

Innovating Sales and Planning of Complex Industrial Products
Exploiting Artificial Intelligence

Deliverable 3.3

Knowledge Base

Deliverable type: Software

Deliverable reference number: ITEA 20054 | D3.3

Related Work Package: WP 3

Due date: 2024-05-31

Actual submission date: 2024-07-17

Responsible organisation: Dakik Software

Editor: Bilge Özdemir

Dissemination level: Confidential

Revision: Final | Version 1.0

Abstract:

Knowledge base develops data association models and
Bayesian models to find correlations and dependencies
between product variants and related products that
are not identified by the experts. Knowledge base
provides the T3.6 Inference Engine with data and
validation rules to be specified in the project.

Keywords:

Historical data, Sales data, Database management,
Document-oriented database, Relational database,
Semantic search, Relation extraction, Fuzzy logic rules,
Pricing rules, Entity recognition, Speech recognition,
Meeting summarization, Deductive reasoning

 - 1 -

Table_head Name 1 (partner) Name 2 (partner) Approval date (1 / 2)

Approval at WP level ADESSO TARAKOS 2024-06-14

Veto Review by All
Partners

 2024-07-17

 D3.3, VERSION 1.0, 2024-07-17

 - I -

Editor
Bilge Özdemir (DAKIK)

Contributors
Stefan Ellmauthaler (TUD)
Alex Ivliev (TUD)
Sepideh Sobhgol (IFAK)
Thomas Marus (DEMAG)
Bilge Özdemir (DAKIK)
Mehtap Öklü (DAKIK)
Mert Daloğlu (DAKIK)
Talha Rehman Abid (DAKIK)
Sebastian Wendt (:em AG)
Mario Thron (ifak)
Nico Herbig (Natif)

 D3.3, VERSION 1.0, 2024-07-17

 - II -

Executive Summary
Knowledge Base plays a vital role in the InnoSale by serving as a centralized repository to
capture and formalize expertise across various sales domains. It leverages ontology-based
rules to represent product variants, configuration constraints, and dependencies,
incorporates historical sales data from partners, structured in databases like MongoDB and
MySQL, and accessible via APIs. Knowledge Base also supports managing fuzzy logic rule sets
for situational pricing, providing APIs to upload, retrieve, and modify these rules. Overall, it
establishes a robust foundation by integrating data sources, formalizing domain knowledge
through ontologies and rules, and providing structured access to this curated knowledge for
intelligent sales decision support.

 D3.3, VERSION 1.0, 2024-07-17

 - III -

Table of Content
1 Introduction ... 1

2 Historical Data Management .. 1
2.1 LLE ... 1
2.2 CTO ... 4
2.3 WM ... 4
2.4 DPM .. 4
2.5 SM ... 5

3 Ontology Development .. 6
3.1 Semi-Automatic approach of constructing an Ontology .. 6
3.2 Upper/Domain Ontology .. 9

4 Fuzzy Logic Rules .. 10

5 Deductive Reasoning Rules .. 13
Nemo language ... 13

6 Entity Recognition .. 15

7 Speech Recognition & Meeting Summarization Parameters 16

8 Similarity Analysis .. 18

9 Abbreviations .. 21

10 References ... 21

 D3.3, VERSION 1.0, 2024-07-17

 - IV -

Figures
Figure 1: Origin of the historical Datasets from Demag .. 2
Figure 2: Dataflow for LLE-UC 1,3,4,5 .. 3
Figure 3 Technologies Used ... 6
Figure 4: Terms, Concepts, Relations .. 7
Figure 5: Ontology Data Model ... 7
Figure 6 Upper Ontology Structure ... 10
Figure 7 Annotating entities in inquiries ... 15
Figure 8 Flow Chart Diagram ... 16
Figure 9 Similarity Results #1 ... 19
Figure 10 Similarity Results #2 ... 19
Figure 11 Similarity Results #3 ... 19
Figure 12 Similarity Results #4 ... 20

 D3.3 VERSION 1.0, 2024-07-17

 - 1 -

1 Introduction
Knowledge Base serves as a repository for domain-specific knowledge and provides interfaces
for the Inference Engine to access data and validation rules. KB acts as a facade, providing a
unified interface to access various storage APIs implemented by different InnoSale partners.
Its primary role is to consolidate and centralize access to the diverse knowledge sources and
services developed within the project.
Knowledge Base incorporates historical data management from various use cases, outlining
the database structures, data formats, and technologies used for storing and retrieving
relevant information.
A significant aspect of the Knowledge Base is the ontology development process. It employs
two complementary approaches: a semi-automatic approach for constructing ontologies and
the utilization of upper/domain ontologies. The semi-automatic approach combines synonym
terms to form concepts and defines relationships between these concepts. The upper/domain
ontology approach establishes a hierarchical structure, with an upper ontology providing a
foundational set of concepts and domain ontologies addressing specific contextual needs.
Knowledge Base also includes fuzzy logic rules, which encapsulate nuanced knowledge for
determining optimal pricing for complex products. These rules are crafted by experts, taking
into account various influence factors such as customer relationships, competitive pressure,
and manufacturer workload.
Additionally, it covers deductive reasoning rules using the Nemo language, entity recognition
techniques, speech recognition and meeting summarization parameters, and similarity
analysis methods. These components contribute to the overall functionality and decision-
making capabilities of the Knowledge Base.

2 Historical Data Management
Knowledge Base provides an effective management of historical data provided by the project's
use case partners. This historical data, encompassing details such as past sales orders, product
configurations, customer inquiries, and project files, serves as a valuable foundation for the
InnoSale project. The following section explores the various types of data shared by partners,
how this data is structured within databases, and the mechanisms in place to facilitate access
to this information for other components through well-defined APIs.
The historical data management approach aims to consolidate and organize these diverse data
sources, enabling the Knowledge Base to provide a comprehensive and integrated view of the
available information. By standardizing data formats and structures, Knowledge Base can
effectively support data association models, Bayesian models, and other analytical techniques
to uncover hidden correlations and dependencies, further enriching the knowledge base over
time.

2.1 LLE

Database input data/facts
For one of the LLE demonstrators, which is being created as part of UC 1,3,4,5, historical data
on past sales cases are required. These historical sales cases are to be mapped and compared
with current enquiries coming in as E-Mail requests. This allows similarities to old sales cases
to be identified, which should then support the back office in processing the current enquiry.

 D3.3 VERSION 1.0, 2024-07-17

 - 2 -

As this data is currently stored in internal company systems to which the partners cannot be
given access due to confidential data, a so-called dummy database must be created. This
should be a structured database that the partners can access to implement their solutions in
the demonstrator.
Figure 1 shows the systems from which data is to be transferred to the dummy database.
Firstly, past LLE orders containing information such as reference ID, quantity, price, and
currency are filtered via the company's internal SAP system. With the help of the Ref-ID, the
corresponding product configurations can be exported from the orders from the Camos
system, which contain all the important technical parameters of the ordered product. A
certain number of data records are now extracted from these two data sources, merged, and
then transferred to the dummy database in a structured manner.

Figure 1: Origin of the historical Datasets from Demag

Another set of data which will be shared outside of the database, directly with the InnoSale
partners Natif and ifak, are the E-Mail enquiries from customers. They should be used as
historical Sales requests to train their algorithm regarding entity recognition and semantic
search.
Hata! Başvuru kaynağı bulunamadı. shows the entire planned data flow within the first
demonstrator. For the planned demonstrator, the dummy database will primarily serve the
purpose of giving partners access to some of our historical sales cases and thus being able to
apply their solution approaches. Each partner ultimately accesses the data for their own
purposes and tries to contribute their solution to the demonstrator. Specifically, Ifak uses both
the data from the database and the data shared from email customer inquiries for its
“Semantic Search” approach. IOTIQ will also have visibility into the database as they
essentially deal with the integration of the GUI. Also like the TU Dresden, where “rule-based
search” is in the foreground. Although Natif will not directly use the data from the database,
its solution approach will be used to extract the most important technical parameters from
customers' email inquiries using their entity recognition algorithm and automatically transfer
them to the required e-project sheet. This is then used, for example, as a basis to automatically
fill in missing but essential parameters from historical queries (TU Dresden).

 D3.3 VERSION 1.0, 2024-07-17

 - 3 -

Figure 2: Dataflow for LLE-UC 1,3,4,5

In addition, for another demonstrator regarding situational pricing, knowledge from Demag's
sales engineers is made available for the fuzzy logic approach to define variables and fuzzy
logic rules. This information will not be part of the earlier described database and will be
provided directly to ifak, due to the reason it is not for interest of the other partners.

The Database developed for this use case is a document-based MongoDB, as this was the best
fit for the format, the original Data was provided in.
The initial plan was for Demag to export the needed Data and anonymize personal
information. This would have been read into the database hosted by :em AG. Because of legal
reasons this concept was adapted so that Demag themselves would host the database on their
servers. :em AG will provide the software as a Docker image, so that Demag can easily start
and stop the service as well as read in the initial data needed with a locally run script. The data
is then made accessible to IFAK, IOTIQ and TUD secured via a company specific API token for
each partner.

 D3.3 VERSION 1.0, 2024-07-17

 - 4 -

2.2 CTO

Knowledge Base for CTO supplies the Inference Engine with pertinent data, including records
of previous service tickets, material costs, and details about customer environments.
Additionally, Knowledge Base receives supplementary background information from external
data sources through the "update background information" interface, facilitated by the
knowledge acquisition component. However, no specific services are being developed within
this particular component.

2.3 WM

Knowledge Base in WM use case acts as a repository, supplying the Inference Engine with
information such as past sales records, customer details, campaign data, and applicable rules
and regulations. The Summium CPQ configurator platform developed by Wapice serves as the
database for this purpose. Knowledge Acquisition Component is responsible for populating
the Knowledge Base with the required data from external sources. However, no specific
services are being developed within this component itself.

2.4 DPM

Digital Product Marketplace has a database containing internal digital products from Panel
and Softtekt. These internal digital products include the following details:

- requirements specification document,
- class diagram,
- natural language description by the creator,
- tags like programming language, license, platform, quality metrics, etc.

The ontology is structured as follow:

In this use case, the information is stored in a knowledge graph implemented using Neo4J, a
graph database management system. To manage the knowledge graph, we have developed
an API using FastAPI.

 D3.3 VERSION 1.0, 2024-07-17

 - 5 -

The Knowledge Base in our use case provides information to two main components: the
Inference Engine and the Knowledge Acquisition Component (KAC). The interactions are as
follows:

1. Inference Engine: This component requires information about all the digital products
stored in the knowledge graph. It also has the capability to add new digital products.
The API facilitates these interactions by exposing endpoints for querying and updating
the digital product information.

2. Knowledge Acquisition Component: This component is responsible for updating or
modifying the ontology and its structure to refine and enhance the knowledge graph.
The API supports these operations by providing endpoints for ontology management.

The API developed with FastAPI exposes endpoints for interacting with the knowledge base:

These endpoints enable seamless communication between the knowledge base, the Inference
Engine, and KAC, ensuring that the digital information and the ontology remain accurate and
up-to-date.

2.5 SM

The database in SM case generally contains numerical data, string and Boolean values, audio
files, and 3D part files. Data is stored in table, object, and JSON types. Database management
is done through MySQL and MongoDB systems, and data updating is done through Python,
which is the backend.
MySQL is a relational database management system in which table structures are predefined
and immutable. All records within a given table must adhere to the fixed schema, containing
the same set of fields. In such scenarios, the use of SQL is employed for data manipulation and
retrieval.

 D3.3 VERSION 1.0, 2024-07-17

 - 6 -

On the other hand, MongoDB is a document-oriented (non-relational) database, offering
greater flexibility in terms of data structure. When new data is inserted, corresponding
collections are dynamically created, and each record within a collection is not required to
possess an identical set of fields. Due to the absence of join operations in MongoDB, the
process of retrieving and writing data is generally more straightforward compared to
relational databases.

Figure 3 Technologies Used

The data in the database is read through the backend to be sent to the frontend and
transmitted to ReactJS and ThreeJS components. Data is read from the database with the
Python backend and presented as endpoints that the frontend can access with the FlaskAPI
system. On the JavaScript frontend, requests are made to endpoints, and data is obtained
using the axios system. Python's FlaskAPI system is used in this process.

3 Ontology Development
We have created an ontology to bridge the gap between the terminology used by sales
engineers and customer inquiries. This ontology will be used for the semantic search of project
files and historical data. Details on the ontology approach can be found in D3.1, while
information on its use in ontology-based semantic search is available in D3.2.
We employ two complementary approaches to maximize the effectiveness in the InnoSale use
cases: Semi-Automatic approach of constructing an Ontology and Upper/Domain Ontology.

3.1 Semi-Automatic approach of constructing an Ontology

The following figures provide an overview of the data structure of the ontology. They illustrate
how synonyms combine to form concepts and how these concepts can have various types of
relationships with each other, including "element-of" and "abstract-specification." As
previously mentioned, the details on relation extraction are covered in D3.1.

 D3.3 VERSION 1.0, 2024-07-17

 - 7 -

Figure 4: Terms, Concepts, Relations Figure 5: Ontology Data Model

The data structure is stored in Sqlite, which functions as a relational database. This database
could be stored within the knowledge base component. Therefore, some functions need to be
developed to access the database for loading it, editing the data, and saving the updated
database back into the knowledge base. Assuming there is a user interface that provides
access to the knowledge base, at least two functions need to be implemented to utilize the
ontology database. These functions could be `load_ontology()` and
`save_ontology(sqlite_database_file)`. To efficiently update the database, we often need
several quick accesses. Therefore, when we load the database, we should be able to load it
onto a local computer, edit it, and then save it back into the knowledge base all at once. This
process provides quicker and faster access. Given that the database file is small, loading the
entire file should not be problematic.

Usage examples
A) Load Ontology Example
To load the ontology from the knowledge base, you can use the curl command to access the
HTTP-based REST-API. The following example demonstrates how to use the load_ontology
route:
Download the ontology using curl

curl -X GET http://localhost:8080/api/v1/ontology \

 -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \

 -H "Accept: text/plain" \

 -o ontology_base64.db

Decode the downloaded base64 file

base64 --decode ontology_base64.db > ontology.db

B) Save Ontology Example
To save the updated ontology back into the knowledge base, you can use the curl command
to access the save_ontology route:
Encode the ontology file in base64

base64 ontology.db > ontology_base64.db

Upload the encoded ontology file using curl

curl -X POST "http://localhost:8080/api/v1/ontology" \

 -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \

 -H "Content-Type: text/plain" \

machine

equipment

synonym terms
of concept 1

concept 1

chain hoist

chain block

concept 2

device

synonym terms
of concept 2

is a specific

is an abstract

definition of a
concept hierarchy

 D3.3 VERSION 1.0, 2024-07-17

 - 8 -

 -d @ontology_base64.db

Configuration
The configuration of the knowledge base service is managed via a YAML file. Below is an
example configuration:
server:

 port: 8080

 basePath: /api/v1

knowledgeBase:

 ontologyPath: /data/ontology

 security:

 oauth2:

 authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth

 tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token

 clientId: ontology-knowledgebase

 clientSecret: your-client-secret

The “server” section contains typical HTTP server information. The “ontologyPath” is the
location of the file ontology_base64.db at the storage server (the knowledge base). It is a relative path
starting at the root of the server executable. The security part contains typical OAuth2
information.

Formal Specification
The formal specification of the ontology management API uses the OpenAPI (version 3.0.0)
standard. Below is the example specification for the ontology routes. Therein, you need to
update the server’s URL and the security server URLs accordingly:
openapi: 3.0.0

info:

 title: Ontology Management API

 version: 1.0.0

 description: API for managing ontology in the knowledge base.

servers:

 - url: http://localhost:8080/api/v1

paths:

 /ontology:

 get:

 summary: Load the ontology

 operationId: loadOntology

 responses:

 '200':

 description: Ontology retrieved successfully

 content:

 text/plain:

 schema:

 type: string

 description: Base64 encoded ontology SQLite database file

 '400':

 description: Bad request

 '403':

 description: Forbidden

 '404':

 description: Not found

 '500':

 D3.3 VERSION 1.0, 2024-07-17

 - 9 -

 description: Internal server error

 security:

 - oauth2: []

 /ontology/save:

 post:

 summary: Save the ontology

 operationId: saveOntology

 requestBody:

 required: true

 content:

 text/plain:

 schema:

 type: string

 description: Base64 encoded ontology SQLite database file

 responses:

 '200':

 description: Ontology saved successfully

 '400':

 description: Bad request

 '403':

 description: Forbidden

 '500':

 description: Internal server error

 security:

 - oauth2: []

components:

 securitySchemes:

 oauth2:

 type: oauth2

 flows:

 password:

 authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth

 tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token

 scopes: {}

3.2 Upper/Domain Ontology

This hierarchical structure consists of an upper ontology, which provides a foundational set of
concepts applicable in the InnoSale context, and domain ontologies, which cover specific areas
relevant to particular contexts. This approach is essential for mapping information into a
comprehensive knowledge graph, enhancing data organization and retrieval.
The upper ontology ensures a consistent framework that supports interoperability between
different data sources and domains, while domain ontologies address specific contextual
needs, enabling precise and relevant data utilization.
The ontology's role in mapping information into the knowledge graph is crucial for organizing
and retrieving data efficiently. It ensures that the data is interconnected through defined
relationships, which enhances the system's ability to handle complex queries and provides
more meaningful search results.
For this approach, the data is structured within a graph database, such as Neo4J. This allows
for more dynamic and flexible querying of interconnected concepts and relationships, which
is particularly beneficial for handling complex queries. The ontology facilitates creating and
managing this knowledge graph by defining the nodes (concepts) and edges (relationships)
that represent the data.

 D3.3 VERSION 1.0, 2024-07-17

 - 10 -

Several functions need to be developed to handle the ontology and knowledge graph
effectively, as `load_ontology’, `update_node(node_id, new_data)`, `update_edge(edge_id,
new_relationship)`:, `save_ontology_graph()`. These functions ensure that the ontology can
be dynamically managed and updated, supporting the continuous evolution and refinement
of the knowledge graph.
The following figure shows the structure of the upper ontology and its branching into domain
ontologies:

Figure 6 Upper Ontology Structure

4 Fuzzy Logic Rules
In the competitive landscape of industrial sales, determining the optimal pricing for complex
products requires an intricate understanding of various influence factors. These factors
include the duration of the customer relationship, competitive pressure in the customer's
region, and the current workload of the manufacturer. To encapsulate this nuanced
knowledge, fuzzy logic rules are employed. These rules are crafted by the CEO, the head of
sales or other sales experts, leveraging their expertise to adapt master prices for specific
customers. It is comparable with writing discount tables in a more traditional sales process.
The purpose of this chapter is to describe the management of fuzzy logic rule sets within the
InnoSale project, specifically focusing on the knowledge base that provides functionality to
store and retrieve these rules as indicated in deliverable D2.2. The rule sets are text files with
a syntax according to IEC 61131-7 (Fuzzy Control Language).
The knowledge base is implemented as a set of HTTP-based REST services. These services can
be deployed on a single computer, across multiple computers, or within cloud storage
environments. The following sections provide a detailed description of the service interface
for managing fuzzy logic rules, including examples, configuration guidelines, and a formal
OpenAPI specification.

Usage examples
A) Uploading a Fuzzy Logic Rule Set:
To upload a fuzzy logic rule set to the knowledge base, you can use the following curl
command. The rule set should be encoded in base64 before uploading.
First, create a file containing your fuzzy logic rules, encode it in base64, and upload it:

Encode the file in base64

 D3.3 VERSION 1.0, 2024-07-17

 - 11 -

base64 rules.fcl > rules_base64.fcl

Upload the encoded rule set using curl

curl -X POST http://localhost:8080/api/v1/fuzzy-rules/PricingRules \

 -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \

 -H "Content-Type: text/plain" \

 -d @rules_base64.fcl

Of course, you need to adapt “localhost” and the port “8080” to the network address of the
concrete Knowledge Base service.

B) downloading a Fuzzy Logic Rule Set:
To download a fuzzy logic rule set from the knowledge base, you can use the following curl
command. The downloaded rule set will be in base64 format, which you can then decode.

Download the rule set using curl

curl -X GET http://localhost:8080/api/v1/fuzzy-rules/PricingRules \

 -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \

 -H "Accept: text/plain" \

 -o downloaded_rules_base64.fcl

Decode the downloaded base64 file

base64 --decode downloaded_rules_base64.fcl > downloaded_rules.fcl

View the decoded rules

cat downloaded_rules.fcl

Configuration
The configuration of the knowledge base service is managed via a YAML file. This file includes
parameters such as the relative path on the knowledge base server. Below is an example
configuration file:

server:

 port: 8080

 basePath: /api/v1

knowledgeBase:

 fuzzyRulesPath: /data/fuzzy-rules

 security:

 oauth2:

 authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth

 tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token

 clientId: fuzzy-logic-knowledgebase

 clientSecret: your-client-secret

Port and base path are typical HTTP server parameters. The fuzzyRulesPath is a relative path
to where the Fuzzy Logic rule sets are stored. The security section contains information about
how to address to the authentication and authorization service like a Keycloak server.

Formal Specification

 D3.3 VERSION 1.0, 2024-07-17

 - 12 -

The following section provides the OpenAPI specification for the knowledge base service,
detailing the routes and HTTP messages.

openapi: 3.0.0
info:
 title: Fuzzy Logic Rule Management API
 version: 1.0.0
 description: API for managing fuzzy logic rules in the knowledge base.
servers:
 - url: http://localhost:8080/api/v1
paths:
 /fuzzy-rules/{ruleSetName}:
 post:
 summary: Store a new fuzzy logic rule set
 operationId: storeFuzzyRuleSet
 parameters:
 - name: ruleSetName
 in: path
 required: true
 schema:
 type: string
 requestBody:
 required: true
 content:
 text/plain:
 schema:
 type: string
 description: Base64 encoded fuzzy logic rule set string
 responses:
 '200':
 description: Rule set stored successfully
 '400':
 description: Bad request
 '403':
 description: Forbidden
 '404':
 description: Not found
 '500':
 description: Internal server error
 security:
 - oauth2: []
 /fuzzy-rules/{ruleSetName}:
 get:
 summary: Load a fuzzy logic rule set by name
 operationId: loadFuzzyRuleSet
 parameters:
 - name: ruleSetName
 in: path
 required: true
 schema:
 type: string
 responses:
 '200':
 description: Rule set retrieved successfully
 content:
 text/plain:
 schema:
 type: string
 description: Base64 encoded fuzzy logic rule set string
 '400':
 description: Bad request
 '403':
 description: Forbidden
 '404':
 description: Not found
 '500':
 description: Internal server error
 security:
 - oauth2: []
components:
 securitySchemes:
 oauth2:
 type: oauth2
 flows:
 password:

 D3.3 VERSION 1.0, 2024-07-17

 - 13 -

 authorizationUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/auth
 tokenUrl: http://my_keycloak.com:8000/realms/InnoSale/protocol/openid-connect/token
 scopes: {}

In Innosale, we will always use the constant character string “PricingRules” as value for the
parameter “ruleSetName”. This makes the service universally usable for other kinds of Fuzzy
Logic rule sets.

5 Deductive Reasoning Rules
One solution to realize ontology-based data access (OBDA) on ontologies and related formats
to store knowledge and facts is a rule-based, declarative, and logic-based approach. The Nemo
language [1] follows that approach and enhances the reasoning capabilities of Datalog with
native support for numbers, various aggregation functionalities, and many built in functions
one would expect from imperative and relational query languages. This approach allows the
Nemo system to refine available knowledge, identify structurally missing information, and
produce explainable answers.
Expert knowledge can transfer in a straightforward way into maintainable and easy to change
declarative rules. This allows for repeated use and further insights to the modelled knowledge.
Expert systems and business rule systems build upon such methods but are usually less
efficient or versatile for the end user of them. The advantage of the Nemo language is a simple,
yet powerful, language with a well maintained developer environment, consisting of a
language server for code highlighting and syntactical error checking as well as a robust method
to explain solutions.

Nemo language

The Nemo language builds upon the declarative rule language Datalog and extends it with
many features of modern query and rule languages. In Datalog, expert knowledge can be
represented through simple and easy-to-understand if-then statements. Such rules are
evaluated by matching the if-part with existing data and deriving the corresponding
conclusion of the then-part. Unlike traditional database query languages, Datalog allows rules
to depend on each other recursively, enabling more complex queries and a more sophisticated
manipulation of data. It therefore achieves a perfect balance between simplicity and
expressiveness. In the following, we show example usage of the Nemo language to represent
knowledge for the Light-Lifting Domain.

is_a("KBK Aluline", "KBK Light Crane") .
is_a("KBK Light Crane", "Crane") .
max_load("KBK Light Crane", 3200) .

max_ load (?Crane, ?Weight)
 :- is_a(?Crane, ?Category), max_load(?Category, ?Weight) .
is_a(?A, ?C) :- is_a(?A, ?B), is_a(?B, ?C) .

In the above program, we see part of a concept hierarchy describing the “subclass of” or
“instance of” relationship between different types of cranes. Such hierarchies form the basis
of many ontologies. Furthermore, the program includes the maximum load capacity for a
specific type of crane. Rules are read from right to left, where the right side encodes its

 D3.3 VERSION 1.0, 2024-07-17

 - 14 -

condition while the left side contains its conclusion. Variables are denoted with a question
mark. Intuitively, the first rule states that if a category of cranes has a given maximum load
capacity, then every crane belonging to that category must also have the same load capacity.
The second rule demonstrates the recursive computation of the is_a relationship. The above
ruleset therefore derives that KBK Aluline is a crane with a maximum load capacity of 3200 kg.

Nemo has support for many different datatypes – including integer, string, language-tagged
string, single and double precision float, and boolean – as well as related functions. The latter
include many functions known from other programming languages, such as SQRT (square root
of a number) or STRLEN (length of a string), as well as standard arithmetic operators. Functions
can be nested arbitrarily and may occur anywhere in a rule. Moreover, comparison operators
like < or != can be used provided that variable bindings are sufficiently determined by other
parts of the rule’s condition. Nemo is dynamically typed and allows any type of data to occur
in any position, without requiring a fixed schema. Functions such as STRLEN are not defined
for all types of inputs, and rules carry the implicit condition that they only apply to variable
bindings for which all functions are defined. The following example shows a simple use case
where a request is marked as invalid, if the requested load is gr e ater than the maximum load
that can be handled by the requested type of crane:

invalid(?Request) :-
 request_load(?Request, ?Load), request_crane(?Request, ?Crane),
 max_load(?Crane, ?Max), ?Load > ?Max .

The Nemo language also features existential rules, which allow the user to assert the
existence of certain patterns. Such rules are useful to determine the validity of a given
ontology or may be used to verify the completeness of a customer request. The following
rule, for example, requires that every crane of type KKB Light Crane includes a hoist.
Existential variables are marked with an exclamation mar k.

has_part(?Crane, !Hoist), type(!Hoist, "hoist")
 :- is_a(?Crane, "KBK Light Crane") .

An important feature of Nemo’s rule language are aggregates. Supported are the most
common aggregates: maximum, minimum, sum and count. The next example determines
the maximum load cap acity of a crane by computing the minimum load capacity of each of
its parts.

max_load(?Crane, #min(?Load))
 :- max_load(?Part, ?Load), part_of(?Crane, ?Part) .

Finally, Nemo supports (stratified) negation using the following syntax:

valid(?Request):- ~invalid(?Request) .

 D3.3 VERSION 1.0, 2024-07-17

 - 15 -

Stratified negation intuitively means that there are no negation cycles allowed.

6 Entity Recognition
Within InnoSale, Named Entity Recognition (NER) is performed to extract relevant technical
specifications from customer e-mail inquiries. The NER learns different formulations used
from novice customers buying a complex product for the first time, to expert customers that
can precisely specify what they need. Within the NER component, all this knowledge is
modeled implicitly. So instead of learning synonyms, antonyms, and relations like
“is_part_of”, NLP algorithms working in a high-dimensional vector space learn such
knowledge implicitly from data.
To acquire that knowledge, data annotation is needed. For this, the annotation tool shown in
Figure 5 was used, which has types for relevant entities that shall be extracted on the left and
shows the free-form text on the right. Users simply need to select a colour on the left and
apply it to the matching text on the right.

Figure 7 Annotating entities in inquiries

Based on these annotations, NER models can be trained that, given a text, apply the same
typing as the user did during annotation. Taking the NER output and transforming it into a
structured format (here JSON) thus allows the automatic deduction of technical requirements
from free-form textual e-mail inquiries. This allows automatically filling in e-project sheets,
thus, significantly speeding up the time to offer. Furthermore, deductive reasoning rules as
described in Section 5, can be used on top of the NER output to deduce further knowledge
not explicitly stated in the inquiry. Thus, the implicit modeling of the NER module can be
extended by the explicit modeling via reasoning rules, leading to an overall system that
understands what the user explicitly stated and also what he did not state explicitly but which
can be deduced from it.

 D3.3 VERSION 1.0, 2024-07-17

 - 16 -

7 Speech Recognition & Meeting Summarization Parameters
The integration of advanced Natural Language Processing (NLP) technologies is a pivotal
component of the InnoSale project, aimed at transforming spoken content from project
meetings into actionable, precise textual transcripts. Knowledge Base in this case, employs
different models for transcription and language processing as well as semantic analysis and
summarization. It also stores all audio files and transcribed summaries, maintaining a robust
and searchable database that supports quick data retrieval and historical analysis.

Figure 8 Flow Chart Diagram

We are utilizing OpenAI’s Whisper Large-v2 model, specifically fine-tuned to recognize and
transcribe the Turkish language to address the unique challenges presented by the language.
This model captures spoken content with high accuracy, which is essential given Turkish’s
agglutinative nature, where suffixes significantly alter meanings and grammatical functions.
The fine-tuning process includes training on a diverse dataset received from Ermetal that
includes industry-specific terminology and various dialects to ensure comprehensive
understanding and accuracy.
Post-transcription, the Turkish Spacy model applies advanced NLP techniques to analyse the
structure and semantics of sentences. This model prioritizes crucial information, employing
relevance algorithms such as Jaccard and Cosine similarities to identify and highlight the most
important information. The system extracts key decisions, technical specifications, and
actionable insights from lengthy discussions, condensing them into concise, easy-to-digest
summarized texts. This not only saves time but also ensures that critical data influencing quote
accuracy is highlighted.
API Specification
Audio recordings meetings are uploaded to the system through the interface developed
within the scope of the InnoSale project. Voice recordings uploaded to the system are stored
on the server. Additionally, a table containing information about the uploaded voice
recordings and their file locations are stored in the MySQL database. The voice recording to
be transcribed is selected through the interface developed within the scope of the InnoSale
project and the transcribing process is started. When the transcribing process of the voice
recording is completed, the results are stored in the MySQL database and can be viewed via
the interface.

 D3.3 VERSION 1.0, 2024-07-17

 - 17 -

Summarization parameters are created according to the content of the meeting, ensuring a
more accurate summarization of the language model. These parameters are set and saved by
the user via the InnoSale interface. The saved parameters are stored in the MongoDB
database for later use. Then, the summarization process is performed by selecting a voice
recording that has been transcribed and a parameter set stored in the database. The
summarized result obtained as a result of this process is displayed on the interface.

 D3.3 VERSION 1.0, 2024-07-17

 - 18 -

8 Similarity Analysis
We are utilizing a combination of 3D shape analysis, advanced algorithms, and integrated data
systems to provide a thorough assessment of manufacturing complexities and directly
influences accurate cost estimations.
We propose a novel algorithm [2] in KB that combines geometric feature extraction,
normalization techniques, and advanced point cloud registration methods to enhance the
accuracy and robustness of 3D shape similarity detection.
Our analysis first starts with geometric feature extraction. The initial step involves calculating
the dimensions of the oriented bounding box (OBB), which helps standardize the comparison
of 3D models by eliminating variances caused by different orientations. The algorithm
computes the OBB for each mesh, which encapsulates the shape within the smallest box
aligned with its principal axes, providing an orientation-invariant representation of the shape's
dimensions. This ensures that all models are assessed on a common ground, facilitating more
consistent cost predictions.
Persistent homology is employed to compute Betti numbers, which are topological attributes
that count the number of loops and holes in a structure. Betti numbers, particularly b1, which
represents the number of loops or holes in the mesh, offers insights into a shape’s topological
complexity. Understanding these aspects is crucial as they significantly influence the
manufacturing process and associated costs, particularly for complex designs that require
sophisticated techniques.
To mitigate the influence of outliers in the geometric feature distributions, a robust scaler is
employed for normalization. This scaler focuses on the median and interquartile range,
ensuring that the scaling is not unduly affected by extreme values, which are common in
geometric data.
After normalization, the Manhattan distances between the feature vectors of different shapes
are computed to establish an initial similarity ranking, with smaller distances indicating closer
matches.
A pre-processing stage is employed and the top 50 potentially similar shapes from the initial
ranking are prepared for further analysis. This involves scaling the point clouds to a
standardized size and aligning them with respect to their principal axes.
For precise model alignment and comparison, KB uses an advanced ICP algorithm enhanced
with Random Sample Consensus (RANSAC) and Principal Component Analysis (PCA). This
method is critical for handling the top 50 similar parts to achieve precise alignment and
similarity assessment. For parts with a high aspect ratio (resembling long poles), the algorithm
relies solely on the initial Manhattan distance metric for similarity assessment, bypassing the
ICP alignment due to potential inaccuracies with elongated shapes.
Lastly, before running the ICP algorithm, PCA is used to optimally align and scale the shapes,
ensuring an accurate initial alignment for the subsequent ICP iterations.
This approach provides our use case partner a robust framework for accurate and efficient 3D
shape similarity detection across various applications. The sample results which compare
Ermetal’s domain experts and algorithm’s results can be found below:

 D3.3 VERSION 1.0, 2024-07-17

 - 19 -

Figure 9 Similarity Results #1

Figure 10 Similarity Results #2

Figure 11 Similarity Results #3

 D3.3 VERSION 1.0, 2024-07-17

 - 20 -

Figure 12 Similarity Results #4

API Specification
The file location and attributes of the STL parts added before in the system are stored in the
MySQL database. The similarity algorithm works in two different ways. Similarity calculation
is made according to the geometric shape of the parts (comparative score calculation with the
ICP algorithm over STL files) and the cosine distance between the feature vectors. At the same
time, the interface also includes the feature of filtering parts with a certain range of attributes
before running the similarity algorithm.

 D3.3 VERSION 1.0, 2024-07-17

 - 21 -

9 Abbreviations

LLE Light Lifting Equipment

CTO Industrial Cranes

WM Waste Management

DPM Digital Product Marketplace

SM Sheet Metal Stamping

KB Knowledge Base

API Application Programming Interface

SQL Structured Query Language

JSON JavaScript Object Notation

MySQL My Structured Query Language

OAuth Open Authorization

YAML Yet another markup language

HTTP Hypertext Transfer Protocol

REST Representational state transfer

KAC Knowledge Acquisition Component

UC Use Case

10 References
[1] Abid, T. R., Yıldız, C., Erten, A. E., & Kaya, K. (n.d.). Enhancing Mesh and Point Cloud

Similarity Detection through Geometric Features and ICP. Dakik Software Technologies
& ERMETAL.

[2] Alex Ivliev, Stefan Ellmauthaler, Lukas Gerlach, Maximilian Marx, Matthias
Meißner, Simon Meusel, Markus Krötzsch: Nemo: First Glimpse of a New Rule
Engine In Enrico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Gaggl, Roberta
Calegari, Artur D'Avila Garcez, Francesco Fabiano, Alessandra Mileo, Alessandra
Russo, Francesca Toni, eds., Proceedings 39th International Conference on Logic
Programming (ICLP 2023), volume 385 of EPTCS, 333--335, September 2023

