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Executive Summary 
Knowledge Base plays a vital role in the InnoSale by serving as a centralized repository to 
capture and formalize expertise across various sales domains. It leverages ontology-based 
rules to represent product variants, configuration constraints, and dependencies, 
incorporates historical sales data from partners, structured in databases like MongoDB and 
MySQL, and accessible via APIs. Knowledge Base also supports managing fuzzy logic rule sets 
for situational pricing, providing APIs to upload, retrieve, and modify these rules. Overall, it 
establishes a robust foundation by integrating data sources, formalizing domain knowledge 
through ontologies and rules, and providing structured access to this curated knowledge for 
intelligent sales decision support.  
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1 Introduction 
Knowledge Base serves as a repository for domain-specific knowledge and provides interfaces 
for the Inference Engine to access data and validation rules. KB acts as a facade, providing a 
unified interface to access various storage APIs implemented by different InnoSale partners. 
Its primary role is to consolidate and centralize access to the diverse knowledge sources and 
services developed within the project. 
Knowledge Base incorporates historical data management from various use cases, outlining 
the database structures, data formats, and technologies used for storing and retrieving 
relevant information. 
A significant aspect of the Knowledge Base is the ontology development process. It employs 
two complementary approaches: a semi-automatic approach for constructing ontologies and 
the utilization of upper/domain ontologies. The semi-automatic approach combines synonym 
terms to form concepts and defines relationships between these concepts. The upper/domain 
ontology approach establishes a hierarchical structure, with an upper ontology providing a 
foundational set of concepts and domain ontologies addressing specific contextual needs. 
Knowledge Base also includes fuzzy logic rules, which encapsulate nuanced knowledge for 
determining optimal pricing for complex products. These rules are crafted by experts, taking 
into account various influence factors such as customer relationships, competitive pressure, 
and manufacturer workload. 
Additionally, it covers deductive reasoning rules using the Nemo language, entity recognition 
techniques, speech recognition and meeting summarization parameters, and similarity 
analysis methods. These components contribute to the overall functionality and decision-
making capabilities of the Knowledge Base. 

2 Historical Data Management 
Knowledge Base provides an effective management of historical data provided by the project's 
use case partners. This historical data, encompassing details such as past sales orders, product 
configurations, customer inquiries, and project files, serves as a valuable foundation for the 
InnoSale project. The following section explores the various types of data shared by partners, 
how this data is structured within databases, and the mechanisms in place to facilitate access 
to this information for other components through well-defined APIs. 
The historical data management approach aims to consolidate and organize these diverse data 
sources, enabling the Knowledge Base to provide a comprehensive and integrated view of the 
available information. By standardizing data formats and structures, Knowledge Base can 
effectively support data association models, Bayesian models, and other analytical techniques 
to uncover hidden correlations and dependencies, further enriching the knowledge base over 
time. 

2.1 LLE 

Database input data/facts 
For one of the LLE demonstrators, which is being created as part of UC 1,3,4,5, historical data 
on past sales cases are required. These historical sales cases are to be mapped and compared 
with current enquiries coming in as E-Mail requests. This allows similarities to old sales cases 
to be identified, which should then support the back office in processing the current enquiry.  
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As this data is currently stored in internal company systems to which the partners cannot be 
given access due to confidential data, a so-called dummy database must be created. This 
should be a structured database that the partners can access to implement their solutions in 
the demonstrator. 
Figure 1 shows the systems from which data is to be transferred to the dummy database. 
Firstly, past LLE orders containing information such as reference ID, quantity, price, and 
currency are filtered via the company's internal SAP system. With the help of the Ref-ID, the 
corresponding product configurations can be exported from the orders from the Camos 
system, which contain all the important technical parameters of the ordered product. A 
certain number of data records are now extracted from these two data sources, merged, and 
then transferred to the dummy database in a structured manner. 
 

 
Figure 1: Origin of the historical Datasets from Demag 

Another set of data which will be shared outside of the database, directly with the InnoSale 
partners Natif and ifak, are the E-Mail enquiries from customers. They should be used as 
historical Sales requests to train their algorithm regarding entity recognition and semantic 
search. 
Hata! Başvuru kaynağı bulunamadı. shows the entire planned data flow within the first 
demonstrator. For the planned demonstrator, the dummy database will primarily serve the 
purpose of giving partners access to some of our historical sales cases and thus being able to 
apply their solution approaches. Each partner ultimately accesses the data for their own 
purposes and tries to contribute their solution to the demonstrator. Specifically, Ifak uses both 
the data from the database and the data shared from email customer inquiries for its 
“Semantic Search” approach. IOTIQ will also have visibility into the database as they 
essentially deal with the integration of the GUI. Also like the TU Dresden, where “rule-based 
search” is in the foreground. Although Natif will not directly use the data from the database, 
its solution approach will be used to extract the most important technical parameters from 
customers' email inquiries using their entity recognition algorithm and automatically transfer 
them to the required e-project sheet. This is then used, for example, as a basis to automatically 
fill in missing but essential parameters from historical queries (TU Dresden). 
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Figure 2: Dataflow for LLE-UC 1,3,4,5 

In addition, for another demonstrator regarding situational pricing, knowledge from Demag's 
sales engineers is made available for the fuzzy logic approach to define variables and fuzzy 
logic rules. This information will not be part of the earlier described database and will be 
provided directly to ifak, due to the reason it is not for interest of the other partners.  
 
The Database developed for this use case is a document-based MongoDB, as this was the best 
fit for the format, the original Data was provided in. 
The initial plan was for Demag to export the needed Data and anonymize personal 
information. This would have been read into the database hosted by :em AG. Because of legal 
reasons this concept was adapted so that Demag themselves would host the database on their 
servers. :em AG will provide the software as a Docker image, so that Demag can easily start 
and stop the service as well as read in the initial data needed with a locally run script. The data 
is then made accessible to IFAK, IOTIQ and TUD secured via a company specific API token for 
each partner. 
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2.2 CTO 

Knowledge Base for CTO supplies the Inference Engine with pertinent data, including records 
of previous service tickets, material costs, and details about customer environments. 
Additionally, Knowledge Base receives supplementary background information from external 
data sources through the "update background information" interface, facilitated by the 
knowledge acquisition component. However, no specific services are being developed within 
this particular component. 

2.3 WM  

Knowledge Base in WM use case acts as a repository, supplying the Inference Engine with 
information such as past sales records, customer details, campaign data, and applicable rules 
and regulations. The Summium CPQ configurator platform developed by Wapice serves as the 
database for this purpose. Knowledge Acquisition Component is responsible for populating 
the Knowledge Base with the required data from external sources. However, no specific 
services are being developed within this component itself. 

2.4 DPM 

Digital Product Marketplace has a database containing internal digital products from Panel 
and Softtekt. These internal digital products include the following details: 

- requirements specification document,  
- class diagram,  
- natural language description by the creator,  
- tags like programming language, license, platform, quality metrics, etc.  

The ontology is structured as follow: 

 
In this use case, the information is stored in a knowledge graph implemented using Neo4J, a 
graph database management system. To manage the knowledge graph, we have developed 
an API using FastAPI.  
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The Knowledge Base in our use case provides information to two main components: the 
Inference Engine and the Knowledge Acquisition Component (KAC). The interactions are as 
follows: 

1. Inference Engine: This component requires information about all the digital products 
stored in the knowledge graph. It also has the capability to add new digital products. 
The API facilitates these interactions by exposing endpoints for querying and updating 
the digital product information. 

2. Knowledge Acquisition Component: This component is responsible for updating or 
modifying the ontology and its structure to refine and enhance the knowledge graph. 
The API supports these operations by providing endpoints for ontology management.  

The API developed with FastAPI exposes endpoints for interacting with the knowledge base: 

 
These endpoints enable seamless communication between the knowledge base, the Inference 
Engine, and KAC, ensuring that the digital information and the ontology remain accurate and 
up-to-date. 

2.5 SM 

The database in SM case generally contains numerical data, string and Boolean values, audio 
files, and 3D part files. Data is stored in table, object, and JSON types. Database management 
is done through MySQL and MongoDB systems, and data updating is done through Python, 
which is the backend.  
MySQL is a relational database management system in which table structures are predefined 
and immutable. All records within a given table must adhere to the fixed schema, containing 
the same set of fields. In such scenarios, the use of SQL is employed for data manipulation and 
retrieval. 
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On the other hand, MongoDB is a document-oriented (non-relational) database, offering 
greater flexibility in terms of data structure. When new data is inserted, corresponding 
collections are dynamically created, and each record within a collection is not required to 
possess an identical set of fields. Due to the absence of join operations in MongoDB, the 
process of retrieving and writing data is generally more straightforward compared to 
relational databases. 

 
Figure 3 Technologies Used 

The data in the database is read through the backend to be sent to the frontend and 
transmitted to ReactJS and ThreeJS components. Data is read from the database with the 
Python backend and presented as endpoints that the frontend can access with the FlaskAPI 
system. On the JavaScript frontend, requests are made to endpoints, and data is obtained 
using the axios system. Python's FlaskAPI system is used in this process. 

3 Ontology Development 
We have created an ontology to bridge the gap between the terminology used by sales 
engineers and customer inquiries. This ontology will be used for the semantic search of project 
files and historical data. Details on the ontology approach can be found in D3.1, while 
information on its use in ontology-based semantic search is available in D3.2.  
We employ two complementary approaches to maximize the effectiveness in the InnoSale use 
cases: Semi-Automatic approach of constructing an Ontology and Upper/Domain Ontology.  

3.1 Semi-Automatic approach of constructing an Ontology 

The following figures provide an overview of the data structure of the ontology. They illustrate 
how synonyms combine to form concepts and how these concepts can have various types of 
relationships with each other, including "element-of" and "abstract-specification." As 
previously mentioned, the details on relation extraction are covered in D3.1. 
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Figure 4: Terms, Concepts, Relations                                                             Figure 5: Ontology Data Model 

 
The data structure is stored in Sqlite, which functions as a relational database. This database 
could be stored within the knowledge base component. Therefore, some functions need to be 
developed to access the database for loading it, editing the data, and saving the updated 
database back into the knowledge base. Assuming there is a user interface that provides 
access to the knowledge base, at least two functions need to be implemented to utilize the 
ontology database. These functions could be `load_ontology()` and 
`save_ontology(sqlite_database_file)`. To efficiently update the database, we often need 
several quick accesses. Therefore, when we load the database, we should be able to load it 
onto a local computer, edit it, and then save it back into the knowledge base all at once. This 
process provides quicker and faster access. Given that the database file is small, loading the 
entire file should not be problematic. 
 
Usage examples 
A) Load Ontology Example 
To load the ontology from the knowledge base, you can use the curl command to access the 
HTTP-based REST-API. The following example demonstrates how to use the load_ontology 
route: 
# Download the ontology using curl 

curl -X GET http://localhost:8080/api/v1/ontology \ 

     -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 

     -H "Accept: text/plain" \ 

     -o ontology_base64.db 

 

# Decode the downloaded base64 file 

base64 --decode ontology_base64.db > ontology.db 

 
B) Save Ontology Example 
To save the updated ontology back into the knowledge base, you can use the curl command 
to access the save_ontology route: 
# Encode the ontology file in base64 

base64 ontology.db > ontology_base64.db 

 

# Upload the encoded ontology file using curl 

curl -X POST "http://localhost:8080/api/v1/ontology" \ 

     -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 

     -H "Content-Type: text/plain" \ 

machine

equipment

synonym terms
of concept 1

concept 1

chain hoist

chain block

concept 2

device

synonym terms
of concept 2

is a specific

is an abstract

definition of a
concept hierarchy
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     -d @ontology_base64.db 

 
Configuration 
The configuration of the knowledge base service is managed via a YAML file. Below is an 
example configuration: 
server: 

  port: 8080 

  basePath: /api/v1 

 

knowledgeBase: 

  ontologyPath: /data/ontology 

  security: 

    oauth2: 

      authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth 

      tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token 

      clientId: ontology-knowledgebase 

      clientSecret: your-client-secret 

The “server” section contains typical HTTP server information. The “ontologyPath” is the 
location of the file ontology_base64.db at the storage server (the knowledge base). It is a relative path 
starting at the root of the server executable. The security part contains typical OAuth2 
information. 
 
Formal Specification 
The formal specification of the ontology management API uses the OpenAPI (version 3.0.0) 
standard. Below is the example specification for the ontology routes. Therein, you need to 
update the server’s URL and the security server URLs accordingly: 
openapi: 3.0.0 

info: 

  title: Ontology Management API 

  version: 1.0.0 

  description: API for managing ontology in the knowledge base. 

servers: 

  - url: http://localhost:8080/api/v1 

paths: 

  /ontology: 

    get: 

      summary: Load the ontology 

      operationId: loadOntology 

        responses: 

        '200': 

          description: Ontology retrieved successfully 

          content: 

            text/plain: 

              schema: 

                type: string 

                description: Base64 encoded ontology SQLite database file 

        '400': 

          description: Bad request 

        '403': 

          description: Forbidden 

        '404': 

          description: Not found 

        '500': 
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          description: Internal server error 

      security: 

        - oauth2: [] 

  /ontology/save: 

    post: 

      summary: Save the ontology 

      operationId: saveOntology 

      requestBody: 

        required: true 

        content: 

          text/plain: 

            schema: 

              type: string 

              description: Base64 encoded ontology SQLite database file 

      responses: 

        '200': 

          description: Ontology saved successfully 

        '400': 

          description: Bad request 

        '403': 

          description: Forbidden 

        '500': 

          description: Internal server error 

      security: 

        - oauth2: [] 

components: 

  securitySchemes: 

    oauth2: 

      type: oauth2 

      flows: 

        password: 

          authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth 

          tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token 

          scopes: {} 

3.2 Upper/Domain Ontology 

This hierarchical structure consists of an upper ontology, which provides a foundational set of 
concepts applicable in the InnoSale context, and domain ontologies, which cover specific areas 
relevant to particular contexts. This approach is essential for mapping information into a 
comprehensive knowledge graph, enhancing data organization and retrieval.  
The upper ontology ensures a consistent framework that supports interoperability between 
different data sources and domains, while domain ontologies address specific contextual 
needs, enabling precise and relevant data utilization. 
The ontology's role in mapping information into the knowledge graph is crucial for organizing 
and retrieving data efficiently. It ensures that the data is interconnected through defined 
relationships, which enhances the system's ability to handle complex queries and provides 
more meaningful search results. 
For this approach, the data is structured within a graph database, such as Neo4J. This allows 
for more dynamic and flexible querying of interconnected concepts and relationships, which 
is particularly beneficial for handling complex queries. The ontology facilitates creating and 
managing this knowledge graph by defining the nodes (concepts) and edges (relationships) 
that represent the data. 
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Several functions need to be developed to handle the ontology and knowledge graph 
effectively, as `load_ontology’, `update_node(node_id, new_data)`,  `update_edge(edge_id, 
new_relationship)`:, `save_ontology_graph()`. These functions ensure that the ontology can 
be dynamically managed and updated, supporting the continuous evolution and refinement 
of the knowledge graph. 
The following figure shows the structure of the upper ontology and its branching into domain 
ontologies: 

 
Figure 6 Upper Ontology Structure 

4 Fuzzy Logic Rules 
In the competitive landscape of industrial sales, determining the optimal pricing for complex 
products requires an intricate understanding of various influence factors. These factors 
include the duration of the customer relationship, competitive pressure in the customer's 
region, and the current workload of the manufacturer. To encapsulate this nuanced 
knowledge, fuzzy logic rules are employed. These rules are crafted by the CEO, the head of 
sales or other sales experts, leveraging their expertise to adapt master prices for specific 
customers. It is comparable with writing discount tables in a more traditional sales process. 
The purpose of this chapter is to describe the management of fuzzy logic rule sets within the 
InnoSale project, specifically focusing on the knowledge base that provides functionality to 
store and retrieve these rules as indicated in deliverable D2.2. The rule sets are text files with 
a syntax according to IEC 61131-7 (Fuzzy Control Language). 
The knowledge base is implemented as a set of HTTP-based REST services. These services can 
be deployed on a single computer, across multiple computers, or within cloud storage 
environments. The following sections provide a detailed description of the service interface 
for managing fuzzy logic rules, including examples, configuration guidelines, and a formal 
OpenAPI specification. 
 
Usage examples 
A) Uploading a Fuzzy Logic Rule Set: 
To upload a fuzzy logic rule set to the knowledge base, you can use the following curl 
command. The rule set should be encoded in base64 before uploading. 
First, create a file containing your fuzzy logic rules, encode it in base64, and upload it: 
 
# Encode the file in base64 



 D3.3 VERSION 1.0, 2024-07-17 
 

 - 11 - 

base64 rules.fcl > rules_base64.fcl 

 

# Upload the encoded rule set using curl 

curl -X POST http://localhost:8080/api/v1/fuzzy-rules/PricingRules \ 

     -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 

     -H "Content-Type: text/plain" \ 

     -d @rules_base64.fcl 

 
Of course, you need to adapt “localhost” and the port “8080” to the network address of the 
concrete Knowledge Base service. 
 
B) downloading a Fuzzy Logic Rule Set: 
To download a fuzzy logic rule set from the knowledge base, you can use the following curl 
command. The downloaded rule set will be in base64 format, which you can then decode. 
 
# Download the rule set using curl 

curl -X GET http://localhost:8080/api/v1/fuzzy-rules/PricingRules \ 

     -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ 

     -H "Accept: text/plain" \ 

     -o downloaded_rules_base64.fcl 

 

# Decode the downloaded base64 file 

base64 --decode downloaded_rules_base64.fcl > downloaded_rules.fcl 

 

# View the decoded rules 

cat downloaded_rules.fcl 

 
Configuration 
The configuration of the knowledge base service is managed via a YAML file. This file includes 
parameters such as the relative path on the knowledge base server. Below is an example 
configuration file: 
 
server: 

  port: 8080 

  basePath: /api/v1 

 

knowledgeBase: 

  fuzzyRulesPath: /data/fuzzy-rules 

  security: 

    oauth2: 

      authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth 

      tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token 

      clientId: fuzzy-logic-knowledgebase 

      clientSecret: your-client-secret 

 
Port and base path are typical HTTP server parameters. The fuzzyRulesPath is a relative path 
to where the Fuzzy Logic rule sets are stored. The security section contains information about 
how to address to the authentication and authorization service like a Keycloak server. 
 
Formal Specification 
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The following section provides the OpenAPI specification for the knowledge base service, 
detailing the routes and HTTP messages. 
 
openapi: 3.0.0 
info: 
  title: Fuzzy Logic Rule Management API 
  version: 1.0.0 
  description: API for managing fuzzy logic rules in the knowledge base. 
servers: 
  - url: http://localhost:8080/api/v1 
paths: 
  /fuzzy-rules/{ruleSetName}: 
    post: 
      summary: Store a new fuzzy logic rule set 
      operationId: storeFuzzyRuleSet 
      parameters: 
        - name: ruleSetName 
          in: path 
          required: true 
          schema: 
            type: string 
      requestBody: 
        required: true 
        content: 
          text/plain: 
            schema: 
              type: string 
              description: Base64 encoded fuzzy logic rule set string 
      responses: 
        '200': 
          description: Rule set stored successfully 
        '400': 
          description: Bad request 
        '403': 
          description: Forbidden 
        '404': 
          description: Not found 
        '500': 
          description: Internal server error 
      security: 
        - oauth2: [] 
  /fuzzy-rules/{ruleSetName}: 
    get: 
      summary: Load a fuzzy logic rule set by name 
      operationId: loadFuzzyRuleSet 
      parameters: 
        - name: ruleSetName 
          in: path 
          required: true 
          schema: 
            type: string 
      responses: 
        '200': 
          description: Rule set retrieved successfully 
          content: 
            text/plain: 
              schema: 
                type: string 
                description: Base64 encoded fuzzy logic rule set string 
        '400': 
          description: Bad request 
        '403': 
          description: Forbidden 
        '404': 
          description: Not found 
        '500': 
          description: Internal server error 
      security: 
        - oauth2: [] 
components: 
  securitySchemes: 
    oauth2: 
      type: oauth2 
      flows: 
        password: 
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          authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth 
          tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token 
          scopes: {} 
 
In Innosale, we will always use the constant character string “PricingRules” as value for the 
parameter “ruleSetName”. This makes the service universally usable for other kinds of Fuzzy 
Logic rule sets. 

5 Deductive Reasoning Rules 
One solution to realize ontology-based data access (OBDA) on ontologies and related formats 
to store knowledge and facts is a rule-based, declarative, and logic-based approach. The Nemo 
language [1] follows that approach and enhances the reasoning capabilities of Datalog with 
native support for numbers, various aggregation functionalities, and many built in functions 
one would expect from imperative and relational query languages. This approach allows the 
Nemo system to refine available knowledge, identify structurally missing information, and 
produce explainable answers.  
Expert knowledge can transfer in a straightforward way into maintainable and easy to change 
declarative rules. This allows for repeated use and further insights to the modelled knowledge. 
Expert systems and business rule systems build upon such methods but are usually less 
efficient or versatile for the end user of them. The advantage of the Nemo language is a simple, 
yet powerful, language with a well maintained developer environment, consisting of a 
language server for code highlighting and syntactical error checking as well as a robust method 
to explain solutions. 

Nemo language 

The Nemo language builds upon the declarative rule language Datalog and extends it with 
many features of modern query and rule languages. In Datalog, expert knowledge can be 
represented through simple and easy-to-understand if-then statements. Such rules are 
evaluated by matching the if-part with existing data and deriving the corresponding 
conclusion of the then-part. Unlike traditional database query languages, Datalog allows rules 
to depend on each other recursively, enabling more complex queries and a more sophisticated 
manipulation of data. It therefore achieves a perfect balance between simplicity and 
expressiveness. In the following, we show example usage of the Nemo language to represent 
knowledge for the Light-Lifting Domain.  
 

is_a("KBK Aluline", "KBK Light Crane") . 
is_a("KBK Light Crane", "Crane") . 
max_load("KBK Light Crane", 3200) . 
 
max_ load (?Crane, ?Weight)  
    :- is_a(?Crane, ?Category), max_load(?Category, ?Weight) . 
is_a(?A, ?C) :- is_a(?A, ?B), is_a(?B, ?C) . 

 
In the above program, we see part of a concept hierarchy describing the “subclass of” or 
“instance of” relationship between different types of cranes. Such hierarchies form the basis 
of many ontologies. Furthermore, the program includes the maximum load capacity for a 
specific type of crane.  Rules are read from right to left, where the right side encodes its 
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condition while the left side contains its conclusion. Variables are denoted with a question 
mark. Intuitively, the first rule states that if a category of cranes has a given maximum load 
capacity, then every crane belonging to that category must also have the same load capacity. 
The second rule demonstrates the recursive computation of the is_a relationship. The above 
ruleset therefore derives that KBK Aluline is a crane with a maximum load capacity of 3200 kg. 
 
Nemo has support for many different datatypes – including integer, string, language-tagged 
string, single and double precision float, and boolean – as well as related functions. The latter 
include many functions known from other programming languages, such as SQRT (square root 
of a number) or STRLEN (length of a string), as well as standard arithmetic operators. Functions 
can be nested arbitrarily and may occur anywhere in a rule. Moreover, comparison operators 
like < or != can be used provided that variable bindings are sufficiently determined by other 
parts of the rule’s condition. Nemo is dynamically typed and allows any type of data to occur 
in any position, without requiring a fixed schema. Functions such as STRLEN are not defined 
for all types of inputs, and rules carry the implicit condition that they only apply to variable 
bindings for which all functions are defined. The following example shows a simple use case 
where a request is marked as invalid, if the requested load is gr e ater than the maximum load 
that can be handled by the requested type of crane: 
 

invalid(?Request) :-  
    request_load(?Request, ?Load), request_crane(?Request, ?Crane), 
    max_load(?Crane, ?Max), ?Load > ?Max . 

 
The Nemo language also features existential rules, which allow the user to assert the 
existence of certain patterns. Such rules are useful to determine the validity of a given 
ontology or may be used to verify the completeness of a customer request. The following 
rule, for example, requires that every crane of type KKB Light Crane includes a hoist. 
Existential variables are marked with an exclamation mar k. 
 

has_part(?Crane, !Hoist), type(!Hoist, "hoist")  
    :- is_a(?Crane, "KBK Light Crane") . 

 
An important feature of Nemo’s rule language are aggregates. Supported are the most 
common aggregates: maximum, minimum, sum and count. The next example determines 
the maximum load cap acity of a crane by computing the minimum load capacity of each of 
its parts. 
 

max_load(?Crane, #min(?Load))  
    :- max_load(?Part, ?Load), part_of(?Crane, ?Part) . 

 
Finally, Nemo supports (stratified) negation using the following syntax: 
 

valid(?Request):- ~invalid(?Request) . 
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Stratified negation intuitively means that there are no negation cycles allowed. 
 

6 Entity Recognition 
Within InnoSale, Named Entity Recognition (NER) is performed to extract relevant technical 
specifications from customer e-mail inquiries. The NER learns different formulations used 
from novice customers buying a complex product for the first time, to expert customers that 
can precisely specify what they need. Within the NER component, all this knowledge is 
modeled implicitly. So instead of learning synonyms, antonyms, and relations like 
“is_part_of”, NLP algorithms working in a high-dimensional vector space learn such 
knowledge implicitly from data. 
To acquire that knowledge, data annotation is needed. For this, the annotation tool shown in 
Figure 5 was used, which has types for relevant entities that shall be extracted on the left and 
shows the free-form text on the right. Users simply need to select a colour on the left and 
apply it to the matching text on the right. 
 

 
Figure 7 Annotating entities in inquiries 

Based on these annotations, NER models can be trained that, given a text, apply the same 
typing as the user did during annotation. Taking the NER output and transforming it into a 
structured format (here JSON) thus allows the automatic deduction of technical requirements 
from free-form textual e-mail inquiries. This allows automatically filling in e-project sheets, 
thus, significantly speeding up the time to offer. Furthermore, deductive reasoning rules as 
described in Section 5, can be used on top of the NER output to deduce further knowledge 
not explicitly stated in the inquiry. Thus, the implicit modeling of the NER module can be 
extended by the explicit modeling via reasoning rules, leading to an overall system that 
understands what the user explicitly stated and also what he did not state explicitly but which 
can be deduced from it. 
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7 Speech Recognition & Meeting Summarization Parameters 
The integration of advanced Natural Language Processing (NLP) technologies is a pivotal 
component of the InnoSale project, aimed at transforming spoken content from project 
meetings into actionable, precise textual transcripts. Knowledge Base in this case, employs 
different models for transcription and language processing as well as semantic analysis and 
summarization. It also stores all audio files and transcribed summaries, maintaining a robust 
and searchable database that supports quick data retrieval and historical analysis. 
 

 
Figure 8 Flow Chart Diagram 

We are utilizing OpenAI’s Whisper Large-v2 model, specifically fine-tuned to recognize and 
transcribe the Turkish language to address the unique challenges presented by the language. 
This model captures spoken content with high accuracy, which is essential given Turkish’s 
agglutinative nature, where suffixes significantly alter meanings and grammatical functions. 
The fine-tuning process includes training on a diverse dataset received from Ermetal that 
includes industry-specific terminology and various dialects to ensure comprehensive 
understanding and accuracy. 
Post-transcription, the Turkish Spacy model applies advanced NLP techniques to analyse the 
structure and semantics of sentences. This model prioritizes crucial information, employing 
relevance algorithms such as Jaccard and Cosine similarities to identify and highlight the most 
important information. The system extracts key decisions, technical specifications, and 
actionable insights from lengthy discussions, condensing them into concise, easy-to-digest 
summarized texts. This not only saves time but also ensures that critical data influencing quote 
accuracy is highlighted. 
API Specification 
Audio recordings meetings are uploaded to the system through the interface developed 
within the scope of the InnoSale project. Voice recordings uploaded to the system are stored 
on the server. Additionally, a table containing information about the uploaded voice 
recordings and their file locations are stored in the MySQL database. The voice recording to 
be transcribed is selected through the interface developed within the scope of the InnoSale 
project and the transcribing process is started. When the transcribing process of the voice 
recording is completed, the results are stored in the MySQL database and can be viewed via 
the interface. 
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Summarization parameters are created according to the content of the meeting, ensuring a 
more accurate summarization of the language model. These parameters are set and saved by 
the user via the InnoSale interface. The saved parameters are stored in the MongoDB 
database for later use. Then, the summarization process is performed by selecting a voice 
recording that has been transcribed and a parameter set stored in the database. The 
summarized result obtained as a result of this process is displayed on the interface. 
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8 Similarity Analysis 
We are utilizing a combination of 3D shape analysis, advanced algorithms, and integrated data 
systems to provide a thorough assessment of manufacturing complexities and directly 
influences accurate cost estimations. 
We propose a novel algorithm [2] in KB that combines geometric feature extraction, 
normalization techniques, and advanced point cloud registration methods to enhance the 
accuracy and robustness of 3D shape similarity detection.  
Our analysis first starts with geometric feature extraction. The initial step involves calculating 
the dimensions of the oriented bounding box (OBB), which helps standardize the comparison 
of 3D models by eliminating variances caused by different orientations. The algorithm 
computes the OBB for each mesh, which encapsulates the shape within the smallest box 
aligned with its principal axes, providing an orientation-invariant representation of the shape's 
dimensions. This ensures that all models are assessed on a common ground, facilitating more 
consistent cost predictions.  
Persistent homology is employed to compute Betti numbers, which are topological attributes 
that count the number of loops and holes in a structure. Betti numbers, particularly b1, which 
represents the number of loops or holes in the mesh, offers insights into a shape’s topological 
complexity. Understanding these aspects is crucial as they significantly influence the 
manufacturing process and associated costs, particularly for complex designs that require 
sophisticated techniques. 
To mitigate the influence of outliers in the geometric feature distributions, a robust scaler is 
employed for normalization. This scaler focuses on the median and interquartile range, 
ensuring that the scaling is not unduly affected by extreme values, which are common in 
geometric data. 
After normalization, the Manhattan distances between the feature vectors of different shapes 
are computed to establish an initial similarity ranking, with smaller distances indicating closer 
matches. 
A pre-processing stage is employed and the top 50 potentially similar shapes from the initial 
ranking are prepared for further analysis. This involves scaling the point clouds to a 
standardized size and aligning them with respect to their principal axes. 
For precise model alignment and comparison, KB uses an advanced ICP algorithm enhanced 
with Random Sample Consensus (RANSAC) and Principal Component Analysis (PCA). This 
method is critical for handling the top 50 similar parts to achieve precise alignment and 
similarity assessment. For parts with a high aspect ratio (resembling long poles), the algorithm 
relies solely on the initial Manhattan distance metric for similarity assessment, bypassing the 
ICP alignment due to potential inaccuracies with elongated shapes. 
Lastly, before running the ICP algorithm, PCA is used to optimally align and scale the shapes, 
ensuring an accurate initial alignment for the subsequent ICP iterations. 
This approach provides our use case partner a robust framework for accurate and efficient 3D 
shape similarity detection across various applications. The sample results which compare 
Ermetal’s domain experts and algorithm’s results can be found below: 
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Figure 9 Similarity Results #1 

 
 
 

 
Figure 10 Similarity Results #2 

 
 

 
Figure 11 Similarity Results #3 
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Figure 12 Similarity Results #4 

API Specification 
The file location and attributes of the STL parts added before in the system are stored in the 
MySQL database. The similarity algorithm works in two different ways. Similarity calculation 
is made according to the geometric shape of the parts (comparative score calculation with the 
ICP algorithm over STL files) and the cosine distance between the feature vectors. At the same 
time, the interface also includes the feature of filtering parts with a certain range of attributes 
before running the similarity algorithm. 
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9 Abbreviations 

LLE Light Lifting Equipment 

CTO Industrial Cranes 

WM Waste Management 

DPM Digital Product Marketplace 

SM Sheet Metal Stamping 

KB Knowledge Base 

API Application Programming Interface 

SQL  Structured Query Language 

JSON JavaScript Object Notation 

MySQL  My Structured Query Language 

OAuth Open Authorization 

YAML Yet another markup language 

HTTP Hypertext Transfer Protocol 

REST Representational state transfer 

KAC Knowledge Acquisition Component 

UC Use Case 
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