

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D3.4 - Delta-oriented Quality Assurance Methodology

Submission date of deliverable: Nov 30, 2024

Edited by: Eduard Enoiu (MDU) and SmartDelta WP3 partners

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

WP3 partners

Version number 10

Work package

Work package leader

Dissemination level

WP3

Eduard Paul Enoiu (MDU)

Public

Description

(max 5 lines)

D3.4 aims to describe the methodology for delta-aware quality assurance

for industrial systems based on functional and extra-functional testing,

monitoring, automated static and dynamic analysis, and regression testing.

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 2 of 71

Executive Summary

This deliverable presents the final version of the Delta-Oriented Quality Assurance (DOQA)

methodology developed within the SmartDelta project. It outlines the approaches for ensuring

software quality in incremental development scenarios, particularly industrial systems. The

methodology integrates automated testing, functional and extra-functional property assurance (e.g.,

security, performance, resource consumption), regression testing, and static and dynamic analysis

to address the unique challenges of continuous software evolution.

Key advancements include automated test generation, augmentation, and prioritization strategies

tailored for delta-specific changes, enabling efficient resource use and improved CI/CD workflows.

The methodology introduces tools and techniques for requirements management, anomaly

detection, and static analysis. In addition to addressing functional requirements, the methodology

incorporates model-based testing for non-functional properties. Methods such as combinatorial test

generation, anomaly discovery for microservices, and change-based regression test selection

leverage techniques like semantic analysis, static requirement checking, and test amplification.

SmartDelta enhances DOQA processes, reduces testing cycles, and ensures system quality across

iterative increments.

Integrating these tools into agile practices, supported by guidelines for implementation in real -world

industrial contexts, will benefit practitioners and researchers. This deliverable also explores the

methodology's broader applications, aligning its tools with specific use cases and evaluating their

effectiveness through performance metrics. Recommendations for future work include expanding

tool capabilities and exploring additional integrations to optimize delta-aware DOQA processes

further.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 3 of 71

Table of Contents

Executive Summary .. 2

Document Glossary .. 4

2. State of the Art... 6

2.1. Model-Based Testing of Industrial Product Lines .. 6
2.2. Maintaining/Improving the Quality of Regression Tests ... 7
2.3. Property-based testing for non-functional requirements ... 7
2.4. Test co-evolution and repair .. 8
2.5. Test reuse across products ... 9
2.6. Change-based regression test selection ... 10
2.7. Mutation Testing (for Simulink) .. 14
2.8. Reflections and Identified Gaps .. 15

3. SmartDelta Methods for Quality Assurance ... 16

3.1. Combinatorial Test Generation (SEAFOX) ... 16
3.2. Requirement and Test Specification Static Checker (NALABS) .. 17
3.3. Discovery of Interactions and Anomalies for Microservices (DIA4M) 19
3.4. Model-Based Test Case Generation (IFAK-TCG) .. 25
3.5. Test Amplification (FOKUS-CBTS) ... 25
3.6. VARA+: Variability-Aware Requirements Management and Analysis .. 29
3.7. SoHist - Historical Quality Evolution Tool ... 33
3.8. SONATA .. 36
3.9. UI Test Generator - User Interface Test Design .. 37
3.10. MUT4SLX – Mutation Testing for Simulink .. 40
3.11. DRACONIS ... 42
3.12. Test Effort Estimator .. 45
3.13. PyLC .. 46
3.14. GW2UPPAAL ... 50
3.15. Testing Utilizing EARS Notation in PLC Programs .. 51
3.16. Jazure ... 55
3.17. Smellyzer .. 56
3.18. Relink .. 58
3.19. Telemetry Anomaly Analyzer (TAA) .. 59

4. A Methodology for Delta-Aware Quality Assurance ... 60

5. Broader Context of the SmartDelta Methodology .. 66

5.1. Selected Tools and Their Role in WP3 .. 66
5.2. Example: How WP3 Tools Fit Into a Real Use Case ... 68

6. Selected Performance Metrics – An Overview ... 68

7. Summary and Conclusions .. 71

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 4 of 71

Document Glossary

Acronym Definition

AI Artificial Intelligence

API Application Programming Interface

AST Abstract Syntax Tree

CI/CD Continuous Integration / Continuous Deployment

GUI Graphical User Interface

ML Machine Learning

NLP Natural Language Processing

QA Quality Assurance

TCS Test Case Selection

TCP Test Case Prioritization

TSM Test Suite Minimization

EARS Easy Approach to Requirements Syntax

SPENAT Safe Petri Net with Attributes

PBT Property-Based Testing

POM Project Object Model

XML Extensible Markup Language

CSV Comma-Separated Values

SoC Separation of Concerns

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 5 of 71

1. Introduction

In this deliverable, we outline the methodology for automated quality assurance and analysis for

extra-functional properties (e.g., resource consumption, security, performance) based on the model

specification of the corresponding requirements that target real industrial continuous development

challenges. In WP3, we develop automated test generation and analysis techniques for functional

and extra-functional properties (e.g., resource consumption, security, performance). We build our

generation algorithms on the model specification of the corresponding requirements developed in

WP1 and WP2 and results from testing and operations of earlier deltas. We develop techniques for

automated test generation, model-based variant testing, automated static and dynamic analysis,

consistency checking, and verification of the feature variant artifacts. Towards this goal, we develop

techniques that can be used in the selection, generation, and execution of test cases, exercising

the evolving systems' behavior concerning the supplied quality characteristics and testing for

resource consumption given specific system requirements.

This WP3 methodology aims to maximize automation in ensuring the satisfaction of specified non-

functional requirements in the CI/CD context for each delta version. The creation of comprehensive

guidelines for the adopters of SmartDelta quality assurance methods and tools is essential. The

methodology will also serve as teaching material for IT-oriented universities. This methodology

relates to the WP3 tasks: T3.1 Delta-oriented Test Case Generation and Selection for Functional

Requirements, T3.2 Delta-oriented Test Case Generation and Selection for Extra-Functional Quality

Requirements, T3.3 Static Analysis of Quality Attributes Evolution, and T3.4 Delta Oriented

Regression Testing in Continuous integration.

The methodology includes a suite of techniques addressing various aspects of delta-oriented quality

assurance in industrial software systems. By focusing on the unique characteristics of each delta,

the methodology ensures that the quality assurance processes are both efficient and effective using

the following methods and techniques:

● Delta-Specific Analysis and Prioritization. Techniques are developed to identify and

prioritize meaningful changes in each delta, enabling targeted quality assurance efforts.

● Test Case Design and Optimization. While test generation and selection are important, the

methodology extends to generating test cases that address functional, non-functional, and

extra-functional requirements such as performance, security, and resource consumption to

improve subsequent tests for future deltas.

● Static and Dynamic Analysis. Static analysis techniques are introduced to address

vulnerabilities, code smells, and maintainability concerns, ensuring that non-functional

requirements are consistently met across iterations. Dynamic analysis techniques focus on

operational behaviors to identify anomalies and optimize system performance over

successive increments.

● Variant and Configuration Management. For highly configurable software, the methodology

provides approaches to manage the complexity of variant testing, prioritizing and selecting

test cases from previous product iterations.

This approach ensures that delta-oriented quality assurance is not limited to testing but also

includes software artifact analysis, risk management, and optimization techniques to address the

needs of industrial software development in a continuous integration context.

Section 2 reviews the state of the art in model-based testing, regression test selection, test co-

evolution, and test reuse, identifying gaps that the SmartDelta methodology seeks to address.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 6 of 71

Section 3 provides a detailed description of the tools and techniques developed within WP3,

highlighting their purpose, features, and applications. Section 4 introduces the methodology for

delta-aware quality assurance, focusing on how delta-specific changes are identified and tested

while integrating various tools and techniques. Section 5 contextualizes these contributions by

situating them within the broader SmartDelta methodology, showing how the tools address specific

use cases. Section 6 summarizes several performance metrics, providing an overview of the tools'

effectiveness and contributions to enhancing quality assurance processes. Finally, the document

concludes in Section 7 with the outcomes, reflecting on the contributions of WP3 and showing some

recommendations for future work.

2. State of the Art

In this section, we outline the state of the art in delta-oriented quality assurance, including

requirement management and analysis, product line testing, regression testing, test amplification,

and test reuse.

2.1. Model-Based Testing of Industrial Product Lines

Test modeling and test case generation focus on inter- and intra-product lines. The context of

versions of systems related by common features and a shared development history that opens new

frontiers for model-based testing, such as avoiding retesting the same feature or evaluating how

different combinations affect the performance of individual features, become pertinent

considerations. Moreover, there may be advantages to adopting variability modeling and test

generation methods that work on the same artifacts. Industrial software can be highly configured

during continuous development and varying feature selection. McGregor1 studied the construction

of software families as one aspect of configurability. How to handle variability testing in PLs has

been surveyed in the literature; however, it needs evaluation on industrial systems2,3,4.

Model-Based Testing (MBT)5 for functional and non-functional properties uses test-ready models

as input for automated test generation and execution. There are several benefits to the use of MBT6,

including easier test maintenance, higher test coverage, and documentation of the behavior in

models. It is necessary to model the variability in the intended PL to employ MBT in highly

configurable systems. On a conceptual level, there are at least two different modeling languages

1 McGregor, J. D., Muthig, D., Yoshimura, K. and Jensen, P. [2010]. Successful software product line
practices,IEEEsoftware27(3): 16–21
2 Sinnema, M. and Deelstra, S. [2007]. Classifying variability modeling techniques, Information and Software
Technology 49(7): 717–739.
3 Lamancha, B. P., Usaola, M. P. and de Guzman, I. G. R. [2009]. Model-driven testing in software product lines,
International Conference on Software Maintenance, IEEE, pp. 511–514.
4 Lee, J., Kang, S. and Lee, D. [2012]. A survey on software product line testing, International Software Product Line
Conference, ACM, pp. 31–40
5 Utting, Mark, Alexander Pretschner, and Bruno Legeard. "A taxonomy of model‐based testing approaches."
Software testing, verification and reliability 22.5 (2012): 297-312.
6 Pretschner, Alexander, et al. "One evaluation of model-based testing and its automation." Proceedings of the 27th
international conference on Software engineering. 2005.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 7 of 71

for testing evolving systems: Feature Modelling (FM) and Orthogonal Variability Modelling (OVM) 7

and feature-based and delta-oriented models for testing, including product selection techniques8 9.

2.2. Maintaining/Improving the Quality of Regression Tests

Regression testing gives developers confidence that existing functionality works as intended

throughout the software evolution. This process depends on the quality of both test cases and the

testing process itself. Recent studies have shown that automated regression testing is susceptible

to flakiness10 11 12 13. Tests are expected to evolve with the software to cover new or changing

requirements. During this process, design or coding issues may introduce technical debt in the form

of test code smells. In a recent literature review, Aljedaani et al. identified 22 tools covering 66 test

smells 14. Such tools allow developers to get an overview of the existing issues in their test suites.

Regression testing is often expensive . The regression test suites can be extremely large and thus

time-consuming to execute. This is particularly true for system testing, where the test suites can

grow very large, even for simple coverage criteria. This means re-running every test case in the test

suite will be expensive. Therefore, regression test selection techniques assume an important role

in the overall regression test strategy, even more so in the rapid development processes of CI/CD.

2.3. Property-based testing for non-functional requirements

Property-based Testing (PBT) 15 focuses on the inputs and outputs of a System-Under-Test (SUT),

where the SUT is usually stateless. Testers define the general structure of valid inputs for the

system under test (SUT) and a set of properties representing the expected behavior for these inputs.

Based on this structure, a wide range of increasingly complex random inputs is generated and

applied to the SUT. The system's responses are then monitored to verify that the outputs conform

7 F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortes, “Feature Model to Orthogonal Variability Model Transformation
towards Interoperability between Tools,” p. 9.

8 V. Hafemann Fragal, A. Simão, M.R. Mousavi, and U.C. Türker. Extending HSI Test Generation Method for Software
Product Lines. Computer Journal, 62(1): 109-129, 2019.

9 M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M.R. Mousavi and I. Schaefer. A Classification of Product Sampling
for Software Product Lines. Proceedings of 22nd International Systems and Software Product Line Conference. ACM,
2018.
10 J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung and D. Marinov, "DeFlaker: Automatically Detecting Flaky Tests",
Proceedings of the 40th International Conference on Software Engineering, 2018.
11 G. Pinto, B. Miranda, S. Dissanayake, M. d'Amorim, C. Treude and A. Bertolino. "What is the Vocabulary of Flaky
Tests?“, Proceedings of the 17th International Conference on Mining Software Repositories (MSR '20). Association for
Computing Machinery, New York, NY, USA, 492–502, 2020, DOI:https://doi.org/10.1145/3379597.3387482
12 A. Shi, W. Lam, R. Oei, T. Xie and D. Marinov, "iFixFlakies: a framework for automatically fixing order -dependent
flaky tests", Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering - ESEC/FSE 2019, 2019. doi:10.1145/3338906.3338925
13 W. Lam, K. Muşlu, H. Sajnani and S. Thummalapenta, "A study on the lifecycle of flaky tests", Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020. doi:10.1145/3377811.3381749

14 W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer, A. Ouni, C.D. Newman, A. Ghallab, and S. Ludi.
2021. Test Smell Detection Tools: A Systematic Mapping Study. In Evaluation and Assessment in Software Engineering
(EASE 2021). Association for Computing Machinery, New York, NY, USA, 170–180.
https://doi.org/10.1145/3463274.3463335

15 D. R. MacIver, “In praise of property-based testing.” https://increment.com/testing/in-praise-of-property-based-
testing/, 2019. [Online; acessed 25-March-2022].

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 8 of 71

to the specified properties, ensuring the SUT behaves as anticipated across various inputs. Thus,

testers verify the SUT on families of cases. This approach was first popularized through the

QuickCheck library in Haskell16 and later found wider adoption in other programming communities

such as Erlang17 and Python18. The complexity of property-based testing lies in ergonomic

specification languages19, meaningful exploration of the input space20, and reduction of the faulty

examples to their minimal form for better readability and easier debugging21. Property-based testing

has also been applied to non-functional testing. For instance, it has been applied to testing non-

functional requirements of web services22.

2.4. Test co-evolution and repair

The evolution of software systems due to fault fixes, functionality modification, or source code

refactoring may cause previous test cases to become obsolete and non-executable. Due to the

high-cost maintenance and time consumption of previous test cases, software developers often

discard them. TestCareAssistant is another technique for automated repairing of obsolete test

cases, combining data-flow analysis with program diffing. The technique analyses the impact of

method declaration changes on the executability of test cases to repair the test compilation errors
23. Furthermore, B. Daniel et al. proposed a tool, ReAssert, to automatically repair unit tests24. The

purpose of the ReAssert tool is to suggest repairs for the broken tests, and if the user agrees with

the suggested changes, then the tool modifies the test code in an automated fashion. However, due

to the tool's limitations for only lack of complex control flows or operations on expected values, B.

Daniel et al. propose another technique based on symbolic execution, named symbolic test repair25.

The technique is based on repairing test cases by changing the literal in the test code and

integrating it into the ReAssert general test repair process. Another tool, ScrIpT repAireR (SITAR),

proposed by Z. Gao et al., automatically evolves unusable low-level test scripts for GUI-based

applications26. The technique behind SITAR is to utilize human inputs and repair transformations to

create an abstract test for each test script, mapping it to an annotated event-flow graph (EFG) to

create a new synthesized repaired test script. During the process, SITAR also repairs the GUI

16 K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random testing of Haskell programs,” ACM SIGPLAN
Notices, vol. 46, no. 4, 2000.

17 T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms software with quviq quickcheck,” in Proceedings
of the ACM SIGPLAN Workshop on Erlang, 2006.

18 D. R. MacIver, A. F. Donaldson, and many other contributors, “Hypothesis: A new approach to property -based
testing,” Journal of OpenSource Software, vol. 4, no. 43, 2019.

19 M. Gligorić, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov, “Test generation through programming
in UDITA,” in IEEE International Conference on Software Engineering (ICSE), 2010.

20 A. Löscher and K. Sagonas, “Targeted property-based testing,” in 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017.

21 D. R. MacIver and A. F. Donaldson, “Test-case reduction via test case generation: Insights from the hypothesis
reducer,” in European Conference on Object-Oriented Programming (ECOOP), 2020.

22 Bai, Yu, et al. "A non-functional property based service selection and service verification model." International
Conference on Ubiquitous Intelligence and Computing . Springer, Berlin, Heidelberg, 2011.
23 M. Mirzaaghaei, F. Pastore, and M. Pezze. Automatically repairing test cases for evolving method declarations. In
Proceedings of the 2010 IEEE International Conference on Software Maintenance (ICSM 2010), pages 1 –5. IEEE, 2010.
24 B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert: Suggesting repairs for broken unit tests. In ASE, 2009.
http://mir.cs.illinois.edu/reassert/ .
25 B. Daniel, T. Gvero, and D. Marinov. On test repair using symbolic execution. In Proceedings of the 19th
International Symposium on Software Testing and Analysis, ISSTA ’10, page 207218, New York, NY, USA, 2010. ACM.
26 Z. Gao, Z. Chen, Y. Zou, SITAR: GUI test script repair, IEEE Trans. Softw. Eng. 42 (2016) 170 –186 .

http://mir.cs.illinois.edu/reassert/

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 9 of 71

objects used in the checkpoints, which can be executed automatically to validate the revised

software. Additionally, Javaria et al. proposed an automated model-based approach to repair the

test cases based on the DOM (Domain Object Model) strategy to maintain the same DOM coverage

and fault-finding capability for evolving web applications27. The purpose of the approach is to

generate repaired test scripts for an evolved web version by taking two different versions of a web

application and a test suite of an earlier version as input.

In the automotive testing domain, with the increase of Simulink modeling and the use of behavioral

models, a major concern is the evolution of software tests and their maintenance. To address this

concern, E.J. Rapos et al. proposed a toolset, SimEvo, to assist Simulink developers in test

evolution alongside their source models28. The proposed tool consists of an existing impact analysis

tool; SimPact 29, and a new tool; SimTH, dedicated to the automated generation and adaptation of

Simulink test harnesses. SimTH requires only a Simulink behavioral model as input to generate the

test harness for an automotive model. The main tasks to create the automated functional test

harness are; the inclusion of the system under test (SUT) components, input and out management

to the SUT, environment simulation through simulating standard calls and their accurate response

to the simulated environment, and standardization of the generated test harness models. The

inclusion of the SimPact tool is to maintain evolving Simulink models due to the changes made to

models on test cases and harnesses. SimPact identifies and mitigates the impact of these changes

to guide the use of SimTH.

In SmartDelta, we are improving the state of the art by focusing on co-evolution and repairing system

integration test cases. Based on the analysis of the changes, we are using impact analysis for

functional and extra-functional properties.

2.5. Test reuse across products

One of the main obstructions to quality assurance of software systems is the effort required to test

the system rigorously. Reusing software artifacts can help enhance the quality and productivity of

testing software systems. Software test reuse can be applied to numerous artifacts, i.e., built -in

tests, model-based testing, test environments, and domain-based testing, to reduce development

time and enhance the quality of software systems 30.

To construct reusable tests for software product lines (SPL), which share common characteristics,

Reuys et al. proposed a Scenario-based Test case Derivation (ScenTED) model-based technique

to ensure the reuse of test cases through preservation of variability during test case derivation, as

is the case during the domain modeling process to derive software product families 31. In addition,

Bucaioni et al. leverage model-driven engineering to derive test scripts for product variants within

27 Javaria Imtiaz, Muhammad Zohaib Iqbal, & Muhammad Uzair khan (2021). An automated model -based approach to
repair test suites of evolving web applications. Journal of Systems and Software, 171, 110841.
28 E. Rapos and J. Cordy, "SimEvo: A Toolset for Simulink Test Evolution & Maintenance," in 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST), Västerås, Sweden, 2018 pp. 410 -
415.
29 E.J. Rapos and J.R. Cordy. SimPact: Impact analysis for simulink models. In Proceedings of the 33rd International
Conference on Software Maintenance and Evolution, ICSME ’17. IEEE Press, 2017.
30 Rajeev Tiwari and Noopur Goel. 2013. Reuse: reducing test effort. SIGSOFT Softw. Eng. Notes 38, 2 (March 2013),
1–11.
31 Reuys, A., Kamsties, E., Pohl, K. and Reis, S. 2005, Model Based System Testing of Software Product Families,
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2005, Volume 3520.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 10 of 71

the product family32. Results from their evaluation show that the approach reduced development

effort while overcoming consistency drawbacks. Furthermore, Olimpiew et al. proposed a feature-

oriented model-based testing method for SPLs for automated selection and configuration of

reusable test specifications. In feature-based test derivation, the proposed method selects several

reusable test specifications to test and configure a given application derived from SPL 33.

Test reuse approaches for GUI applications transform human-designed GUI tests from one app to

another, which shares similar functionalities through semantic similarity among textual information

of GUI widgets 34. To evaluate such approaches, Zhao et al. proposed a framework, FrUITeR, which

automatically validates UI test reuse cases based on evaluation metrics35. The metrics determine

the correctness of mapped GUI events from a source to a target app and the usefulness of

transferred tests in practice. Moreover, G. Hu et al. proposed AppFlow for synthesizing highly

robust, reusable UI tests utilizing machine learning36. AppFlow provides machine learning

capabilities to automatically detect common UI screens and widgets, which allows developers to

write modular tests for the main functionality of an app category. After detecting UI screens and

widgets, AppFlow can quickly synthesize complete tests from the modular library to test a new app

in the same category.

In SmartDelta, we are improving traditional reuse methods to the level of evolving industrial

systems. If artifacts are reused, their testware can be reused based on analysis of the changes,

using impact analysis for functional and extra-functional properties.

2.6. Change-based regression test selection

Automated test suites grow along with the software systems under test, often making it too costly

to execute entire test suites. Runeson, for example, reported that some unit test suites take hours

to run37. Consequently, the last decade has seen an increasing interest in test selection, seeking to

32 Bucaioni, A., Di Silvestro, F., Singh, I., Saadatmand, M., & Muccini, H. (2022). Model‐based generation of test
scripts across product variants: An experience report from the railway industry. Journal of Software: Evolution and
Process, e2498.
33 Olimpiew, E. M. and Gomaa, H. 2009. Reusable Model-based Testing, ICSR 09: Proceedings of the 11th
International Conference on Software Reuse, pages 76-85, Berlin, Heidelberg, 2009, Springer-Verlag.
Doi:10.1007/978-3-642-04211-9_8
34 Mariani, Leonardo et al. "Semantic Matching of GUI Events for Test Reuse: Are We There Yet?." Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis . Association for Computing Machinery,
2021.
35 Yixue Zhao, Justin Chen, Adriana Sejfia, Marcelo Schmitt Laser, Jie Zhang, Federica Sarro, Mark Harman, and Nenad
Medvidovic. 2020. FrUITeR: a framework for evaluating UI test reuse. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 20).
36 Hu, G., Zhu, L., & Yang, J. (2018). AppFlow: Using Machine Learning to Synthesize Robust, Reusable UI Tests. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (pp. 269–282). ACM.

37 P.Runeson,“A survey of unit testing practices,”IEEE Software,vol.23, no. 4, pp. 22–29, 2006.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 11 of 71

identify those test cases relevant to the most recent changes. Since 2008, five literature surveys

have been published, illustrating the vast body of knowledge available on the topic 38, 39, 40, 41, 42.

Traceability links. During test selection, a software analysis tool constructs a test mapping table,

maintaining traceability links between the code under test and the corresponding test cases.

Researchers have investigated numerous heuristics for recovering these traceability links: control

flow analysis, data flow analysis, firewalls, slicing, and clustering. Recently, people also

incorporated artificial intelligence techniques like machine learning43 and game theory44. Others

exploited information from artifacts beyond the source code, such as defect tracking systems45 and

test logs46, 47. Yet, for tool builder purposes, all of these heuristics (as shown in Table 1) can be

roughly classified according to two dimensions: the way they collect the traceability links and the

granularity at which they do so48.

Table 1: Dimensions for Classifying Test Selection Heuristics

Collecting: Static vs. Dynamic

● Static approaches extract the traceability links from the source code or some
representation of it.

● Dynamic approaches derive the traceability links from execution traces recorded during
actual test runs.

38 E. Engström, M. Skoglund, and P. Runeson, “Empirical Evaluations of Regression Test Selection Techniques: A
Systematic Review,” in Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM, 2008, pp. 22–31.

39 E. Engström, P. Runeson, and M. Skoglund, “A systematic review on regression test selection techniques,”

Information and Software Technology, vol. 52, no. 1, pp. 14–30, 2010.

40 S. Yoo and M. Harman, “Regression Testing Minimization, Selection and Prioritization: A Survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012. [Online]. Available: http://dx.doi.org/10.1002/stvr.430

41 S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression test selection techniques: A survey,” Informatica
(03505596), vol. 35, no. 3, 2011.

42 R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective regression test case selection: A systematic
literature review,” ACM Computing Surveys, vol. 50, no. 2, pp. 29:1–29:32, May 2017.

43 H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement learning for automatic test case
prioritization and selection in continuous integration,” in Proceedings ISSTA 2017 (the 26th ACM SIGSOFT
InternationalSymposiumonSoftwareTestingandAnalysis). NewYork, NY, USA: ACM, 2017, pp. 12–22.

44 N. Kukreja, W. G. J. Halfond, and M. Tambe, “Randomizing regression tests using game theory,” in
Proceedings ASE2013 (the 28th IEEE/ACM International Conference on Automated Software Engineering).
Piscat- away, NJ, USA: IEEE Press, 2013, pp. 616–621.

45 E.Engström, P.Runeson, andG.Wikstrand, “An empirical evaluation of regression testing based on fix -
cache recommendations,” in Proceedings ICST2010 (Third International Conference on Software Testing,
Verification and Validation). Piscataway, NJ, USA: IEEE Press, April 2010, pp. 75–78.

46 J.-M. Kim and A. Porter, “A history-based test prioritization technique for regression testing in resource
constrained environments,” in Pro- ceedings ICSE ’02 (the 24th International Conference on Software
Engineering). New York, NY, USA: ACM, 2002, pp. 119–129.

47 E. Ekelund and E. Engström, “Efficient regression testing based on test history: An industrial evaluation,”
in Proceedings ICSME2015 (IEEE International Conference on Software Maintenance and Evolution).
Piscataway, NJ, USA: IEEE Press, Sept 2015, pp. 449–457.

48 O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An extensive study of static regression
test selection in modern software evolution,” in Proceedings FSE 2016 (the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering). New York, NY, USA: ACM, 2016, pp.
583–594.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 12 of 71

Granularity: Fine-grained vs. Coarse-grained

The level of detail chosen for the elements in the mapping table.

● method ←→ test method

● class ←→ unit test

● file ←→ test case

● . . .

Continuous Integration. However, all of the heuristics are designed to reduce large regression

test suites that run every so often on a test execution environment with plenty of resources.

However, with the introduction of continuous integration, the context of the test selection problem

shifted entirely. Test engineers within the Firefox project reported that there needs more time for

comprehensive testing due to the rapid release cycles, forcing test teams to narrow their scope and

perform deeper testing in selected areas49.

Microsoft asserted that the change rate and the scale of their code base demands `` [...] a fast,

simple algorithm that works well in practice and does not attempt an expensive data flow algorithm

to determine which new code will be covered by which existing tests '' 50. In a later paper, Microsoft

argued that due to the complex branch dependencies, it is impossible to run all of the tests for all

of the changes across all configurations: to avoid heavy-weight dependency analysis, they exploit

historic test execution data at component level51. Regarding the classification in Table 1, they adopt

a dynamic and coarse-grained test selection heuristic.

In the same vein, Google acknowledged that "In continuous integration, however, testing requests

arrive at frequent intervals, rendering techniques that require significant analysis time overly

expensive, and rendering techniques that must be applied to complete sets of test cases overly

constrained. Furthermore, the degree of code churn caused by continuous integration quickly

renders data gathered by code instrumentation imprecise or even obsolete.” 52 There is also a

dynamic and coarse-grained test selection heuristic that allows scaling up the regression testing

selection53. Not surprisingly, open-source projects followed suit; some projects in the Apache

Foundation 54 adopted the Ekstazi tool. A report on a test selection approach is also applied to WebKit55.

49 M. Mäntylä, F. Khomh, B. Adams, E. Engström, and K. Petersen, “On rapid releases and software
testing,” in 2013 IEEE International Conference on Software Maintenance. Piscataway, NJ, USA: IEEE Press,
Sept 2013, pp. 20–29.

50 A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de- velopment environment,” in Proceedings ISSTA
’02 (the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis). New York, NY, USA: ACM,
2002, pp. 97–106.

51 K.Herzig, M.Greiler, J.Czerwonka, and B.Murphy, “The art of testing less without sacrificing quality,” in Proceedings
ICSE ’15 (the 37th International Conference on Software Engineering). Piscataway, NJ, USA: IEEE Press, 2015, pp. 483 –
493.

52 S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing in continuous integration
development environments,” in Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014, pp. 235–245.

53 A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco, “Taming google -scale continuous
testing,” in Proceedings ICSE-SEIP ’17 (the 39th International Conference on Software Engi- neering: Software
Engineering in Practice Track). Piscataway, NJ, USA: IEEE Press, 2017, pp. 233–242.

54 M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test selection with dynamic file dependencies,” in
Proceedings ISSTA 2015 (the 2015 International Symposium on Software Testing and Analysis). New York, NY, USA:
ACM, 2015, pp. 211–222.

55 J. Jasz, L. Lango, T. Gyimothy, T. Gergely, A. Beszedes, and L. Schrettner, “Code coverage -based regression test
selection and prioritization in WebKit,” in Proceedings ICSM ’12 the 2012 IEEE International Conference on Software

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 13 of 71

Again, to scale up, Ekstazi and the WebKit approach settled on a dynamic and coarse-grained test

selection heuristic.

Test Suite Composition. A critical factor mostly neglected in evaluating test selection heuristics is

the composition of the test suite itself. Indeed, the drive towards test automation forced many

development teams to adopt one of the many xUnit test harnesses. While the names imply that

these tools are meant for "unit testing'', there exists various flavors of what such a unit under test

might be. Meszaros, for instance, stated that in modern testing, xUnit is used to exercise a system

at three levels of granularity: system, component, and unit56. Massol, on the other hand,

distinguishes between logic, integration, and functional unit tests57. Binder differentiates between

method, class, and component tests58. Yet, the nature of the test selection problem changes

considerably when the unit under test is fine-grained (a single method or a class), medium-grained

(a component, a coherent set of classes), or coarse-grained (a system test, a functional test).

Summary. The need to select a subset of existing regression tests for execution to cope with time

constraints is not new. Today’s agile methods and development processes further underline the

necessity of fast feedback after changes. Continuous integration tools provide the technical harness

to execute regression tests regularly and often. However, executing all of the tests for all of the

changes across all configurations is just infeasible. Ultimately, one needs a test selection heuristic

that selects the tests based on the changes pushed into the continuous integration system. The

heuristic should satisfy the following requirements:

● Fast: The selection heuristics should be ordered faster than executing the test suite.

● Reduce: the selection heuristic should reduce the test suite substantially.

● Test composition: the selection heuristic should differentiate between the various flavors of

tests incorporated into the continuous integration system. (unit tests, component tests,

system tests, functional tests, integration tests)

● Inclusiveness. Does the heuristic include all relevant tests? Are there false negatives?

In the following, we present a few of these methods for regression testing.

Full Regression Testing. Introduced as a comprehensive examination of all available test cases,

Full Regression Testing is often employed in practice as a standard strategy, known as the "Retest-

All" approach. Despite its thoroughness, it demands significant resources, potentially occupying

developer capacities.

Informal Approaches. An ad-hoc, non-systematic approach where tests are executed as needed

without specific planning and a random method (this strategy randomly selects a subset of tests for

regression testing). Both methods are typically used when time constraints prevent a full regression

test.

Test Case Prioritization (TCP). Aims to optimally order test cases for regression testing to detect

critical errors early on. By prioritizing test cases, desirable properties such as high fault detection

rate, code coverage, and brief execution times are emphasized. Common methods include the

Coverage-based, History-based, and Requirement-based approaches.

Maintenance (ICSM). Washington, DC, USA: IEEE Computer Society, 2012, pp. 46–55. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2012.6405252

56 G. Meszaros, xUnit Test Patterns. Addison-Wesley, 2007.

57 V. Massol, JUnit In Action. Manning Publications Co., 2004.

58 R. V. Binder, Testing Object-oriented Systems: Models, Patterns, and Tools. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 14 of 71

Test Suite Minimization (TSM). Also referred to as Test Suite Reduction, the goal of TSM is to

decrease the number of tests within a test suite. It focuses on reducing obsolete and redundant test

cases to save time.

Test Case Selection (TCS). TCS encompasses targeted test case selection from a larger pool.

Both automated (algorithmic) and manual (knowledge-based) approaches exist. (Automated) TCS

methods work as described below:

(1) Source Code Analysis: The significance and potential implications of code changes can be

determined by examining source code comments and version history.

(2) Machine Learning and AI: Leveraging artificial intelligence to discern patterns in code

alterations, allowing for predictions regarding future modifications. (also referred as

Predictive Test Selection)

(3) Dynamic Binding: This method links source code and test code, adapting test cases to

changes in the source code.

(4) Dependency Analysis: This technique focuses on identifying interdependencies between

different segments of code and test cases, ensuring that pertinent tests are selected when

code is altered.

(5) Change Impact Analysis (CIA) is an essential tool for detecting effects caused by code

changes. It systematically evaluates possible side effects of modifications. Within the CIA,

methodologies like dependency and traceability analysis are sometimes utilized.

(6) Traceability Analysis: Tracks the relationship between requirements or design documents

and test cases, ensuring that changes in one area are properly reflected and tested in

another.

The Predictive Test Selection (PTS) is emerging within the TCS area, which is gaining traction with

advancements in machine learning.

2.7. Mutation Testing (for Simulink)

Mutation testing is the state-of-the-art technique for evaluating the fault-detection capability of a test

suite. The technique deliberately injects faults into the code and counts how many of them the test

suite catches. While the principle applies to any automated test suite, it is mainly used for unit and

component tests.

A few early proof-of-concept tool prototypes illustrate how to apply mutation testing in the context

of SIMULINK. Simulink models the system under test using blocks that transform input signals into

output signals, modeling the behavior of the cyber-physical system under implementation.

Engineers simulate the behavior in the Simulink environment, manually verifying whether the final

output signal matches the expected outcome. Once the model satisfies the requirements, code is

generated and deployed on a real-time embedded platform. Today, Simulink has two different test

execution environments – Signal Builder and Simulink Test. In both these environments, facilities

are available to assert whether the output signal is the same as the expected baseline signal, as

such imitating the fully automated xUnit behavior of passing (green) or failing (red) tests.

Today, there is little research on mutation testing for Simulink models, as witnessed by a recent

systematic literature survey conducted by Papadakis et al.59 This can be expected because Simulink

is very specific to particular application domains, such as automotive and avionics. However, those

areas require a high degree of reliability and trust, and their development is based on stringent

safety standards. So, one may expect mutation testing to eventually be adopted in this context as

59 M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman, “Mutation Testing Advances: An
Analysis and Survey,” in Advances in Computers. Elsevier, 2019, vol. 112, pp. 275–378. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2018.03.015

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 15 of 71

well. Based on a literature survey, we identified three relevant papers, all on technology readiness

levels: 1 (technology concept formulated) or 2 (experimental proof of concept).

The first report we found was a paper by Hanh and Bihn that specified six categories of mutation

operators varying from type to expression operator 60. These mutation operators are defined based

on the grammar of Simulink (mutating signals and blocks) and as such are quite comprehensive.

No analysis is based on a fault model of frequently occurring faults in realistic applications. The

paper reports on applying these models to a quadratic model and reports mutant execution results.

No replication packages are provided. A second report concerns the SIMULTATE tool introduced

to automate mutant generation for Simulink models61. The tool employs a Python API to inject the

faults into model blocks using an interactive user interface. For the mutant generation, SIMULTATE

injects all mutants in a single pass, but each mutant should be enabled or disabled individually.

Compared to the earlier work of Hanh and Bihn, SIMULTATE supports mutating signals only. There

is no automated test execution; engineers are expected to manually verify whether the mutated

output signal differs from the original one. FIM is the third proof-of-concept tool we have identified62.

FIM inherits mutation operators of SIMULATE tool and supports ten operators for signals and five

operators for blocks. The tool mainly focuses on safety analysis via extensive fault injection

capabilities. The tool provides single and multi-mode options for generating a single model with

multiple faults or multiple models with a single fault. It uses the MATLAB command line interface to

trigger the tool and a custom library from which the block can be changed easily. As such, the

mutant generation is faster than SIMULTATE as it does not trigger the MATLAB user interface. FIM

is evaluated with an Aircraft Elevator Control System (AECS) from the avionics-aerospace domain.

The paper only reports the generation of mutants, not their execution.

2.8. Reflections and Identified Gaps

The review of state-of-the-art approaches in delta-oriented quality assurance highlights some

advancements, particularly in testing, regression strategies, and anomaly detection. However,

several challenges still need to be solved in the scalability of current methods for highly configurable

systems. Furthermore, operational data integration into quality assurance processes remains

limited, restricting testing and analysis potential. Despite progress, anomaly detection still struggles

with accuracy and efficiency, particularly in fault localization within dynamic environments.

To bridge these gaps, SmartDelta integrates feedback loops from operational and development

data, which enables quality assurance processes to continuously adapt and evolve their techniques

in response to quality attributes. Furthermore, advancing automation techniques for test reuse,

generation, and augmentation ensures that tests evolve alongside the systems they evaluate and

reduce manual intervention.

60 L.T.M.Hanh and N.T.Binh, “Mutation operators for simulink models,” in 2012 Fourth International
Conference on Knowledge and Systems Engineering. Danang, Vietnam: IEEE, 2012, pp. 54–59.

61 I. Pill, I. Rubil, F. Wotawa, and M. Nica, “Simultate: A toolset for fault injection and mutation testing of
simulink models,” in 2016 IEEE Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). Chicago, IL, USA: IEEE, 2016, pp. 168–173.

62 E. Bartocci, L. Mariani, D. Nicˇkovic ́, and D. Yadav, “Fim: Fault injection and mutation for simulink,” in
Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association for Computing
Machinery, 2022, p. 1716–1720. [Online]. Available: https://doi.org/10.1145/3540250.3558932

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 16 of 71

3. SmartDelta Methods for Quality Assurance

This toolset contains toolkits for automated generation and checking of model specifications for

feature variant artifacts by bringing novel techniques supporting automated verification of product

deltas through model specifications at development and runtime. In addition, a toolset for automated

reuse analysis and recommendation of artifacts for each delta version was developed.

3.1. Combinatorial Test Generation (SEAFOX)

Method Description

SEAFOX is a combinatorial testing tool that was developed at Mälardalen University. This tool can

take a PLCopen XML file as input, which contains information about the program to be tested. Then,

the tool parses the file by extracting the needed information that will be used to generate test cases,

such as the name of the input parameters and their respective data types. Another option is to

manually provide the parameters and data types in the tool. Further, the SEAFOX tool creates test

cases by generating the inputs using one of the available algorithms implemented in the tool:

Random, Base choice, or Pairwise algorithm. These input values can then be exported as comma-

separated values in a CSV file where each line is a new set of input parameters representing a

certain test case.

Improvements

Combinatorial test generation can be used to augment manual tests in CI environments where

testing cycles are short. When SEAFOX is used, automatically generated test cases could be added

to existing regression suites and be run within continuous integration. For this purpose, we plan to

integrate into build environments (e.g., Maven), such that new test suites are re-generated and

selected with each new build of a system.

Purpose and Features

SEAFOX is a combinatorial testing tool specifically developed for IEC 61131-3 compliant PLC

software. Its primary purpose is to automate the generation of test cases for industrial control

systems. By using combinatorial testing techniques, SEAFOX aims to enhance the efficiency and

effectiveness of testing processes.

Features of SEAFOX:

● Supports various combinatorial testing strategies, including pairwise, base choice, and

random testing.

● Designed to work with PLC software development environments, particularly those that

follow the IEC 61131-3 standard.

● Provides a graphical user interface for loading programs, defining input parameters, and

generating test cases.

● Can import PLC programs in the PLCopen XML format, facilitating seamless integration with

development environments like CODESYS.

● Users can manually enter parameter ranges and constraints for more tailored test case

generation.

Usage Instructions

● Start SEAFOX and load the desired PLC program or function block stored in an XML file.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 17 of 71

● Enter the input parameter names, data types, and ranges manually or import them from the

XML file. Choose the combinatorial testing strategy (pairwise, base choice, or random) from

the provided options.

● Specify the values each parameter can take. This can be single values, closed intervals, or

a combination of both. Generate test cases by clicking on the generate button to create the

test cases based on the chosen strategy.

● Export test cases by saving the generated test cases as a CSV file for further use or

analysis. Run test cases by importing the test cases into the target PLC development

environment (e.g., CODESYS) and execute them to validate the software.

Case Studies

SEAFOX was used to generate test suites for a train control management system (TCMS)

developed by Alstom. The system contained 45 programs with an average of 1076 lines of XML

code. SEAFOX's pairwise testing was compared with manual testing by industrial engineers,

demonstrating that it achieved high code coverage and fault detection rates comparable to manually

crafted test suites. In another study, SEAFOX was integrated with CODESYS IDE to facilitate

automated testing of PLC programs. The generated test cases achieved 94% decision coverage on

average, with random testing achieving the highest coverage at 98.15%. This integration

streamlined the testing process and enhanced the reliability of industrial PLC software.

3.2. Requirement and Test Specification Static Checker (NALABS)

Method Description

In many embedded system domains, requirement engineering is performed manually by engineers

who hand-craft those artifacts using natural or semi-structured languages and use them for other

stages of software development, such as testing them against the system under test. Issues in

natural language artifacts (i.e., requirements), such as ambiguities or vague specifications, can lead

to higher costs during system development.

Previous research found that test specifications written in natural language contain a rather high

degree of cloning and bad structure, which can influence the cost of maintaining and executing test

cases. For requirements as well as for system test cases written in natural language, so-called bad

smells have been established as indicators to identify poorly written natural language artifacts.

Based on several natural language smells observed in previous studies, we established a set of

indicators for requirement flaws and defined dictionary-based metrics to automatically detect these

smells in natural language artifacts.

NALABS is a new tool that aims at quick analysis of requirements by detecting problematic

requirements. The aim of NALABS is to help in bringing more evidence on the industrial use of bad

smells for detecting specification quality defects.

Since requirement checking can be very costly and time-consuming, it is important to automate the

verification of requirements using predefined rules. For CI environments where development cycles

are very short, NALABS is used within continuous integration early on in the requirement

engineering phases. For this purpose, we plan to integrate into requirement management

environments (e.g., DOORS) but also use GitHub Actions to automate this workflow, such that new

requirements and test specifications are checked with each new build of the architecture and design

documents.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 18 of 71

Purpose and Features

NALABS takes a set of spreadsheets that contain requirements in ID-description pairs as input. The

tool outputs a list of metrics and quality scores for every requirement. Additionally, poorly chosen

words are highlighted in the context for the user to review.

The set of checks run on the requirements are as follows:

● Number of Words (NW): Measures the length of each requirement.

● Number of Vague Phrases (NV): Detects ambiguous phrases.

● Number of Conjunctions (NC): Counts conjunctions such as "and" "or" "but"

● Number of Reference Documents (NRD1 and NRD2): Identifies external references.

● Optionality (OP): Flags optional terms like "may" or "could"

● Subjectivity (NS): Detects subjective language.

● Weakness (WK): Identifies weak verbs such as "support" or "process"

● Automated Readability Index (ARI): Calculates readability scores.

● Imperatives (NI1 and NI2): Counts imperative verbs and checks their context.

● Continuances (CT): Identifies terms like "etc" or "and so on"

Usage Instructions

NALABS has been implemented as a desktop application. It allows users to interact with the tool

using a graphical user interface. The tool expects requirements to be written in an Excel document,

with one requirement per row. Information identifying the requirement ID and specification columns

must be provided to run the tool.

These settings are found under Edit/Settings in the menu. In the Excel view, you should then choose

the REQ ID and Text column in the requirement Excel document. Documents are opened through

the File menu. An example of the result view is shown in Figure 1. Metrics are displayed in separate

columns. Smells found are highlighted and color-coded in the given context.

Figure 1: The GUI interface of NALABS.

NALABS is also qualified as a command line interface (CLI). The CLI variant supports both Excel

and JSON files as inputs and outputs the result in JSON format. A working Python environment is

needed to install and run the NALABS CLI. Given a fresh virtual environment, the prerequisites may

be installed using pip install -r requirements.txt. The tool can then be run using the following

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 19 of 71

command: python NALABS.py <input_file> <id_column> <text_column> <output_file>. More

information may be found at https://github.com/eduardenoiu/NALABS.

Case Studies

The NALABS tool evaluated 661 security requirements spanning 46 documents63. This analysis

focused on identifying requirement smells or indicators of potential issues like vagueness,

ambiguity, and excessive complexity, which can restrict the use of these security requirements.

Using NALABS, the analysis concentrated on 12 smell indicators, including metrics such as number

of conjunctions, vagueness, and Automated Readability Index, to assess the quality of NL security

requirements. Specific indicators showed a statistically significant presence, suggesting these are

common problem areas in security specifications. For instance, the ARI scores revealed a generally

difficult to very difficult reading level across the analyzed requirements. The results also

underscored nine moderate to strong correlations between different smell indicators, further

showing patterns in the language of security requirements. For example, requirements exhibiting

high counts in conjunctions often displayed increased complexity in logical structure, which could

hide intended functionality and increase implementation risks.

3.3. Discovery of Interactions and Anomalies for Microservices (DIA4M)

Method Description

Related to the efficiency of DevOps engineers who manage the next-generation communication

platform with cloud-based and microservice architectures (CPaaS – Communication Platform as a

Service), we aim to increase the efficiency of the operations teams on the work/time unit. A

monitoring and tracking system prepared using open-source Elasticsearch, Kibana, and Grafana

products is currently used. It is provided to generate alarms at desired values by feeding them with

the data taken from the platform.

As a result of the investigations, most of the time is spent by the operation teams monitoring the

system status to keep the systems alive. The status of the number of ports used, which is of great

importance for traffic, memory, processor, disk, and telecom systems, is monitored instantly. In

addition, licenses that may expire are determined. Individual engineers carry out all these

monitoring processes daily. The established central monitoring system ensures that the data of all

the monitored systems are collected in a single place and that this data is correlated and alarmed

at the desired values. In telecommunication platforms, it is necessary to monitor the system, take

quick action against possible and observed errors, and ensure the continuous operability of the

system. However, debugging and problem-addressing processes can take a long time in

microservice architecture-based platforms with a high number of users and heavy traffic. This

difficulty arises from the necessity of detecting microservice interactions. In the monitoring and

anomaly detection category of the SmartDelta quality assurance dimension, we want to design a

new tool called DIA4M that will map microservice interactions and locate anomaly and fault status

faster.

Improvements

For CPaaS, a microservice architecture-based telecommunications platform with many users and

heavy traffic, the error-adding process may vary depending on the system components. In the

examinations, it has been observed that the operation teams spend the most time in the error-

63 R. Hallberg, ‘Finding Quality Problems In Security Requirements Using NALABS’, Dissertation, 2023.

https://github.com/eduardenoiu/NALABS

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 20 of 71

addressing process to eliminate the errors experienced in user scenarios, pointing to the routing

and service components. In the tool, log patterns will be extracted from the microservice log data,

and the interaction map of the mentioned microservice will be created by estimating the previous

and next microservices with which the current microservice interacts at a particular moment. Data

from the CPaaS platform can be used for interaction and topology discovery. The DIA4M tool will

have features, as shown in Table 2.

Table 2. DIA4M tool features.

Purpose and Features

During the QA phase of a system developed using microservice architecture, there are plenty of

issues, bugs, regressions, and problems detected very late in the cycle. Throughout our DevOps

process, we need to have a very clear vision of the situation, prioritize what we want to do, and

know where we start. For this, we developed the DIA4M solution to struggle with microservice

complexity and empower DevOps excellence.

Features of DIA4M:

● Interactive node-based mapping visualizer

● Topology-based exploratory data analysis through the visualizer

● Feature discovery (filter logs by keywords, search, etc.)

● Resource trend prediction (trend analysis of microservice resources using ML methods)

● Service summary (fault detection and localization using ML methods)

● Categorical comparison of log data (revealing differences with previous versions)

● Elastic cloud integration

● Anomaly detection module (for both logs and Elastic agents)

● GPT integration for troubleshooting

Usage Instructions

We have developed a new DI4M setup using Docker Compose. This new setup allows you to run

DI4M APIs and databases with just one command, significantly simplifying the deployment and

development process on different machines by leveraging Dockerized environments. Here is a

comprehensive guide to setting up DI4M with Docker Compose (see repository view in Figure 2).

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 21 of 71

Figure 2: The DIA4M Repository.

To install Docker and Docker Compose, create a folder called SmartDelta: mkdir SmartDelta.

Navigate to the SmartDelta folder: cd SmartDelta. Clone the repositories:

git clone -b dev-eren https://github.com/smartdeltanetrd/smartdelta-frontend.git

git clone -b dev-eren https://github.com/smartdeltanetrd/smartdelta-backend-ts.git

For each repo create a new branch(dev-yourName) and switch to your new branch for development.

Download the docker-compose.yml file from the setup guide repository and move it to the root of

SmartDelta. Run the following command in the root of the SmartDelta folder: docker compose up.

Wait a few minutes for the containers to be created and started. If you get an error related to the

mongo_db file permission run sudo chmod -R 755 /mongo_db on MACOS or Linux. If you use

Windows, then run icacls C:\mongo_db /grant %username%:F /T icacls C:\mongo_db /grant

Users:(RX) /T. Verify the setup: Navigate to http://localhost:5000. You should see the following

JSON response: {"message":"Hello World"}. This indicates that the Node.js API is running without

issues. Navigate to http://localhost:3000 to check if the front end is running without issues.

In the frontend app: Click on the file upload menu item and upload one of the CSV files in the

repository. After uploading the file, you will be prompted to use the mapping visualizer. Go back to

the file upload page to see the uploaded file list in the managed file part. If you see the uploaded

file as a list item, it means the frontend, MongoDB, and Node.js API are running without issues.

Logs: To see the logs of the frontend app, open a terminal under the root of smartdelta-frontend

and run docker logs -f smartdelta-frontend-1. To see the live changes of the Node.js API logs, open

a terminal under the root of smartdelta-backend and run: docker logs -f smartdelta-api-1

Data Science Flask API Setup: Under the root of the SmartDelta folder, clone the smartdelta-ml-

backend repository: git clone https://github.com/smartdeltanetrd/smartdelta-ml-backend.git

Follow the guideline on this link. Directory Structure. After completing the setup steps, your

SmartDelta directory should look like this:

SmartDelta/

https://github.com/smartdeltanetrd/smartdelta-frontend.git
https://github.com/smartdeltanetrd/smartdelta-backend-ts.git
http://localhost:5000/
http://localhost:3000/
https://github.com/smartdeltanetrd/smartdelta-ml-backend.git
https://github.com/smartdeltanetrd/smartdelta-ml-backend/blob/master/README.md

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 22 of 71

├── docker-compose.yml

├── smartdelta-frontend/

│ ├── <frontend project files>

│

├── smartdelta-backend-ts/

│ ├── <backend project files>

│

├── smartdelta-ml-backend/

│ ├── <ml-backend project files>

│

└── mongo_db/

 └── <MongoDB files>

In this version (v1.3) of the DIA4M tool, we are set to introduce key features and improvements,

enhancing distributed analysis capabilities. Our primary focus is on optimizing the tool's functionality

and adaptability within the context of the Smart Indoor Gardening IoT system—a senior project led

by Eren Tarak, a developer of DIA4M and a senior student at the Department of Information Systems

and Technologies, Bilkent University. Figure 3 shows the DIA4M frontend repository feature-based

folder structure.

DIA4M Node.js API Controllers

Figure 3: Frontend repositories for DIA4M.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 23 of 71

Case Studies. Case Study 1: IoT-based Smart Systems and DIA4M

Smart Indoor Gardening IoT System is an on-demand scaling cloud-based AWS Lambda FaaS

Node.js backend project designed to enhance individual indoor gardening experiences through real-

time monitoring of temperature, soil moisture, light intensity, and air quality. The system's advanced

plant leaf disease detection neural network model gives users insights, enabling proactive

management and remote access to detailed updates. The high-level software architecture diagram

of DIA4M is shown in Figure 4.

Figure 4: A Detailed Block Diagram of DIA4M.

The integration demonstrates DIA4M's adaptability and effectiveness in real-world scenarios,

especially in an environment exposed to environmental sensor data. Performance monitoring and

troubleshooting at both the service function and system levels are crucial to ensure the stability of

intelligent systems (as for the architecture shown in Figure 5).

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 24 of 71

Figure 5. Software Architecture for Anomaly Detection and Monitoring.

Case Studies. Case Study 2: High Throughput Log Processing

Use Case: Companies like Spotify and Netflix use Apache Kafka for log processing. These large-

scale platforms generate huge log data across hundreds of microservices.

Solution: Kafka provides a high throughput and fault-tolerant solution, making it ideal for

constructing a distributed tracing system and integrating OpenTelemetry with DIA4M (as shown in

Figure 6). We researched the benefits of a scenario where DIA4M evolves into a central hub

supporting both Elastic APM agents and vendor-neutral open-source collectors like OpenTelemetry.

The evolution would bring significant advantages:

- Flexibility: Integration with a wide array of telemetry receivers (e.g., Prometheus, Jaeger,

OTLP), processors (e.g., sampling, batching), and exporters (e.g., statsd, OTLP, Jaeger)

provides a versatile and customizable observability solution.

- Scalability: Supporting diverse telemetry backends ensures that DIA4M can scale

efficiently and adapt to various distributed systems' needs.

- Versatility: Accommodating a broader range of use cases and technologies makes DIA4M

a more comprehensive observability platform.

-

Figure 6: Integration of OpenTelemetry with DIA4M.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 25 of 71

3.4. Model-Based Test Case Generation (IFAK-TCG)

Method Description

Based on a model of the demanded behavior (specification model) and with respect to specified

test goals, test cases with test data are generated systematically by using a suitable algorithm64.

Common modeling notations are graph-based models like UML State Machines, UML Activity

Diagrams, and high-level Petri nets. Additionally, textual modeling languages are used as input

models of existing test generation tools. Differences between the existing test generation methods

and tools can be found primarily in the handling of internal and external data in the used input

modeling notations. These differences are also reflected in the features of the test generation tools.

The specified test goals are very important for the test generation results. Normally test goals are

coverage criteria regarding the used specification (requirements), including a specification model

as the basis for the test generation. Generally, the specification model is graph-based, so graph-

based coverage criteria (e.g., all nodes, all edges, all paths) are very common as test goals.

Other coverage criteria regarding the coverage of requirements properties have also been

established as test goals. These are linked to associated elements of the specification model

(usually nodes, edges) to enable the test generation method to generate the required test cases for

an efficient test suite about the test goals. The method for test generation is based on Petri net

unfoldings of SPENAT (Safe Petri Net with Attributes) models. It is possible to map a UML State

Machine on a SPENAT, so a UML State Machine can also be used as an input specification model

for test generation with this method65.

In SmartDelta, IFAK improves its requirement-based test case generation and execution for

functional requirements, extending it to non-functional properties such as performance.

Furthermore, IFAK developed methods for automatic requirement prioritization regarding quality

properties. The aim is an automatic test case prioritization for efficient regression testing.

3.5. Test Amplification (FOKUS-CBTS)

Method Description

The term “test amplification” was recently emphasized by the EU Horizon 2020 project STAMP

(Software test amplification for DevOps). Test amplification is a test automation approach, where

(usually) manually written testware (such as test cases, test data, test oracle, test configurations,

test model) are automatically analyzed and processed by aiming at leveraging them in further test

activities. The term purposeful is essential since different goals might be relevant, where the

amplification may target. Test amplification might be used to increase the overall coverage of the

system under test concerning its specification by means of further generated test cases or test data.

Another target might be to derive further testware to uncover a particular kind of defect (e.g., fault).

This is similar to the increase of coverage but different in the sense that the coverage of the

64 Krause, J. (2011). Testfallgenerierung aus modellbasierten Systemspezifikationen auf der Basis von
Petrinetzentfaltungen. Dissertation, Otto von Guericke University, Shaker Verlag

65 Reider, M., Magnus, S., Krause, J. (2018). Feature-based testing by using model synthesis, test
generation and parameterizable test prioritization. In: 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW) (pp. 130-137)

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 26 of 71

specification is not required but the coverage of an anticipated defect. A third target might be

modifying test (design) models if such models exist.

Tools and methods for test amplification currently focus on amplification of unit test cases or test

configuration. For these approaches, prototypic open-source tooling support exists. However, no

fully-fledged test amplification approach on a black-box level is currently available, not to mention

delta analysis and delta generation.

Change-based Test Selection for Regression Testing

Change-based test selection is a form of test amplification that targets a purposeful selection of

regression tests for faster execution and a shorter response cycle. The change-based test selection

method we developed is based on changes to the code base that regularly happen in iterative-

increment development. In many projects, automated regression tests are used to safeguard the

development activities immediately right after code changes have been committed into the code

base by the developers. As the software product grows, it is no possible to effectively run all the

regression tests immediately to the code commit so developers have to wait for the results of the

regression tests for a longer time than desired. This is particularly true for component integration

tests which are usually executed using a CI pipeline.

The problem with regression tests is that most of the regression tests in a large regression test suite

are less interesting to the developer who committed the code change. As a result, only those

regression tests with a good potential to detect or uncover unwanted side-effects implicitly

introduced are of higher interest to the developers. However, since side-effects are not predictable

beforehand, one never knows which regression tests should be executed to safeguard code

changes. As a result of this uncertainty, all regression tests are often executed brute-force. As

described, this may lead to long waiting times on the developers' side. Other approaches strive to

execute only a feasible number of regression tests, which leads to uncertainties concerning the

ability to detect unwanted side effects.

Our method (and the developed prototype) is based on the following aspects:

- Abstract Syntax Tree (AST): It leverages AST analysis to gain deep insights into the

codebase's structure and dependencies.

- Class Dependency Analysis: The plugin identifies intricate relationships between code

components by analyzing class dependencies.

- Change Impact Analysis: This technique, widely recognized in literature, helps assess the

impact of code changes on the entire system.

- Integration with Modern Libraries: The plugin combines these analysis techniques with

modern libraries like JGit. This integration enhances the delta calculation process, making

it faster and more efficient.

The prototype offers a practical and efficient solution to regression testing challenges in iterative-

incremental development models. The plugin returns tests based on code changes and

comprehensive coverage of potential side effects.

Improvements

We implemented the first version of a change-based test selection tool called CBTS Plugin. It is a

regression selection tool for unit tests (either on the component or component integration test level)

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 27 of 71

integrated into a Maven-based CI pipeline. The CBTS Plugin has been integrated into the Vaadin

CI pipeline and is already able to analyze delta changes made to the code base by the developers

and select a set of regression tests that have a good potential to detect unwanted side-effects of

the changes made to the code.

Although the automated execution of the selected test cases is not yet possible, the tool already

operates in Vaadin's CI pipelines. Further technical integration and evaluation of the tool's

effectiveness are subject to the next reporting period.

Purpose and Features

CBTS implements two different modes, i.e., Normal mode and Side-effect mode. Normal mode

selects regression tests based on changes to the sources directly connected with a test case. Side-

effect mode selects regression tests based on a calculation of the possibility to which a side-effect

might have been introduced into otherwise unchanged areas of the source code. Therefore, CBTS

introduces a classification of changes that may cause a side effect. Type 1 refers to changes to

interfaces at the Java code level. These involve modifications that can influence how classes

implement specific behaviors. Examples include adding, removing, or altering methods within

interfaces. The impact of these changes is generally low, rated as 1. Type 2 involves changes to

class inheritance at the Java code level. These adjustments affect class inheritance relationships

and potentially impact the overall structure of class hierarchies. For instance, inheriting from a new

abstract superclass is an example. These changes also have a low impact, rated as 1. Type 3

relates to changes in class imports at the Java configuration level. This includes alterations to import

statements, which indicate modifications in external dependencies or libraries within Java files.

Examples include importing a different library version or introducing new external dependencies.

The impact here is high, rated as 10. Type 4 encompasses structural changes in code at the Java

code level. These involve refactoring or restructuring the code logic, potentially leading to semantic

defects. Structural changes can affect both modified and unmodified code areas. Examples include

rearranging code blocks, changing method signatures, or leaving unchanged code areas impacted

differently due to the refactoring. These changes are rated as having a low impact, scoring 1. Type

5 pertains to accessing external files at the Java code level. This involves code that reads content

from external sources like files or services. An example is reading content from a different JSON

file. The impact of these changes is considered high, with a rating of 10. Type 6 involves the

dependency on external libraries at the Maven configuration level. These modifications introduce

dependencies on external libraries, potentially altering the code’s behavior and functionality.

Examples include adding or removing dependencies in the POM file, which affects the project’s

build settings. These changes have a high impact, rated as 10. Type 7 refers to POM dependencies

at the Maven configuration level. These involve modifications to the central pom.xml file of the

project, such as adding or removing dependencies or modifying build configurations. The impact of

these changes is medium, rated as 5. Type 8 includes other Maven configurations beyond the POM

file. These involve setting changes, such as switching profiles or altering build phases, often in

configuration files like settings.xml. An example is switching server configurations in the settings.xml

file. The impact of these changes is medium, rated as 5.

A high-level workflow of how CBTS operates on a regression test suite is shown in Figure 7.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 28 of 71

Figure 7: High-level workflow of CBTS.

Usage Instructions

The integration process of the CBTS tool into the Vaadin environment involves several steps.

Initially, the necessary repositories must be obtained, including the CBTS plugin from Fraunhofer

FOKUS Gitlab and a forked version of the Vaadin Flow repository. Subsequently, project

configurations are set up using an Integrated Development Environment (IDE), where specific

variables are edited to define the local path to the Vaadin flow repository in the CBTS plugin.

Following the configuration, the CBTS plugin is executed using Maven, confirming its successful

run.

The next step involves running the pom.xml of the desired Vaadin flow module using Maven. A

Vaadin branch customized for the project should be selected. The CBTS tool implements both the

normal and the side-effect modes according to 1. This requires the user to manually select the

preferred approach by entering the desired mode in the prototype's pom file.

The CBTS tool is automatically initiated before the complete Vaadin workflow is executed, ensuring

a seamless integration process. After calculating the potential side effects per test, all eligible tests

are listed by ranking in the console.

Case Studies

CBTS has been applied to the SmartDelta Vaadin use case66. This case study aims to select "good"

regression tests based on a classification of side effects. The case study focuses on optimizing

regression testing in the Vaadin software project by classifying side effects to improve test selection

efficiency. It categorizes side effects by impact levels, ranging from low (minor changes to interfaces

or class inheritance) to medium (alterations in Maven dependencies) and high (changes in imports,

external library dependencies, or access to external files). The results demonstrate reductions in

regression test execution time while maintaining the ability to detect critical issues. Targeting tests

affected by specific changes improved the balance between testing efficiency and risk mitigation.

Applied within the CI/CD pipeline, this method improved pull request reviews and highlighted the

feasibility of integrating change-based test selection in industrial software development.

66 Balink, Robert, Marc-Florian Wendland, and Yuriy Yevstihnyeyev. "Selecting “good” regression tests
based on a classification of side-effects." 2024 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 2024.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 29 of 71

3.6. VARA+: Variability-Aware Requirements Management and Analysis

Method Description

Software products are often developed in increments over existing products or their versions. In

many project-based industries, such as the railway industry, a newly requested product frequently

shares some commonalities with one or more existing products the company has already

developed67. Therefore, when a new product must be delivered to a new customer, engineers must

conduct a reuse analysis on the existing products to find reuse candidates that could satisfy the

new customer's requirements. Furthermore, a requirement engineer must also decide which team

can implement the new requirements. The reuse analysis and requirements assignment help

companies save time and resources by avoiding redundant analysis, development, and testing

efforts. In addition, reusing an already certified component or assigning the development to a team

that has implemented similar components before might increase confidence in the new product.

While manual reuse analysis could save time and resources, it could also be prone to human error,

dependent on the experience of some key engineers, and could be time-consuming. An automated

requirements-level reuse recommender could aid the process of reuse identification at an early

stage and enable engineers to conduct quick and meaningful reuse identification68. Furthermore,

smart requirements assignments can also increase the speed of the development cycle and

confidence in the product.

VARA+ assumes similar requirements can be used as proxies to retrieve similar software for

reuse69,70. Therefore, VARA+ uses state-of-the-art natural language models to exploit semantic

similarities between requirements for reuse recommendation of existing software assets. In

addition, VARA+ formulates the requirement assignment problem as a classification problem and

uses deep-learning-based models to predict relevant teams for implementing new requirements.

Results from evaluation in the railway industry show that VARA+ could recommend reuse with an

average accuracy of around 80% and assign new requirements to correct teams with around 76%

of average accuracy. The VARA+ toolchain also helps improve the quality of requirements. In

particular, it is equipped with a NALABS engine adapted to identify smells in requirements, which

in turn helps improve the quality of requirements.

Improvements

In SmartDelta, a web-based graphical user interface of the VARA+ tool with end-to-end

requirements management features is partially implemented. We plan to improve the accuracy by

adding more sophisticated language models and learners to predict software similarity for better

retrieval and reuse recommendations. In addition, a requirements identifier and assignment

extension to VARA+ are made within the scope of the SmartDelta project. Finally, the NALABS

features were adapted for identifying requirements and quality issues.

67 Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E. P., Saadatmand, M., & Sundmark, D. (2020, October). Product line
adoption in industry: an experience report from the railway domain. In Proceedings of the 24th ACM Conference on
Systems and Software Product Line: Volume A-Volume A (pp. 1-11).
68 Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., & Lindskog, C. (2020, December). Automated reuse
recommendation of product line assets based on natural language requirements. In International Conference on
Software and Software Reuse (pp. 173-189). Springer, Cham.
69 Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E. P., & Saadatmand, M. (2021, April). Is requirements similarity a good
proxy for software similarity? an empirical investigation in industry. In International Working Conference on
Requirements Engineering: Foundation for Software Quality (pp. 3-18). Springer, Cham.
70 Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., & Sundmark, D. (2022). On the relationship
between similar requirements and similar software. Requirements Engineering, 1-25.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 30 of 71

Purpose and Features

The toolchain's main features aim to enable more efficient requirements processing in a

requirement-centric development process. Below, we summarize the main features.

Requirements Identification

A typical first step in project-based companies is identifying technical specifications from large

tender documents. VARA+ uses language models as binary classifiers to identify requirements from

tender documents.

Requirements Quality

When the requirements are identified, the VARA+ toolchain uses an adapted version of the NALABS

core engine to identify potential quality issues in the requirements' text and fix them.

Smart Requirements Allocation

Requirements are often treated as work items and must be assigned to be developed and tested,

often by several teams at a large company. VARA+ toolchain uses language models together with

traditional AI to smartly assign requirements to various teams at a company and generate

explanations on the assignments to help enable a more informed requirements allocation process.

Reuse Identification

VARA+ uses requirements similarity as a proxy for software similarity to recommend the reuse of

existing software in new projects.

Usage Instructions

Not all sub-tools are integrated into the toolchain. Nevertheless, we provide the instructions for sub-

tools and the toolchain below:

- Requirements Identification: Available at https://github.com/a66as/REFSQ2023-ReqORNot

- Requirements Quality: Part of the toolchain.

- Smart Requirements Allocation: Part of the toolchain

- Reuse: Part of the toolchain

- Toolchain: Not publicly available and partially implemented: https://github.com/a66as/Vara-

Tool

Case Studies

Case 1: In particular, the requirement identification part of the toolchain uses the BERT large

language model for identifying requirements in tender documents with an average accuracy of 82%.

The toolchain also allows checking the quality of the extracted technical specifications from the

tender documents. Particularly, VARA+ compute metrics, such as Automated Readability Index,

Complexity, and subjectivity, allow quality assessment of the extracted requirements. We evaluated

various binary classifiers for our requirements identification sub-tool to select the best one for the

pipeline. In particular, as shown in Figure 8, we consider weighted random (W. Rand.), Support

Vector Machine (SVM), multinomial Naive Bayes (NMB), Decision trees (DT), Logistic Regression

(LR), Random Forest (RF), BERT and its variants, and LSTM and its variants. We achieve an

average accuracy of 82% in requirements identification in large tender documents from Alstom with

the BERT language model. Results also show that the BERT-based requirements identification

approach performs the best in terms of precision (P), recall (R), and harmonic mean (F1 score) with

an average accuracy of 82%.

https://github.com/a66as/REFSQ2023-ReqORNot
https://github.com/a66as/Vara-Tool
https://github.com/a66as/Vara-Tool

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 31 of 71

Figure 8: Evaluation results of VARA+ requirements identification

Case 2: A railway vehicle typically consists of more than 20 sub-systems; once the requirements

are extracted, they must be allocated to various teams responsible for developing and testing those

sub-systems. In this regard, the VARA+ toolchain provides the REQA approach (shown in Figure 9)

for allocating requirements to various teams. The approach combines large language models with

case-based recommender systems to assign requirements to teams and generate useful

explanations to enable a well-informed allocation decision.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 32 of 71

Figure 9: REQA Evaluation with various pipelines

As shown in Figure 10, we evaluate various classifiers for the REQA approach on Alstom’s use

case. In particular, we evaluate weighted random (W. Rand.), Support Vector Machine (SVM),

multinomial naive Bayes (NMB), Decision trees (DT), Logistic Regression (LR), Random Forest

(RF), BERT and its variants, and LSTM. Results show that the BERT-based REQA approach

performs the best in terms of precision (P), recall (R), and harmonic mean (F1 score) with an

average accuracy of 68%.

Case 3:

Figure 10: Reuse recommendation results

In most safety-critical domains, the development of new systems starts with natural language

requirements. The VARA+ toolchain uses Natural Language Processing algorithms together with

clustering on existing requirements to learn a recommendation model for reuse from existing

requirements. The learned model is then queried to generate reuse recommendations of existing

software for new upcoming requirements.

Initial evaluation at Alstom shows (in Figure 10) that the VARA+ toolchain can recommend the reuse

of existing software components with an average accuracy (A) of around 78% (later improved to

80%) with the term frequency-inverse document frequency approach (TFIDF). The same TFIDF-

based approach also produced better results regarding the exact match ratio metric (E). We also

evaluated Doc2Vec and FastText with self-training (D2VT & FTT) and pertained (D2VW300 &

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 33 of 71

FTW300). Furthermore, a qualitative evaluation with engineers at Alstom shows that the tool

generates insightful and useful reuse recommendations.

In the scope of SmartDelta, we plan to further improve this toolchain with a dashboard and more

fine-grained reuse recommendations & requirements allocation.

3.7. SoHist - Historical Quality Evolution Tool

Method Description

Software quality assurance is a technique to guide and evaluate software development to deliver

high-quality software products71. To ensure this high code quality, the open-source software quality

framework SonarQube1 (Community Edition) can be helpful. Running SonarQube static analysis

capabilities, triggered by a commit on GitHub or GitLab, gives you an "up-to-date" profile about your

current code artifact and its correlated measurements of technical debts 72 73.

1SonarQube – A Common Platform for Code Analysis
SonarQube claims that over 100,000 organizations use the open-source platform to analyze
their code artifacts 74. Evaluating multiple lines of code, SonarQube identifies code smells,
warns about security concerns, and delivers various lines of code metrics, including indicators
for

● Code complexity (Cognitive Complexity, Cyclomatic Complexity, etc.)
● Duplications (Duplicated Lines, Duplicated Files, etc.)
● Issues (New Issues, Open Issues, Reopened Issues, etc.)
● Maintainability (Code Smells, Maintainability Rating, Technical Debt, etc.)
● Reliability (#Bugs, Security Hotspots, Security Review Rating, etc.)
● Tests (Test Coverage, Conditions by Line, etc.) 75 76

Considering code changes – also known as "Deltas" - SonarQube has a visualization type, the
evolution graph. This chart visualizes how a project has developed over time regarding different
code quality aspects 77. Using this platform encourages companies to follow good coding
guidelines.

Nevertheless, having a current analysis is good, but seeing the projects' total (commit) history is

even better. A complete overview of the evolution of code quality enables developers to find

correlated vulnerabilities. For instance, multiple versions of a third-party plugin led to increased

bugs. Going through the software evolution shows you when the issue first came up. In addition,

examining the project's history provides the project's managers valuable insights into the project's

progress.

In the latest version, SonarQube 9.7 Community Edition (10. Nov. 2022), the evolution of a project

can arise if you have integrated SonarQube in your continuous integration pipeline since the start

of your project. A commit on the main branch triggers an analysis. In such a way, you can build up

71 M.-C. Lee, “Software Quality Factors and Software Quality Metrics to Enhance Software Quality Assurance,” Br J
Appl Sci Technol, vol. 4, no. 21, pp. 3069–3095, Jan. 2014, doi: 10.9734/BJAST/2014/10548
72 “GitLab Integration | SonarQube Docs.” https://docs.sonarqube.org/latest/analysis/gitlab -integration/ (accessed
Nov. 10, 2022)
73 “GitHub Integration | SonarQube Docs.” https://docs.sonarqube.org/latest/analysis/github -integration/ (accessed
Nov. 10, 2022)
74 “About | SonarQube.” https://www.sonarqube.org/about/ (accessed Nov. 11, 2022)
75 M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saarimäki, “On the diffuseness of technical debt items and
accuracy of remediation time when using SonarQube,” Inf Softw Technol, vol. 128, Dec. 2020, doi:
10.1016/J.INFSOF.2020.106377
76 “Metric Definitions | SonarQube Docs.” https://docs.sonarqube.org/latest/user-guide/metric-definitions/
(accessed Nov. 09, 2022)
77 “Activity and History | SonarQube Docs.” https://docs.sonarqube.org/latest/user -guide/activity-history/ (accessed
Nov. 10, 2022).

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 34 of 71

your evolution graph. SonarQube's intended approach leads to limitations and challenges in

evaluating a complete Git history.

(1) Comparability: SonarQube and possible plugins update over time so that the quality
measurement approaches could change. That means, for your analysis, if you update
SonarQube or plugins, the comparability of your code artifacts suffers.

(2) Historical Analysis at any time: Just consider whether you take over a system or have a
long-term project that expects a SonarQube integration. How can you analyze the history
of the related project? SonarQube focuses on the integration of "current" commits.

(3) Flexibility: One only wants to regard a specific time range of commits, analysis commits
of (a) specific person(s) or a particular branch.

That is where SoHist comes into place and is developed within SmartDelta.

Improvements

SoHist is built from scratch to enhance the current limitations (1), (2), and (3). It uses multiple

advantages of SonarQube and adds new features. Figure 11 illustrates the tool setup.

Figure 11. SoHist Tool Setup and Overview.

(1) Docker is used to deploy the different components: a) PostgreSQL, b) SonarQube, and c)

SoHist.

(2) SonarQube is executed self-hosted in a container and is accessible for run code analysis.

The integration of add-ons (e.g., sonar-cxx) can automatically be included.

(3) The user will be granted access to the GitLab repository to be analyzed. Afterward, the tool

summarizes all the necessary information from the repository, and the user can select

specific filter values such as time range, specific committers, or a particular branch.

(4) The tool automatically executes the Sonar Scanner to run the analysis depending on the

provided selection criteria. Gradually, the evolution of the projects emerges.

(5) After a run, the tool can access information from SonarQube via Rest calls and display

different code quality aspects over time.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 35 of 71

Figure 12. SoHist Dashboard.

Purpose and Features

SoHist is one of the tools developed within SmartDelta that facilitates the accurate analysis and

determination of quality implications of each change and increment to a system (as shown in Figure

12). SoHist addresses these issues by building on SonarQube ’s strengths and providing additional

features to assess and prioritize technical debt. The containerized application enables companies

to connect to their GIT repository and execute retro-perspective code analysis with several filtering

options (committers, time range, or branch).

Usage Instructions

To implement SoHist, users should initiate a Docker configuration and enter specific project details,

including GitLab credentials and identifiers, into the SoHist web interface. This setup allows SoHist

to access historical commit data from SonarQube, enabling detailed retrospective analysis of code

quality metrics.

Users may then apply filters to focus on data by date, branch, or contributor, allowing for targeted

technical debt analysis across different project areas. Further, setup and usage instructions are

available at https://github.com/bdornauer/sohist.

Case Studies

In the first case study78 involving c.c.com Moser GmbH, SoHist analyzed energy consumption

patterns related to firmware updates on the company’s BLIDS sensors. The primary focus was

identifying how specific code changes impacted battery performance, as the sensors rely on

periodic battery replacement. Using SoHist’s retrospective analysis capabilities, c.c.com Moser

GmbH accessed code quality metrics, including McCabe Cyclomatic Complexity and Lines of Code,

which prior research had shown to influence energy consumption in embedded systems. Through

this approach, c.c.com identified patterns linking specific design decisions with increased energy

demands, which enabled them to optimize the firmware’s efficiency over time. As a result, c.c.com

78 Dornauer, Benedikt, et al. "SoHist: A tool for managing technical debt through retro perspective code
analysis." Proceedings of the 27th International Conference on Evaluation and Assessment in Software
Engineering. 2023.

Figure SEQ Figure * ARABIC 2:

https://github.com/bdornauer/sohist

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 36 of 71

can now correlate code quality improvements directly with reduced energy drain, significantly

extending battery life across deployments.

In the second case study, Software AG utilized SoHist to conduct a historical quality analysis on

one of its research projects. The analysis focused on tracking technical debt indicators, specifically

bugs and code smells, across the project's Master branch. Early results indicated a buildup of

technical debt due to prioritizing new features over code quality during the project’s initial stages.

Software AG understood how these issues evolved by employing the Weighted Code Evolution

Significance visualization in SoHist. The analysis revealed a critical point in March when a quality

assurance process was introduced. Following this process change, SoHist data showed a decrease

in code quality issues, notably bugs and code smells, showing some evidence of the new process's

effectiveness in reducing technical debt. This historical insight allowed Software AG to quantitatively

evaluate the process change's benefits, validating its impact on software reliability.

3.8. SONATA

Method Description

Software development companies aim to reduce the time spent on test generation when creating a

new product or delta. Knowing about previously developed products or variants is essential to

correctly choose which tests to apply. SONATA addresses this need by employing code analysis

and graph modeling techniques to optimize the testing process in software description.

SONATA is a tool that takes a Java code repository as input and extracts important elements to

recommend test cases. For example, it obtains a class diagram with classes, methods, attributes,

and relationships. These entities are then modeled in a knowledge graph, a structured

representation that facilitates analysis and comparison with previous developments. The semantic

matchmaking technique establishes correspondences between new developments and previous

versions of products or variants. This technique utilizes programming semantics and algorithms to

detect similarities and differences in the code's structure and functionalities. Graph pattern

comparison helps identify recurring or unique patterns in current developments in relation to

previous ones.

Once these comparisons are established, SONATA recommends a set of relevant tests based on

the tests applied to similar developments. This approach saves time by reusing relevant tests and

ensures a more comprehensive test coverage tailored to the new product or variant.

Improvements

Currently, the development team spends a considerable amount of time generating tests.

Additionally, when dealing with a delta, all necessary tests are not guaranteed to be performed to

ensure quality. SONATA aims to better understand the structure and functionality of the code by

accurately representing classes, attributes, methods, relationships, and other elements through a

knowledge graph. This representation allows SONATA to apply semantic matchmaking capabilities

to better analyze code similarities and differences. As a result, SONATA can provide relevant test

case recommendations, ensuring that the most appropriate tests are selected to maintain and

improve the quality of the software.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 37 of 71

Purpose and Features

The main objective of SONATA is the automatic recommendation of test cases for new deltas or

new software developments. By automating the recommendation process, SONATA aims to ensure

that all necessary tests are identified and executed, thereby maintaining and enhancing the quality

of the software.

Features:

SONATA searches for projects similar to the current development within the company, facilitating

the reuse of relevant test cases. This feature leverages the knowledge graph to identify comparable

code structures and functionalities, enabling the tool to suggest tests that have been effective in

past projects. SONATA visually represents the class diagram, including methods, attributes, and

relationships extracted from the source code. SONATA also recommends test cases based on code

analysis and comparisons with previous projects. By analyzing the similarities and differences in

the codebase, SONATA ensures that the recommended tests are relevant and comprehensive.

Usage Instructions

SONATA has been developed as a web application. To use SONATA, follow these steps. Start

SONATA and load the repository: You can provide a GitHub repository URL. After loading the

repository, select the Analyze Repository option. SONATA will generate and display a class diagram

based on the source code from the provided repository. This diagram visually represents the code

structure and includes classes, methods, attributes, and relationships. Choose the Find Similar

Projects option to view a list of projects within the company that are highly similar to the provided

repository. This feature helps identify relevant past projects, facilitating the reuse of existing cases

and ensuring comprehensive test coverage. After analyzing the repository and identifying similar

projects, click on the Generate Test Cases button. SONATA will recommend relevant test cases

based on the analysis and comparisons with similar developments.

Case Studies

SONATA is currently being tested with eight internal repositories at Izerties. This case study

involves various software developments within the company, allowing the team to assess

SONATA's ability to accurately analyze code structures, identify similarities with existing projects,

and provide appropriate test recommendations. Using these repositories, Izertis can determine how

well SONATA integrates into their development workflow and how it enhances the efficiency and

quality of their testing processes. The insights gained will help refine SONATA´s algorithms and

ensure that the tool effectively meets the specific needs of Izertis´s development team.

3.9. UI Test Generator - User Interface Test Design

Method Description

At Vaadin, we want to allow our customers and users to maintain the quality of the applications built
with our platform. One of the most time-consuming parts of the quality assurance process for web
application development is the creation of the user interface tests. Selenium is an open-source set
of tools and libraries to support browser automation that simplifies the mentioned process. Vaadin
is providing a set of tools on top of Selenium. Vaadin UI Test Generator is based on Selenium and
allows users to create user interface units and end-to-end tests. It is specifically designed for testing
Vaadin applications and provides several features that have advantages over default Selenium
testing capabilities:

● Helper methods to interact with Vaadin components and elements in the shadow DOM of

Vaadin components

● Automatic suspension and resumption of client-side execution for asynchronous testing

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 38 of 71

● API for conducting visual regression tests in the form of screenshot comparison

● Parallel testing for Vaadin applications

Vaadin, in a recent release, added official support for UI unit testing into the UI Test Generator

based on the Karibu Testing library. It enables unit testing to be handled without launching a browser

or a web server. With the mentioned above tooling, there are three main approaches for user

interface testing of Vaadin applications:

● UI Unit testing - testing without the need to run both the browser and the servlet container

● End-to-End Testing - testing via simulation of user interaction with an application: performs

the tasks specified using Java code and verifies that the expected actions take place in the

application

● Testing with Selenium - manual handling of asynchronous actions and DOM manipulations

for End-to-End testing

Vaadin constantly enhances the existing tooling and uses it internally for testing the parts of the

platform within smoke testing, component testing, and platform testing. The mentioned tools are

used to create the tests, but the process of creation is still manual.

In the context of the SmartDelta project, Vaadin has made significant strides in designing and

developing a new tool dedicated to automating the generation of user interface tests. Our objectives

encompass analyzing application code to extract critical components such as routes, interactive

user interface elements, events, and predefined patterns within the platform. These extracted

components serve as the foundation for generating user interface tests, adhering to predefined rules

established by Vaadin. These rules encompass interactive elements and patterns found within the

platform, including forms, inputs, layouts, routing, and more. Leveraging existing tools from Vaadin’s

UI Test Generator, this process results in the creation of initial tests that are ready for further

enhancement and amplification by developers. This same methodology extends to internal test

applications, enhancing the quality assurance process for deltas.

Our tool prototype is now accessible on GitHub as a Maven plugin, providing a robust foundation

for ongoing development and collaboration. This prototype comprises a parser and generator, with

the parser utilizing Eclipse JDT to analyze the source code of applications and the generator

producing basic tests for views based on interaction elements using Roaster, a high-level API

internally dependent on Eclipse JDT. The prototype has undergone verification on internal starter

projects, ensuring its functionality and effectiveness. We have established a collaborative

partnership with Izertis&Sotec, focusing on further developing the tool to align with their key

performance indicators (KPIs). This collaboration involves testing the tool on projects featuring Java

backend and Javascript/Typescript frontend technologies.

Improvement

Building on the completed achievements, we have laid out plans for the upcoming development

project, encompassing several areas. Our commitment extends to generating mock tests and

meaningful and comprehensive user interface tests, elevating the overall testing process, and

exploring the use of Generative Artificial Intelligence, including LLMs and other AI models, to

enhance test generation and parsing in the tool. Our research is around understanding and

modeling interactions between diverse UI elements to enable more effective test ing. We delve into

research on automatic test migration features, enabling seamless adaptation of tests to the next

versions of applications. In addition to its applicability within the Vaadin framework, we want to

generalize the tool's utility, making it relevant to a broader spectrum of projects and increasing its

versatility.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 39 of 71

Purpose and Features

The UI-test generator is a Java tool that is available as a Maven plugin or a Java library and

designed for integration into any code generation software. Its primary purpose is to generate user

interface (UI) tests for web applications. This process begins with a YAML configuration file that

enumerates the views to be tested. By analyzing the source code and the HTML output in the

browser for each view, the tool generates a Gherkin file that outlines the steps for the test.

Subsequently, it produces the corresponding source code for the user interface elements described

in the Gherkin file.

The UI test generator provides a powerful solution for user interface tests for web applications. It

follows a two-phase process: first, a parser reads a file containing views of the web application,

analyzes the source code and the generated HTML structure, and defines the necessary UI tests in

Gherkin format. Second, a generator uses these Gherkin files to produce executable test code. The

tool is language-agnostic, currently supporting Java and TypeScript for application code, and

framework-agnostic, supporting Playwright for both Java and TypeScript and UI Test Generator for

Java. This independence ensures that the generated tests can be applied to any web application,

regardless of the underlying framework.

Usage Instructions

In the application project, there should be a YAML file specifying the views to be tested, as shown

in the following view:

- className: com.example.DataGridView
 route: data-grid
 file: src/main/java/com/example/DataGridView.java
 framework: flow
- className: HelloWorld
 route: hello-world
 file: src/main/frontend/views/hello-world.tsx
 framework: react

The tool can be executed in two ways: as a Maven plugin if the project uses Maven for compilation

or as a Java library that can be used with other tools. To use the library as a Maven plugin, start

the application to start listening at http://localhost:8080. Once the application runs, execute the view

parser using the Maven command mvn com.vaadin:ui-tests:parse. This step processes the

application views to extract the necessary information for test generation. Next, generate the tests

by executing the command mvn com.vaadin:ui-tests:generate. This will create test cases

based on the parsed views, ready to be executed in your development environment. To run the

generated Java tests, use the Maven command mvn test. If the tests were generated in TypeScript,

execute them using the command npm test.

To use the library as a Java library, you can use the static methods provided by the

TestCodeGenerator class to automate test generation and integration. Start by configuring the

OpenAI API key using the configureKeys(String aiToken) method, where you provide a

valid API token. To generate tests, use the generateTests(UiRoute, TestFramework)

method. The first parameter includes basic information about the view, such as the source code

and rendered HTML, as specified in the YAML format. The second parameter defines the type of

test to be generated, such as UI Test Generator for Java, Playwright Java, or Playwright TypeScript.

This method returns the generated code as a string in Java or TypeScript. Once the tests are

generated, you can write the code to the filesystem using the writeUiTest(UiRoute, source)

method. The addTestDependencies(UiRoute, projectRoot) method adds the necessary

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 40 of 71

dependencies for the selected framework to complete the integration. This modifies the pom.xml or

package.json file in the specified project directory to include the required dependencies.

Case Studies

Integration with Vaadin Copilot. The UI Test Generator tool is integrated into Vaadin Copilot,

starting with version 24.5. Vaadin Copilot, an AI-powered development assistant, allows developers

to efficiently build and modify UI components through drag-and-drop functionality and real-time code

updates within supported IDEs. With the integration of the UI Test Generator, Copilot users can now

automatically generate basic UI tests directly within the development environment. This integration

streamlines the testing setup for views built with Flow, Hilla, or React, allowing Vaadin to validate

the tool with customers and identify potential improvements.

Planned Testing with Izertis Applications. To further expand the applicability of the UI Test

Generator, we plan to collaborate with Izertis to test the tool on their provided applications. This will

involve generating and executing UI tests across various application views, offering valuable

insights into the tool's versatility and performance in different real-world scenarios. Feedback from

these tests will be essential for refining the tool's capabilities and ensuring it meets the needs of a

wide range of web applications, regardless of the framework or technology stack used.

3.10. MUT4SLX – Mutation Testing for Simulink

Method Description

Within SmartDelta University of Antwerp NEXOR leverages its expertise with test automation to

improve the quality of families of systems. We offer a proof-of-concept tool (named MUT4SLX) for

automatic mutant generation and test execution of Simulink and Stateflow models.

Mutation testing is a recommended practice in industrial standards and regulations such as ISO

26262 and IEC 61508 for functional safety. It complements the traditional coverage measures for

Simulink and Stateflow (block coverage, signal coverage, transition coverage, …). The technique

injects artificial faults in the system under test (based on a list of mutation operators), subsequently

executing the test suite to see whether it is strong enough to catch the injected fault.

“Shift-left” is a commonly adopted paradigm in the automated software testing community,

emphasizing that tests should be executed against the system under test as early as possible. In

this paradigm, test suites are expected to be strong, catching defects before they are deployed into

production. Code coverage (i.e. statement, branch, etc.) is commonly used to measure the strength

of a test suite, although it is known to be a poor indicator of its actual strength. In the academic

literature, mutation testing is acknowledged as the state-of-the-art technique to assess the fault

detection capacity of a test suite. The technique injects artificial faults in the system under test

(based on a list of mutation operators), subsequently executing the test suite to see whether it is

strong enough to catch the injected fault.

Improvement

Several experience reports illustrate that mutation testing can support a “shift -left” testing strategy

for software systems coded in textual programming languages like C++. However, mutation testing

tools for visual languages like Simulink and Stateflow are missing. MUT4SLX bridges this gap.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 41 of 71

MUT4SLX is currently validated within a single company and is estimated at TRL level 4 (Validated

in the Lab). We intend to bring it to TRL level 5 (Validated in relevant industrial environment) via

future pilot projects.

To bring the proof-of-concept to TRL level 5, we plan the following improvements:

● Integration with git-based build pipelines

● Traceability: Requirement-based testing

● Additional mutation operators (tailored to the needs of the pilot projects)

● Scalability (Parallel test execution & mutant execution)

Purpose and Features

As shown in Figure 13, MUT4SLX comprises two main components: (i) mutant generation and (ii)

mutant execution. The mutant generation component is responsible for reading relevant parameters

from the configuration and loading the model, as well as identifying the possible mutants. Users can

use the CSV output generated by this component to preview the number of mutants, ignore certain

mutants, or prioritize specific mutants before mutant execution takes place. The mutant execution

component executes the given test cases on each of the mutants to count the number of killed and

live mutants. Currently, two test execution engines are supported: Signal Builder and Simulink Test.

Figure 13 Overview of MUT4SLX.

The mutation operators are defined in close collaboration with an industrial partner. We first

formulated mutation operators associated with the bugs in their database. Later, we added other

mutation operators deemed relevant based on piloting MUT4SLX within the development toolchain.

To prioritize these operators, we considered the frequency of the occurrences of the bugs

associated with them. We then conducted several manual trials to determine a set of mutation

operators (see Table 3) suitable for our needs.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 42 of 71

Table 3. Simulink and Stateflow Mutation Operators

Usage Instructions

A proof-of-concept version is available under the GPL-3.0 license at

https://github.com/haliliceylan/MUT4SLX. This version features the mutant injection for Simulink

only. People can contact Prof. Serge Demeyer (serge.demeyer@uantwerpen.be) to negotiate

access to the full version, which includes mutant injection for Stateflow and the test execution

engine. We will set up a training session for teams interested in piloting the tool.

Case Studies

The Simulink component of MUT4SLX was validated on a Helicopter Control System, a

representative example built following the guidelines set out in ARP4754A, DO-178C, and DO-331

certifications. The validation shows that MUT4SLX can inject 70 mutants in less than a second,

resulting in a total analysis time of 8.14 hours. Only 40% of the mutants are killed, illustrating that

the system is undertested by the automated tests in the project.

The Stateflow component of MUT4SLX was validated against two sets of Stateflow models available

on the internet: a Microwave System and a Cruise Control System. The test suites for Microwave

and Cruise Control need to be mutation-adequate. The first achieves a 70% mutation score by killing

21 out of 30 generated mutants. The latter manages to kill 33 of the 63 generated mutants. The

mutant generation is very fast; it takes 20-30 ms per mutant. Mutant execution consumes more time

than mutant generation, and simulation dynamics seem to affect the actual timings more than the

number of test cases or the number of mutants in the project.

3.11. DRACONIS

Within SmartDelta, Mälardalen University has developed a static analysis framework targeting

block-based programming languages for delta-aware linting and static verification of design rules.

The prototype tool DRACONIS (Design Rule Analysis and Checking Of Norms in IEC & Simulink)

parses and provides analysis reports in multiple formats to developers either during edit time or in

a format for reporting during assessment phases.

https://github.com/haliliceylan/MUT4SLX
mailto:serge.demyer@uantwerpen.be

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 43 of 71

Method Description

DRACONIS, at its core, is an analysis framework. The overall toolchain can be seen in Figure 14.

The current version supports models either directly through parsing or indirectly by reading a JSON

representation. Given a model, the analyzer component will extract a set of metrics and perform a

dataflow analysis. This will be considered a baseline version. Any changes to analyzed files will

trigger a delta analysis, upon which the tool will suggest what checks need to be re-done.

Depending on the usage scenario, the analysis reports are reported in one of two ways. The

prototype has functionality for appending the report in textual format to a file. Alternatively, the result

can be displayed in a web application, where the model is also rendered for visual checking.

Figure 14 Overview of DRACONIS’ toolchain. Block-based models are transformed into an

abstract representation, then analyzed and stored in a database. The tool is usable either through

its web application or directly connecting it to an IDE.

Improvement

DRACONIS has been initially validated on FBD models taken from the railway domain. The checks

implemented have been shown to speed up validation during daily work. The work has focused on

improving the usability for the tool as an addition to the daily work of end users.

Based on this, the following improvements have been made:

● A differentiation between core checks and user-configurable checks has been created. The

core checks will continue to require some in-depth knowledge of how DRACONIS works but

are also generating data that user-created checks can access. A context-specific Python

programming language has been defined to create custom checks.

● To facilitate interoperability with other analyzers, the framework now allows connecting

metrics files directly to analyzed models. With the current solution, the user can upload

additional information as name-data pairs that are then attached to a given model. This

allows the user to run heavy analyses offline or apply tools offering functionality not covered

natively in DRACONIS and then upload the results for further review in the framework.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 44 of 71

● The addition of programmatically uploading files to the framework allows for the scan of

entire projects with minimal overhead for the user.

 Purpose and Features

In addition to being a general analysis framework for block-based programs, DRACONIS is one of

the tools in SmartDelta that automates the quality assurance process in an incremental development

setting. Analyzing an intermediate representation allows the analysis of multiple types of models to

be performed, and the analysis is presented in an accessible fashion. The tool has a dedicated

mode for comparing variants, lists differences, and suggests follow-up quality assurance actions

based on the changes.

Usage Instructions

1. Start the web server using the provided command. Use a suitable web browser to

access the page.

2. From the start page, the user can either upload a new model or list all the uploaded

models.

- To add a new review model, it can either be uploaded manually through

the GUI or programmatically as a POST request. A utility script has been

prepared to automate this process, targeting a directory of files. Metrics-

type data can be attached to models to facilitate interoperability with

external tools. If uploaded manually, the model is analyzed, and the results

are stored in the database and then presented to the user. To aid

understanding, a rendering of the model is also presented.

3. In the list view, users may open any of the analyzed models to check the report in

detail. Here, the user can also select a set of models to compare against each

other. This will run the delta analysis between every pair of models selected and

present the result in a report-friendly format.

4. In the report view, the user can review and comment on the reports, for instance

re-classify the results of the different checks in the analysis core. An example can

be seen in Figure 15.

5. Finally, the report, including metrics and review comments, can be exported and

downloaded in Excel format.

Detailed usage instructions, including a setup guide and small test models, can be found

at https://github.com/jean-malm-mdh/draconis.

Figure 15. DRACONIS’ report view. Failed and passed checks are grouped. For reviewing, some

context-dependent actions are presented, where the user can review the result with an attached

comment.

https://github.com/jean-malm-mdh/draconis

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 45 of 71

Case Studies

Within the project, DRACONIS has been applied to use cases provided by an industrial partner

working in the railway domain. An internal version of DRACONIS was applied to 9 FBD models of

varying complexity from a previously delivered project to study the speedup potential for checking

design rules. Compared to the manual baseline captured by an experienced developer performing

the same analysis, DRACONIS achieved a speedup of around 150 times when averaged over five

executions.

A parallel check that encoded the detection of naming convention violations was developed using

DRACONIS’ features. This check was applied to interfaces of all models taken from the software

baseline for a railway propulsion system developed using MATLAB Simulink. The resulting

violations were presented on a signal level. Most of the violations represent some deviation between

the official naming conventions and how interface signals are named in practice, mainly through

unapproved abbreviations.

3.12. Test Effort Estimator

Method Description

The Test Effort Estimator (TEE) is a machine-learning-based tool designed to predict the amount of

test effort required during incremental software development. It works by analyzing Java-based

open-source repositories on GitHub and extracting features such as the number of changes in lines

of code (CLOC), cyclomatic complexity, architectural smells, and more. The tool examines three

levels of code change granularity—commits, pull requests, and releases—and applies classification

and regression models to estimate the test effort regarding changes in the test code. The approach

is validated on multiple Java repositories, and predictions are made for test effort, helping in

resource allocation and improving the software development lifecycle.

Improvements

The primary improvement of this approach is its focus on incremental software development, as

opposed to using decade-old datasets. This tool provides a more accurate and dynamic test effort

estimation by utilizing modern repositories and real-time data extraction. Introducing various

features such as CLOC, architectural metrics, and object-oriented smells increases the precision of

estimates. Additionally, the multi-granularity approach at commit, pull request, and release levels

enables a more refined understanding of testing effort needs, particularly when predicting at the

release level where the tool achieves high accuracy.

Purpose and Features

The purpose of the Test Effort Estimator is to assist developers, project managers, and researchers

in accurately predicting the test effort required for software projects. It aims to optimize the allocation

of resources and reduce the risk of delays caused by underestimated testing efforts. It employs

various regression and classification algorithms to estimate test effort; it estimates effort at the

commit, pull request, and release levels, offering flexibility in project management; it uses up-to-

date data from GitHub repositories instead of relying on outdated datasets and the tool generates

a dataset specific to each project, improving estimation accuracy for that project.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 46 of 71

Usage Instructions

● Select the Java-based repository from GitHub that you want to analyze. Ensure the

repository contains sufficient commits, pull requests, and releases for meaningful analysis.

● Run the data extraction tool, which pulls relevant metrics from the repository, such as non-

commenting source statements, cyclomatic complexity, and changes in lines of code.

● Once the data is extracted, the machine learning models are trained on this dataset to

predict test effort. Both regression (for direct line estimation) and classification (for

categorical effort levels) models are available.

● The models are validated by comparing predictions with actual changes in the test code.

The results offer insights into resource allocation for future iterations.

Case Studies

The tool has been evaluated on three real-world open-source Java repositories:

● Vaadin Platform: A significant dataset with over 15,000 commits and thousands of pull

requests and releases. Test effort estimation accuracy reached 97% for releases.

● Netflix Conductor: A moderate-sized repository used to demonstrate the tool's capability

to estimate test effort at different levels of granularity.

● Vaadin Flow: The largest of the three repositories, where the tool achieved a high degree

of accuracy in predicting test effort using machine learning models, particularly at the

release level.

3.13. PyLC

As a contribution towards the WP3 goals of the SmartDelta project within MDU, an automated

search-based PLC testing framework called PyLC has been developed. PyLC facilitates the unit

testing of the PLC programs in Structured Text (ST) and Function Block Diagram (FBD)

programming languages of the IEC61131-3 standard by automatically translating a PLC program to

Python and generating test cases for it using the Pynguin79 test generator tool in Python. PyLC has

been introduced through two different academic papers, including 80 81 and has been applied to

more than 20 different real-world industrial use cases in industry.

Method Description

The proposed automated translation framework, PyLC, operates based on the automated parsing

and analysis of a PLC program developed in the FBD language, represented as an PLCopen XML

tree. Specifically, PyLC takes a POU as input, automatically extracts all the necessary information

about the PLC program being translated, and stores it within a dictionary data structure in Python.

This stored information is then utilized when PyLC automatically generates the executable Python

code.

79 https://pynguin.readthedocs.io/en/latest/index.html

80 Ebrahimi Salari, Mikael, et al. "Pylc: A framework for transforming and validating plc software using
python and pynguin test generator." Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing. 2023.

81 Salari, Mikael Ebrahimi, et al. "Automating test generation of industrial control software through a plc -
to-python translation framework and Pynguin." 2023 30th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2023.

https://pynguin.readthedocs.io/en/latest/index.html

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 47 of 71

Figure 16 The overall translation process used in PyLC.

The overall translation process of PyLC is depicted in Figure 16. As illustrated, the initial step

involves importing a PLC program developed in the FBD language as a PLCopen XML file. This is

followed by automated parsing and analyzing of the XML tree to extract information about each

POU and the blocks contained within (Step 1 in Figure 16). Subsequently, PyLC uses this extracted

information to automatically generate executable Python code. This involves defining the required

main and sub-functions and establishing the network between the existing Blocks from the imported

PLC program (Step 2 in Figure 16). Next, PyLC employs the meta-heuristic automated unit testing

techniques from Pyynguintool [8] to validate the translation (Step 3 in Figure 16). Lastly, the test

cases generated by Pynguin are imported into the CODESYS IDE to be executed on the original

PLC program using the CODESYS Test Manager tool. The PLC program’s translation into Python

is deemed valid if the generated test cases yield consistent results (Step 4 in Figure 16).

Improvements

To demonstrate the applicability and efficiency of the proposed translation framework, we translate

ten different real-world PLC programs using the PyLC framework. Most of these PLC programs are

used in the context of supervising industrial control systems developed by an automation company

in Sweden. In contrast, the remaining ones are implemented in a nuclear plant.

All the PLC programs considered are developed in the FBD language and vary in size and

complexity. We can draw several conclusions after applying the PyLC framework to these PLC

programs and examining the information provided in Table 4. First, the FBD programs selected for

translation encompass a variety of FBD block types, as detailed in Section II. This diversity

highlights the extensive block support offered by PyLC. Second, the PyLC translation process is

swift, with an average translation time of just 0.74 seconds. The size of the FBD program being

translated, specifically the number of blocks can influence the translation efficiency. Larger PLC

programs, like PRG4 and PRG7, tend to have marginally longer translation times. Overall, the

collected results underline the potential and effectiveness of the PyLC translation framework in

converting FBD-based PLC programs into executable Python code. This not only opens avenues

for utilizing Python’s capabilities within industrial automation but also offers a systematic approach

to bridge the gap between PLC programming languages and general-purpose languages like

Python. The PyLC framework demonstrates the capability for translating efficiently an array of

industrial FBD programs, characterized by diverse block types, into Python code.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 48 of 71

Table 4. Results of Test Generation using PyLC.

To assess the correctness and validity of the PyLC translation framework within an industrial setting,

we translate ten real-world industrial PLC programs into Python, as detailed in the previous section.

Subsequently, we utilize the Pynguin meta-heuristic test generator [8] to generate search-based

test cases for the PLC programs translated using the PyLC framework. After collecting the test

generation and execution results from Pynguin, we introduce the same test cases into the PLC

environment for execution on the original PLC program within the CODESYS IDE. We then compare

the test execution outcomes in both environments to determine the validity of the code translation

from PLC to Python.

The results of the automated meta-heuristic testing for the included PLC programs using Pynguin

are presented in Table 5. The evaluation of the translated Python code involved the instantiation of

fitness functions, iteration counts, search time, mutant generation, and mutant survival rates. These

metrics collectively provide insights into the efficiency, effectiveness, and coverage of the

translation and testing processes. To ascertain the translation's accuracy, we test the generated

Python code by utilizing meta-heuristic testing and record the test execution outcomes for each

translated program using the Pynguin tool. Subsequently, we import these test cases into the PLC

environment to execute them on the original PLC programs, aiming to discern congruence in their

results. Upon automated execution of the acquired test cases on the original PLC programs (ranging

from PRG1 to PRG10) via the CODESYS Test Manager, we observe that the test cases generated

in the Python environment yield identical results when executed on the original PLC programs within

the CODESYS IDE. This consistency shows the efficacy and correctness of the PLC-to-Python

translations facilitated by our proposed PyLC framework. The PyLC translation framework, aided by

Pynguin, generates test cases efficiently, attaining an average branch coverage of 98% across ten

distinct real-world industrial PLC programs.

Table 5. Coverage and Mutation Results based on PyLC Test Generation.

In future work, we aim to conduct a more thorough examination of PyLC's scalability by applying it

to even more sophisticated real-world PLC programs. Other future work directions include adding

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 49 of 71

support for the translation of PLC programs into the ST language and enhancing the translation

validation mechanism of PyLC with a Python static verifier.

Purpose and Features

PyLC tool is developed to automatically translate a PLC program to Python to enable automated

meta-heuristic testing for PLC programs. PyLC supports the PLC programs in both FBD and ST

languages and can 1) import a PLC program as an OpenPLC XML file, 2) translate the imported

PLC program to executable Python code automatically, and 3) validate the correctness of the

translation through a search-based testing tool called Pynguin. Based on the results we gathered

after applying PyLC to different real-world industrial use cases, we confirm that PyLC is fast in both

automated translation and automated testing of PLC programs. PyLC enables testing PLC programs

through five different search-based algorithms, including MIO, MOSA, DYNAMOSA, WHOLE

SUITE, and RANDOM.

PyLC supports different FBD blocks in the PLC program under translation including Logic Blocks

(LOG), Comparator Blocks (COMP), Timers and Counter Blocks (TIM), Mathematical Blocks

(MATH), Function Blocks (FB), Special Blocks (SPC).

Usage Instructions

PyLC can be used to import a PLC program as a PLCOpen XML file which is supported by most of

the PLC IDEs in the market. PyLC consists of four Python scripts that are chained to each other.

One can use PyLC by importing a PLC program as an XML file. The PyLC source code is available

in a GitHub repository82 and can be downloaded and used by the user. The only consideration is

the current version of the PyLC only supports the PLC programs in FBD language.

 Case Studies

PyLC has been applied to different real-world industrial PLC programs of two big automation

companies in Sweden and South Korea, which were developed in FBD and ST programming

languages. The latest version of the PyLC tool, which is limited to being used with PLC programs

in FBD language, has been applied to ten different FBD programs. Table 6 depicts the list of these

ten FBD programs, as well as their abstract specifications and translation time.

Table 6. Details of PLC Programs Considered in the Case Study.

82 https://github.com/VeriDevOps/PyLC

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 50 of 71

3.14. GW2UPPAAL

Method Description

The GW2UPPAAL tool integrates Model-Based Testing (MBT) and Model Checking to create a

unified approach for verifying and testing system models. It transforms behavioral models created

using GraphWalker (GW), a model-based testing tool, into UPPAAL-timed automata for formal

analysis. This transformation automatically verifies properties such as reachability and deadlock

freedom using UPPAAL’s model checker. The tool automates the generation of UPPAAL models

and queries, allowing users to validate the correctness of models before generating and executing

test cases. One key feature is variant handling, where the tool supports multiple model variations

by detecting deltas (i.e., differences between model versions) and applying these changes in the

transformation process. This allows users to manage different versions or configurations of a system

efficiently.

Improvements

GW2UPPAAL enhances the MBT process by adding automated formal verification and variant

handling. The tool tracks delta changes made between model versions, allowing for efficient

management of different system configurations and faster verification of updated models. This

significantly reduces the time and effort needed for manual adjustments when multiple versions or

configurations of a model need to be tested. By integrating formal verification through UPPAAL,

GW2UPPAAL allows developers to check reachability, deadlock freedom, and other properties

early, ensuring the test model’s accuracy before generating test cases. Additionally, handling deltas

provides better support for evolving systems, as changes can be isolated and verified without

rechecking the entire model.

Purpose and Features

GW2UPPAAL is designed to streamline the MBT process by incorporating automated formal

verification with enhanced variant handling. It helps developers and testers manage different

versions or configurations of a system by detecting and applying deltas, and incremental changes

between models, ensuring that each variant is accurately transformed and verified. The user can

develop the system model using GraphWalker, including handling variants by specifying different

configurations or model versions. Export the model as a JSON file. In addition, the user can use

GW2UPPAAL to transform the GraphWalker model, and the tool will detect any deltas from previous

versions, applying only the necessary updates in the transformation process and executing the

UPPAAL model using the “verifyta” tool, automatically checking for reachability and deadlock

properties while accounting for model changes or variants. Based on the verification results, make

necessary adjustments to the model in GraphWalker, especially for deltas between versions, before

generating new test cases. In the end, the user can create test cases for each model variant,

ensuring that the changes between versions are accurately reflected in the test cases.

Usage Instructions

● Create a GraphWalker Model: Design the system model using GraphWalker and export it in

JSON format.

● Run GW2UPPAAL: Provide the JSON file location and use the GW2UPPAAL tool to

transform the GraphWalker model into UPPAAL’s XML format.

● Verify the Model: Execute the generated UPPAAL model using UPPAAL’s “verifyta” tool,

which automatically checks for reachability and deadlock properties.

● Analyze Results: Use the verification results to make any necessary adjustments to the

original model in GraphWalker.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 51 of 71

● Generate Test Cases: Once the model is verified and refined, generate test cases based

on the transformed and verified model.

Case Studies

GW2UPPAAL was tested on several models, demonstrating its capability to manage model variants

and handle deltas. First, a model with multiple configurations can be handled, where deltas between

variants were detected and handled seamlessly, reducing the time for transformation and

verification to just 0.202 seconds. A larger model with evolving versions and multiple deltas can be

used, where the tool successfully tracked and applied changes, significantly reducing manual effort.

A complex system with multiple diagrams can be handled, where shared vertices across variants

are flattened into a single UPPAAL model. The tool’s delta handling ensured that updates to

individual diagrams were applied only where needed. By efficiently handling variants and deltas,

GW2UPPAAL reduces transformation time and ensures accurate verification of evolving systems,

providing robust support for real-world model-based testing and formal analysis.

3.15. Testing Utilizing EARS Notation in PLC Programs

The Easy Approach to Requirements Syntax (EARS) addresses the inherent imprecision of natural

language requirements concerning potential ambiguity and lack of accuracy. This paper investigates

requirements specification using EARS and specification-based testing of embedded software

written in the IEC 61131-3 language, a programming standard for developing Programmable Logic

Controllers (PLC). Further, we study, utilizing an experiment, how human participants translate

natural language requirements into EARS and how they use the latter to test PLC software. We

report our observations during the experiments, including the type of EARS patterns participants

uses to structure natural language requirements and challenges during the specification phase, and

present the results of testing based on EARS-formalized requirements in real-world industrial

settings.

Method Description

To evaluate the applicability of using EARS semi-structured syntax when creating test cases for

PLC programs, we used three programs that implement the behavior stated in the three provided

natural language requirements used in this experiment. All these three PLC programs are developed

in CODESYS IDE using the ST programming language, whether by the authors or derived from

existing industrial cases. This paper refers to these programs as PRG1, PRG2, and PRG3. We

used the concretization steps of the EARS expressions. This happens by mapping the system

response, condition, and events to the actual implementation in PLC. This contains information

about the implementation elements of a system and its interfaces. An engineer needs to consider

this information and identify the given signals and their characteristics. In this way, we define a set

of signals related to the feature under test. In these cases, the next step for the selected

requirements would be to design test cases to show that the requirement has been met.

The process of transforming system requirements into EARS requirements for PLC testing is a

structured approach, as shown in Figure 17. It begins with the requirement analysis phase, where

system requirements and design documentation are used. Next, the information collected is

formalized into abstract EARS requirements in the construction phase. These requirements use

logical names for entities, making communication with requirements engineers easier, though they

are not directly evaluable at this stage. The implementation analysis phase then involves mapping

these abstract entities to actual implementation elements by analyzing design documents. This

includes identifying the signals or events corresponding to the abstract entities defined earlier. The

process then proceeds to the EARS requirement concretization phase, where the abstract EARS

requirements are transformed into concrete counterparts using actual signals and events from the

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 52 of 71

system. This results in a set of concrete EARS requirements ready for test creation and execution,

as shown in Table 7.

Figure 17. EARS Overall Process.

Table 7. Mapping between EARS Requirements and Test Cases.

To create test cases for requirement RI1, which involves user identification and alerting, we set up

a scenario where the system attempts to identify a user with invalid credentials, ensuring the

uniqueID is FALSE. We then verify that the system generates an alert by checking if

UniqueUserAccount results in ResultUnique=FALSE. This involves preparing the system to identify

users, attempting identification with invalid data, and checking for the appropriate alert response.

To create a test case for RI2, we simulate malicious activity in the system, ensuring that

NormalActivity does not equal MaliciousActivity. We then verify that the MalwareDetection

component sets MalwareDetected to TRUE and that the system issues a warning to the user. This

involves running the system to monitor for malware, simulating malicious activity, and checking the

detection and the warning response. For requirement RI3, to create a test case, we simulate the

presence of an authorized device, ensuring that it is found (found=TRUE). We then verify that the

SearchID component sets ConnectionAllowed to TRUE and that the system grants access to the

device. This involves configuring the system to authorize devices, simulating the authorization of a

device, and checking that access is granted correctly.

After generating the EARS-based test cases for each program, we execute them automatically using

the CODESYS test automation framework, CODESYS Test Manager. The final step in this

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 53 of 71

methodology is to manually compare the actual output with the expected output to observe whether

the program works as expected.

The methodology we propose for using EARS-based testing in real-world industrial settings consists

of seven steps, as shown in Figure 18. The first step is to extract the functional requirements from

the real-world PLC program (step 1). The purpose and process of functional requirements extraction

in the context of this study were necessary for the experiment, as we lacked requirements at this

level. The second step is to have a team of industrial PLC engineers evaluate the validity of the

functional requirements (step 2). The next step is to transform the NL requirements into EARS

requirements to mitigate the potential ambiguity and increase the clarity of the extracted

requirements for the tester (step 3). As the next step, the EARS requirements must be concretized

to facilitate the test generation by converting the Inputs/Outputs (I/O) into signals (step 4). After

having the concretized test cases, it is time to manually generate test cases via the pre-defined

Test Actions inside the CODESYS Test Manager tool (step 5). The next step is to automatically

execute the test cases on the PLC program using the CODESYS Test Manager tool (step 6). The

final step in this methodology is to enhance the generated test report of CODESYS Test Manager

by measuring the code coverage automatically using the CODESYS Profiler tool and checking the

results (step 7).

Figure 18. EARS Process From PLC Programs to Results Checking.

Improvements

We evaluated the application of EARS syntax in creating test cases for PLC programs, identifying

its strengths, challenges, and potential advantages over traditional testing practices. EARS syntax

was assessed in developing test cases for multiple PLC programs in CODESYS IDE. EARS-based

test cases, executed through the CODESYS Test Manager, demonstrated good execution times,

efficiently transforming natural language requirements into testable cases and ensuring compliance

with specified requirements.

We also analyzed the types of EARS templates employed in writing requirements. Participants

primarily used the ubiquitous template for core requirements, with additional use of event-driven,

state-driven, and unwanted behavior templates. Key challenges included managing unclear initial

requirements, selecting appropriate templates, and balancing positive and negative behaviors,

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 54 of 71

especially in “shall not” statements. The optional feature template was found to be unnecessary.

Challenges in requirements specification and test creation using EARS were highlighted.

Participants encountered difficulties in translating ambiguous requirements, selecting suitable

templates, and defining adequate test coverage for positive and negative behaviors. These

complexities underscore the intricacies of converting natural language requirements into structured

EARS syntax for precise test case generation.

A comparison between EARS-based and traditional industrial testing for one program demonstrated

that EARS-based testing improves efficiency, reducing complexity with automated, clear, and

comprehensive test specifications. This approach enhances clarity in functional requirements,

leading to more effective testing outcomes. In summary, these findings demonstrate EARS

notation's applicability, efficiency, and advantages in requirements engineering and test generation

for PLC programs while identifying areas for further improvement.

Purpose and Features

In this work, we have proposed using requirements engineering and testing using EARS notation

for PLC systems. In requirements engineering, most participants preferred the EARS ubiquitous

pattern for transforming some requirements from NL to the EARS syntax. In contrast, unwanted

behavior and event-driven patterns were the most popular types for other requirement

transformations. It was observed that different individuals used different EARS patterns to transform

the same requirement based on their interpretation, showing an acceptable level of flexibility in

EARS syntax. In the testing part, we assessed using EARS patterns for PLC testing in two phases.

Initially, we executed EARS-based test cases on three PLC programs written in the ST language,

which were developed based on the requirements included in our study. Subsequently, we

introduced an EARS-based testing methodology to real-world industrial PLC programs. The results

from these tests and the subsequent comparison with traditional PLC testing methods indicate that

EARS-generated requirement-based test cases for PLC programs are effective and offer an

accessible means for PLC testers to express test specifications. The proposed testing method

covers all PLC programs in IEC 61131-3 standard using the help of CODESYS IDE and its testing

tools, such as CODESYS Test Manager and CODESYS Profiler.

Usage Instructions

The user needs to follow the proposed step-by-step procedure to generate PLC unit-level test cases

from requirements in natural language. The procedure is simple but effective and can be easily

mimicked based on the example PLC programs we provided in the related publication. It is worth

mentioning that most of these steps need to be done manually. However, some steps in this

pipeline, such as test execution and measuring the code coverage, are automated using the

CODESYS Test Manager and CODESYS Profiler tools.

Case Studies

The proposed methodologies in this work have been applied to four different real-world PLC

programs in the context of supervising the port cranes. The results imply the applicability and

efficiency of the proposed methodologies regarding real-world PLC testing.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 55 of 71

3.16. Jazure

Jazure is a powerful tool designed to automate the selection and linkage of work item IDs with pull

requests in environments using Azure DevOps and Jira. By seamlessly integrating these platforms,

Jazure ensures that work items are consistently up-to-date and adequately associated with code

changes.

The tool periodically syncs Jira work items to the Azure DevOps work item board, analyzes the code

changes within pull requests, and intelligently identifies relevant work item IDs (as shown in Figure

19). It enforces branch policies that mandate work item linkage before any code can be merged into

the master branch, thereby enhancing traceability and streamlining the software development

process.

Figure 19. Overview of Jazure.

Improvements

Jazure significantly enhances the software development workflow by automating a traditionally

manual and error-prone task. The tool can automate the linkage of work items to pull requests;

Jazure removes the risk of human oversight, ensuring that every pull request is properly associated

with its corresponding work items. The tool enforces branch policies that prevent merging without

linked work items, achieving a 100% success rate in establishing relationships between work items

and pull requests. Jazure bridges the gap between Jira and Azure DevOps, synchronizing work

items across both platforms and fostering better collaboration and consistency. Developers can

focus more on coding and less on administrative tasks, as Jazure automatically handles the tedious

aspects of work item management.

Purpose and Features

Jazure is designed to improve efficiency and traceability in the software development lifecycle. It

analyzes pull request code changes to select and link relevant work item IDs intelligently.

Periodically syncs Jira work items to Azure DevOps, ensuring consistency and up-to-date

information across both platforms. It implements mandatory work item linkage policies for merging

into the master branch, enhancing code quality and traceability and operates on a scheduled basis

to sync and update work items without manual intervention. Ultimately, it improves clarity in software

evolution by ensuring all pull requests are properly linked to their corresponding work items.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 56 of 71

Usage Instructions

- Configuration: Set up Jazure by providing the necessary authentication details for Azure

DevOps and Jira. Then, configure the synchronization settings, including the frequency of

syncing and specific projects or boards to monitor.

- Scheduled Syncing: Jazure will operate on a scheduled basis, periodically syncing Jira work

items to the Azure DevOps work item board to ensure all information is current.

- Branch Policy Enforcement: Define and enable branch policies in Azure DevOps that require

a linked work item before a pull request can be merged into the master branch.

- Automated Work Item Linking: As developers create pull requests, Jazure analyzes the code

changes and automatically identifies and links the relevant work item IDs.

- Review and Merge: Review the pull requests in Azure DevOps. The linked work items will

be displayed automatically. Proceed with code reviews and merge processes, confident that

all work items are accurately associated.

Case Studies

Case Study 1: Enhancing Traceability for Team Connecta. Team Connecta faced challenges with

developers needing to remember to link work items to pull requests, leading to gaps in traceability

and project management. After implementing Jazure, They achieved a 100% success rate in linking

work items to pull requests. Traceability improved significantly, allowing project managers to track

progress more effectively. The team saved time previously spent on manual checks and corrections.

Case Study 2: Synchronizing Jira and Azure DevOps for Team Mars. Mars used Jira for issue

tracking and Azure DevOps for code management but needed help with keeping work items

consistent across platforms. With Jazure: Jira work items were automatically synced to Azure

DevOps, ensuring consistency. Cross-functional teams collaborated more efficiently, with all

members accessing up-to-date work item information. The synchronization reduced confusion and

duplicate efforts caused by inconsistent data.

Case Study 3: Enforcing Quality Standards for Team ArGpt The ArGpt Team wanted to enforce

stricter code quality and traceability standards but found it challenging to do so manually. By

adopting Jazure, they implemented branch policies that prevented merges without linked work

items. The quality of code integration improved, as all changes were properly reviewed and

associated with documented work items. The team noticed a decrease in integration issues and an

improvement in overall project documentation.

3.17. Smellyzer

Method Description

Smellyzer is a professional tool developed to detect software process smells related to Code Review

(CR) and Bug Tracking (BT) processes in software projects. The tool leverages CR taxonomies and

BT smells established in prior studies to evaluate the processes followed in software projects.

It analyzes project data from repositories and issue-tracking systems like GitHub, Jira, Azure

DevOps, and GitLab. Smellyzer detects non-optimal practices (process smells) and presents the

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 57 of 71

results using multiple visualization methods. The tool is structured into several subsystems to

maintain modularity and low coupling, allowing easy interaction and data processing for detailed

process analysis.

Improvements

Participants of the case studies suggested several improvements to enhance Smellyzer’s

functionality:

- Filtering options: Users requested more filters, such as by branch or status, to allow focused

analysis.

- Positive highlights: Suggestions included showing smelly pull requests and those without

smells to encourage good practices.

- Group-level insights: Users proposed presenting cumulative smells for groups of developers

to enable team-based process improvements.

- Customization: Expanding the detection mechanisms to account for specific company

practices (e.g., new module development or team-based reviewing).

- Project-wide summaries: Users wanted reports on process smells across entire modules or

applications rather than individual bug or pull request data.

Purpose and Features

Smellyzer is designed to identify and address process smells in software development to improve

adherence to best practices in CR and BT processes. It helps detect non-ideal behaviors that can

lead to delays, inefficiencies, and reduced code quality, providing actionable insights to rectify such

practices.

Key Features:

- Detection of CR and BT smells: Smellyzer analyzes software repositories for process smells

using predefined taxonomies.

- Visualization methods: The tool offers various visualization techniques to highlight smell

occurrences and trends over time, such as graphs showing the number of smells per year

or by the developer.

- Customization: Users can clean datasets, merge developer identities across platforms, and

set thresholds for specific attributes.

- Data export: The tool allows users to download analysis results in formats like JSON for

further processing or reporting.

Usage Instructions

- Project Creation: Users log into Smellyzer and create a new project by entering the project

name and specifying the data sources (e.g., repositories, issue tracking systems).

- Customization: Users can configure the analysis by merging duplicate developer identities,

excluding invalid names (e.g., bot accounts), and setting specific thresholds for smells.

- Running an Analysis: After setting up the project, users initiate the analysis by selecting the

data sources to be evaluated. Smellyzer supports both one-time and continuous analyses.

- Viewing Results: Once the analysis is complete, users can view the results in multiple

formats, including smell counts by year, developer, or per pull request/bug report.

Visualization tools are available to help explore the results.

- Data Export: Users can export analysis results for offline review or reporting.

Case Studies

Smellyzer has been tested in three case studies involving small-scale, medium-scale, and large-

scale proprietary companies:

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 58 of 71

- Pilot Study 1 (Small-Scale Company): A software analytics company used Smellyzer to

analyze one of its projects hosted on Bitbucket and Jira. This helped assess how small

teams manage CR and BT processes.

- Pilot Study 2 (Medium-Scale Company): A healthcare software company used Smellyzer on

a GitHub-hosted project, which provided insights into process smells in a mid-size industrial

environment.

- Main Study (Large-Scale Company): We analyzed one of Arcelik’s projects, which involved

six Agile teams using Azure DevOps for code reviews and Jira for issue tracking. The study

showed varying levels of CR and BT smells and how they evolved, with higher occurrences

in the early stages of development when the product was less mature.

3.18. Relink

Method Description

ReLink is a tool developed to enhance the traceability between pull requests (PRs) and issues by

repairing historically missing links using data science algorithms. Unlike tools that enforce link

creation during the PR process, such as Jazure, ReLink retrospectively predicts connections

between PRs and issues. It analyzes textual similarities and applies heuristic guidelines to identify

absent links, assigning a confidence score ranging from 0 to 100 to each potential connection. A

higher score indicates a stronger likelihood of a valid association. ReLink's web-based interface

provides visual aids to facilitate reviewing and confirming these predicted links, making it easier for

practitioners to establish accurate traceability in their software projects.

Improvements

ReLink significantly improves the accuracy and effectiveness of software metrics by ensuring that

all PRs are properly linked to their corresponding issues, even if the links were initially missing. Key

improvements include:

- Enhanced Traceability: By recovering missing links between PRs and issues, ReLink

ensures that historical data is complete, which is crucial for accurate software metrics and

analytics.

- Data-Driven Predictions: Utilizes text similarity analysis and heuristic rules to predict

connections, offering a more reliable method than manual reconstruction.

- High Accuracy: Achieved a Mean Reciprocal Rank (MRR) of 0.84 and high top-N accuracies

(Top-1: 0.83, Top-3: 0.85, Top-5: 0.86) in the Connecta project, demonstrating its

proficiency in correctly associating PRs with relevant issues.

- User-Friendly Interface: The web-based platform provides visual aids and confidence

scores, making it easier for users to validate and confirm the predicted links.

Purpose and Features

ReLink is designed to improve the traceability and integrity of software development records by

repairing missing links between pull requests and issues. Its key features include:

- Historical Link Recovery: Analyzes existing data to predict and recover missing PR-issue

links in past records.

- Confidence Scoring: Based on text similarity and heuristics, it assigns a confidence score

(0-100) to each predicted link, indicating the likelihood of a valid connection.

- Visual Aids: Offers a web-based interface with visual representations to help users easily

review and confirm predicted links.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 59 of 71

- Consistent Prediction Performance: Delivers high accuracy in link prediction across different

projects, ensuring reliable results.

- Data Science Algorithms: Employs advanced algorithms to analyze code commits, PR

descriptions, issue reports, and other textual data to find correlations.

Usage Instructions

For project management, we begin by setting up ReLink. This involves installing it on your server

or accessing it through a web-based interface. Configure ReLink to connect with your project’s

repositories and issue tracking systems, ensuring access to all necessary project information. Next,

import historical data to ReLink. This includes pulling in existing data on pull requests, issues, and

any established links within the project. ReLink then uses its algorithms to identify and predict

missing links between pull requests and issues, revealing previously overlooked connections.

Once the analysis is complete, head to the ReLink web interface to review the predicted links. Each

prediction is accompanied by a confidence score and visual aids, helping you assess the relevance

and accuracy of each suggested link. With this information at hand, we need to validate the results.

Confirm or reject each suggested link, relying on the provided data and your expertise. When you

confirm a link, ReLink will automatically update the project’s records to include the new connection,

ensuring an up-to-date linkage between project elements. Finally, utilize the enriched dataset to

generate accurate software metrics, analytics, and reports.

3.19. Telemetry Anomaly Analyzer (TAA)

Purpose and Overview

One of the most significant challenges engineering and operations teams face in software-as-a-

service environments is detecting and responding to anomalies in large volumes of telemetry data

generated by complex distributed systems. The Telemetry Anomaly Analyzer is designed to address

this challenge. This tool provides an automated, scalable way to detect and visualize anomalies in

telemetry data collected from distributed systems. By utilizing OpenTelemetry-compatible telemetry

data, the analyzer applies machine learning models to identify irregular patterns, facilitating rapid

detection of performance bottlenecks, security threats, or potential failures. Additionally, the tool

generates rich, interactive dashboards that help teams monitor, investigate, and respond to these

anomalies in real time. As a holistic tools architecture developed on a mainstream cloud computing

platform, the Telemetry Anomaly Analyzer integrates with several cloud services to handle data

ingestion, processing, anomaly detection, and visualization.

Features

The tool inputs telemetry data, including traces, logs, and metrics, in formats compatible with the

OpenTelemetry standard. This makes it well-suited for cloud-native architectures. It supports

various telemetry sources, including distributed systems and microservices deployed across

multiple cloud platforms.

At its core, the tool features an anomaly detection engine powered by interchangeable machine

learning models trained to identify irregularities in system behavior. It supports unsupervised

anomaly detection techniques, capable of learning patterns from historical data and identifying

deviations in near real-time. Detected anomalies are presented through interactive dashboards that

offer insights and visual representations such as heatmaps and timelines. These dashboards enable

users to go down into specific events or system components to identify the root cause of anomalies.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 60 of 71

The tool is designed for cloud-native environments, leveraging mainstream cloud platforms and

utilizing managed services like data warehouses for data storage. It supports both custom and off -

the-shelf options for model training. In addition to detecting anomalies, the tool can trigger alerts

via multiple channels, such as email or Slack, based on predefined thresholds.

The architecture supports customizing machine learning models and thresholds, making it

adaptable to diverse use cases. Users can extend the platform by adding more data sources,

integrating custom anomaly detection models, and incorporating new visualizat ion widgets for

dashboards or using alternative visualization tools.

Usage

The tool is a set of cloud services and components and has a custom setup for each environment

in which it would be used. The tool is a set of deployed services that work continuously and

automatically to produce up-to-date data, visualizations and alerts in the following way:

1. Ingestion of Telemetry Data

a. Once deployed, the tool begins collecting telemetry data from the configured

sources and stores them in short-term telemetry data and a data warehouse for

further analysis.

2. Machine Learning Pipeline Execution

a. Based on the configured triggers, the tool's ML models analyze the incoming data,

detecting any anomalies based on training data.

b. Anomalies are classified, and possible alerts are generated based on severity levels

defined in the configuration.

3. Visualizing Results

a. Detected anomalies are displayed in the dashboards and are accessible via a web

interface hosted on a visualization platform.

b. Dashboards include various visual components, such as timelines, system

heatmaps, and trace trees, that allow users to see how the anomaly propagates

through the system.

4. Alerting

a. When an anomaly is detected, an alert is sent to the configured communication

channels.

4. A Methodology for Delta-Aware Quality Assurance

The methodology focuses on a holistic view of the entire development lifecycle, from initial planning

to maintenance. It emphasizes the interconnection between various elements, including people,

roles, skills, teams, tools, techniques, processes, activities, milestones, work products, standards,

quality measures, and team values.

Here's a breakdown of the core components of this methodology:

● People and Roles: The methodology acknowledges that specific skills and personalities are

vital in filling various project roles. This includes designers and programmers and all roles

funded by the project, offering a broader view.

● Teams and Skills: The methodology involves working in different types of teams, where

combining various skills leads to producing work products.

● Tools and Techniques: Specialized tools and techniques are employed to construct work

products, following specific standards and quality criteria.

● Processes and Activities: The teams engage in various activities within the project. This

structured approach ensures that all aspects of the project are considered and carried out

systematically.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 61 of 71

● Milestones: These checkpoints help measure progress and make necessary adjustments.

● Work Products, Standards, and Quality Measures: Work products must adhere to selected

standards, including notations like drawing and programming languages, policies like

incremental development, and team-determined conventions. Quality measures ensure that

the output meets the intended criteria.

● Team Values: Team values are vital in shaping how the team communicates and operates.

Aligning these values with the people's values and the process promotes a cohesive and

productive environment. Different values influence different methodologies.

The different dimensions key to the SmartDelta software methodology shape the overall quality

assurance framework. Requirements Management and Analysis are used in defining, analyzing,

and managing requirements, ensuring that the software aligns with business goals and creates a

solid foundation for development. Test Design and Selection focus on creating and choosing test

cases for robust system inspection, while Test Amplification enhances existing test cases to

increase coverage. Monitoring and Anomaly Detection are responsible for observing the system for

abnormal behavior, and Static Analysis examines software without executing it to identify potential

code issues. Integration of Functional and Extra-Functional Testing ensures that all aspects of the

system's quality are examined, including often neglected areas like resource consumption and

security. Delta-aware Testing focuses on fault detection and efficiency by allowing for adaptive

testing strategies. Finally, Visual Representation and Mapping provide an accessible overview of

the methodology's components, aiding communication and understanding between stakeholders.

Together, these dimensions form a framework that addresses both functional and non-functional

aspects of software quality. Together, these dimensions form a methodology where each aspect

complements the others to ensure comprehensive quality assurance. The SmartDelta methodology

uses a diverse array of practices, balancing the need for rigorous testing with efficiency and

adaptability, making it suitable for complex and evolving software projects.

The overall methodology focuses on test design, automated test generation, and analysis of

functional criteria and extra-functional properties (e.g., resource consumption, security,

performance) based on the model specification of the corresponding requirements. We identify

invalid states and conflicting requirements and use this type of information to create negative tests,

which attempt to force the system to enter invalid states and can uncover bugs and vulnerabilities

that positive test cases may not detect. One improvement of this methodology outlined in Figure 20

would be to define guidelines and a format for testers to specify test scenarios that evaluate

combined functional and extra-functional properties, which are frequently neglected areas of testing.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 62 of 71

Figure 20 Overview of the SmartDelta Methodology for Quality Assurance.

Figure 20 depicts the overall concept of the methodology and Table 8 depicts the different

dimensions of this methodology and the mapping to the different individual components. These can

be seen as toolkits to enable users to interact with requirement management and analysis, the test

generation and selection process, as well as static analysis and monitoring, as an enabler for delta-

aware testing with better performance in terms of fault detection and efficiency.

Requirements Management and Analysis (1). The first dimension of the SmartDelta quality

assurance methodology focuses on analyzing and managing requirements to identify conflicts,

define system boundaries, and establish quality standards. According to SWEBOK 83, this includes

validation (ensuring requirements meet goals) and verification (ensuring proper implementation).

To clarify, requirements exist at different levels: business requirements define overarching goals,

system requirements specify overall system needs and software requirements detail the behavior

of software components. In industries like automotive, system requirements drive hardware and

software specifications, which are further divided into component- and unit-level requirements. The

SmartDelta methodology addresses system and software requirements, ensuring alignment with

business objectives through robust validation and verification processes.

The following steps are used in the requirements management and analysis dimensions:

● Analyzing Requirements: This process involves a detailed examination of each requirement

to ensure clarity, feasibility, and relevance. Analysts scrutinize the requirements to

understand their implications on the system's design and functionality. This stage often

involves stakeholders to ensure that the requirements truly reflect their needs and

expectations.

● Managing Requirements Conflicts: Conflicts in requirements can arise due to various factors

like stakeholder disagreements, technical constraints, or budget limitations. SmartDelta

emphasizes identifying these conflicts early in the development process. This approach

83 https://www.computer.org/education/bodies-of-knowledge/software-engineering

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 63 of 71

involves reconciling differing viewpoints, adjusting requirements, or prioritizing them to

mitigate conflicts effectively.

● Defining System Boundaries: Understanding the bounds of the system is critical. It involves

delineating what the system will and will not do. This clarity helps in preventing scope creep

and ensures that the development efforts are focused and aligned with the intended purpose

of the software.

● Creation of System Requirements: This step involves translating the gathered requirements

into a structured set of system requirements. These requirements should be specific,

measurable, achievable, relevant, and time-bound. They serve as a blueprint for the

development team.

● Validation of Requirements: Validation focuses on ensuring that the requirements

accurately reflect the needs and expectations of stakeholders and align with the business

goals. This process involves reviewing the finalized requirements with stakeholders. Unlike

managing requirement conflicts, which involve resolving disagreements or inconsistencies

among stakeholders during the elicitation and negotiation phases, validation occurs after

conflicts have been addressed and is a confirmation step to ensure the requirements are

correct and agreed upon.

● Verification of Requirements: Verification is the process of ensuring that the system meets

the specified requirements. This is often done through various testing methods, such as unit

testing, integration testing, and system testing. Verification helps identify any deviations

from the requirements early in the development cycle.

● Continuous Monitoring and Updating: Requirements management is not a one-time activity.

It requires monitoring and updating throughout the software development lifecycle. This

adaptability allows the team to respond to changes in the business environment,

stakeholder needs, or technological advancements.

● Documentation and Traceability: Documenting the requirements and maintaining

traceability is vital. It helps keep track of the requirements throughout the development

process, making it easier to manage changes and ensure all requirements are addressed.

Test Design and Selection (2). The second dimension of the methodology covers the creation and

selection of test cases. Test design results in creating or selecting test cases to execute the system

and obtain a verdict 84. Test design and selection have multiple purposes, e.g., covering certain

branches and attempting to find failures. Test design in SmartDelta can also be used to measure

the system's quality. Here is a detailed view:

● Test Case Creation: The process begins with the development of test cases. These are

specific conditions under which the software is executed to check whether it operates as

intended.

● Test Selection Criteria: It is crucial to select the right test cases. The methodology involves

setting criteria based on the software's requirements, risk assessments, and the criticality

of different features.

● Coverage Goals: Test design in SmartDelta aims to improve delta coverage, including code

coverage (like branch coverage), functional coverage, and user scenario coverage. This

ensures that all software parts are tested and different functionalities are thoroughly

evaluated.

● Failure Detection: An essential purpose of test design is to detect potential software failures.

This involves creating test cases that specifically target known vulnerabilities or complex

areas of the system to uncover any issues that could lead to software failure.

84 Eldh, S. (2011). On test design (Doctoral dissertation, Mälardalen University).

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 64 of 71

● Quality Measurement: Test design in SmartDelta is not only about finding faults but also

about measuring various quality aspects of the system, such as performance, usability,

security, and compatibility.

● Test Case Optimization: SmartDelta includes strategies for optimizing test cases to enhance

efficiency. This might involve removing redundant tests and prioritizing tests.

● Continuous Improvement: Test design and selection in SmartDelta are iterative processes.

As the software evolves, so do the test cases. Review and improvement of test strategies

are necessary to adapt to changes in software requirements and technological

advancements.

Test Amplification (3). Test amplification 85 is a method that automatically develops new test cases

by adjusting existing written test cases. A typically used test goal is to enhance test coverage

according to a coverage criterion, but this method can be used in different ways to aid both testers

and developers. Here is a more comprehensive view:

● Improve Test Coverage: One of the main applications of test amplification is to increase test

coverage. This includes code coverage (line, branch, and path coverage) and feature

coverage.

● Automated Test Case Generation: Test amplification tools analyze existing test cases and

automatically generate new ones by altering inputs, outputs, or internal parameters.

● Support for Testers and Developers: Beyond improving test coverage, test amplification

aids testers and developers by reducing the manual workload of creating and maintaining

test cases. It also provides insights into potential vulnerabilities and areas of improvement

in the software.

● Dynamic Test Case Evolution: Unlike static test case creation, test amplification is dynamic.

It continuously evolves test cases in response to changes in the codebase, ensuring that

the tests remain relevant throughout the software development lifecycle.

Monitoring and Anomaly Detection (4). Monitoring and anomaly detection are activities in quality

assurance that are used to identify abnormal behavior. In general, monitoring is observing or

inspecting a system at different points to produce reports, notify an abnormal operation, draw

operation baselines, provide inputs to the system or application management, etc. In addition,

monitoring attempts to monitor a network or systems to detect abnormal activity or policy violations.

Here is a detailed exploration:

● Tools and Techniques for Monitoring: This involves using various tools and techniques, from

basic log file analysis to real-time monitoring solutions. These tools collect data on various

aspects of the system, such as resource usage, response times, and transaction volumes,

providing a view of the system's health over time.

● Anomaly detection refers to the process of identifying patterns in the data that deviate from

the established normal behavior. These anomalies could indicate problems such as system

failures, security breaches, or operational inefficiencies.

● Creating Operational Baselines: Establishing operational baselines as standard metrics for

normal system behavior is an important monitoring aspect. These baselines are crucial for

identifying anomalies, as they provide a point of comparison to determine what constitutes

abnormal behavior.

● Proactive Alerting and Reporting: Monitoring systems often include mechanisms for alerting

to potential issues. This can be real-time alerts, automated reports, or dashboards that

provide an at-a-glance view of the system's status.

85 Danglot B, Vera-Perez O, Yu Z, Zaidman A, Monperrus M, Baudry B (2019a) A snowballing literature study on test
amplification. J Syst Softw 157:110398

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 65 of 71

● Network and System Monitoring: While monitoring can be applied to individual applications,

it is also crucial at the network and system levels. This includes tracking network traffic to

detect unusual patterns or volumes that could indicate security incidents like data breaches

or DDoS attacks.

● Adaptive and Predictive Monitoring: Monitoring systems incorporate adaptive and predictive

capabilities to anticipate potential issues based on historical data and trends.

Static Analysis (5). The static analysis evaluates the software without running it or evaluating

specific inputs. Instead of trying to prove that the system fulfills its specification (e.g., formal

verification), such techniques look for violations of valid or suggested programming and code review

practices. Here is a more comprehensive view:

● Identification of Code Violations: A primary function of static analysis is to identify violations

of coding standards and best practices. These could include potential bugs, security flaws,

performance issues, and maintainability concerns.

● Code Quality and Maintainability: Static analysis tools assess the quality and maintainability

of the code by checking for complex code structures, duplicated code, and adherence to

coding conventions.

● Security Vulnerability Detection: Static analysis is particularly effective in identifying security

vulnerabilities, such as SQL injection, cross-site scripting (XSS), and buffer overflows.

● Integration with Development Processes: Static analysis tools are often integrated into the

development process, either as part of development environments or as part of continuous

integration/deployment pipelines.

● Compliance with Standards and Regulations: Static analysis helps ensure compliance with

industry standards and regulatory requirements (e.g., MISRA C).

● Formal Verification vs. Static Analysis: Unlike formal verification, which tries to prove that a

system meets its specifications, static analysis is more about finding deviations from good

programming practices.

Table 8. Mapping between the different dimensions of the SmartDelta Methodology for Quality

Assurance and the individual tool components developed in WP386.

Methods/
Tool Name

Requirements
Management
and Analysis

(1)

Test
Design and
Selection

(2)

Test
Amplification

(3)

Monitoring
and

Anomaly
Detection

(4)

Static
Analysis

(5)

VARA+ x

NALABS x x

SEAFOX x x

FOKUS-
CBTS

 x x

IFAK-TCG x

Test Effort
Estimator

 x x

SoHist x x

UI Test
Generator

 x

Mut4SLX x ±

SONATA x x

DRACONIS x x

PyLC x

86 x stands for fully supported/available in this tool and ± for partially supported or experimental feature.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 66 of 71

Methods/
Tool Name

Requirements
Management
and Analysis

(1)

Test
Design and
Selection

(2)

Test
Amplification

(3)

Monitoring
and

Anomaly
Detection

(4)

Static
Analysis

(5)

GW2UPPAAL x

EARS x x

JAZURE x

Smellyzer x x

Relink x

TAA x

5. Broader Context of the SmartDelta Methodology

The SmartDelta project aims to optimize and automate quality assurance in incremental industrial

software systems. WP3, in particular, focuses on creating and integrating automated tools and

methodologies to assess the quality of "deltas," which are defined as incremental software changes

across different product versions. This approach is crucial for ensuring that modifications in software

systems, whether they pertain to functionality, performance, or other non-functional requirements,

do not degrade overall system quality.

The tools and methodologies developed in WP3, as outlined in D3.4 Delta-oriented Quality

Assurance Methodology, are designed to fit into the larger framework of SmartDelta by addressing

key challenges of modern industrial software development, CI, CD and the evolution of software

systems. For example, the methodology provides mechanisms for test case generation, regression

testing, and static and dynamic analysis tailored to specific deltas. This ensures that the testing

process is efficient, targeted, and capable of handling evolving requirements, which aligns with

SmartDelta's broader goals of reducing manual effort, increasing system reliability, and enhancing

the reuse of existing software artifacts.

For example, utilizing tools like SEAFOX for combinatorial test generation, DRACONIS for delta

computation between models, and NALABS for requirements static checking, WP3 contributes to

the overarching goal of automating quality assurance in ways that allow for faster, more reliable

development cycles. Moreover, these tools are built to operate within continuous engineering

environments, supporting ongoing development and adaptation. These are essential to

SmartDelta’s vision of reducing time-to-market and maintaining high software quality standards

across product versions. Finally, the tools from WP3 play a key role in delivering a comprehensive

delta-aware quality assurance process that supports the long-term sustainability and scalability of

industrial software systems, aligning with the core objectives of the SmartDelta project.

5.1. Selected Tools and Their Role in WP3

One of the tools developed in WP3 is DRACONIS, which computes deltas between different model

versions and proposes which checks need to be re-run based on those changes. DRACONIS

enables more efficient regression testing by ensuring that only relevant tests are executed, thus

reducing redundant testing activities. This aligns with the project’s broader goal of optimizing testing

cycles in CI/CD environments, where quick feedback is essential. DRACONIS plays a critical role

in keeping regression tests focused and relevant as software systems evolve over time.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 67 of 71

Another tool in WP3 is PyLC, which focuses on the incremental translation and logging of changes

in programmable logic controllers (PLCs). As industrial systems often rely on PLCs for critical

functionality, it is important to ensure that test cases are updated as changes occur in these

systems. PyLC supports this need by tracking changes in PLC programs facilitating the integration

of incremental testing and regression strategies. This tool not only supports the broader SmartDelta

goal of improving automation but also ensures that test cases remain aligned with evolving system

requirements, minimizing errors and ensuring software reliability.

SEAFOX is a combinatorial test generation tool developed to augment manual tests with

automatically generated ones, specifically for IEC 61131-3 compliant PLC software. SEAFOX

reduces the time needed for test case generation, which is especially useful in continuous

integration environments where testing cycles are short. This tool helps by automatically generating

test cases that achieve high code coverage, ensuring that all potential system behaviors are

adequately tested. SEAFOX’s role in WP3 is essentia l to increasing the efficiency of the testing

process, reducing manual effort, and contributing to the SmartDelta project’s objective of enhancing

overall software quality through automated testing.

The GW2UPPAAL tool automates test suite generation when modifications in functional or non-

functional requirements lead to product deltas. As software systems evolve, requirements often

change, creating new deltas that must be tested to ensure continued system integrity. GW2UPPAAL

supports delta-based testing by automating the generation of test suites that are aligned with these

evolving requirements. This ensures that testing remains up-to-date with the latest system changes,

providing a more agile response to development needs and contributing to the continuous

assurance of software quality throughout the product lifecycle.

Another tool in WP3 is the Delta Test Coverage Evaluation (dTCE) tool, which evaluates test

coverage across different software versions or deltas. The tool ensures that test suites maintain

comprehensive coverage, even as the software evolves, by comparing multiple versions and

assessing where tests may need to be added or adjusted. dTCE helps to ensure that critical aspects

of the software are not overlooked during testing, supporting the larger SmartDelta objective of

maintaining high-quality software through rigorous and efficient testing processes. This is

particularly important in industrial settings where software reliability and safety are paramount.

Smellyzer. is designed to elevate software development quality by identifying and addressing

process smells within code review and bug tracking. By pinpointing detrimental patterns, such as

large changesets, sleeping reviews, and unassigned bugs, Smellyzer provides teams with

actionable insights to refine their practices. This results in improved traceability, faster issue

resolution, and a streamlined development workflow, ensuring a more cohesive and efficient

software development lifecycle.

The Jazure is a tool developed within WP3 that automates the linkage of work item IDs between

Azure DevOps and Jira, enhancing traceability and efficiency in the software development process.

By synchronizing work items across these platforms, Jazure ensures that incremental changes—or

deltas—are accurately tracked and associated with their corresponding pull requests. This

automation is crucial for managing evolving software systems, as it reduces the manual effort

required to maintain consistent and up-to-date work item associations. Jazure also enforces branch

policies that mandate work item linkage before code can be merged into the master branch,

preventing untracked changes from entering the production codebase. By facilitating better

management of deltas and ensuring that all modifications are properly documented and reviewed,

Jazure directly contributes to the SmartDelta project's goals of optimizing continuous integration

and delivery pipelines, enhancing system reliability, and maintaining high software quality standards

across different product versions.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 68 of 71

Each of these tools contributes directly to the broader objectives of the SmartDelta project by

automating critical aspects of software testing, reducing manual effort, and ensuring that testing

remains relevant and effective as software systems evolve. Through tools like DRACONIS, PyLC,

SEAFOX, GW2UPPAAL, Jazure, Smellyzer, and dTCE, WP3 supports the project’s overall goal of

improving quality assurance processes in continuous engineering environments. Together, these

tools enable the SmartDelta methodology to optimize CI/CD workflows, enhance testing efficiency,

and ensure that high-quality software is delivered across multiple product versions and deltas.

5.2. Example: How WP3 Tools Fit Into a Real Use Case

In a real-world use case, the tools developed within WP3 of SmartDelta can be applied to a complex

industrial system, such as a train control management system. This system involves multiple

software components that are regularly updated, creating new deltas that require rigorous testing

to ensure continued functionality and safety.

In this context, DRACONIS would be used to compute deltas between different versions of the

system models. By identifying the precise changes in each new version, DRACONIS helps to

determine which tests need to be re-run, optimizing the regression testing process. This ensures

that only the relevant tests are executed, significantly reducing testing time and resource usage

while maintaining high testing accuracy. PyLC would track incremental changes in the system’s

programmable logic controllers (PLCs). As these controllers are often updated with new

configurations or functionality, PyLC logs these changes incrementally, allowing for targeted

regression testing of the PLC software. This minimizes disruptions in the development cycle and

ensures that critical PLC functions are thoroughly tested after each update. SEAFOX plays a role

by automatically generating test cases for the IEC 61131-3 compliant PLC software used in the

system. SEAFOX reduces the manual effort required to create test cases in an environment where

multiple system configurations must be tested. Its combinatorial test generation ensures high code

coverage, improving the reliability of the testing process and detecting potential issues early in the

development cycle. As new requirements emerge or existing ones are modified, GW2UPPAAL will

automatically generate new test suites to reflect these changes. This is particularly important in a

system like train control management, where safety and functionality are paramount, and any

changes in requirements need to be immediately reflected in the testing process. GW2UPPAAL

ensures that the system is always tested against the most current set of requirements, maintaining

high-quality standards. Jazure automates linking work items between Azure DevOps and Jira during

development. It synchronizes tasks across both platforms, properly tracking every code change.

This enhances traceability and team coordination, preventing miscommunication. In complex

systems like the train control management system, it ensures all changes are accounted for in both

development and project management tools. In this case, the combined functionality of specific

WP3 tools ensures that the train control management system undergoes efficient, targeted, and

comprehensive testing throughout its lifecycle.

6. Selected Performance Metrics – An Overview

The performance metrics data provides valuable insights into the efficiency and effectiveness of the

project's software tools. Examining these metrics allows us to evaluate current performance, set

improvement targets, and track progress over time. Below, we provide detailed metrics and analysis

for several WP3 tools.

NALABS is designed to identify and analyze requirement issues. The tool initially identified ten

issues per 300 requirements, translating to a 3.3% problematic requirement detection rate. Although

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 69 of 71

the current values are yet to be measured, the target is to find ten issues per 100 requirements,

aiming to significantly enhance the quality assurance process. The data for NALABS was collected

from multiple resources, including companies developing safety and security-critical systems and

various open-source repositories such as GitHub, Zendo, and the NLRP benchmark. The total

analyzed requirements amounted to 7423 from different projects, providing a robust dataset for

evaluation.

SEAFOX focuses on combinatorial test generation, initially taking 15 minutes on average to

generate test cases per System Under Test (SUT) with an 81% branch coverage. The current

metrics are still to be measured, but the target aims to reduce the generation time to 10 minutes per

SUT while increasing branch coverage to over 90%. This reflects a strong focus on improving testing

efficiency and comprehensiveness, which is crucial for faster and more effective testing processes.

Test Effort Estimator measures the accuracy of performance test analyses. While the initial

accuracy values were not specified, the tool has achieved an approximate 95% accuracy for

commits and releases in the largest repository and around 73% for pull requests. The target is set

at 97%, indicating a high standard for performance testing accuracy. This improvement showcases

the tool's progress and its commitment to maintaining high reliability in test analysis.

CBTS addresses the selection of regression tests from a huge set of regression tests based on the

ability to detect unwanted side effects of each individual regression test. The selection algorithm

considers the changes that have been applied to the source code as the connected source code

areas, which the regression test covers or that influence the regression test. CBTS is evaluated by

the following metrics: regression test selection time, number of selected regression tests, reduction

in execution time of regression tests, and defect capability of selected regression tests. The Vaadin

Flow Framework that was used as a pilot project for the CBTS tool has the following characteristics:

18 core modules, 34 test modules, a test suite comprised of over 6680 tests, and a total test

execution time of 1,5h. For the validation of CBTS, it was only applied to a subset of the modules,

namely: flow-dev, flow-polymer2lit, flow-pwa-disabled-offline and flowmisc (as shown in Table 9).

Table 9. The Evaluation of CBTS with Respect Test Components.

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 70 of 71

CBTS achieved the following performance metrics:

- Regression test selection time: 30.23s (there is no comparison for this number because

regression test selection has not been done manually before)

- The number of selected regression tests:

o pwa-disabled-offline: 3/35 (~92% reduction)

o Flow-polymer2lit: 23/75 (~70% reduction)

o Flowmisc: 10/152 (~94% reduction)

o Flow-dev: 27/265 (~90% reduction)

- Reduction in execution time:

o pwa-disabled-offline: ~95% reduction

o Flow-polymer2lit: ~80% reduction

o Flowmisc: ~94% reduction

o Flow-dev: ~96% reduction

- Defect detection capability:

o None of the selected regression tests found a side-effect-caused defect.

o The entire test suite detected only a few side-effect-caused defects; most defects

found by the entire regression test suite were caused by direct changes applied to

the code, not because of side-effects.

o We cannot make a statement about CBTS's defect detection capability for now;

further experiments are needed to evaluate the accuracy of the side-effects

classification scheme and fine-tune the selection algorithm.

SoHist enables analysis of software quality metrics from SonarQube Analysis and offers custom

views to track changes over time. It introduces the new Weighted Code Evolution Significance

metric, a novel method for prioritizing SonarQube's main metrics (Reliability, Security,

Maintainability, Test Coverage, and Duplicated Lines) based on user-defined weights. This allows

users to focus on specific metrics, visually representing the project's lifecycle and highlighting

significant changes according to the assigned weights. The greater the Weighted Code Evolution

Significance, the more impactful the change in the chosen category. For details, please refer to

https://zenodo.org/records/7713698.

PyLC evaluates mutation scores of PLC programs translated into Python. Although the initial values

were not provided, the current average mutation score is 58.78%, with a target of 70%. This

improvement indicates significant progress in test generation quality, demonstrating PyLC's ability

to ensure higher software robustness through effective mutation testing.

GW2UPPAAL focuses on the average time it takes to generate models. Initially, it took 562.3

seconds, but this has now been drastically reduced to 0.1833 seconds, nearing the targeted 0.2

seconds. This showcases a substantial improvement in operational efficiency, which is crucial for

timely and effective model generation.

ReLink determines missing links between PRs and issues based on a confidence score normalized

between 0 and 100, calculated using text similarity and heuristic rules. The tool’s effectiveness was

evaluated in an open-source project and an industry-based case study. In the open-source project,

ReLink achieved a top-5 accuracy of 0.80 and a precision of 0.77. In the industrial case study,

ReLink’s effectiveness was validated by practitioners selecting the correct link from five issue

suggestions, resulting in a top-5 accuracy of 0.86 and a Mean Reciprocal Rank of 0.84.

Smellyzer was found to be 100% useful to detect CR smells and 93% useful to detect BT smells

across three case studies. The tool's practicality is determined using the System Usability Scale

(SUS), which is calculated as 77.5 for CR smell detection and 80.0 for BT smell detection.

https://zenodo.org/records/7713698

Deliverable 3.4

 © 2024 SmartDelta Consortium Page 71 of 71

Jazure focuses on automating the linkage of work items between Azure DevOps and Jira to

enhance traceability in the development process. Initially, the success rate of linking work items to

pull requests was approximately 70%, hindered by manual errors and oversight. Currently, Jazure

has achieved a 100% success rate in establishing these links, with the target being to maintain this

level consistently. This improvement underscores Jazure's effectiveness in eliminating manual

errors, ensuring all code changes are properly tracked and associated with their respective work

items, thus enhancing efficiency and reliability in software development.

7. Summary and Conclusions

The SmartDelta project focuses on advancing automated quality assurance and optimization for

incremental software system development in industrial contexts. Within the scope of WP3, its main

aim is to develop a methodology that integrates functional and extra-functional testing, regression

testing, static and dynamic analysis, and anomaly detection. These efforts address iterative and

incremental software development challenges, particularly in agile and CI/CD environments.

The deliverable introduces a delta-oriented quality assurance methodology that improves the

efficiency and effectiveness of testing processes. This methodology is grounded in tools and

techniques specifically designed to cater to incremental changes or deltas in software development.

It employs automated test generation, regression testing strategies, and delta-specific analysis to

ensure high levels of reliability and coverage. These tools, along with others, address specific

aspects of delta-aware quality assurance, providing tailored solutions for challenges such as test

selection, amplification, and regression test optimization. Performance metrics and case studies

illustrate the real-world impact of these tools. The work establishes a path for future research and

development in this area. Furthermore, the methodology can serve as an educational resource.

	Executive Summary
	Document Glossary
	2. State of the Art
	2.1. Model-Based Testing of Industrial Product Lines
	2.2. Maintaining/Improving the Quality of Regression Tests
	2.3. Property-based testing for non-functional requirements
	2.4. Test co-evolution and repair
	2.5. Test reuse across products
	2.6. Change-based regression test selection
	2.7. Mutation Testing (for Simulink)
	2.8. Reflections and Identified Gaps

	3. SmartDelta Methods for Quality Assurance
	3.1. Combinatorial Test Generation (SEAFOX)
	3.2. Requirement and Test Specification Static Checker (NALABS)
	3.3. Discovery of Interactions and Anomalies for Microservices (DIA4M)
	3.4. Model-Based Test Case Generation (IFAK-TCG)
	3.5. Test Amplification (FOKUS-CBTS)
	3.6. VARA+: Variability-Aware Requirements Management and Analysis
	Requirements Identification
	Requirements Quality
	Smart Requirements Allocation
	Reuse Identification

	3.7. SoHist - Historical Quality Evolution Tool
	3.8. SONATA
	3.9. UI Test Generator - User Interface Test Design
	In the application project, there should be a YAML file specifying the views to be tested, as shown in the following view:

	3.10. MUT4SLX – Mutation Testing for Simulink
	3.11. DRACONIS
	3.12. Test Effort Estimator
	3.13. PyLC
	3.14. GW2UPPAAL
	3.15. Testing Utilizing EARS Notation in PLC Programs
	3.16. Jazure
	3.17. Smellyzer
	3.18. Relink
	3.19. Telemetry Anomaly Analyzer (TAA)

	4. A Methodology for Delta-Aware Quality Assurance
	5. Broader Context of the SmartDelta Methodology
	5.1. Selected Tools and Their Role in WP3
	5.2. Example: How WP3 Tools Fit Into a Real Use Case

	6. Selected Performance Metrics – An Overview
	7. Summary and Conclusions

