
  GreenCode Deliverable D3.1 
 

Page 1 D3.1. GreenCode SOTA Review WP3 2025     29.12.2025                                                                 

 

  

AI/ML Driven Software Optimisation 
to Reduce Cost and Climate Impact 

(2025) Annual SotA review of the static code analysis and QA 
tools, with focus on NLP/GenAI solutions and the application 
of green considerations as a quality metric 
 

─ Restr ic ted  ─ 

Authors: 

Andreas Jedlitschka (WP3 Leader), Michele Albano - Aalborg Universitet, Chris Dean - 
Digital Tactics, Asger Posborg Jæhger - Edora A/S, Adam Trendowicz - Fraunhofer, Anna 
Maria Vollmer - Fraunhofer, Julien Siebert - Fraunhofer, Patricia Kelbert - Fraunhofer, Sven 
Theobald - Fraunhofer, Violeta Bonet Vila, Fraunhofer, Daniel Carlos Do Vale Ramos - 
ISEP, Pedro Faria - ISEP, Rita Inês Correia Da Costa - ISEP, Zita Vale - ISEP, Amir Soltani 
- KAN Engineering, Alireza Mehri - KAN Engineering, Gunel Jahangirova - Kings College, 
Jie Zhang - Kings College, Mohammad Mousavi - Kings College, Hugo Araujo - Kings 
College, Marcos Checa - Panel Sistemas, Cosme Gonzalez - Panel Sistemas, Christian 
Koerner - Siemens Germany, Ezgi Sarikayak - Siemens Germany, Matthias Saft - Siemens 
Germany, Angel Cataron - Siemens Romania, Fridtjof Siebert - Tokiwa, Michael Lill - Tokiwa, 
Daniel Esteban Villamil - UC3M, Juanmiguel Gomez - UC3M, Andrea Pabon - UC3M, Haluk 
Gokmen - VBT, Osman Çaylı - VBT, Sinan Kılıç - VBT, Yücel Şentürk - VBT, Constantin 
Deneke - ZAL Aero, Johannes Passand - ZAL Aero, Mario Paja - ZAL Aero, Steffen Ruesch 
- ZAL Aero, Stephan Rediske - ZAL Aero 

DELIVERABLE D3.1 

 ITEA Call 2023 

Project 23016 GreenCode 

Version, Date V1.0 23.12.2025 

 



GreenCode Deliverable D3.1 
 

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 2 

 

 

Version history 

Version Authors Content Date 

0.1 Andreas Jedlitschka Document creation and document structure 01.06.2025 

0.2-0.7 Diverse authors Individual contributions 31.10.2025 

0.75 Patricia Kelbert Reorganization of document structure 10.10.2025 

0.8 All authors Initial version ready for internal review 30.11.2025 

0.9 All authors Final review of individual contributions 16.12.2025 

1.0 Andreas Jedlitschka 
and Daniel Villamil 

Review, cosmetics, and finalization 23.12.2025 

 

  



  GreenCode Deliverable D3.1 
 

Page 3 D3.1. GreenCode SOTA Review WP3 2025     29.12.2025                                                                 

 

 

Content 
1 Introduction ................................................................................................................................................5 

2 Thematic Review .......................................................................................................................................6 

2.1 Mapping of software system’s codebase ............................................................................................6 

2.1.1 Gaps Identified ............................................................................................................................7 

2.1.2 Summary and Future Opportunities for GreenCode ...................................................................7 

2.2 Static Code Analysis with focus on Energy .........................................................................................8 

2.2.1 Background .................................................................................................................................8 

2.2.2 Current State of the Art ...............................................................................................................8 

2.2.3 Key Findings ...............................................................................................................................9 

2.2.4 Gaps Identified ......................................................................................................................... 10 

2.2.5 Summary and Future Opportunities for GreenCode ................................................................ 10 

2.3 Benchmark Analysis ......................................................................................................................... 11 

2.3.1 Background .............................................................................................................................. 11 

2.3.2 Current State of the Art ............................................................................................................ 11 

2.3.3 Key Findings ............................................................................................................................ 11 

2.3.4 Identified Gaps ......................................................................................................................... 12 

2.3.5 Summary and Future Opportunities for GreenCode ................................................................ 12 

2.4 Quality Assessment of GenAI outcomes .......................................................................................... 13 

2.4.1 Background .............................................................................................................................. 13 

2.4.2 Current State of the Art ............................................................................................................ 13 

2.4.3 Key Findings ............................................................................................................................ 14 

2.4.4 Identified Gaps ......................................................................................................................... 14 

2.4.5 Future Opportunities for GreenCode ....................................................................................... 14 

2.5 Static code analysers for compiled software .................................................................................... 15 

2.5.1 Background .............................................................................................................................. 15 

2.5.2 Current State of the Art ............................................................................................................ 15 

2.5.3 Key Findings ............................................................................................................................ 15 

2.5.4 Limitations and Gaps ............................................................................................................... 15 

2.5.5 Summary and Future Opportunities for GreenCode ................................................................ 16 

3 Conclusion and Synthesis ...................................................................................................................... 17 

4 Annex ..................................................................................................................................................... 18 

4.1 Mapping of software system’s codebase ......................................................................................... 18 

4.1.1 The ANTLR4 Methodology for Automated Model Extraction................................................... 18 

4.1.2 Practical Implementation: The SACA Module ......................................................................... 18 

4.2 Static code analysis with focus on energy ........................................................................................ 20 

4.3 Benchmark Analysis ......................................................................................................................... 33 

4.4 Quality assessment of genAI outcomes ........................................................................................... 36 

 

Figures 

Figure 1. SACA Module Architecture............................................................................................................. 19 

Figure 2. Systematic literature review process .............................................................................................. 21 



GreenCode Deliverable D3.1 
 

29.12.2025 D3.1. GreenCode SOTA Review WP3 2025 Page 4 

 

Figure 3. Type of software and programming languages considered in the related literature ...................... 22 

Figure 4. Prediction method (left) and the granularity of prediction (right) .................................................... 24 

Figure 5. Output of energy prediction models ............................................................................................... 25 

Figure 6. Models used for predicting energy consumption ........................................................................... 26 

Figure 7. Model types regarding the input for prediction ............................................................................... 28 

Figure 8. Methods and tools for measuring actual energy consumption....................................................... 30 

Figure 9. Energy prediction environments and settings ................................................................................ 32 

 

Tables 

Table 1. Key features of the SACA module ................................................................................................... 19 

Table 2. Search query ................................................................................................................................... 20 

Table 3. Inclusion and exclusion criteria ....................................................................................................... 21 

Table 4. Gaps regarding the prediction of software energy consumption ..................................................... 32 

Table 5. Benchmark Landscape, Language Coverage, and Data Types ..................................................... 33 

Table 6. Evaluation Criteria Across Benchmarks .......................................................................................... 35 

 

 

 

  



  GreenCode Deliverable D3.1 
 

Page 5 D3.1. GreenCode SOTA Review WP3 2025     29.12.2025                                                                 

 

1 Introduction 

The GreenCode project is focused on AI/ML-driven software optimisation to reduce the cost and 

climate impact of software systems (software and the infrastructure it runs upon), and by implication 

the carbon impact of the IT sector at scale.  

This is a large and growing subject area with various actors also now taking steps to improve 

elements of software sustainability and the efficiency of the software development lifecycle (SDLC) 

through education and AI interventions, some notable names being: the Green Software 

Foundation1 (GSF) who focusses on international standards, best practice policy and community 

building; academic organisations such as the Software Sustainability Institute (SSI) at The 

University of Edinburgh2 and the Digital Sustainability Centre at Vrije University, Amsterdam3 who 

focus on education and outreach; numerous startups and other RD&I initiatives like the GENIUS4 

project focussing on AI tools for the SDLC. 

Instead of replicating the efforts already undertaken by other organisations, we aim to build upon 

their work alongside our own initiatives to address the interconnected topics of software quality, 

sustainability, and performance improvement. Our goal is to offer a clear, measurable pathway 

towards reducing the energy consumption of software systems and certifying them according to 

established international standards, such as the Software Carbon Intensity (SCI) benchmark. 

Specifically, we are developing a modular AI application pipeline, accompanied by supporting tools, 

to automate the optimisation of software systems for both quality and energy efficiency. This 

approach allows for continuous tracking and upgrading in line with advances in the field, ensuring 

our solutions remain aligned with the current state of the art. 

Furthermore, given that 60-80% of all software is regarded as legacy software and given that many 

market players are focussed on the generation of new software applications from scratch through 

AI, we intend to address the low-hanging fruit of legacy system maintenance, rationalisation, 

optimisation and upgrade/porting.  

Our work aims to deliver measurable reductions in total cost of ownership (TCO) and technical debt 

for owners of existing systems, as well as verified green credentials and other benefits that may 

enhance market competitiveness. From a climate perspective, software optimisation can contribute 

to reducing emissions and energy consumption efficiently, particularly when applied to applications 

already deployed at scale.  

This document reviews the latest in static code analysis and QA tools, emphasising NLP and GenAI 

solutions, and includes green considerations as a quality metric. 

  

 

1 https://greensoftware.foundation/   
2 https://www.software.ac.uk/  
3.https://vu.nl/en/about-vu/research-institutes/amsterdam-sustainability-institute/more-about/digital-
sustainability-center 
4 https://itea4.org/project/genius.html 
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2 Thematic Review 

The following sections present the current state of the art across the project’s core themes, as 

identified through a comprehensive review of business and technology domains. The document 

complements deliverable “D2.1 State-of-the-Art" with specific themes, which form the basis for gap 

analysis and later for the specification of innovative business models: 

➢ Task 3.1: Mapping of software system’s codebase 

➢ Task 3.2: Sustainability/energy focussed static code analysis and report 

• Static Code Analysis with focus on Energy 

• Benchmark Analysis  

➢ Task 3.3: Code Artefact Generation 

• Test Code Generation  

• Documentation Generation 

➢ Task 3.4: Quality Assessment of GenAI outcomes 

➢ Task 3.5 Analysis of code artefacts as quality metrics 

➢ Task 3.6: Static code analysers for compiled software 

2.1 Mapping of software system’s codebase 

Modern software systems are vast and complex, often spanning millions of lines of code developed 

by large teams over many years. Documentation is frequently incomplete or outdated, making the 

source code itself the only reliable reference for understanding system behavior. As a result, 

“codebase mapping” – the creation of high-level, structured representations from raw source code 

– has become essential for effective maintenance, modernization, and quality assurance. 

Key Findings 

➢ Visual and Structural Mapping Techniques: A significant body of research focuses on 

creating high-level representations of software to aid human understanding, often 

employing metaphors to make complex systems more intuitive. The CodeSurveyor tool is a 

prime example, generating an interactive map where architectural components appear as 

continents and source files as countries. This method's sophistication lies in its underlying 

technique – a composition of force-directed graph layout and Voronoi tree-mapping – which 

demonstrates proven scalability by mapping massive codebases like the Linux kernel (1.4 

MLOC) in just 1.5 minutes5. These approaches help developers quickly comprehend 

complex architectures and have demonstrated scalability on projects as large as the Linux 

kernel. 

➢ Architecture Recovery via Dependency Analysis: Techniques that analyze dependencies 

between code elements can group related components into modules6, providing a high-level 

architectural view. Integrating structural, semantic, and directory information leads to more 

accurate clustering and a better understanding of system structure. 

➢ Systematic Reviews of Parallel Code Analysis Domains: Several mature research areas 

complement codebase mapping:  

 

5 N. Hawes, S. Marshall, C. Anslow (2015) "CodeSurveyor: Mapping large-scale software to aid in code 
comprehension," 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), Bremen, 
Germany, pp. 96-105, doi: 10.1109/VISSOFT.2015.7332419. 
6 S.P.R. Puchala, J.K. Chhabra, A. Rathee (2022) "Software Architecture Recovery Using Integrated 
Dependencies Based on Structural, Semantic, and Directory Information", International Journal of 
Information System Modeling and Design, Volume 13, Issue 1, ISSN 1947-8186, 
https://doi.org/10.4018/IJISMD.297060. 
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• Software Test-Code Engineering: A systematic mapping by Garousi et al.7 classified 

60 studies to provide a comprehensive overview of trends and techniques in test-

code development and quality assessment; 

• Metrics-Based Clone Detection: A review by Rattan & Kaur8 analysed techniques 

that use software metrics to identify similar or identical code fragments, which are 

critical to manage for system maintenance and quality; 

• Log and Source Code Matching: A study by Bushong et al.9 systematically reviewed 

methods for matching information from program logs and stack traces back to the 

source code, a crucial step for fault localization; 

• Code Clone Management: A systematic literature review by Kaur et al.10 identified 

tools and methods for managing code clones through refactoring, a key activity for 

improving overall code quality; 

➢ AI for Code Understanding: Systematic mapping studies also exist for the application of 

artificial intelligence to source code understanding tasks, indicating a mature and active 

area of research11. 

While these domains offer powerful tools, each address only part of the overall challenge. For 

example, visual tools are optimized for human understanding, while architectural recovery lacks the 

precision needed for automated refactoring. 

2.1.1 Gaps Identified 

➢ Existing approaches do not provide a universal, machine-readable model of code structure 

suitable for automated optimization and transformation. 

➢ There is a lack of integration between high-level visualizations and the detailed, formal 

representations required for automated tools. 

➢ Current methods often require manual intervention or are not scalable to the largest, most 

complex codebases. 

 

2.1.2 Summary and Future Opportunities for GreenCode 

The GreenCode project’s implementation of a model-based reverse engineering approach, 

powered by ANTLR4 (more details in the annex), provides a strong and reliable framework for 

automated, precise, and standardised mapping of codebases spanning several programming 

languages. This strategy not only simplifies the process of extracting formal models from source 

 

7 V. Garousi, Y. Amannejad, A.B. Can (2015) "Software test-code engineering: A systematic mapping", 
Information and Software Technology, Volume 58, Pages 123-147, ISSN 0950-5849, 
https://doi.org/10.1016/j.infsof.2014.06.009. 
8 D. Rattan, J. Kaur (2016) "Systematic Mapping Study of Metrics based Clone Detection Techniques", 
AICTC '16: Proceedings of the International Conference on Advances in Information Communication 
Technology & Computing, Bikaner, India, https://doi.org/10.1145/2979779.2979855. 
9 V. Bushong, R. Sanders, J. Curtis, M. Du, T. Černý, K. Frajták, M. Bures, P. Tisnovsky, D. Shin, Dongwan 
(2020) "On Matching Log Analysis to Source Code: A Systematic Mapping Study". RACS '20: Proceedings 
of the International Conference on Research in Adaptive and Convergent Systems, Gwangju, Republic of 
Korea, pp. 181-187. https://doi.org/10.1145/3400286.3418262. 
10 M. Kaur, D. Rattan, M. Lal (2025) "Insight into code clone management through refactoring: a systematic 
literature review", Computer Science Review, Volume 58, 100767, ISSN 1574-0137, 
https://doi.org/10.1016/j.cosrev.2025.100767. 
11 D.R. Fudholi, A. Capiluppi (2025) "Artificial intelligence for source code understanding tasks: A 
systematic mapping study", Information and Software Technology, Volume 189, 107915, ISSN 0950-5849, 
https://doi.org/10.1016/j.infsof.2025.107915. 
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code but also guarantees high accuracy and seamless interoperability, underpinning the entire 

GreenCode workflow from quality assurance through to AI-driven optimisation. 

Cobol language is widely used in IBM mainframe systems but it’s not among the languages fully 

supported by ANTLR4. Even if there are Cobol85 grammar available for use with ANTLR4, because 

IBM mainframe Cobol includes specific structures such as z/OS extensions, compiler directives, 

conditional compilation, EXEC CICS/SQL constructs, GreenCode will include a Preprocessing & 

Normalization step for IBM mainframe Cobol sources, to process these structures before ANTLR 

parsing. 

Looking to the future, there is significant potential to enhance SACA (Static Analysis of Code with 

ANTLR 4) by broadening its support to encompass additional programming languages, adopting 

more detailed feature extraction for in-depth analysis, and harnessing these comprehensive models 

to facilitate sophisticated predictions and improvements in energy consumption much earlier in the 

software development process. 

2.2 Static Code Analysis with focus on Energy 

2.2.1 Background 

Traditional work on estimating a program’s energy consumption (EC) either measures it with a 

profiler or predicts it dynamically. Both approaches require running the software – often with 

representative inputs, sufficient time, and an available platform. These methods yield accurate 

results but are computationally expensive, time-consuming and applicable in late phases of 

software development process, when software can be run. Dynamic prediction typically returns a 

single total-energy value; few approaches provide fine-grained estimates or EC time series. One 

solution to this problem is predicting software runtime energy consumption based on the analysis 

of software artifacts, such as source code, available already in the early stages of software 

development process.  

Historically, these approaches seldom targeted Python, which was less popular when they were 

developed. In recent years, however, Python has become the most widely used programming 

language. According to the PopularitY of Programming Languages (PYPL) index from September 

202512, Python held a 29.69% share compared with 14.72% for Java and 9.27% for C/C++. AI 

projects predominantly use Python thanks to its rich libraries, ease of use and interpretation, and 

cross-platform support, among other advantages13. The AI Index Report 2025 notes that AI-related 

GitHub repositories grew from 1,549 in 2011 to approximately 4.3 million in 202414, underscoring 

Python’s importance as a target. 

2.2.2 Current State of the Art 

A systematic literature review15 was conducted to explore existing methods for predicting software 

energy consumption through static code analysis. The review was structured around six research 

questions, covering software types, features used for prediction, model outputs, predictive models, 

measurement tools, and operational environments. The Scopus database was used as the primary 

source, complemented by backward and forward snowballing from seed papers. Publications were 

identified through a carefully constructed search query, screened for relevance, and assessed 

 

12 Popularity of Programming Language (PYPL): https://pypl.github.io/PYPL.html. [Accessed: 2025-10- 
15]. 
13 Michael Iyam. The Importance of Python in Artificial Intelligence. https://michael-lyamm.medium. 
com/the-importance-of-python-in-artificial-intelligence-341c7af1fb94. [Accessed: 2025-12-11]. 
14 Nestor Maslej et al. Artificial Intelligence Index Report 2025. 2025. arXiv: 2504.07139 [cs.AI]. url: 
https://arxiv.org/abs/2504.07139. 
15 To be published. 
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against predefined criteria. Full texts of relevant studies were reviewed to extract data addressing 

the research questions. Details with citations are provided in the annex. 

2.2.3 Key Findings 

➢ Diversity of Software and Languages Studied 

Most studies concentrate on benchmark suites such as AnghaBench16, BEEBS17, PolyBench18, 

Rodinia19, and SPEC CPU200620 (retired in Jan. 2018), while also considering GPU-intensive 

workloads and Android applications. C and C++ are the primary languages examined, especially in 

the context of desktop, server, and GPU-based programs. Java is frequently used for analyses 

related to mobile environments, whereas Python and Fortran are less commonly featured. In some 

cases, the programming language is not explicitly stated, particularly in research where user 

behaviour is the central aspect being investigated. 

➢ Features Used for Energy Prediction: There are three primary categories of input features:  

• Utilization-based: Measures of hardware resource consumption, such as CPU, 

memory, and cache usage; 

• Event-based: Information derived from system activities like system calls, protocol 

transitions, and performance counters; event-based features are used most 

frequently, followed by utilization-based and then code-analysis-based features. The 

granularity of prediction differs: most models estimate energy use at the application 

level, while a smaller number focus on kernels, basic blocks, or specific time 

intervals. 

• Code-analysis-based: Static attributes extracted from code, including opcode 

counts, LLVM characteristics, and software metrics. 

➢ Model Outputs: Most models predict power (watts) or energy (joules), while some estimate 

performance metrics like execution time or instructions per second. A few studies focus on 

worst-case metrics (WCET, WCEC), particularly for embedded or real-time systems. 

➢ Types of Predictive Models: There are five main model categories: linear, tree-based, neural 

networks, kernel-based, and distance-based. Linear models offer simplicity and 

interpretability, while advanced options like ensembles and neural networks address 

complex patterns. Hybrid models improve accuracy and clarity. Event-based models are 

used most often, followed by code-analysis and utilization-based types. 

➢ Static vs. Dynamic Prediction: Most studies rely on dynamic prediction (via software 

execution), while fewer use static analysis (code inspection without running). Some models 

handle both static and dynamic inputs. 

➢ Measurement Methods: Although software-based energy measurement tools like perf, 

NVML, and Intel Power Gadget are widely favoured for their flexibility and convenience, 

they tend to be less precise than hardware-based approaches. In contrast, hardware-based 

measurements – which rely on PMUs or external sensors – provide greater accuracy but 

 

16 A. Faustino da Silva et al. „ANGHABENCH: A Suite with One Million Compilable C Benchmarks for 
Code-Size Reduction”. In: 2021 IEEE/ACM International Symposium on Code Generation and Optimization 

(CGO). 2021, pp. 378–390. doi: 10.1109/CGO51591.2021.9370322. 
17 J. Pallister, S. Hollis, and J. Bennett. BEEBS: Open Benchmarks for Energy Measurements on 
Embedded Platforms. 2013. arXiv: 1308.5174 [cs.PF]. url: https://arxiv.org/abs/1308.5174. 
18 Pouchet Louis-Noel. Polybench: The polyhedral benchmark suite. https://www.cs.colostate.edu 
/~pouchet/software/polybench/. [Accessed: 2025-10-13]. 2012 
19 Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In: 2009 IEEE International 

Symposium on Workload Characterization (IISWC). 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797. 
20 Standard Performance Evaluation Corporation. SPEC CPU 2006 benchmark (Retired: January 2018). 
https://www.spec.org/cpu2006/. [Accessed: 2025-10-13]. 
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are used less frequently due to their complexity and higher cost. Additionally, some research 

utilises hybrid or simulation-based tools. 

➢ Evaluation Platforms: Research on energy consumption spans many types of platforms, 

including microcontrollers, Android smartphones, embedded ARM clusters, GPUs, servers, 

and consumer electronics. Among these, microcontrollers and mobile devices are studied 

most often, highlighting how crucial energy efficiency is in those areas. 

2.2.4 Gaps Identified 

➢ Limited focus on static code analysis: Most existing models rely on dynamic features (i.e., 

data collected during program execution), with relatively few studies exploring purely static, 

code-based prediction methods. 

➢ Lack of standardization: There is no unified approach for feature selection, model 

evaluation, or reporting, making it difficult to compare results across studies. 

➢ Underrepresentation of certain languages and platforms: Python, Fortran, and some 

embedded platforms are rarely studied, despite their growing importance – especially 

Python in data science and AI. 

➢ Accuracy vs. practicality trade-off: Hardware-based measurement methods are more 

accurate but less practical for widespread use; software-based methods are more common 

but generally less precise. 

➢ Granularity limitations: Most models predict energy consumption at the application level. 

Finer-grained predictions (e.g., at the function or basic block level) are much less common, 

limiting the ability to pinpoint energy-intensive code segments. 

➢ Hybrid and multimodal approaches are rare: Few studies combine static and dynamic 

features or support both types of prediction within a unified framework. 

➢ Limited transparency in model specification: Some studies do not provide detailed 

descriptions of their models, especially hybrid or multimodal approaches, making 

reproducibility and evaluation challenging. 

➢ Environmental diversity: While a range of platforms is covered, certain environments – such 

as real-time embedded systems and heterogeneous clusters – are less frequently 

addressed. 

2.2.5 Summary and Future Opportunities for GreenCode 

Analysis of the related literature indicates several gaps, which create opportunities for research and 

development in the GreenCode project. The main opportunity concerns estimating and optimizing 

the energy consumption of data-intensive software applications. This requires addressing the 

deficits regarding the fine-grained static analysis of Python source code and creating explainable 

energy consumption prediction models. 

GreenCode presents several opportunities for advancing energy-efficient software development. It 

can conduct static analysis of Python code, systematically benchmark energy consumption across 

extensive sets of real and LLM-generated code samples to establish robust baseline 

measurements, enable fine-grained predictions of energy usage, and support the development of 

transparent, explainable prediction models tailored to code energy performance. 

Furthermore, GreenCode provides an ideal framework for the empirical evaluation and refinement 

of existing sustainable programming standards21. By rigorously testing established green software 

guidelines, the project aims to contribute to their evolution, ensuring that best practices are 

validated against real-world data and enriched through continuous iterative improvement. 

 

 

21 https://sci.greensoftware.foundation/ 
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2.3 Benchmark Analysis 

2.3.1 Background 

The increasing complexity and scale of software systems, coupled with the rise of Large Language 

Models (LLMs) for code generation, has intensified the need for sustainable and efficient software 

engineering practices. Within this context, Software Engineering advocates optimizing software 

systems to improve code efficiency and resource efficiency by energy efficiency, reduce runtime 

and memory usage, and extend hardware longevity22,23. However, while LLMs can automate code 

generation and optimization, their efficiency-aware behaviour remains underexplored. Evaluating 

such efficiency requires stable benchmarks and standardized measurement methods. 

Recent studies have introduced a new generation of LLM code generation and optimization 

benchmarks, each addressing different aspects of performance, correctness, and energy 

awareness. these efforts collectively establish a foundation for systematic, efficiency-oriented 

evaluation of LLMs, enabling measurable progress toward sustainable and energy-aware software 

development24. 

2.3.2 Current State of the Art 

Recent advances in benchmarking for Large Language Model (LLM) code generation and 

optimisation have produced a diverse but fragmented landscape. Most benchmarks focus on 

evaluating LLMs' ability to generate efficient and sustainable code, with particular emphasis on 

function-level tasks due to their simplicity and reproducibility. Python is the predominant language, 

though some benchmarks extend to C/C++, Java, Verilog, JavaScript, Ruby, and Go. Evaluation 

criteria are largely centred on runtime and memory efficiency, with some benchmarks incorporating 

qualitative metrics such as readability and maintainability, and a few considering hardware-level 

performance. There is a growing trend towards multi-dimensional and developer-centric metrics, 

and some frameworks now support more complex, program-level or repository-level evaluations. 

However, energy consumption and broader sustainability metrics remain largely absent. A recent 

study by Castaño et al. revealed that for 99% of the Hugging Face ML models (N>170.000), for 

about 200 model only key-emissions-related context is reported, for about 1350 models carbon 

emission is reported without context or optimization, for about 75 models emission data is provided 

together with the related context, and zero models met certified energy efficiency standards25. 

Furthermore, benchmarking practices and environments are inconsistent, limiting comparability and 

reproducibility. 

2.3.3 Key Findings 

➢ Dominance of Function-Level Benchmarks: Most studies assess LLMs at the function level, 

which enables controlled experiments but does not reflect real-world complexity. 

➢ Python as the Central Language: Most benchmarks use Python, underlining its significance 

in LLM code research. 

 

22 SWE-Perf: Can Language Models Optimize Code Performance on Real-World Repositories? 
23 Mingzhe Du, Luu Anh Tuan, Bin Ji, Qian Liu, and See-Kiong Ng. 2024. Mercury: a code efficiency 
benchmark for code large language models. In Proceedings of the 38th International Conference on Neural 
Information Processing Systems (Vancouver, BC, Canada) (NIPS ’24). 
24 Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. 2023. Estimating the carbon footprint 
of BLOOM, a 176B parameter language model. J. Mach. Learn. Res. 24, 1, Article 253 (January 2023), 15 
pages. 
25 J. Castaño, S. Martínez-Fernández, X. Franch and J. Bogner, "Exploring the Carbon Footprint of Hugging 
Face's ML Models: A Repository Mining Study," 2023 ACM/IEEE International Symposium on Empirical 
Software Engineering and Measurement (ESEM), New Orleans, LA, USA, 2023, pp. 1-12, doi: 
10.1109/ESEM56168.2023.10304801. 
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➢ Diverse Evaluation Metrics: While runtime and memory usage are the primary metrics, some 

benchmarks (e.g., RACE26, CodeEditorBench27) also consider readability, maintainability, 

and complexity. 

➢ Hardware and Platform Awareness: Benchmarks like EvalPerf28, Coffe29, and ResBench30 

employ hardware counters and instruction-based measures for reproducibility. 

➢ Emergence of Realistic Benchmarks: SWE-Perf31 and MARCO32 represent efforts to 

benchmark LLMs using full codebases and realistic execution environments. 

➢ Lack of Direct Energy Measurement: No benchmarks currently provide standardised, direct 

measures of energy consumption or carbon impact, relying instead on proxies like runtime 

or hardware counters. 

2.3.4 Identified Gaps 

➢ Limited Realism and Granularity: Most benchmarks do not assess program- or repository-

level tasks, missing out on real-world software system complexity. 

➢ Absence of Sustainability Metrics: There is a notable lack of direct evaluation for energy 

efficiency, power usage, and environmental impact. 

➢ Data Contamination: Overlap between benchmark datasets and LLM training corpora risks 

bias and overestimation of LLM performance. 

➢ Inconsistent Experimental Setups: Variability in hardware and non-standardised 

environments undermines reproducibility and comparability. 

➢ Narrow Evaluation Focus: Benchmarks predominantly target correctness and performance, 

often neglecting maintainability, readability, and robustness – qualities essential for 

sustainable code. 

Overall, while the benchmarking ecosystem for LLM-driven code generation is advancing, it 

remains fragmented and primarily focused on computational performance. There is a pressing need 

for standardised, reproducible benchmarks that integrate sustainability, environmental impact, and 

real-world software engineering objectives. 

2.3.5 Summary and Future Opportunities for GreenCode 

The review of existing LLM-based benchmarks reveals a growing yet fragmented ecosystem. Most 

studies emphasize function-level efficiency and measure performance primarily through runtime 

and memory metrics. While these offer a solid foundation for evaluating computational 

performance, they neglect broader aspects such as energy efficiency and environmental impact. 

 

26 Zheng, J., Cao, B., Ma, Z., Pan, R., Lin, H., Lu, Y., ... & Sun, L. (2024). Beyond correctness: 
Benchmarking multi-dimensional code generation for large language models. arXiv preprint 
arXiv:2407.11470. 
27 Jiawei Guo et al.; CodeEditorBench: Evaluating Code Editing Capability of LLMs; Proceedings of ICLR 
2025 Third Workshop on Deep Learning for Code; 2025; https://openreview.net/forum?id=6yTgoh0J0X 
28 Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., & Zhang, L. (2024). Evaluating language models for efficient 
code generation. arXiv preprint arXiv:2408.06450. 
29 Peng, Y., Wan, J., Li, Y., & Ren, X. (2025). Coffe: A code efficiency benchmark for code generation. 
Proceedings of the ACM on Software Engineering, 2(FSE), 242-265. 
30 Guo, C., & Zhao, T. (2025). Resbench: Benchmarking llm-generated fpga designs with resource 
awareness. arXiv preprint arXiv:2503.08823. 
31 He, X., Liu, Q., Du, M., Yan, L., Fan, Z., Huang, Y., ... & Ma, Z. (2025). Swe-perf: Can language models 
optimize code performance on real-world repositories?. arXiv preprint arXiv:2507.12415. 
32 Asif Rahman, Veljko Cvetkovic, Kathleen Reece, Aidan Walters, Yasir Hassan, Aneesh Tummeti, Bryan 
Torres, Denise Cooney, Margaret Ellis, and Dimitrios S. Nikolopoulos. [n. d.]. Performance Evaluation of 
Large Language Models for High-Performance Code Generation: A Multi-Agent Approach (MARCO). 
https://api.semanticscholar.org/CorpusID:280547604 
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Evaluation practices remain inconsistent, and direct energy measurements are rarely included. LLM 

integration patterns are also limited, dominated by static, single-turn text-to-code generation, with 

few frameworks supporting iterative or agentic refinement. 

Overall, current benchmarks capture only a partial view of software efficiency. Future efforts within 

GreenCode should build upon these findings by developing standardized, reproducible, and 

energy-aware benchmarks that link performance with sustainability. This direction will strengthen 

the methodological basis for evaluating LLM-generated code and sustainable software engineering 

practices. 

2.4 Quality Assessment of GenAI outcomes 

2.4.1 Background 

The evaluation of generative AI (GenAI) outputs has emerged as a pivotal concern across multiple 

domains, including computer science, healthcare33, law34, and, notably, software engineering35. 

Recent research highlights that quality in GenAI is inherently multidimensional, encompassing 

factual accuracy, completeness, reasoning coherence, clarity, style, safety, and trustworthiness. In 

technical fields such as software engineering and automotive systems, these criteria expand further 

to address domain-specific requirements, including compliance with safety standards and real-

world hardware constraints. This complexity underscores the necessity for tailored evaluation 

frameworks capable of capturing the full breadth of GenAI output quality. Full version can be found 

in the annex. 

2.4.2 Current State of the Art 

Traditional evaluation metrics, such as BLEU and ROUGE, are increasingly recognised as 

insufficient for assessing open-ended or creative GenAI tasks. These metrics primarily reward 

textual similarity, failing to account for faithfulness, usefulness, or deeper semantic qualities. To 

address these shortcomings, the field has seen a shift towards "LLM-as-a-judge"36 methodologies, 

wherein powerful language models are employed to assess the outputs of other models. 

Frameworks like G-Eval37 have demonstrated improved alignment with human judgements 

regarding factuality and coherence, though concerns remain regarding evaluator bias and self-

agreement. 

In software engineering, evaluation now extends beyond fluency and task completion to include 

maintainability, security vulnerabilities, and static-analysis defects. Notable domain-specific 

frameworks such as CODEJUDGE38 leverage large language models to assess semantic 

correctness, moving beyond reliance on test cases alone. Similarly, benchmarks like L2CEval39 

focus on calibration and error analysis in code generation, revealing that correctness is just one 

 

33 Daniel Rodger, Sebastian Porsdam Mann, Brian Earp, Julian Savulescu, Christopher Bobier, Bruce P. 
Blackshaw,Generative AI in healthcare education: How AI literacy gaps could compromise learning and 
patient safety,Nurse Education in Practice,Volume 87,2025,104461,ISSN 1471-5953, 
https://doi.org/10.1016/j.nepr.2025.104461.  
34 https://www.theguardian.com/us-news/2025/may/31/utah-lawyer-chatgpt-ai-court-brief 
35 Shukla, Shubham, Gen AI for Code Vulnerability Detection and Risk Analysis (December 02, 2023). 
Available at SSRN: https://ssrn.com/abstract=5173531 or http://dx.doi.org/10.2139/ssrn.5173531  
36 Gu, J., et al. “A Survey on LLM-as-a-Judge”, <i>arXiv e-prints</i>, Art. no. arXiv:2411.15594, 2024. 
doi:10.48550/arXiv.2411.15594. 
37 https://deepeval.com/docs/metrics-llm-evals 
38 https://github.com/VichyTong/CodeJudge 
39 Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu, Semih 
Yavuz, Caiming Xiong, Shafiq Joty, Yingbo Zhou, Dragomir Radev, Arman Cohan, Arman Cohan; L2CEval: 
Evaluating Language-to-Code Generation Capabilities of Large Language Models. Transactions of the 
Association for Computational Linguistics 2024; 12 1311–1329. doi: https://doi.org/10.1162/tacl_a_00705 
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aspect of overall quality. Static code analysis tools are increasingly used to evaluate maintainability 

and reliability, identifying issues such as code smells and security flaws in GenAI-generated 

artefacts. 

2.4.3 Key Findings 

➢ There is a weak correlation between functional correctness and code quality in GenAI-

generated software; code that passes functional tests may still harbour maintainability or 

reliability issues. 

➢ Persistent hallucination – defined as the confident generation of false or unsupported 

content – remains a significant quality defect, with empirical audits revealing ongoing 

challenges across models and domains. 

➢ Domain-specific advances, particularly in safety-critical areas like automotive software, 

demonstrate the viability of integrating GenAI evaluation with formal verification, 

requirements analysis, and system-level validation. 

➢ Novel frameworks and empirical studies increasingly recognise the need to evaluate GenAI 

outputs against a broader set of criteria, including security, integration correctness, and 

compliance with domain standards. 

2.4.4 Identified Gaps 

➢ Surface-similarity metrics (e.g., BLEU40, ROUGE41) are inadequate for capturing the full 

spectrum of GenAI output quality, particularly regarding semantic faithfulness and utility. 

➢ Evaluator bias and self-agreement in LLM-based evaluation frameworks present ongoing 

challenges to objective assessment. 

➢ There is a lack of comprehensive, standardised benchmarks that holistically assess GenAI 

outputs across multiple quality dimensions, including sustainability and energy efficiency. 

➢ Integration of energy and sustainability metrics into GenAI evaluation remains limited, 

despite growing recognition of their importance. 

2.4.5 Future Opportunities for GreenCode 

Building on these findings, GreenCode is well-positioned to advance the field through the following 

targeted actions: 

➢ Develop standardised, reproducible, and energy-aware benchmarks that connect GenAI 

performance with sustainability objectives. 

➢ Integrate advanced, multidimensional quality metrics – encompassing maintainability, 

security, and domain compliance – into evaluation frameworks for GenAI-generated code. 

➢ Address hallucination detection and calibration by adopting uncertainty estimation 

approaches and entropy-based confidence measures to flag unreliable outputs. 

➢ Expand and refine domain-specific evaluation frameworks, particularly for safety-critical and 

embedded systems, to ensure trustworthy and robust GenAI integration in software 

engineering workflows. 

 

40 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu; BLEU: a Method for Automatic Evaluation 
of Machine Translation; Proceedings of the 40th Annual Meeting of the Association for Computational 
Linguistics (ACL), Philadelphia, July 2002, pp. 311-318; https://aclanthology.org/P02-1040.pdf 
41 Chin-Yew Lin; ROUGE : A Package for Automatic Evaluation of Summaries; In Proceedings of Workshop 
on Text Summarization Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain. 
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/was2004.pdf 
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By pursuing these opportunities, GreenCode can establish itself at the forefront of sustainable, 

high-quality GenAI evaluation in software engineering, thereby strengthening both methodological 

rigour and practical impact. 

2.5 Static code analysers for compiled software 

2.5.1 Background 

Static code analysis is the compile time analysis of an application to verify certain aspects of the 

code. It is typically applied to verify certain correctness criteria like the absence of run-time errors, 

the protection of sensitive information or the functional correctness of the code.  

Static analysis can, however, also be applied to trace resource usage like CPU time or memory 

usage. This provides a compile-time mechanism to estimate or even limit the resources required 

by an application.  

2.5.2 Current State of the Art 

Static code analysis methods are broadly grouped into three categories: formal verification (using 

tools like Rocq42 or Isabelle43), model checking, and abstract interpretation. Formal verification 

relies on developers to provide detailed annotations (such as pre- and postconditions) that define 

the behaviour to be verified, but the process is often too labour-intensive for practical use. Model 

checkers systematically examine the possible states a program can reach to determine, for 

instance, whether error states are accessible; however, this approach struggles with the vast state 

spaces found in real-world software, making it frequently impractical. Abstract interpretation, 

meanwhile, simulates program execution using abstract values to cover all potential execution 

paths and values, typically without needing developer input. It employs a fixed-point algorithm to 

analyse data flow until stable conditions are met but may still suffer from state explosion depending 

on the abstraction’s granularity. 

2.5.3 Key Findings 

➢ Formal verification provides strong guarantees but requires significant developer effort for 

annotation, limiting its practical adoption. 

➢ Model checking can offer rigorous state-space analysis, but its applicability is curtailed by 

the exponential growth of possible program states in complex systems. 

➢ Abstract interpretation automates analysis and does not depend on developer annotations, 

making it more scalable, but it risks state explosion when value representations are too 

detailed. 

2.5.4 Limitations and Gaps 

Static code analysis is typically limited to the verification of functional correctness and does not 

trace any metrics related to resource usage.  

Formal verification and Model checking in general cannot be easily applied to arbitrary code. 

Abstract interpretation, however, may be used to analysis whole applications.  

In a system that uses effects to model resource usage, effect handler values could be used to 

analyse, trace and verify resource constraints. A static analyser using abstract interpretation that 

represents values of effects that model resources could provide a means to fill this gap.   

 

42 Rocq Prover (2025), https://rocq-prover.org/ 
43 Isabelle Contributors: Isabelle proof assitant. https://isabelle.in.tum.de/ 
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2.5.5 Summary and Future Opportunities for GreenCode 

Abstract Interpretation used to trace effect handlers that model resource usage could provide a 

means to statically analyse and manage the resource usage of application code. 
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3 Conclusion and Synthesis 

The GreenCode partners examined the strengths and limitations of static code analysis techniques 

– specifically formal verification, model checking, and abstract interpretation – with a focus on their 

applicability to managing and verifying resource usage in software. The state-of-the-art reviews 

identify that formal verification and model checking, while rigorous, struggle with scalability and are 

not easily applicable to arbitrary code due to the exponential growth of program states. Abstract 

interpretation, on the other hand, is more scalable and does not require developer annotations, but 

may also encounter state explosion if value representations become overly detailed. Importantly, 

conventional static analysis primarily addresses functional correctness and often overlooks 

resource usage metrics. 

A notable gap in current methods is the inability to statically trace or verify resource consumption 

directly within application code. The document highlights a promising opportunity: leveraging effect 

handlers and abstract interpretation to model and analyse resource usage. By representing effect 

values that correspond to resource consumption, it becomes feasible to statically analyse, trace, 

and even enforce resource constraints within software. This approach could significantly improve 

the static management of energy and other resources, directly addressing the shortcomings of 

traditional methods. 

To further inform this direction, a literature review was also conducted to explore existing 

approaches for predicting software energy consumption through static analysis. The review was 

driven by targeted research questions, robust inclusion and exclusion criteria, and a hybrid search 

methodology combining Scopus database queries with backward and forward snowballing. This 

comprehensive strategy ensured a thorough identification and assessment of relevant publications, 

thus mapping the current landscape of software energy prediction techniques. Another notable 

limitation identified is the absence of robust, widely accepted benchmarks for evaluating and 

comparing the effectiveness of these energy prediction methods. The lack of standardised 

benchmarks impedes the ability to consistently measure tool performance, validate results, and 

drive reproducible research in this area. Addressing this gap will be crucial for future work aiming 

to advance the reliability and comparability of static energy analysis approaches. 

For the GreenCode project, the key opportunity lies in advancing static analysis by integrating effect 

handlers and abstract interpretation to enable more precise and scalable resource usage analysis. 

This not only fills a critical gap in the state of the art but also positions GreenCode to contribute 

novel solutions for the static management of energy and resource consumption within software 

applications. 
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4 Annex 

4.1 Mapping of software system’s codebase 

To address the gaps identified in the analysis of the state of the art, GreenCode adopts a state-of-

the-art, parser-driven methodology based on Model-Driven Reverse Engineering (MDRE) using 

ANTLR4. This approach: 

➢ Automates the extraction of detailed, formal models from source code, enabling iterative 

optimization. 

➢ Ensures accuracy by relying on formal grammar for parsing, reducing errors and 

ambiguities. 

➢ Produces standardized, machine-readable outputs (e.g., XMI), facilitating interoperability 

with other engineering tools. 

➢ Implements the SACA module, which operationalizes this methodology for multiple 

programming languages, generating comprehensive, structured maps of codebases as the 

foundation for further quality assurance and AI-driven optimization. 

4.1.1 The ANTLR4 Methodology for Automated Model Extraction 

The core of the GreenCode proposed mapping strategy is an ANTLR4-driven MDRE methodology, 

as presented in Khachouch et al.44. ANTLR4 (ANother Tool for Language Recognition) is a parser 

generator that can process source code based on a formal language grammar. The methodology 

leverages an ANTLR4-generated "visitor" pattern to programmatically traverse the parse tree (or 

syntax tree) created from the source code. As the visitor encounters each grammatical construct – 

such as a class declaration, a method definition, or a variable assignment – it systematically 

instantiates a corresponding element in a target metamodel, such as the Knowledge Discovery 

Metamodel (KDM). The process culminates in the serialization of this model into a standardized 

format like XMI (XML Metadata Interchange), making it machine-readable and interoperable. 

This ANTLR4-driven MDRE approach offers several key advantages for the GreenCode pipeline, 

namely: 

➢ Accuracy: It addresses the challenge of correctly parsing complex source languages by 

relying on formal, unambiguous grammars, ensuring a precise interpretation of the code. 

➢ Automation: It streamlines the reverse engineering workflow by automating the 

transformation from raw source code to a structured model, eliminating the need for manual 

and error-prone interpretation. 

➢ Fidelity: It enables the generation of faithful target models that accurately represent the 

original system's structure and semantics, providing a reliable foundation for subsequent 

analysis. 

➢ Standardization: It facilitates the creation of models in standardized formats, such as XMI 

(XML Metadata Interchange), ensuring interoperability with a wide range of model-driven 

engineering tools and platforms. 

4.1.2 Practical Implementation: The SACA Module 

This academically validated methodology is being put into practice within the GreenCode project 

through the SACA module (Figure 1). SACA is the specific component responsible for executing 

 

44 M.K. Khachouch, A. Korchi, M. Bekkali, Y. Lakhrissi (2024) "ANTLR4-Driven Model-Driven Reverse 
Engineering: Bridging Source Language Parsing and Metamodel Instantiation", Journal of Logistics, 
Informatics and Service Science, Volume 11, Issue 11, pp. 426-446, ISSN 2409-2665, 
https://doi.org/10.33168/JLISS.2024.1123. 
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the detailed codebase mapping. It operationalizes the ANTLR4-driven approach to produce the 

foundational codebase model for the GreenCode pipeline. For its part, ANTLR4 is a powerful and 

flexible parser generator that is integral to the development of compilers and language processing 

tools. Its proven ability to systematically parse complex source languages makes it an ideal 

foundation for building a precise, scalable, and automated codebase mapping tool that can meet 

the project's static analysis needs. 

 

Figure 1. SACA Module Architecture 

The ANTLR4-driven process transforms unstructured source code into a detailed, hierarchical 

representation. This transformation occurs in a sequence of well-defined steps: 

➢ Language Grammars: The process begins with a formal grammar file (with a .g4 extension) 

for each programming language to be analyzed. These grammars define the language's 

syntax rules and are often sourced from established public repositories, such as 

https://github.com/antlr/grammars-v4. 

➢ Lexer (Tokenization): The Lexer scans the raw source code and breaks it into a sequence 

of categorized tokens. Each token represents a piece of the code, such as a keyword (if), 

an identifier (my_variable), or an operator (+). 

➢ Parser and Parse Tree Construction: The Parser consumes the stream of tokens generated 

by the Lexer to construct a Parse Tree, also known as a Concrete Syntax Tree (CST). This 

tree is a detailed, hierarchical representation of the code's grammatical structure, mirroring 

the rules defined in the language grammar. 

➢ Listeners and Visitors: To extract meaningful information, a Listener or Visitor pattern is 

used to "walk" the parse tree. As the listener enters and exits specific nodes in the tree (e.g., 

a classDeclaration or methodDeclaration), custom logic is executed to identify and count 

features or instantiate elements in a target metamodel. 

The key features of the SACA module are summarized in Table 1: 

Table 1. Key features of the SACA module 

Feature Description 

Core Technology Implements the ANTLR 4 library in Python. 

Supported Languages Designed to analyze and map source code for Python, C, C++, JavaScript, and Java. 

Core Logic 
A Handler class scans a folder of source code, identifies the language of each file, and 

dynamically selects the appropriate ANTLR 4 Lexer and Parser. 

Primary Output 
A JSON report detailing the features found in each analysed file, creating a machine-

readable index of the codebase. 

Mapped Features 
Identifies and counts structural elements such as the number of classes, methods, 

statements, and keywords. 
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This detailed, structured map of the codebase serves as the foundational input for all subsequent 

stages within the GreenCode pipeline, including advanced quality assurance, infrastructure 

assessment, and the AI-driven optimization cycles that are central to the project's goals. 

4.2 Static code analysis with focus on energy 

To learn about existing approaches for predicting software energy consumption based on the static 

analysis of software code, we performed systematic literature review. The review was guided by 

the following research questions (RQ): 

➢ RQ1: What kind of software is considered? 

➢ RQ2: What features are considered for energy prediction? 

➢ RQ3: What is the output of the energy prediction? 

➢ RQ4: What type of models are used to make the predictions? 

➢ RQ5: How and with what tools is the actual energy consumption measured? 

➢ RQ6: What environment is the software operating in and how it is configured? 

To identify relevant publications, we first selected a literature database and defined an appropriate 

search strategy. We used the Scopus database45. To reduce the risk of missing relevant work, we 

performed backward and forward snowballing46 starting from seed papers identified via the Scopus 

search – a hybrid approach we denote as “Scopus + BS*FS”47. Based on the research questions, 

we constructed the search query (see Table 2) to identify potentially relevant publications, which 

we first screened for relevance by reviewing their title and abstract. To assess the relevant of the 

publication we used predefined inclusion and exclusion criteria (see Table 3). We reviewed the 

remaining relevant publications in full text and extracted data necessary for answering the research 

questions. We took the relevant papers as seed for snowballing, which identified additional relevant 

publications. Figure 2 summarizes the entire review process and the number of publications 

resulting from each step. 

Table 2. Search query 

TITLE-ABS-KEY ( 

(((software OR code) PRE/2 (energy OR power) PRE/2 (consumption OR usage)) 

AND (predict* OR estimat* OR forecast* OR model*)) OR 

((static PRE/1 analysis) AND ((energy OR power) PRE/2 (consumption OR usage)) 

AND (predict* OR estimat* OR forecast* OR model*))) 

AND 

TITLE ( 

(software OR code OR application*) AND (energy OR power) AND (consumption OR 

usage) AND 

(predict* OR estimat* OR forecast* OR model*)) 

AND 

PUBYEAR > 2014 AND PUBYEAR < 2026 AND (LIMIT-TO (DOCTYPE,"cp") OR LIMIT-TO 

(DOCTYPE,"ar")) 

AND (LIMIT-TO (SUBJAREA,"COMP") OR LIMIT-TO (SUBJAREA,"ENGI") OR LIMIT-TO 

(SUBJAREA,"MATH") 

OR LIMIT-TO (SUBJAREA,"ENER")) AND (LIMIT-TO ( LANGUAGE,"English")) 

 

 

45 https://www.scopus.com/ 
46 Claes Wohlin, Marcos Kalinowski, Katia Romero Felizardo, Emilia Mendes; Successful combination of 
database search and snowballing for identification of primary studies in systematic literature studies, 
Information and Software Technology, Volume 147, 2022, 106908, ISSN 0950-5849, 
https://doi.org/10.1016/j.infsof.2022.106908. 
47 Erica Mour˜ao et al. “On the performance of hybrid search strategies for systematic literature reviews in 
software engineering”. In: Information and Software Technology 123 (July 2020), p. 106294. issn: 0950- 
5849. doi: 10.1016/j.infsof.2020.106294. url: http://dx.doi.org/10.1016/j.infsof.2020.106294. 
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Table 3. Inclusion and exclusion criteria 

Criteria Description 

Inclusion (IC1) The work concerns predicting software energy consumption based on the source code. 

Exclusion (EC1) The work does not consider a model, e.g., statistical or machine learning, for the predicting 
energy consumption. 

Exclusion (EC2) The work is not accessible. 

Exclusion (EC3) The work is a secondary study, i.e., survey, systematic literature review or systematic 
mapping study. 

Exclusion (EC4) The work has been published before 2015 or after 11.09.202548. 

Exclusion (EC5) The work is not written in English. 

Exclusion (EC6) The work is grey literature. 

 

Figure 2. Systematic literature review process 

The following sections present the results of the literature survey according the the research 

questions. 

➢ RQ1: What kind of software is considered? 

The software analysed in the reviewed studies covers a wide range sources, types and languages.  

Figure 3 shows that the most common type of software originates from benchmark suites (12 

studies), including AnghaBench49, BEEBS50, PolyBench51, Rodinia52, and SPEC CPU200653. Two 

of these 12 studies combine synthetic software for training with benchmark programs for testing54,55. 

 

48 On this date the literature database search was closed. 
49 A. Faustino da Silva et al. „ANGHABENCH: A Suite with One Million Compilable C Benchmarks for 
Code-Size Reduction”. In: 2021 IEEE/ACM International Symposium on Code Generation and Optimization 

(CGO). 2021, pp. 378–390. doi: 10.1109/CGO51591.2021.9370322. 
50 J. Pallister, S. Hollis, and J. Bennett. BEEBS: Open Benchmarks for Energy Measurements on 
Embedded Platforms. 2013. arXiv: 1308.5174 [cs.PF]. url: https://arxiv.org/abs/1308.5174. 
51 Pouchet Louis-Noel. Polybench: The polyhedral benchmark suite. https://www.cs.colostate.edu 
/~pouchet/software/polybench/. [Accessed: 2025-10-13]. 2012. 
52 Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In: 2009 IEEE International 

Symposium on Workload Characterization (IISWC). 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797. 
53 Standard Performance Evaluation Corporation. SPEC CPU 2006 benchmark (Retired: January 2018). 
https://www.spec.org/cpu2006/. [Accessed: 2025-10-13]. 
54 Charalampos Marantos, Nikolaos Maidonis, and Dimitrios Soudris. “Designing Application Analysis Tools 
for Cross-Device Energy Consumption Estimation”. In: 2022 11th International Conference on Modern 
Circuits and Systems Technologies (MOCAST). 2022, pp. 1–4. doi: 
10.1109/MOCAST54814.2022.9837632. 
55 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy 
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Three additional studies also use benchmarks but target GPU‑intensive tasks (CUDA kernels), so 

we classify them separately56, 57, 58. The second-largest group analyses Android applications from 

platforms such as AndroZoo59 and GreenOracle60, 61. In Zhang et al.62, the applications run on a 

Linux computer rather than an Android device. Finally, we group various programs and embedded 

software under Other proprietary software. 

Regarding programming languages, C is the most frequently used, often combined with C++ for 

GPU or desktop/server programs (see the right chart in Figure 3). CUDA is used for GPU kernels, 

while Java appears mainly in mobile or synthetic program scenarios. Python appears in only one 

paper63, alongside other languages and without a specific focus. Fortran is used occasionally for 

legacy benchmarks or scientific computing. Additionally, 9 studies do not specify the programming 

language; most of these focus on mobile applications where user behaviour, rather than source 

code, is the primary concern. 

 
Figure 3. Type of software and programming languages considered in the related literature 

➢ RQ2: What features are considered for energy prediction? 

When it comes to the input of the prediction models, we have categorized it in two ways: input 

source and granularity. According to Hoque et. al.64 there are three types of input and the associated 

 

Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020- 
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7. 
56 Gargi Alavani Prabhu et al. “ Estimating Power Consumption of GPU Application Using Machine Learning 
Tool ”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). 
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734–739. doi: 10.1109/ICTAI62512. 
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109. 
57 Gargi Alavani et al. “Program Analysis and Machine Learning–based Approach to Predict Power 
Consumption 
of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn:2376-3639. 
doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533. 
58 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104. 
59 Shaiful Chowdhury et al. “Greenscaler: training software energy models with automatic test generation”. 
In: Empirical Software Engineering 24.4 (2019), pp. 1649–1692. 
60 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017 
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273–283. 
61 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with 
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software 
repositories. 2016, pp. 49–60. 
62 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software 
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA: 
IEEE Computer Society, Dec. 2024, pp. 5233–5242. doi: 10.1109/BigData62323.2024.10825500. url: 
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500. 
63 Cuijiao Fu, Depei Qian, and Zhongzhi Luan. “Estimating software energy consumption with machine 
learning approach by software performance feature”. In: 2018 IEEE International Conference on Internet 
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018, pp. 490–496. 
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three types of models, where the input’s type determines the model’s type. This classification has 

been widely used in related secondary studies65, 66 and it includes: 

• Utilization-based Models: These correlate the energy usage of hardware components with 

their resource utilization. Typical inputs include CPU, memory, and cache usage metrics, 

often collected through hardware performance counters (HPCs). Such models assume that 

power consumption is proportional to the internal activity of the processor. 

o Examples in the related literature include: Cellular utilization, CPU utilization, Storage 

Utilization, GPU utilization, Display utilization and Network utilization. Cellular utilization, 

for example, refers to the monitoring of hardware components in mobile devices (e.g., 

CPU frequency, screen, Wi-Fi, Bluetooth). 

• Event-based Models: These rely on system events (e.g., system calls or network protocol 

state transitions) to characterize power consumption, especially when hardware 

components exhibit non-linear or “tail” energy behavior. By tracking events like read/write 

calls or radio state changes, they provide more accurate estimates in dynamic contexts. 

o Examples seen in the literature: Performance Monitoring Counter (PMC) and System 

calls. PMC are hardware-level metrics that record low-level processor activities such as 

cache misses, instructions per cycle, or context switches, providing detailed insights into 

the relationship between system performance and energy usage67. System calls 

represent interactions between an application and the operating system, capturing high-

level software behavior that helps identify how programs use system resources and thus 

influence energy consumption. 

• Code-analysis-based Models: These estimate energy consumption statically, by analyzing 

program code without execution. They often work at instruction or function level, associating 

each operation with an estimated power cost. While useful early in development, they are 

less accurate for context-dependent behaviors, such as network conditions.  

o Examples seen in the literature: Parallel Thread Execution (PTX) features, Opcode 

counts, Low Level Virtual Machine (LLVM) features, and software metrics. PTX (Parallel 

Thread Execution) can be thought as the assembly language of the NVIDIA CUDA GPU 

computing platform68. From this representation the studies extract features following 

 

Mobile Devices”. In: ACM Comput. Surv. 48.3 (Dec. 2015). issn: 0360-0300. doi: 10.1145/2840723. url: 
https://doi.org/10.1145/2840723. 
65 Andreas Schuler and Gabriele Kotsis. “A systematic review on techniques and approaches to estimate 
mobile software energy consumption”. In: Sustainable Computing: Informatics and Systems 41 (2024), 
p. 100919. issn: 2210-5379. doi: https://doi.org/10.1016/j.suscom.2023.100919. url: https: 
//www.sciencedirect.com/science/article/pii/S2210537923000744. 
66 Raja Wasim Ahmad et al. “A Review on mobile application energy profiling: Taxonomy, state-of-the-art, 
and open research issues”. In: Journal of Network and Computer Applications 58 (2015), pp. 42–59. issn: 
1084-8045. doi: https://doi.org/10.1016/j.jnca.2015.09.002. url: https://www.sciencedirect. 
com/science/article/pii/S1084804515002088. 
67 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software 
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA: 
IEEE Computer Society, Dec. 2024, pp. 5233–5242. doi: 10.1109/BigData62323.2024.10825500. url: 
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500. 
68 Scudiero, Tony and Bentz, Jonathan. Understanding PTX, the Assembly Language of CUDA GPU 
Computing. 
https://developer.nvidia.com/blog/understanding-ptx-the-assembly-language-of-cudagpu- 
computing/. [Accessed: 2025-10-23]. 
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different approaches69, 70, 71. LLVM (Low Level Virtual Machine) is a compiler framework 

that provides an intermediate representation of code72. This approach is only followed 

once by Marantos et. al.73, and they use LLVM Machine Code Analyzer to extract the 

desired features. 

The left side of Figure 4 shows the frequency of each input source. PMC is the most used input 

type (11); followed by Cellular utilization and System calls (5); CPU utilization is being used 4 times; 

PTX features and Storage utilization are being used 3 times; and lastly, Opcode counts, LLVM 

features, Software metrics, GPU utilization, Display and Network utilization, are only used once. 

Overall, there is a clear tendency to use event-based input. 

Regarding the granularity, we describe it as the grain that the model is predicting energy of. From 

biggest to smallest there is: 

• Application: Energy consumption is predicted for an entire program. 

• Kernel or function: Energy consumption is predicted for a kernel or function, whereas Kernel 

corresponds to a function and is used specifically for GPU kernels. 

• Basic Block: Energy consumption is predicted for a segment of a program. 

• Sample: Energy consumption is predicted for a timestamp throughout time interval (i.e., 

time-series prediction). 

Figure 4, plot on the right, shows, most approaches predict the EC for an entire program (17); 14 

studies at application-level and 3 studies at kernel-level. Followed by 5 studies that predict it for 

basic blocks and 4 studies that do it per sample or time-stamp.  

 
Figure 4. Prediction method (left) and the granularity of prediction (right) 

 

 

69 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning 
Tool ”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). 
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734–739. doi: 10.1109/ICTAI62512. 
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109. 
70 Gargi Alavani et al. “Program Analysis and Machine Learning–based Approach to Predict Power 
Consumption 
of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn: 
2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533. 
71 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001. 
07104. 
72 LLVM. The LLVM Compiler Infrastructure. https://llvm.org/. [Accessed: 2025-10-22]. 
73 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy 
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020- 
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7. 
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➢ RQ3: What is the output of the energy prediction? 

Model outputs are primarily energy or power (Figure 5). Power is the most common (16 studies); 

energy is second (10). A smaller subset also predicts performance metrics, such as execution 

time74, 75 or instructions per second76. Reymond et al.77 and Wegener et al.78 target worst-case 

metrics – worst-case execution time (WCET) and worst-case energy consumption (WCEC) – which 

are especially relevant in embedded and real-time systems; we group these under time and energy, 

respectively. Of the six studies with multiple target variables, four combine time with energy or 

power, and two combine power with performance. 

 
Figure 5. Output of energy prediction models 

➢ RQ4: What type of models are used to make the predictions? 

The predictive models employed in the surveyed studies (Figure 6) can be broadly categorized into 

five groups: linear models (LMs), tree-based models (TBMs), neural networks (NNs), kernel-based 

models (KBMs), and distance-based models (DBMs). Linear models remain a common baseline in 

almost all studies, with variants such as Ordinary Least Squares, Linear Regression, Lasso, Ridge, 

Elastic Net, and Bayesian Ridge being frequently adopted. These approaches are valued for their 

interpretability and low computational overhead, making them suitable for fast prediction and 

comparative baselines. 

 

74 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104. 
75 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy 
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020- 
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7. 
76 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance 
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90 
(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971. 
77 Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut. “WORTEX: Worst-Case Execution 
Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML”. In: 22nd International 
Workshop on Worst-Case Execution Time Analysis (WCET 2024). Ed. by Thomas Carle. Vol. 121. 
78 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 
2023. doi: 10.4230/OASICS.WCET.2023.9. url: 
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9. 
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Figure 6. Models used for predicting energy consumption 

More advanced approaches focus on capturing nonlinear dependencies through ensemble and 

neural models. Ensemble methods such as Random Forest, Gradient Boosting, XGBoost, 

CatBoost, Extra Trees, and Bagging consistently appear as options across several studies79, 80. 

Neural network models are also extensively employed, ranging from Multi-Layer Perceptrons and 

Long Short-Term Memory (LSTM) networks to domain-specific architectures like NARX Neural 

Nets81, 82, 83 and Stacked Auto-Encoders84. These models provide greater expressive power, 

enabling the modelling of complex interactions between the features and the power or EC, though 

at the cost of interpretability.  

 

79 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning 
Tool”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). 
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734–739. doi: 10.1109/ICTAI62512. 
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109. 
80 Gargi Alavani et al. “Program Analysis and Machine Learning–based Approach to Predict Power 
Consumption 
of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn: 
2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533. 
81 Oussama Djedidi and Mohand Djeziri. “Power profiling and monitoring in embedded systems: A 
comparative 
study and a novel methodology based on NARX neural networks”. In: Journal of Systems Architecture 
111 (Dec. 2020), p. 101805. doi: 10.1016/j.sysarc.2020.101805. url: https://amu.hal.science/hal-02740661. 
82 Oussama Djedidi et al. “A Novel Easy-to-construct Power Model for Embedded and Mobile Systems”. 
In: 15th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESSScience 
and Technology Publications. 2018. 
83 Oussama Djedidi et al. “Constructing an accurate and a high-performance power profiler for embedded 
systems and smartphones”. In: Proceedings of the 21st ACM International Conference on Modeling, 
Analysis and Simulation of Wireless and Mobile Systems. 2018, pp. 79–82. 
84 Muhammed Maruf Ozturk. “Tuning stacked auto-encoders for energy consumption prediction: a case 
study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1–8. 
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Some works leverage hybrid strategies and combine linear models with neural networks or tree-

based models to balance interpretability and prediction accuracy85. Others just rely on classical 

models86. 

The left chart in Figure 7 shows the frequency of each individual model. The most frequently used 

are Support Vector Regression (SVR) models (9 Studies), followed by Lasso Regression, Random 

Forest, and Ridge Regression (7 Studies). Multi-Layer Perceptron and Linear Regression were 

used in 5 studies, whereas Neural Networks and Ordinary Least Squares in 4 studies each. The 

remaining models appear less frequently.  

The chart on the right in Figure 7 presents the same models, we grouped into broader categories. 

Linear models are the most represented cluster (16 studies), followed by neural networks (12 

studies), kernel-based models (10 studies), decision-tree models (9 studies), and distance-based 

models (1 study). This indicates a strong reliance on linear models and neural-networks, 

complemented by kernel-based and ensemble approaches for modelling software energy 

consumption. Most of the studies analysed evaluate and compare multiple models; Studies that 

focus on one model include Multi-Layer Perceptron87, Random Forest88, NARX Neural Network, 

Ordinary Least Squares 89, 90, 91, 92, Stacked Auto-Encoders93, Extreme Learning Machine94, Support 

Vector Regression95, and Lasso Regression96. 

 

85 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software 
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA: 
IEEE Computer Society, Dec. 2024, pp. 5233–5242. doi: 10.1109/BigData62323.2024.10825500. url: 
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500. 
86 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 
2023. doi: 10.4230/OASICS.WCET.2023.9. url: 
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9. 
87 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-M0 Processor for Profiling and Static 
Analysis”. 
In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 
Oct. 2022, 1–4. doi: 10.1109/icecs202256217.2022.9971086. url: 
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086. 
88 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104. 
89 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 
2023. doi: 10.4230/OASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10. 
4230/OASIcs.WCET.2023.9. 
90 Kris Nikov et al. “Robust and Accurate Fine-Grain Power Models for Embedded Systems with No 
On-Chip PMU”. In: IEEE Embedded Systems Letters 14.3 (Sept. 2022), 147–150. issn: 1943-0671. doi: 
10.1109/les.2022.3147308. url: http://dx.doi.org/10.1109/LES.2022.3147308. 
91 Krastin Nikov and Jose Nunez-Yanez. “Intra and inter-core power modelling for single-ISA 
heterogeneous 
processors”. In: International Journal of Embedded Systems 12 (Jan. 2020), p. 324. doi: 
10.1504/IJES.2020.107046. 
92 Matthew J Walker et al. “Accurate and stable run-time power modeling for mobile and embedded CPUs”. 
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.1 (2016), pp. 106–
119. 
93 Muhammed Maruf Ozturk. “Tuning stacked auto-encoders for energy consumption prediction: a case 
study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1–8. 
94 Deguang Li et al. “Software Energy Consumption Estimation at Architecture-Level”. In: 2016 13th 
International Conference on Embedded Software and Systems (ICESS). IEEE. 2016, pp. 7–11. 
95 Xiong Wei et al. “An embedded software power consumption model based on software architecture and 
support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191–200. 
96 Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. “Accurate phase-level cross-platform power and 
performance estimation”. In: Proceedings of the 53rd Annual Design Automation Conference. 2016, pp. 1–
6. 
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We additionally categorized the EC models with respect to the type of their input, where we followed 

the classification by Hoque et al.97. The left chart in Figure 7 also shows the frequency distribution 

of the different model types. Event-based models are the most prevalent, appearing in 11 studies, 

which indicates a strong focus on capturing runtime system behavior through events such as 

system calls. Code-analysis-based models follow with 6 occurrences, reflecting continued interest 

in static estimation approaches that do not require executing the software. Utilization-based models 

appear in 5 studies, showing moderate adoption for correlating resource usage with power 

consumption. Finally, 4 studies employ hybrid approaches combining multiple input sources, for 

instance utilization-based with event-based approaches. 

 

Figure 7. Model types regarding the input for prediction 

Furthermore, we classified the approaches according to the predicting method uses distinguished 

static or dynamic methods. Static prediction methods do not require executing software to predict 

its energy consumption, whereas dynamic methods do require running the software. Some 

methods support both static and dynamic prediction, depending on the type of input they are 

provided with. We classify these methods as static. The right chart of Figure 7 shows that most 

reviewed studies (18) follow a dynamic approach. The 6 studies follow a static approach, with one 

study98, in which the input to the prediction method includes, in addition to software code, a runtime 

information regarding loops, e.g., the number of loop iterations. Because this additional information 

may be approximated by the model’s user without running the code, we classified it as static one. 

If this input cannot be approximated, the code must be executed and the prediction approach 

becomes a dynamic one. We classified the remaining two models as multimodal because EC 

predictions can be done either with static or dynamic inputs. Each of these models consists of two 

sub-models arranged in a pipeline, in which the output of the first sub-model is the input to the 

second one. In both cases, the first sub-model estimates PMCs at the Instruction Set architecture 

(ISA) basic block level based on software code, while the second takes the estimated PMCs to 

predict the energy consumed. In this sense, the first sub-model in the pipeline is a static one 

whereas the second a dynamic one. The model can be provided with a software code or with PMCs. 

Regarding the first sub-model, that predicts PMCs basedon code, Wegener et. al. 99 use 

microarchitectural analysis to predict an upper bound of the various PMCs for each instruction in 

 

97 Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of 
Mobile Devices”. In: ACM Comput. Surv. 48.3 (Dec. 2015). issn: 0360-0300. doi: 10.1145/2840723. url: 
https://doi.org/10.1145/2840723. 
98 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy 
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020- 
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7. 
99 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 
2023. doi: 10.4230/OASICS.W 
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the Control Flow Diagram (CFG). Nikov et. al. 100 predicts PMCs with architecture models. 

Unfortunately, neither of the two studies provides detailed specification of these sub-models. In 

both cases, training the first, static, sub-model requires executing software code and collecting 

actual PMCs for the predefined code. 

➢ RQ5: How and with what tools is the actual energy consumption measured? 

Two main approaches to measuring energy consumption are hardware-based and software-based 

(Figure 8). Hardware-based methods rely on integrated power monitoring units (PMUs) or external 

sensors. These methods provide high-accuracy measurements but are more complex and 

expensive to set up than software solutions, so they are less commonly used. By contrast, software-

based approaches use system profilers and APIs to estimate energy consumption and are the most 

popular (12 studies). Common tools include perf101, NVIDIA Management Library (NVML)102, 103, 

Intel Power Gadget104, and CUDA Flux105. Hybrid frameworks such as GreenMiner106, 107, 108 

combine software logging with hardware instrumentation to enable large-scale energy data 

collection on Android devices. Although software methods offer greater flexibility and broader 

applicability, they typically achieve lower accuracy than direct hardware measurements and are 

more sensitive to system-level noise. Simulation-based tools, such as MAGEEC109 and HMSim110, 

also appear in the literature but are used less frequently. 

 

100 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-M0 Processor for Profiling and Static 
Analysis”. 
In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 
Oct. 2022, 1–4. doi: 10.1109/icecs202256217.2022.9971086. url: http://dx.doi.org/10.1109/ 
ICECS202256217.2022.9971086. 
101 Tong Zhang et al. “Assessing Predictive Models for Energy Consumption Across Varied Software 
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA: 
IEEE Computer Society, Dec. 2024, pp. 5233–5242. doi: 10.1109/BigData62323.2024.10825500. url: 
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500. 
102 Gargi Alavani Prabhu et al. “Estimating Power Consumption of GPU Application Using Machine Learning 
Tool”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). 
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734–739. doi: 10.1109/ICTAI62512. 
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109. 
103 Gargi Alavani et al. “Program Analysis and Machine Learning–based Approach to Predict Power 
Consumption 
of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn: 
2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533. 
104 Muhammed Maruf ¨ Ozt¨urk. “Tuning stacked auto-encoders for energy consumption prediction: a case 
study”. In: International Journal of Information Technology and Computer Science 11.2 (2019), pp. 1–8. 
105 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104. 
106 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with 
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software 
repositories. 2016, pp. 49–60. 
107 Shaiful Alam Chowdhury et al. “A system-call based model of software energy consumption without 
hardware instrumentation”. In: 2015 Sixth International Green and Sustainable Computing Conference 
(IGSC). IEEE. 2015, pp. 1–6. 
108 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017 
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273–283. 
109 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance 
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90 
(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971. 
110 Xiong Wei et al. “An embedded software power consumption model based on software architecture and 
support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191–200. 
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Figure 8. Methods and tools for measuring actual energy consumption 

➢ RQ6: What environment is the software operating in and how it is configured? 

The studies analysed measure the energy consumption of software on a wide variety of hardware 

platforms, which can be grouped into several categories. Several works use traditional server-class 

machines such as Linux servers111, 112nd specialized infrastructures, for example the Marcher2 

server113. GPU-based systems are widely represented, with accelerators such as NVIDIA Tesla 

K20, K80, M60, V100, and more recent GPUs such as RTX A4000, RTX 4060, GTX1650, Titan Xp, 

and P100114, 115, 116. These configurations are mostly used for CUDA-based workloads. On the 

embedded side, GPU-enabled boards such as the NVIDIA Jetson TX1 and Jetson Xavier NX are 

employed to capture energy behavior in constrained environments117, 118. Embedded boards and 

microcontrollers are another frequent target. Examples include ARM Cortex-M0 (STM32F0-

 

111 Deguang Li et al. “Software Energy Consumption Estimation at Architecture-Level”. In: 2016 13th 
International Conference on Embedded Software and Systems (ICESS). IEEE. 2016, pp. 7–11. 
112 Tong Zhang et al. “ Assessing Predictive Models for Energy Consumption Across Varied Software 
Environments”. In: 2024 IEEE International Conference on Big Data (BigData). Los Alamitos, CA, USA: 
IEEE Computer Society, Dec. 2024, pp. 5233–5242. doi: 10.1109/BigData62323.2024.10825500. url: 
https://doi.ieeecomputersociety.org/10.1109/BigData62323.2024.10825500. 
113 Cuijiao Fu, Depei Qian, and Zhongzhi Luan. “Estimating software energy consumption with machine 
learning approach by software performance feature”. In: 2018 IEEE International Conference on Internet 
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018, pp. 490–496. 
114 Gargi Alavani Prabhu et al. “ Estimating Power Consumption of GPU Application Using Machine Learning 
Tool ”. In: 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). 
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2024, pp. 734–739. doi: 10.1109/ICTAI62512. 
2024.00109. url: https://doi.ieeecomputersociety.org/10.1109/ICTAI62512.2024.00109. 
115 Gargi Alavani et al. “Program Analysis and Machine Learning–based Approach to Predict Power 
Consumption 
of CUDA Kernel”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 8.4 (July 2023). issn: 
2376-3639. doi: 10.1145/3603533. url: https://doi.org/10.1145/3603533. 
116 Lorenz Braun et al. A Simple Model for Portable and Fast Prediction of Execution Time and Power 
Consumption of GPU Kernels. 2020. arXiv: 2001.07104 [cs.DC]. url: https://arxiv.org/abs/2001.07104. 
117 Charalampos Marantos, Nikolaos Maidonis, and Dimitrios Soudris. “Designing Application Analysis Tools 
for Cross-Device Energy Consumption Estimation”. In: 2022 11th International Conference on Modern 
Circuits and Systems Technologies (MOCAST). 2022, pp. 1–4. doi: 10.1109/MOCAST54814.2022.9837632. 
118 Charalampos Marantos et al. “A Flexible Tool for Estimating Applications Performance and Energy 
Consumption Through Static Analysis”. In: SN Comput. Sci. 2.1 (Jan. 2021). doi: 10.1007/s42979-020- 
00405-7. url: https://doi.org/10.1007/s42979-020-00405-7. 
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Discovery board)119, 120, MSP430FR5969121, single-core ARM7122, and LEON3 GR712RC 

processors, sometimes combined with FPGAs like Kintex UltraScale for hybrid experiments)123, 124. 

ARM-based development boards, such as Odroid-U3 and Odroid-XU3, which embed Cortex-A15 

and Cortex-A7 clusters, are also widely used for heterogeneous embedded scenarios125, 126, 127, 128. 

Finally, mobile and consumer devices are prominent in many studies. Android smartphones 

constitute a significant portion of the evaluation platforms, often combined with external 

measurement hardware such as GreenMiner for improved accuracy129, 130, 131, 132.  

Figure 9 summarizes the frequency of system types across the surveyed studies. Microcontrollers 

(MCUs) are the most frequently evaluated platforms (5 studies) followed by Android smartphones, 

 

119 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum f¨ur Informatik, 
2023. doi: 10.4230/OASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10. 
4230/OASIcs.WCET.2023.9. 
120 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-M0 Processor for Profiling and Static 
Analysis”. 
In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 
Oct. 2022, 1–4. doi: 10.1109/icecs202256217.2022.9971086. url: 
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086. 
121 Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut. “WORTEX: Worst-Case Execution 
Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML”. In: 22nd International 
Workshop on Worst-Case Execution Time Analysis (WCET 2024). Ed. by Thomas Carle. Vol. 121. Open 
Access Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für 
Informatik, 2024, 1:1–1:14. isbn: 978-3-95977-346-1. doi: 10.4230/OASIcs.WCET.2024.1. url: https: 
//drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.1. 
122 Xiong Wei et al. “An embedded software power consumption model based on software architecture and 
support vector machine regression”. In: International Journal of Smart Home 10.3 (2016), pp. 191–200. 
123 Simon Wegener et al. “EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy 
Consumption of Embedded Applications”. en. In: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 
2023. doi: 10.4230/OASICS.WCET.2023.9. url: https://drops.dagstuhl.de/entities/document/10. 
4230/OASIcs.WCET.2023.9. 
124 Kris Nikov et al. “Accurate Energy Modelling on the Cortex-M0 Processor for Profiling and Static 
Analysis”. 
In: 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 
Oct. 2022, 1–4. doi: 10.1109/icecs202256217.2022.9971086. url: 
http://dx.doi.org/10.1109/ICECS202256217.2022.9971086. 
125 Matthew J Walker et al. “Accurate and stable run-time power modeling for mobile and embedded CPUs”. 
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.1 (2016), pp. 106–
119. 
126 Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. “Accurate phase-level cross-platform power and 
performance estimation”. In: Proceedings of the 53rd Annual Design Automation Conference. 2016, pp. 1–
6. 
127 Krastin Nikov and Jose Nunez-Yanez. “Intra and inter-core power modelling for single-ISA 
heterogeneous 
processors”. In: International Journal of Embedded Systems 12 (Jan. 2020), p. 324. doi: 
10.1504/IJES.2020.107046. 
128 Shivam Kundan, Ourania Spantidi, and Iraklis Anagnostopoulos. “Online frequency-based performance 
and power estimation for clustered multi-processor systems”. In: Computers Electrical Engineering 90 
(Mar. 2021), p. 106971. doi: 10.1016/j.compeleceng.2021.106971. 
129 Shaiful Chowdhury et al. “Greenscaler: training software energy models with automatic test generation”. 
In: Empirical Software Engineering 24.4 (2019), pp. 1649–1692. 
130 Shaiful Alam Chowdhury and Abram Hindle. “Greenoracle: Estimating software energy consumption with 
energy measurement corpora”. In: Proceedings of the 13th international conference on mining software 
repositories. 2016, pp. 49–60. 
131 Shaiful Alam Chowdhury et al. “A system-call based model of software energy consumption without 
hardware instrumentation”. In: 2015 Sixth International Green and Sustainable Computing Conference 
(IGSC). IEEE. 2015, pp. 1–6. 
132 Stephen Romansky et al. “Deep green: Modelling time-series of software energy consumption”. In: 2017 
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE. 2017, pp. 273–283. 
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either standalone or paired with Green Miner hardware (4 studies), reflecting the importance of 

energy measurement for mobile devices. Embedded ARM clusters also appear in 4 studies. GPU-

equipped systems, including NVIDIA GPUs, are present in 3 studies, while traditional server-class 

machines, such as Linux servers, and NVIDIA embedded boards appear in 2 studies each. A few 

studies use less common or unspecified platforms: one study does not specify the system used, 

and two studies are grouped under "Other", which includes Raspberry Pi 4, Intel i5-4210U, and the 

Marcher2 server. 

Overall, this distribution highlights a strong focus on microcontrollers, embedded ARM clusters, and 

mobile devices, complemented by GPUs and server-class machines. 

 
Figure 9. Energy prediction environments and settings 

➢ Limitations & gaps 

The analysis of related work indicated a couple of relevant research gaps regarding the prediction 

of software energy consumption (Table 4). The most significant gap is the lack of approaches 

addressing Python programming language despite the rapid increase of this usage, especially in 

the area of data analysis (data science, machine learning and artificial intelligence) and 

development of data-driven software systems. Further research deficit relates to a static code 

analysis, specifically measuring static properties of code at fine-grained level for the purpose of 

predicting energy consumption. 

Table 4. Gaps regarding the prediction of software energy consumption 

Limitation/Gap Description Example/Implication Application To GreenCode 

Limited support for 

Python language 

Very scarce research on 

predicting energy 

consumption of Python 

software based on 

source code analysis 

Data analysis and data-driven 

software applications written 

in Python cannot be analysed 

and optimized concerning 

energy consumption. 

One of the focus areas of 
GreenCode are energy intensive 
data processing software 
systems. 

Limited support for 

fine-grained code 

analysis 

Missing method for 
analysing source code 
for fine-grained energy 
consumption 
predictions. 

Individual code structures that 

are responsible for high energy 

consumption cannot be 

spotted because only large 

junks of software are 

considered. 

GreenCode aims at optimizing 
energy consumption. This 
requires identifying exact 
location in energy-intensive 
parts of software code, which 
may be on various granularity 
levels, including fine-grained 
ones. 
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4.3 Benchmark Analysis 

This section presents a structured review of existing benchmarks that evaluate Large Language 

Models (LLMs) in the context of code generation and optimization, with an emphasis on efficiency 

and sustainability. The analysis is guided by five research questions (RQs), each examining a 

specific dimension of benchmark design, evaluation methodology, LLM interaction, and observed 

limitations. The corresponding findings are consolidated in Table 5 and Table 6, which provide 

comparative overviews of the benchmark landscape and evaluation metrics. 

➢ RQ1: Which code optimization benchmarks exist? 

➢ RQ2: Which programming languages do they cover? 

➢ RQ3: What types of data do they use (function-level, codebase-level, synthetic example)? 

➢ RQ4: What criteria are used to evaluate optimizations (runtime, memory, energy, etc.)? 

➢ RQ5: What are the main limitations of current benchmarks? 

The identified benchmarks exhibit variation in their design scope, programming language coverage, 

and data granularity. To facilitate comparison, Table 5 provides an overview of representative 

benchmarks. The Language column indicates the primary implementation languages used for 

benchmark tasks, while the Data Scope column specifies the granularity level ranging from function-

level and program-level examples to repository-scale datasets. The Description column briefly 

summarizes each benchmark’s unique objective or methodological focus. 

Function-level evaluations dominate the current landscape, largely due to their simplicity and high 

reproducibility. Python remains the predominant language, reflecting its centrality in LLM-based 

code generation research. Program-level and repository-level evaluations are relatively rare, 

signalling a gap in real-world efficiency assessments that consider cross-module dependencies and 

runtime environments. 

Table 5. Benchmark Landscape, Language Coverage, and Data Types 

Benchmark Year Language(s) Data Scope Description 

PCEBench133 2025 C/C++ Function/Program 
Parallel code generation using 
OpenMP/MPI 

ResBench134 2025 Verilog Function 
FPGA design generation with resource 
constraints 

MARCO135 2025 Python Program/HPC 
Multi-agent optimization for HPC 
kernels 

EffiBench-X136 2025 
Python, C++, Java, 
JS, Ruby, Go 

Function 
Multi-language benchmark for runtime 
and memory efficiency 

 

133 L. Chen, N. Ahmed, M. Capotă, T. Willke, N. Hasabnis and A. Jannesari, "PCEBench: A Multi-
Dimensional Benchmark for Evaluating Large Language Models in Parallel Code Generation," 2025 IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), Milano, Italy, 2025, pp. 546-557, doi: 
10.1109/IPDPS64566.2025.00055. keywords: {Technological innovation;Codes;Parallel 
programming;Large language models;Scalability;Benchmark testing;Software systems;Multitasking;Natural 
language processing;Synchronization;large language model;parallel code 
generation;benchmark;evaluation;LLM agent}, 
134 Hu, P., Pan, W., Jian, X., Ma, Z., Li, T., Shen, Y., ... & Li, Z. (2025). ResBench: A Comprehensive 
Framework for Evaluating Database Resilience. arXiv preprint arXiv:2511.11088. 
135 Asif Rahman, Veljko Cvetkovic, Kathleen Reece, Aidan Walters, Yasir Hassan, Aneesh Tummeti, Bryan 
Torres, Denise Cooney, Margaret Ellis, and Dimitrios S. Nikolopoulos. [n. d.]. Performance Evaluation of 
Large Language Models for High-Performance Code Generation: A Multi-Agent Approach (MARCO). 
https://api.semanticscholar.org/CorpusID: 280547604 
136 Qing, Y., Zhu, B., Du, M., Guo, Z., Zhuo, T. Y., Zhang, Q., ... & Tuan, L. A. (2025). EffiBench-X: A Multi-
Language Benchmark for Measuring Efficiency of LLM-Generated Code. arXiv preprint arXiv:2505.13004. 
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ENAMEL137 2024 Python Function 
Function-level efficiency benchmark 
based on HumanEval/MBPP 

Coffe138 2025 Python Function/Program 
CPU instruction-based efficiency 
benchmark 

ECCO139 2024 Python Function 
Natural-language instructed code 
optimization 

CodeEditorBen
ch140 

2024 C++, Java, Python Function 
Code editing and performance 
improvement tasks 

Mercury141 2024 Python Function 
Runtime-weighted efficiency 
assessment 

EffiBench142 2024 Python Function 
Efficiency measurement via runtime 
and memory profiling 

EvalPerf143 2024 Python Function 
Hardware counter-based differential 
performance evaluation 

SWE-Perf144 2025 Python Repository 
Real-world pull request–based 
optimization evaluation 

RACE145 2024 Python Function 

Benchmark evaluating multi-
dimensional code generation beyond 
correctness; measures time and space 
complexity, readability, and 
maintainability. 

➢ RQ4: What criteria are used to evaluate optimizations (runtime, memory, energy, etc.)? 

Evaluation criteria in current benchmarks predominantly focus on runtime and memory efficiency, 

reflecting the traditional emphasis on computational speed in software performance analysis. 

Nonetheless, several recent studies broaden this perspective by introducing multi-dimensional 

efficiency metrics that account for hardware-level performance, normalized composite indicators, 

and instruction-based stability measures. 

Table 6 presents an overview of benchmarks that include quantitative evaluations of efficiency, 

illustrating the variety of metrics and methodologies employed to assess the performance of LLM-

generated or optimized code. 

 

137 Qiu, R., Zeng, W. W., Ezick, J., Lott, C., & Tong, H. (2024). How efficient is llm-generated code? a rigorous 
& high-standard benchmark. arXiv preprint arXiv:2406.06647. 
138 Yun Peng, Jun Wan, Yichen Li, and Xiaoxue Ren. 2025. COFFE: A Code Efficiency Benchmark for Code 
Generation. arXiv:2502.02827 [cs.SE] https://arxiv.org/abs/2502.02827 
139 Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. 2024. ECCO: Can We 
Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness? arXiv:2407.14044 
[cs.CL] https://arxiv.org/abs/2407.14044 
140 Guo, J., Li, Z., Liu, X., Ma, K., Zheng, T., Yu, Z., ... & Fu, J. (2024). Codeeditorbench: Evaluating code 
editing capability of large language models. arXiv preprint arXiv:2404.03543. 
141 Mingzhe Du, Luu Anh Tuan, Bin Ji, Qian Liu, and See-Kiong Ng. 2024. Mercury: a code efficiency 
benchmark for code large language models. In Proceedings of the 38th International Conference on Neural 
Information Processing Systems (Vancouver, BC, Canada) (NIPS ’24). Curran Associates Inc., Red Hook, 
NY, USA, Article 529, 22 pages. 
142 Dong HUANG, Yuhao QING, Weiyi Shang, Heming Cui, and Jie Zhang. 2024. EffiBench: Benchmarking 
the Efficiency of Automatically Generated Code. In The Thirty-eight Conference on Neural Information 
Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=30XanJanJP 
143 Liu, J., Xie, S., Wang, J., Wei, Y., Ding, Y., & Zhang, L. (2024). Evaluating language models for efficient 
code generation. arXiv preprint arXiv:2408.06450. 
144 He, X., Liu, Q., Du, M., Yan, L., Fan, Z., Huang, Y., ... & Ma, Z. (2025). Swe-perf: Can language models 
optimize code performance on real-world repositories?. arXiv preprint arXiv:2507.12415. 
145 Zheng, J., Cao, B., Ma, Z., Pan, R., Lin, H., Lu, Y., ... & Sun, L. (2024). Beyond correctness: Benchmarking 
multi-dimensional code generation for large language models. arXiv preprint arXiv:2407.11470. 
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Table 6. Evaluation Criteria Across Benchmarks 

Benchmark Metrics Used 

PCEBench Execution time, RaceFree@k, Correct@k, SpeedPass@k (speedup ≥1.5×) 

ResBench LUT usage, synthesis success, functional correctness 

MARCO Execution time, FLOPS, memory usage, readability, cost efficiency 

EffiBench-X Execution Time, Memory Peak, Memory Integral, Pass@1 

ENAMEL Efficiency@k (eff@1), correctness, runtime stability 

RACE Time complexity, space complexity, correctness, readability, maintainability 

Coffe Efficient@k, CPU instruction count, speedup ratio, Pass@k 

ECCO Runtime speedup, memory reduction, correctness, % optimized 

CodeEditorBench Pass@1, Mean OptScore, readability 

Mercury Beyond metric (runtime-weighted Pass), correctness 

EffiBench Execution Time, Max Memory Usage, Total Memory Usage, and their normalized 
versions (NET, NMU, NTMU) 

EvalPerf DPS_norm (normalized performance score), correctness 

SWE-Perf Runtime gain, performance ratio, correctness (test suite) 

As summarized in Table 6, existing benchmarks collectively span a broad range of performance 

and quality metrics yet remain heterogeneous in methodology and granularity. Most studies such 

as EffiBench-X, EffiBench, and ENAMEL focus primarily on runtime and memory efficiency, offering 

fine-grained yet narrowly scoped evaluations. In contrast, RACE and CodeEditorBench incorporate 

qualitative measures like readability, maintainability, and complexity compliance, broadening the 

evaluation scope toward developer-centric metrics. 

Hardware-oriented benchmarks such as EvalPerf, Coffe, and ResBench, introduce more 

reproducible, platform-aware measures, including hardware counters, instruction counts, and 

resource utilization. Meanwhile, SWE-Perf and MARCO represent the highest level of realism by 

benchmarking within complete execution environments (Dockerized repositories or multi-agent 

HPC systems). 

Despite these advances, energy consumption and carbon impact remain absent as direct 

measurements. Current approaches rely on surrogate metrics like runtime, instruction count, or 

hardware counters that provide only partial approximations of true energy efficiency. Establishing 

standardized, energy-calibrated protocols therefore remains a key objective for the GreenCode 

benchmark suite, ensuring fair, reproducible, and sustainability-aware evaluation of LLM-driven 

code optimization. 

➢ RQ5: What are the main limitations of current benchmarks? 

Despite major advancements in LLM-based code benchmarking, several critical limitations continue 

to constrain their accuracy, comparability, and practical applicability. These limitations are 

methodological, technical, and conceptual, highlighting the need for more comprehensive and 

sustainability-aware evaluation frameworks. 

• Limited Granularity and Realism: Most existing benchmarks focus on isolated, function-level 

tasks, which are suitable for controlled experiments but fail to capture the complexity of real-

world software systems. The absence of large-scale, program-level or repository-level 

evaluations restricts understanding of end-to-end optimization behaviour. 

• Lack of Energy and Sustainability Metrics: Current benchmarks measure performance 

primarily through runtime or memory usage. However, they do not include direct 
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measurements of energy consumption, power usage, or carbon impact. This omission 

prevents a full assessment of sustainability-related trade-offs. 

• Data Contamination and Benchmark Saturation:  Many benchmarks rely on widely used 

public datasets, which are often part of model training corpora. This overlap introduces bias, 

overestimates model performance, and undermines the validity of comparative evaluations. 

• Inconsistent Experimental Environments: Benchmarks are typically executed on 

heterogeneous hardware setups without standardized conditions or containerized 

environments. As a result, reproducibility across studies remains limited, and direct 

comparison of results is unreliable. 

• Narrow Evaluation Objectives: Most benchmarks emphasize correctness and runtime 

improvement while overlooking complementary software qualities such as maintainability, 

readability, or robustness. A sustainable benchmark must integrate these dimensions to 

better represent real-world development goals. 

Overall, existing benchmarking methodologies remain fragmented and primarily performance 

driven. Their lack of environmental and contextual awareness limits their contribution to sustainable 

software engineering. Establishing standardized, reproducible benchmarks is therefore a 

necessary step toward evaluating LLM-generated code in realistic and sustainability-oriented 

contexts. 

4.4 Quality assessment of genAI outcomes 

The evaluation of generative AI (GenAI) outputs has become a critical research focus across 

domains such as computer science, healthcare, and law. Recent studies emphasise that quality is 

a complex, multidimensional, construct that comprises factual accuracy, completeness, reasoning 

coherence, clarity and style, safety, and trustworthiness 146, 147. In certain contexts, these criteria 

extend beyond linguistics to include domain-specific notions to position GenAI as a component for 

decision148. 

Traditional metrics such as BLEU and ROUGE have proven inadequate for open-ended or creative 

GenAI tasks because they reward surface similarity rather than faithfulness or usefulness149. 

Consequently, LLM-as-a-judge approaches, in which a strong model evaluates another model’s 

output, have gained traction150. Frameworks like G-Eval demonstrate closer alignment with human 

judgements on factuality and coherence than older metrics, though evaluator bias and self-

agreement remain open concerns151. 

In software engineering contexts, researchers increasingly examine GenAI-generated artefacts 

beyond fluency and task accuracy, measuring code maintainability, security vulnerabilities and 

 

146 Tam, T.Y.C., et al. (2024) ‘A framework for human evaluation of large language models in healthcare 
derived from literature review’, npj Digital Medicine / arXiv:2405.02559.  
147 Budler, L.C. et al. (2025) ‘A brief review on benchmarking for large language models’, Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 
148 Asgari, E. et al. (2025) ‘A framework to assess clinical safety and hallucination risk in large language 
model outputs’, npj Digital Medicine. 
149 Liu, Y. et al. (2023) ‘G-Eval: NLG evaluation using GPT-4 with better human alignment’, Proceedings of 
EMNLP 2023. 
150 Wang, Y. et al. (2025) ‘LLM-as-a-Judge: Reliability, bias, and best practices’, arXiv preprint. 
151 Liu, Y. et al. (2023) ‘G-Eval: NLG evaluation using GPT-4 with better human alignment’, Proceedings of 
EMNLP 2023 
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static-analysis defects152 153 154. In the automotive domain, where software must satisfy real-world 

hardware constraints and strict safety standards, recent studies propose frameworks that integrate 

GenAI with formal verification, requirement-analysis pipelines and system-level validation to enable 

trustworthy generation155 156 157. 

Other recent studies in software engineering and embedded systems extend quality assessment 

of generative AI into domain-specific artefacts such as code generation and safety-critical 

embedded software. For instance, the CODEJUDGE framework proposes using a large language 

model to evaluate the semantic correctness of generated code without relying solely on test cases, 

thereby addressing limitations of purely functional metrics158. Empirical work examining LLM-

generated code goes further: one study evaluated maintainability and reliability of Python code 

produced by different model configurations (zero-/few-shot, fine‑tuned) using static analysis and 

found weak correlation between functional correctness and code quality issues like code smells 

and defects159. Another line of research addresses safety-critical domains: e.g., studies in 

automotive software ask whether GenAI-generated code can comply with verification and 

simulation constraints inherent to the automotive software development lifecycle 160 161. 

Benchmarks such as L2CEval further analyse language-to-code generation capability across tasks 

and emphasise calibration and error-analysis in code generation quality, underscoring that 

correctness is only one axis of quality162. These domain-specific advances underline that for code-

generation, “quality” must be judged not just by whether it runs, but by maintainability, security-

vulnerability risk, integration correctness, and compliance with domain verification. 

Another key focus of recent research is hallucination detection, defined as the confident generation 

of false or unsupported content. Surveys distinguish between factual and faithfulness hallucinations 

and position them as primary quality defects rather than minor inaccuracies 163 164. Empirical audits 

report persistent hallucination rates across models, including fabricated citations and incorrect 

medical advice165. Emerging approaches treat hallucination detection as an uncertainty estimation 

 

152 Tosi, G., Di Lascio, F.M.L., & Morisio, M. (2024) Studying the quality of source code generated by large 
language models. Future Internet, 16(6), 188. MDPI. 
Available at: https://doi.org/10.3390/fi16060188 
153 Cotroneo, D., De Simone, L., Pietrantuono, R., & Russo, S. (2024) Automating the correctness 
assessment of AI-generated code. Journal of Systems and Software, 212, 111995. Elsevier. 
154 Sabra, M., Liu, Y., Liu, J., & Shen, Y. (2025) Assessing the quality and security of AI-generated code: A 
quantitative analysis. arXiv preprint, arXiv:2508.14727. 
155 Kirchner, A., & Knoll, A. (2025) Generating automotive code: Large language models for software 
development and verification in safety-critical systems. arXiv preprint, arXiv:2506.04038. 
156 Pan, X., Hentges, J., Zeller, A., & Knoll, A. (2025) Automating automotive software development: A 
synergy of generative AI and formal methods. arXiv preprint, arXiv:2505.02500. 
157 McKinsey & Company. (2025) From engines to algorithms: GenAI in automotive software development. 
McKinsey Center for Future Mobility. 
158 Liang, G., et al. (2024) ‘Evaluating Code Generation with Large Language Models’, Proceedings of the 
2024 Conference on Empirical Methods in Natural Language Processing (EMNLP). 
159 Sabra, A., Schmitt, O. & Tyler, J. (2025) ‘Assessing the Quality and Security of AI-Generated Code: A 
Quantitative Analysis’. arXiv preprint arXiv:2508.14727. 
160 Kirchner, A. & Knoll, A. (2025) ‘Generating Automotive Code: Large Language Models for Software 
Development and Verification in Safety-Critical Systems’. arXiv preprint arXiv:2506.04038. 
161 Liu, M., et al. (2024) ‘An Empirical Study of the Code Generation of Safety-Critical Software’, Applied 
Sciences, 14(3), 1046. 
162 Li, W., Gao, K., He, H. & Zhou, M. (2024) ‘LiCoEval: Evaluating LLMs on License Compliance in Code 
Generation’. arXiv preprint arXiv:2408.02487. 
163 Sahoo, P. et al. (2024) ‘A comprehensive survey of hallucination in large language models’, Findings of 
EMNLP 2024. 
164 Huang, L. et al. (2025) ‘A survey on hallucination in large language models’, ACM Computing Surveys. 
165 Rahman, A.B.M.A. et al. (2024) ‘DefAn: Definitive Answer Dataset for LLMs Hallucination Evaluation’, 
arXiv:2406.09155. 
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problem, using entropy-based confidence measures to flag unreliable responses166. Overall, 

hallucination control and calibration are now central to quality assurance in GenAI systems. 

 

 

 

 

 

 

 

 

166 Farquhar, S. et al. (2024) ‘Detecting hallucinations in large language models using uncertainty estimation’, 
Nature. 


