
Code-Size Reduction”. In: 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). 2021, pp. 378-390. doi: 10.1109/CG0O51591.2021.9370322.

50 J. Pallister, S. Hollis, and J. Bennett. BEEBS: Open Benchmarks for Energy Measurements on
Embedded Platforms. 2013. arXiv: 1308.5174 [cs.PF]. url: https://arxiv.org/abs/1308.5174.

51 Pouchet Louis-Noel. Polybench: The polyhedral benchmark suite. https://www.cs.colostate.edu
/~pouchet/software/polybench/. [Accessed: 2025-10-13]. 2012.

52 Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In: 2009 IEEE International
Symposium on Workload Characterization (IISWC). 2009, pp. 44-54. doi: 10.1109/1ISWC.2009.5306797.
53 Standard Performance Evaluation Corporation. SPEC CPU 2006 benchmark (Retired: January 2018).
https://www.spec.org/cpu2006/. [Accessed: 2025-10-13].

54 Charalampos Marantos, Nikolaos Maidonis, and Dimitrios Soudris. “Designing Application Analysis Tools
for Cross-Device Energy Consumption Estimation”. In: 2022 11th International Conference on Modern
Circuits and Systems Technologies (MOCAST). 2022, pp. 1-4. doi:
10.1109/MOCAST54814.2022.9837632.

55 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy

D3.1. GreenCode SOTA Review WP3 2025

Page 21 29.12.2025

GreenCode Deliverable D3.1

Three additional studies also use benchmarks but target GPU-intensive tasks (CUDA kernels), so
we classify them separately®® %: %8, The second-largest group analyses Android applications from
platforms such as AndroZoo®® and GreenOracle®® ®'. In Zhang et al.®?, the applications run on a
Linux computer rather than an Android device. Finally, we group various programs and embedded
software under Other proprietary software.

Regarding programming languages, C is the most frequently used, often combined with C++ for
GPU or desktop/server programs (see the right chart in Figure 3). CUDA is used for GPU kernels,
while Java appears mainly in mobile or synthetic program scenarios. Python appears in only one
paper®, alongside other languages and without a specific focus. Fortran is used occasionally for
legacy benchmarks or scientific computing. Additionally, 9 studies do not specify the programming
language; most of these focus on mobile applications where user behaviour, rather than source
code, is the primary concern.

Benchmark 12

Andraid C
application

Other 3

10

[not specified] 9
CUDA kernel
from benchmark 3 CUDA 3
Synthetic 7 Java 3
software Fortran 2
Application 1 Python 1

o 2 4 [8 10 12

Frequency Freguency
Figure 3. Type of software and programming languages considered in the related literature
» RQ2: What features are considered for energy prediction?

When it comes to the input of the prediction models, we have categorized it in two ways: input
source and granularity. According to Hoque et. al.%* there are three types of input and the associated

Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020-
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7.

5 Gargi Alavani Prabhu et al. “ Estimating Power Consumption of GPU Application Using Machine Learning
Tool ”. In: 2024 |IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI).

Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734—739. doi: 10.1109/ICTAI62512.
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109.

57 Gargi Alavani et al. “Program Analysis and Machine Learning—based Approach to Predict Power
Consumption

of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:2376-3639.
doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533.

58 | orenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104.

59 Shaiful Chowdhury et al. “Greenscaler: training software energy models with automatic test generation”.
In: Empirical Software Engineering 24.4 (2019), pp. 1649-1692.

60 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273-283.
61 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software
repositories. 2016, pp. 49-60.

62 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA:
IEEE Computer Society, Dec. 2024, pp. 5233-5242. doi: 10.1109/BigData62323.2024.10825500. url:
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500.

63 Cuijiao Fu, Depei Qian, and Zhongzhi Luan. “Estimating software energy consumption with machine
learning approach by software performance feature”. In: 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018, pp. 490—496.
64 Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 22

GreenCode Deliverable D3.1

three types of models, where the input’s type determines the model’s type. This classification has
been widely used in related secondary studies®® ¢ and it includes:

Utilization-based Models: These correlate the energy usage of hardware components with
their resource utilization. Typical inputs include CPU, memory, and cache usage metrics,
often collected through hardware performance counters (HPCs). Such models assume that
power consumption is proportional to the internal activity of the processor.

o Examples in the related literature include: Cellular utilization, CPU utilization, Storage
Utilization, GPU utilization, Display utilization and Network utilization. Cellular utilization,
for example, refers to the monitoring of hardware components in mobile devices (e.g.,
CPU frequency, screen, Wi-Fi, Bluetooth).

Event-based Models: These rely on system events (e.g., system calls or network protocol

state transitions) to characterize power consumption, especially when hardware

components exhibit non-linear or “tail” energy behavior. By tracking events like read/write
calls or radio state changes, they provide more accurate estimates in dynamic contexts.

o Examples seen in the literature: Performance Monitoring Counter (PMC) and System
calls. PMC are hardware-level metrics that record low-level processor activities such as
cache misses, instructions per cycle, or context switches, providing detailed insights into
the relationship between system performance and energy usage®”. System calls
represent interactions between an application and the operating system, capturing high-
level software behavior that helps identify how programs use system resources and thus
influence energy consumption.

Code-analysis-based Models: These estimate energy consumption statically, by analyzing

program code without execution. They often work at instruction or function level, associating

each operation with an estimated power cost. While useful early in development, they are
less accurate for context-dependent behaviors, such as network conditions.

o Examples seen in the literature: Parallel Thread Execution (PTX) features, Opcode
counts, Low Level Virtual Machine (LLVM) features, and software metrics. PTX (Parallel
Thread Execution) can be thought as the assembly language of the NVIDIA CUDA GPU
computing platform®. From this representation the studies extract features following

Mobile Devices”. In: ACM Comput. Surv. 48.3 (Dec. 2015). issn: 0360-0300. doi: 10.1145/2840723. url:
https://doi.org/10.1145/2840723.

65 Andreas Schuler and Gabriele Kotsis. “A systematic review on techniques and approaches to estimate
mobile software energy consumption”. In: Sustainable Computing: Informatics and Systems 41 (2024),

p. 100919. issn: 2210-5379. doi: https://doi.org/10.1016/j.suscom.2023.100919. url: https:
/lwww.sciencedirect.com/science/article/pii/S2210537923000744.

66 Raja Wasim Ahmad et al. “A Review on mobile application energy profiling: Taxonomy, state-of-the-art,
and open research issues”. In: Journal of Network and Computer Applications 58 (2015), pp. 42-59. issn:
1084-8045. doi: https://doi.org/10.1016/j.jnca.2015.09.002. url: https://www.sciencedirect.
com/science/article/pii/S1084804515002088.

67 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA:
IEEE Computer Society, Dec. 2024, pp. 5233-5242. doi: 10.1109/BigData62323.2024.10825500. url:
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500.

68 Scudiero, Tony and Bentz, Jonathan. Understanding PTX, the Assembly Language of CUDA GPU
Computing.

https://developer.nvidia.com/blog/understanding-ptx-the-assembly-language-of-cudagpu-

computing/. [Accessed: 2025-10-23].

Page 23

D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

different approaches® 771, LLVM (Low Level Virtual Machine) is a compiler framework
that provides an intermediate representation of code’. This approach is only followed
once by Marantos et. al.”®, and they use LLVM Machine Code Analyzer to extract the
desired features.

The left side of Figure 4 shows the frequency of each input source. PMC is the most used input
type (11); followed by Cellular utilization and System calls (5); CPU utilization is being used 4 times;
PTX features and Storage utilization are being used 3 times; and lastly, Opcode counts, LLVM
features, Software metrics, GPU utilization, Display and Network utilization, are only used once.
Overall, there is a clear tendency to use event-based input.

Regarding the granularity, we describe it as the grain that the model is predicting energy of. From
biggest to smallest there is:

Application: Energy consumption is predicted for an entire program.

Kernel or function: Energy consumption is predicted for a kernel or function, whereas Kernel
corresponds to a function and is used specifically for GPU kernels.

Basic Block: Energy consumption is predicted for a segment of a program.

Sample: Energy consumption is predicted for a timestamp throughout time interval (i.e.,
time-series prediction).

Figure 4, plot on the right, shows, most approaches predict the EC for an entire program (17); 14
studies at application-level and 3 studies at kernel-level. Followed by 5 studies that predict it for
basic blocks and 4 studies that do it per sample or time-stamp.

FMC 11
Cellular utilization 5
System calls 5
CPLU utilization 4
PTX features 3
Storage utilization 3
Opcode counts Application 14
LLVM features Basic block 5

Software metrics
Sample 4
GPLU utilization

Display utilization Kernel 3

Metwork utilization

0 2 4 G 8 10 12 Frequency

Figure 4. Prediction method (left) and the granularity of prediction (right)

69 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning
Tool ”. In: 2024 |IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI).

Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734—739. doi: 10.1109/ICTAI62512.
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109.

70 Gargi Alavani et al. “Program Analysis and Machine Learning—based Approach to Predict Power
Consumption

of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:

2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533.

7" Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.

07104.

72 LVM. The LLVM Compiler Infrastructure. https://llvm.org/. [Accessed: 2025-10-22].
73 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020-

00405-7. url: https://doi.org/10.1007/s42979-020-00405-7.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 24

GreenCode Deliverable D3.1
» RQ3: What is the output of the energy prediction?

Model outputs are primarily energy or power (Figure 5). Power is the most common (16 studies);
energy is second (10). A smaller subset also predicts performance metrics, such as execution
time’ " or instructions per second’®. Reymond et al.”” and Wegener et al.”® target worst-case
metrics — worst-case execution time (WCET) and worst-case energy consumption (WCEC) —which
are especially relevant in embedded and real-time systems; we group these under time and energy,
respectively. Of the six studies with multiple target variables, four combine time with energy or
power, and two combine power with performance.

Energy 10

|
|
|
|
Ferfarmanc | Z

0 5 10 15 20

Frequency

Figure 5. Output of energy prediction models

» RQ4: What type of models are used to make the predictions?

The predictive models employed in the surveyed studies (Figure 6) can be broadly categorized into
five groups: linear models (LMs), tree-based models (TBMs), neural networks (NNs), kernel-based
models (KBMs), and distance-based models (DBMs). Linear models remain a common baseline in
almost all studies, with variants such as Ordinary Least Squares, Linear Regression, Lasso, Ridge,
Elastic Net, and Bayesian Ridge being frequently adopted. These approaches are valued for their
interpretability and low computational overhead, making them suitable for fast prediction and
comparative baselines.

74 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104.

75 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020-
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7.

76 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90
(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971.

7T Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut. “WORTEX: Worst-Case Execution
Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML”. In: 22nd International
Workshop on Worst-Case Execution Time Analysis (WCET 2024). Ed. by Thomas Carle. Vol. 121.

78 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum f’ur Informatik,
2023. doi: 10.4230/0ASICS.WCET.2023.9. url:

https://drops.dagstuhl.de/entities/document/10.4230/OASIlcs. WCET.2023.9.
Page 25 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

SVR 9
Lasso 7
RF 7
Ridge 7
LR 5
MLF 3
MM 4
oLs a4
MARX MM 3]
GB 3
DT 3]
SGD
ET
XGBoost
CatBoost
Bayesian Ridge
LSTM
QR
MLR
Elastic Met
SAE
ELM
KNN
OMP
BT
Adaboost
SWM

OB R R R R

0 2 4 6 8 10

Frequency
Freguency

Figure 6. Models used for predicting energy consumption

More advanced approaches focus on capturing nonlinear dependencies through ensemble and
neural models. Ensemble methods such as Random Forest, Gradient Boosting, XGBoost,
CatBoost, Extra Trees, and Bagging consistently appear as options across several studies’® 8.
Neural network models are also extensively employed, ranging from Multi-Layer Perceptrons and
Long Short-Term Memory (LSTM) networks to domain-specific architectures like NARX Neural
Nets®! 82 83 gand Stacked Auto-Encoders®. These models provide greater expressive power,
enabling the modelling of complex interactions between the features and the power or EC, though
at the cost of interpretability.

79 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning
Tool”. In: 2024 |IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI).

Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734—739. doi: 10.1109/ICTAI62512.
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109.

80 Gargi Alavani et al. “Program Analysis and Machine Learning—based Approach to Predict Power
Consumption

of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:

2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533.

81 Qussama Djedidi and Mohand Djeziri. “Power profiing and monitoring in embedded systems: A
comparative

study and a novel methodology based on NARX neural networks”. In: Journal of Systems Architecture

111 (Dec. 2020), p. 101805. doi: 10.1016/j.sysarc.2020.101805. url: https://amu.hal.science/hal-02740661.
82 Qussama Djedidi et al. “A Novel Easy-to-construct Power Model for Embedded and Mobile Systems”.

In: 15th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESSScience
and Technology Publications. 2018.

83 Qussama Djedidi et al. “Constructing an accurate and a high-performance power profiler for embedded
systems and smartphones”. In: Proceedings of the 21st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems. 2018, pp. 79-82.

84 Muhammed Maruf Ozturk. “Tuning stacked auto-encoders for energy consumption prediction: a case

study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1-8.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 26

GreenCode Deliverable D3.1

Some works leverage hybrid strategies and combine linear models with neural networks or tree-
based models to balance interpretability and prediction accuracy®®. Others just rely on classical
models®®.

The left chart in Figure 7 shows the frequency of each individual model. The most frequently used
are Support Vector Regression (SVR) models (9 Studies), followed by Lasso Regression, Random
Forest, and Ridge Regression (7 Studies). Multi-Layer Perceptron and Linear Regression were
used in 5 studies, whereas Neural Networks and Ordinary Least Squares in 4 studies each. The
remaining models appear less frequently.

The chart on the right in Figure 7 presents the same models, we grouped into broader categories.
Linear models are the most represented cluster (16 studies), followed by neural networks (12
studies), kernel-based models (10 studies), decision-tree models (9 studies), and distance-based
models (1 study). This indicates a strong reliance on linear models and neural-networks,
complemented by kernel-based and ensemble approaches for modelling software energy
consumption. Most of the studies analysed evaluate and compare multiple models; Studies that
focus on one model include Multi-Layer Perceptron®”, Random Forest®®, NARX Neural Network,
Ordinary Least Squares 8% 91.92 Stacked Auto-Encoders®®, Extreme Learning Machine®, Support
Vector Regression®, and Lasso Regression®,

85 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software
Environments”. In: 2024 |IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA:
IEEE Computer Society, Dec. 2024, pp. 5233-5242. doi: 10.1109/BigData62323.2024.10825500. url:
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500.

86 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum f’ur Informatik,
2023. doi: 10.4230/0ASICS.WCET.2023.9. url:
https://drops.dagstuhl.de/entities/document/10.4230/0OASIlcs. WCET.2023.9.

87 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-MO0 Processor for Profiling and Static
Analysis”.

In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE,

Oct. 2022, 1-4. doi: 10.1109/icecs202256217.2022.9971086. url:
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086.

88 | orenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104.

89 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum f’ur Informatik,
2023. doi: 10.4230/0ASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10.
4230/0OASIcs.WCET.2023.9.

9 Kris Nikov et al. “Robust and Accurate Fine-Grain Power Models for Embedded Systems with No
On-Chip PMU”. In: IEEE Embedded Systems Letters 14.3 (Sept. 2022), 147-150. issn: 1943-0671. doi:
10.1109/les.2022.3147308. url: http://dx.doi.org/10.1109/LES.2022.3147308.

91 Krastin Nikov and Jose Nunez-Yanez. “Intra and inter-core power modelling for single-ISA
heterogeneous

processors”. In: International Journal of Embedded Systems 12 (Jan. 2020), p. 324. doi:
10.1504/1JES.2020.107046.

92 Matthew J Walker et al. “Accurate and stable run-time power modeling for mobile and embedded CPUs”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.1 (2016), pp. 106—
119.

98 Muhammed Maruf Ozturk. “Tuning stacked auto-encoders for energy consumption prediction: a case
study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1-8.

94 Deguang Li et al. “Software Energy Consumption Estimation at Architecture-Level”. In: 2016 13th
International Conference on Embedded Software and Systems (ICESS). IEEE. 2016, pp. 7-11.

9 Xiong Wei et al. “An embedded software power consumption model based on software architecture and
support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191-200.

9 Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. “Accurate phase-level cross-platform power and
performance estimation”. In: Proceedings of the 53rd Annual Design Automation Conference. 2016, pp. 1—

6.
Page 27 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

We additionally categorized the EC models with respect to the type of their input, where we followed
the classification by Hoque et al.¥”. The left chart in Figure 7 also shows the frequency distribution
of the different model types. Event-based models are the most prevalent, appearing in 11 studies,
which indicates a strong focus on capturing runtime system behavior through events such as
system calls. Code-analysis-based models follow with 6 occurrences, reflecting continued interest
in static estimation approaches that do not require executing the software. Utilization-based models
appear in 5 studies, showing moderate adoption for correlating resource usage with power
consumption. Finally, 4 studies employ hybrid approaches combining multiple input sources, for
instance utilization-based with event-based approaches.

Dynamic 18
Event-based Models 1

Code-analysis-based i
Models 6 Static 6

Utilization-based

Models 5 Static

(prediction at
the ISA hasic

Hybrid 4 block-level)

0 2 4 6 B8 10 12 1]] 10 15 20

Frequency Frequency

Figure 7. Model types regarding the input for prediction

Furthermore, we classified the approaches according to the predicting method uses distinguished
static or dynamic methods. Static prediction methods do not require executing software to predict
its energy consumption, whereas dynamic methods do require running the software. Some
methods support both static and dynamic prediction, depending on the type of input they are
provided with. We classify these methods as static. The right chart of Figure 7 shows that most
reviewed studies (18) follow a dynamic approach. The 6 studies follow a static approach, with one
study®, in which the input to the prediction method includes, in addition to software code, a runtime
information regarding loops, e.g., the number of loop iterations. Because this additional information
may be approximated by the model’s user without running the code, we classified it as static one.
If this input cannot be approximated, the code must be executed and the prediction approach
becomes a dynamic one. We classified the remaining two models as multimodal because EC
predictions can be done either with static or dynamic inputs. Each of these models consists of two
sub-models arranged in a pipeline, in which the output of the first sub-model is the input to the
second one. In both cases, the first sub-model estimates PMCs at the Instruction Set architecture
(ISA) basic block level based on software code, while the second takes the estimated PMCs to
predict the energy consumed. In this sense, the first sub-model in the pipeline is a static one
whereas the second a dynamic one. The model can be provided with a software code or with PMCs.
Regarding the first sub-model, that predicts PMCs basedon code, Wegener et. al. ®° use
microarchitectural analysis to predict an upper bound of the various PMCs for each instruction in

97 Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of
Mobile Devices”. In: ACM Comput. Surv. 48.3 (Dec. 2015). issn: 0360-0300. doi: 10.1145/2840723. url:
https://doi.org/10.1145/2840723.

98 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020-
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7.

99 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum f’ur Informatik,

2023. doi: 10.4230/0ASICS.W
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 28

GreenCode Deliverable D3.1

the Control Flow Diagram (CFG). Nikov et. al. ' predicts PMCs with architecture models.
Unfortunately, neither of the two studies provides detailed specification of these sub-models. In
both cases, training the first, static, sub-model requires executing software code and collecting
actual PMCs for the predefined code.

» RQ5: How and with what tools is the actual energy consumption measured?

Two main approaches to measuring energy consumption are hardware-based and software-based
(Figure 8). Hardware-based methods rely on integrated power monitoring units (PMUs) or external
sensors. These methods provide high-accuracy measurements but are more complex and
expensive to set up than software solutions, so they are less commonly used. By contrast, software-
based approaches use system profilers and APlIs to estimate energy consumption and are the most
popular (12 studies). Common tools include perf'®’, NVIDIA Management Library (NVML)'0% 103,
Intel Power Gadget'®, and CUDA Flux'%®. Hybrid frameworks such as GreenMiner'%: 107. 108
combine software logging with hardware instrumentation to enable large-scale energy data
collection on Android devices. Although software methods offer greater flexibility and broader
applicability, they typically achieve lower accuracy than direct hardware measurements and are
more sensitive to system-level noise. Simulation-based tools, such as MAGEEC'® and HMSim'°,
also appear in the literature but are used less frequently.

100 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-MO0 Processor for Profiling and Static
Analysis”.

In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE,

Oct. 2022, 1-4. doi: 10.1109/icecs202256217.2022.9971086. url: http://dx.doi.org/10.1109/
ICECS202256217.2022.9971086.

01 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software
Environments”. In: 2024 |IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA:
IEEE Computer Society, Dec. 2024, pp. 5233-5242. doi: 10.1109/BigData62323.2024.10825500. url:
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500.

102 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning
Tool”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI).

Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734—739. doi: 10.1109/ICTAI62512.
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109.

103 Gargi Alavani et al. “Program Analysis and Machine Learning—based Approach to Predict Power
Consumption

of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:

2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533.

104 Muhammed Maruf “ Ozt"urk. “Tuning stacked auto-encoders for energy consumption prediction: a case
study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1-8.

105 | orenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104.

106 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software
repositories. 2016, pp. 49-60.

107 Shaiful Alam Chowdhury et al. “A system-call based model of software energy consumption without
hardware instrumentation”. In: 2015 Sixth International Green and Sustainable Computing Conference
(IGSC). IEEE. 2015, pp. 1-6.

108 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273-283.
109 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90

(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971.

110 Xiong Wei et al. “An embedded software power consumption model based on software architecture and

support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191-200.
Page 29 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

|
Software 12

Hardware]

Hardware
+ Software |
Simulator 2
|
0 2 4 i 8 10 12
Frequency

Figure 8. Methods and tools for measuring actual energy consumption

» RQ6: What environment is the software operating in and how it is configured?

The studies analysed measure the energy consumption of software on a wide variety of hardware
platforms, which can be grouped into several categories. Several works use traditional server-class
machines such as Linux servers'' 2nd specialized infrastructures, for example the Marcher2
server''®, GPU-based systems are widely represented, with accelerators such as NVIDIA Tesla
K20, K80, M60, V100, and more recent GPUs such as RTX A4000, RTX 4060, GTX1650, Titan Xp,
and P100"" 15 116 These configurations are mostly used for CUDA-based workloads. On the
embedded side, GPU-enabled boards such as the NVIDIA Jetson TX1 and Jetson Xavier NX are
employed to capture energy behavior in constrained environments'"” '8, Embedded boards and
microcontrollers are another frequent target. Examples include ARM Cortex-M0 (STM32FO0-

1 Deguang Li et al. “Software Energy Consumption Estimation at Architecture-Level”’. In: 2016 13th
International Conference on Embedded Software and Systems (ICESS). IEEE. 2016, pp. 7-11.

2 Tong Zhang et al. “ Assessing Predictive Models for Energy Consumption Across Varied Software
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA:
IEEE Computer Society, Dec. 2024, pp. 5233-5242. doi: 10.1109/BigData62323.2024.10825500. url:
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500.

113 Cuijiao Fu, Depei Qian, and Zhongzhi Luan. “Estimating software energy consumption with machine
learning approach by software performance feature”. In: 2018 IEEE International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018, pp. 490—496.
14 Gargi Alavani Prabhu et al. “ Estimating Power Consumption of GPU Application Using Machine Learning
Tool ”. In: 2024 |IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI).

Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734—739. doi: 10.1109/ICTAI62512.
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109.

5 Gargi Alavani et al. “Program Analysis and Machine Learning—based Approach to Predict Power
Consumption

of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:

2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533.

116 orenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104.

17 Charalampos Marantos, Nikolaos Maidonis, and Dimitrios Soudris. “Designing Application Analysis Tools
for Cross-Device Energy Consumption Estimation”. In: 2022 11th International Conference on Modern
Circuits and Systems Technologies (MOCAST). 2022, pp. 1-4. doi: 10.1109/MOCAST54814.2022.9837632.
118 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020-

00405-7. url: https://doi.org/10.1007/s42979-020-00405-7.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 30

GreenCode Deliverable D3.1

Discovery board)'®, 120 MSP430FR5969'%", single-core ARM7'?2, and LEON3 GR712RC
processors, sometimes combined with FPGAs like Kintex UltraScale for hybrid experiments)'?3 124,
ARM-based development boards, such as Odroid-U3 and Odroid-XU3, which embed Cortex-A15
and Cortex-A7 clusters, are also widely used for heterogeneous embedded scenarios'?5 126, 127,128
Finally, mobile and consumer devices are prominent in many studies. Android smartphones
constitute a significant portion of the evaluation platforms, often combined with external
measurement hardware such as GreenMiner for improved accuracy'2®: 130, 131,132,

Figure 9 summarizes the frequency of system types across the surveyed studies. Microcontrollers
(MCUSs) are the most frequently evaluated platforms (5 studies) followed by Android smartphones,

19 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum f’ur Informatik,

2023. doi: 10.4230/0ASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10.
4230/0OASIcs.WCET.2023.9.

120 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-MO Processor for Profiling and Static
Analysis”.

In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE,

Oct. 2022, 1-4. doi: 10.1109/icecs202256217.2022.9971086. url:
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086.

21 Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut. “WORTEX: Worst-Case Execution
Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML”. In: 22nd International
Workshop on Worst-Case Execution Time Analysis (WCET 2024). Ed. by Thomas Carle. Vol. 121. Open
Access Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2024, 1:1-1:14. isbn: 978-3-95977-346-1. doi: 10.4230/0OASIcs.WCET.2024.1. url: https:
/ldrops.dagstuhl.de/entities/document/10.4230/0OASIcs.WCET.2024.1.

122 Xiong Wei et al. “An embedded software power consumption model based on software architecture and
support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191-200.

123 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl — Leibniz-Zentrum flr Informatik,

2023. doi: 10.4230/0OASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10.
4230/0OASIcs.WCET.2023.9.

124 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-MO0 Processor for Profiling and Static
Analysis”.

In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE,

Oct. 2022, 1-4. doi: 10.1109/icecs202256217.2022.9971086. url:
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086.

125 Matthew J Walker et al. “Accurate and stable run-time power modeling for mobile and embedded CPUs”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.1 (2016), pp. 106—
119.

126 Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. “Accurate phase-level cross-platform power and
performance estimation”. In: Proceedings of the 53rd Annual Design Automation Conference. 2016, pp. 1—
6.

127 Krastin Nikov and Jose Nunez-Yanez. “Intra and inter-core power modelling for single-ISA
heterogeneous

processors”. In: International Journal of Embedded Systems 12 (Jan. 2020), p. 324. doi:
10.1504/1JES.2020.107046.

128 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90

(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971.

129 Shaiful Chowdhury et al. “Greenscaler: training software energy models with automatic test generation”.
In: Empirical Software Engineering 24.4 (2019), pp. 1649-1692.

130 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software
repositories. 2016, pp. 49-60.

131 Shaiful Alam Chowdhury et al. “A system-call based model of software energy consumption without
hardware instrumentation”. In: 2015 Sixth International Green and Sustainable Computing Conference
(IGSC). IEEE. 2015, pp. 1-6.

132 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017

IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273-283.
Page 31 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

either standalone or paired with Green Miner hardware (4 studies), reflecting the importance of
energy measurement for mobile devices. Embedded ARM clusters also appear in 4 studies. GPU-
equipped systems, including NVIDIA GPUs, are present in 3 studies, while traditional server-class
machines, such as Linux servers, and NVIDIA embedded boards appear in 2 studies each. A few
studies use less common or unspecified platforms: one study does not specify the system used,
and two studies are grouped under "Other", which includes Raspberry Pi 4, Intel i5-4210U, and the
Marcher2 server.

Overall, this distribution highlights a strong focus on microcontrollers, embedded ARM clusters, and
mobile devices, complemented by GPUs and server-class machines.

Mcu 5

Android smanphone 4
Embedded ARM
clusters

Android smartphone
+ Green Miner

NVIDIA GPUs 3
Linux Server 2
NVIDIA embedded 9
hoard
Other 2
[Mot specified] 1
0 1 2 3 4 5

Frequency

Figure 9. Energy prediction environments and settings

» Limitations & gaps

The analysis of related work indicated a couple of relevant research gaps regarding the prediction
of software energy consumption (Table 4). The most significant gap is the lack of approaches
addressing Python programming language despite the rapid increase of this usage, especially in
the area of data analysis (data science, machine learning and artificial intelligence) and
development of data-driven software systems. Further research deficit relates to a static code
analysis, specifically measuring static properties of code at fine-grained level for the purpose of
predicting energy consumption.

Table 4. Gaps regarding the prediction of software energy consumption
Limitation/Gap Description Example/Implication Application To GreenCode

Limited support for Very scarce research onData analysis and data-driven One of the focus areas of

Python language predicting energy software applications written GreenCode are energy intensive
consumption of Python in Python cannot be analysed data processing software
software based on and optimized concerning systems.

source code analysis |energy consumption.

Limited support for |Missing method for Individual code structures that GreenCode aims at optimizing

fine-grained code analysing source code jare responsible for high energy energy consumption. This

analysis for fine-grained energy consumption cannot be requires identifying exact
consumption spotted because only large location in energy-intensive
predictions. junks of software are parts of software code, which

may be on various granularity
levels, including fine-grained
ones.

considered.

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 32

GreenCode Deliverable D3.1

4.3 Benchmark Analysis

This section presents a structured review of existing benchmarks that evaluate Large Language
Models (LLMs) in the context of code generation and optimization, with an emphasis on efficiency
and sustainability. The analysis is guided by five research questions (RQs), each examining a
specific dimension of benchmark design, evaluation methodology, LLM interaction, and observed
limitations. The corresponding findings are consolidated in Table 5 and Table 6, which provide
comparative overviews of the benchmark landscape and evaluation metrics.

RQ1: Which code optimization benchmarks exist?

RQ2: Which programming languages do they cover?

RQ3: What types of data do they use (function-level, codebase-level, synthetic example)?
RQ4: What criteria are used to evaluate optimizations (runtime, memory, energy, etc.)?
RQ5: What are the main limitations of current benchmarks?

YV VVYVYY

The identified benchmarks exhibit variation in their design scope, programming language coverage,
and data granularity. To facilitate comparison, Table 5 provides an overview of representative
benchmarks. The Language column indicates the primary implementation languages used for
benchmark tasks, while the Data Scope column specifies the granularity level ranging from function-
level and program-level examples to repository-scale datasets. The Description column briefly
summarizes each benchmark’s unique objective or methodological focus.

Function-level evaluations dominate the current landscape, largely due to their simplicity and high
reproducibility. Python remains the predominant language, reflecting its centrality in LLM-based
code generation research. Program-level and repository-level evaluations are relatively rare,
signalling a gap in real-world efficiency assessments that consider cross-module dependencies and
runtime environments.

Table 5. Benchmark Landscape, Language Coverage, and Data Types

Parallel code generation using

133 5
PCEBench 2025 C/C++ Function/Program OpenMP/MP|
ResBench!® 2025 Verler Function FPGA d§5|gn generation with resource
constraints
MARCO™S 2025 Python Program/HPC Muilti-agent optimization for HPC
kernels
Pyth ++ Multi-| hmark f i
EffiBench-X1%6 2025 ython, C++, Java, Function ulti-language p(?nc mark for runtime
JS, Ruby, Go and memory efficiency

133 L. Chen, N. Ahmed, M. Capota, T. Willke, N. Hasabnis and A. Jannesari, "PCEBench: A Multi-
Dimensional Benchmark for Evaluating Large Language Models in Parallel Code Generation," 2025 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Milano, Italy, 2025, pp. 546-557, doi:
10.1109/IPDPS64566.2025.00055. keywords: {Technological innovation;Codes;Parallel
programming;Large language models;Scalability;Benchmark testing;Software systems;Multitasking;Natural
language processing;Synchronization;large language model;parallel code
generation;benchmark;evaluation;LLM agent},

134 Hu, P., Pan, W., Jian, X., Ma, Z., Li, T., Shen, Y., ... & Li, Z. (2025). ResBench: A Comprehensive
Framework for Evaluating Database Resilience. arXiv preprint arXiv:2511.11088.

135 Asif Rahman, Veljko Cvetkovic, Kathleen Reece, Aidan Walters, Yasir Hassan, Aneesh Tummeti, Bryan
Torres, Denise Cooney, Margaret Ellis, and Dimitrios S. Nikolopoulos. [n. d.]. Performance Evaluation of
Large Language Models for High-Performance Code Generation: A Multi-Agent Approach (MARCO).
https://api.semanticscholar.org/CorpusID: 280547604

36 Qing, Y., Zhu, B., Du, M., Guo, Z., Zhuo, T. Y., Zhang, Q., ... & Tuan, L. A. (2025). EffiBench-X: A Multi-

Language Benchmark for Measuring Efficiency of LLM-Generated Code. arXiv preprint arXiv:2505.13004.
Page 33 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

Function-level efficiency benchmark

ENAMEL?” 2024 Pyth Functi
ython unction based on HumanEval/MBPP
Coffe!3® 2025 Python Function/Program CPU instruction-based efficiency
benchmark
Natural-| instruct
ECCO™? 2024 Python Function atural-language instructed code
optimization
CodeEditorB C iti f
ogoe ditorBen 2024 @t e e e ' ode editing and performance
ch improvement tasks
Mercury?# 2024 Python Function Runtime-weighted efficiency
assessment
EffiBench*? 2024 Python Function Efficiency measurfe.ment via runtime
and memory profiling
H ter- ifferential
EvalPerfl43 2024 Python Function ardware counter ba.sed differentia
performance evaluation
144 . Real-world pull request—based
SWE-Perf 2025 Python Repository

optimization evaluation

Benchmark evaluating multi-
dimensional code generation beyond
RACE#° 2024 Python Function correctness; measures time and space
complexity, readability, and
maintainability.

» RQ4: What criteria are used to evaluate optimizations (runtime, memory, energy, etc.)?

Evaluation criteria in current benchmarks predominantly focus on runtime and memory efficiency,
reflecting the traditional emphasis on computational speed in software performance analysis.
Nonetheless, several recent studies broaden this perspective by introducing multi-dimensional
efficiency metrics that account for hardware-level performance, normalized composite indicators,
and instruction-based stability measures.

Table 6 presents an overview of benchmarks that include quantitative evaluations of efficiency,
illustrating the variety of metrics and methodologies employed to assess the performance of LLM-
generated or optimized code.

137 Qiu, R., Zeng, W. W., Ezick, J., Lott, C., & Tong, H. (2024). How efficient is lIm-generated code? a rigorous
& high-standard benchmark. arXiv preprint arXiv:2406.06647.

38 Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. 2025. COFFE: A Code Efficiency Benchmark for Code
Generation. arXiv:2502.02827 [cs.SE] https://arxiv.org/abs/2502.02827

139 Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. 2024. ECCO: Can We
Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness? arXiv:2407.14044
[cs.CL] https://arxiv.org/abs/2407.14044

40 Guo, J., Li, Z., Liu, X,, Ma, K., Zheng, T., Yu, Z., ... & Fu, J. (2024). Codeeditorbench: Evaluating code
editing capability of large language models. arXiv preprint arXiv:2404.03543.

41 Mingzhe Du, Luu Anh Tuan, Bin Ji, Qian Liu, and See-Kiong Ng. 2024. Mercury: a code efficiency
benchmark for code large language models. In Proceedings of the 38th International Conference on Neural
Information Processing Systems (Vancouver, BC, Canada) (NIPS ’24). Curran Associates Inc., Red Hook,
NY, USA, Article 529, 22 pages.

42 Dong HUANG, Yuhao QING, Weiyi Shang, Heming Cui, and Jie Zhang. 2024. EffiBench: Benchmarking
the Efficiency of Automatically Generated Code. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=30XanJanJP

43 Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., & Zhang, L. (2024). Evaluating language models for efficient
code generation. arXiv preprint arXiv:2408.06450.

44 He, X., Liu, Q., Du, M., Yan, L., Fan, Z,, Huang, Y., ... & Ma, Z. (2025). Swe-perf: Can language models
optimize code performance on real-world repositories?. arXiv preprint arXiv:2507.12415.

145 Zheng, J., Cao, B., Ma, Z., Pan, R,, Lin, H., Lu, Y., ... & Sun, L. (2024). Beyond correctness: Benchmarking

multi-dimensional code generation for large language models. arXiv preprint arXiv:2407.11470.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 34

GreenCode Deliverable D3.1

Table 6. Evaluation Criteria Across Benchmarks

PCEBench Execution time, RaceFree@k, Correct@k, SpeedPass@k (speedup 21.5x)

ResBench LUT usage, synthesis success, functional correctness

MARCO Execution time, FLOPS, memory usage, readability, cost efficiency

EffiBench-X Execution Time, Memory Peak, Memory Integral, Pass@1

ENAMEL Efficiency@k (eff@1), correctness, runtime stability

RACE Time complexity, space complexity, correctness, readability, maintainability

Coffe Efficient@k, CPU instruction count, speedup ratio, Pass@k

ECCO Runtime speedup, memory reduction, correctness, % optimized

CodeEditorBench Pass@1, Mean OptScore, readability

Mercury Beyond metric (runtime-weighted Pass), correctness

EffiBench Execution Time, Max Memory Usage, Total Memory Usage, and their normalized
versions (NET, NMU, NTMU)

EvalPerf DPS_norm (normalized performance score), correctness

SWE-Perf Runtime gain, performance ratio, correctness (test suite)

As summarized in Table 6, existing benchmarks collectively span a broad range of performance
and quality metrics yet remain heterogeneous in methodology and granularity. Most studies such
as EffiBench-X, EffiBench, and ENAMEL focus primarily on runtime and memory efficiency, offering
fine-grained yet narrowly scoped evaluations. In contrast, RACE and CodeEditorBench incorporate
qualitative measures like readability, maintainability, and complexity compliance, broadening the
evaluation scope toward developer-centric metrics.

Hardware-oriented benchmarks such as EvalPerf, Coffe, and ResBench, introduce more
reproducible, platform-aware measures, including hardware counters, instruction counts, and
resource utilization. Meanwhile, SWE-Perf and MARCO represent the highest level of realism by
benchmarking within complete execution environments (Dockerized repositories or multi-agent
HPC systems).

Despite these advances, energy consumption and carbon impact remain absent as direct
measurements. Current approaches rely on surrogate metrics like runtime, instruction count, or
hardware counters that provide only partial approximations of true energy efficiency. Establishing
standardized, energy-calibrated protocols therefore remains a key objective for the GreenCode
benchmark suite, ensuring fair, reproducible, and sustainability-aware evaluation of LLM-driven
code optimization.

> RQ5: What are the main limitations of current benchmarks?

Despite major advancements in LLM-based code benchmarking, several critical limitations continue
to constrain their accuracy, comparability, and practical applicability. These limitations are
methodological, technical, and conceptual, highlighting the need for more comprehensive and
sustainability-aware evaluation frameworks.

e Limited Granularity and Realism: Most existing benchmarks focus on isolated, function-level
tasks, which are suitable for controlled experiments but fail to capture the complexity of real-
world software systems. The absence of large-scale, program-level or repository-level
evaluations restricts understanding of end-to-end optimization behaviour.

e Lack of Energy and Sustainability Metrics: Current benchmarks measure performance
primarily through runtime or memory usage. However, they do not include direct

Page 35 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

measurements of energy consumption, power usage, or carbon impact. This omission
prevents a full assessment of sustainability-related trade-offs.

o Data Contamination and Benchmark Saturation: Many benchmarks rely on widely used
public datasets, which are often part of model training corpora. This overlap introduces bias,
overestimates model performance, and undermines the validity of comparative evaluations.

o Inconsistent Experimental Environments: Benchmarks are typically executed on
heterogeneous hardware setups without standardized conditions or containerized
environments. As a result, reproducibility across studies remains limited, and direct
comparison of results is unreliable.

¢ Narrow Evaluation Objectives: Most benchmarks emphasize correctness and runtime
improvement while overlooking complementary software qualities such as maintainability,
readability, or robustness. A sustainable benchmark must integrate these dimensions to
better represent real-world development goals.

Overall, existing benchmarking methodologies remain fragmented and primarily performance
driven. Their lack of environmental and contextual awareness limits their contribution to sustainable
software engineering. Establishing standardized, reproducible benchmarks is therefore a
necessary step toward evaluating LLM-generated code in realistic and sustainability-oriented
contexts.

4.4 Quality assessment of genAl outcomes

The evaluation of generative Al (GenAl) outputs has become a critical research focus across
domains such as computer science, healthcare, and law. Recent studies emphasise that quality is
a complex, multidimensional, construct that comprises factual accuracy, completeness, reasoning
coherence, clarity and style, safety, and trustworthiness %6 7. In certain contexts, these criteria
extend beyond linguistics to include domain-specific notions to position GenAl as a component for
decision™®.

Traditional metrics such as BLEU and ROUGE have proven inadequate for open-ended or creative
GenAl tasks because they reward surface similarity rather than faithfulness or usefulness®.
Consequently, LLM-as-a-judge approaches, in which a strong model evaluates another model’s
output, have gained traction'. Frameworks like G-Eval demonstrate closer alignment with human
judgements on factuality and coherence than older metrics, though evaluator bias and self-
agreement remain open concerns's".

In software engineering contexts, researchers increasingly examine GenAl-generated artefacts
beyond fluency and task accuracy, measuring code maintainability, security vulnerabilities and

46 Tam, T.Y.C., et al. (2024) ‘A framework for human evaluation of large language models in healthcare
derived from literature review’, npj Digital Medicine / arXiv:2405.02559.

47 Budler, L.C. et al. (2025) ‘A brief review on benchmarking for large language models’, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery

148 Asgari, E. et al. (2025) ‘A framework to assess clinical safety and hallucination risk in large language
model outputs’, npj Digital Medicine.

49 Liu, Y. et al. (2023) ‘G-Eval: NLG evaluation using GPT-4 with better human alignment’, Proceedings of
EMNLP 2023.

150 Wang, Y. et al. (2025) ‘LLM-as-a-Judge: Reliability, bias, and best practices’, arXiv preprint.

51 Liu, Y. et al. (2023) ‘G-Eval: NLG evaluation using GPT-4 with better human alignment’, Proceedings of

EMNLP 2023
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 36

GreenCode Deliverable D3.1

static-analysis defects’®? 53 154 |n the automotive domain, where software must satisfy real-world
hardware constraints and strict safety standards, recent studies propose frameworks that integrate
GenAl with formal verification, requirement-analysis pipelines and system-level validation to enable
trustworthy generations® 156 157,

Other recent studies in software engineering and embedded systems extend quality assessment
of generative Al into domain-specific artefacts such as code generation and safety-critical
embedded software. For instance, the CODEJUDGE framework proposes using a large language
model to evaluate the semantic correctness of generated code without relying solely on test cases,
thereby addressing limitations of purely functional metrics'®®. Empirical work examining LLM-
generated code goes further: one study evaluated maintainability and reliability of Python code
produced by different model configurations (zero-/few-shot, fine-tuned) using static analysis and
found weak correlation between functional correctness and code quality issues like code smells
and defects'®. Another line of research addresses safety-critical domains: e.g., studies in
automotive software ask whether GenAl-generated code can comply with verification and
simulation constraints inherent to the automotive software development lifecycle 60 161,
Benchmarks such as L2CEval further analyse language-to-code generation capability across tasks
and emphasise calibration and error-analysis in code generation quality, underscoring that
correctness is only one axis of quality'®?. These domain-specific advances underline that for code-
generation, “quality” must be judged not just by whether it runs, but by maintainability, security-
vulnerability risk, integration correctness, and compliance with domain verification.

Another key focus of recent research is hallucination detection, defined as the confident generation
of false or unsupported content. Surveys distinguish between factual and faithfulness hallucinations
and position them as primary quality defects rather than minor inaccuracies '3 %4, Empirical audits
report persistent hallucination rates across models, including fabricated citations and incorrect
medical advice'®®. Emerging approaches treat hallucination detection as an uncertainty estimation

52 Tosi, G., Di Lascio, F.M.L., & Morisio, M. (2024) Studying the quality of source code generated by large
language models. Future Internet, 16(6), 188. MDPI.

Available at: https://doi.org/10.3390/fi16060188

153 Cotroneo, D., De Simone, L., Pietrantuono, R., & Russo, S. (2024) Automating the correctness
assessment of Al-generated code. Journal of Systems and Software, 212, 111995. Elsevier.

54 Sabra, M., Liu, Y., Liu, J., & Shen, Y. (2025) Assessing the quality and security of Al-generated code: A
quantitative analysis. arXiv preprint, arXiv:2508.14727.

155 Kirchner, A., & Knoll, A. (2025) Generating automotive code: Large language models for software
development and verification in safety-critical systems. arXiv preprint, arXiv:2506.04038.

156 Pan, X., Hentges, J., Zeller, A., & Knoll, A. (2025) Automating automotive software development: A
synergy of generative Al and formal methods. arXiv preprint, arXiv:2505.02500.

57 McKinsey & Company. (2025) From engines to algorithms: GenAl in automotive software development.
McKinsey Center for Future Mobility.

58 |iang, G., et al. (2024) ‘Evaluating Code Generation with Large Language Models’, Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing (EMNLP).

59 Sabra, A., Schmitt, O. & Tyler, J. (2025) ‘Assessing the Quality and Security of Al-Generated Code: A
Quantitative Analysis’. arXiv preprint arXiv:2508.14727.

160 Kirchner, A. & Knoll, A. (2025) ‘Generating Automotive Code: Large Language Models for Software
Development and Verification in Safety-Critical Systems’. arXiv preprint arXiv:2506.04038.

61 Liu, M., et al. (2024) ‘An Empirical Study of the Code Generation of Safety-Critical Software’, Applied
Sciences, 14(3), 1046.

621 j, W., Gao, K., He, H. & Zhou, M. (2024) ‘LiCoEval: Evaluating LLMs on License Compliance in Code
Generation’. arXiv preprint arXiv:2408.02487.

163 Sahoo, P. et al. (2024) ‘A comprehensive survey of hallucination in large language models’, Findings of
EMNLP 2024.

64 Huang, L. et al. (2025) ‘A survey on hallucination in large language models’, ACM Computing Surveys.
65 Rahman, A.B.M.A. et al. (2024) ‘DefAn: Definitive Answer Dataset for LLMs Hallucination Evaluation’,

arXiv:2406.09155.
Page 37 D3.1. GreenCode SOTA Review WP3 2025 29.12.2025

GreenCode Deliverable D3.1

problem, using entropy-based confidence measures to flag unreliable responses'®. Overall,
hallucination control and calibration are now central to quality assurance in GenAl systems.

166 Farquhar, S. et al. (2024) ‘Detecting hallucinations in large language models using uncertainty estimation’,
Nature.
29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 38

