

Exploitable Results by Third Parties
ITEA2 9140014 ModelWriter

Project details

Project leader: Ferhat Erata

Email: ferhat@computer.org

Website: https://github.com/ModelWriter/

mailto:ferhat@computer.org
https://github.com/ModelWriter/

2

Exploitable Results by Third Parties

9140014 ModelWriter

WP6: Architecture, Integration and Evaluation

•ModelWriter Core (Eclipse Intent)

WP2: Semantic Parsing and
Generation of Documents

•Semantic Parser

•Natural Language Generator

WP3 - Model <-> Knowledge
Base

•Tarski

•AlloyInEcore

WP4: Knowledge base Design and Implementation

•High Performance Traceability Solver

•Mantis Ontology API

3

Exploitable Results by Third Parties

9140014 ModelWriter

Name: Eclipse Intent (ModelWriter Core)

Input(s): Main feature(s) Output(s):

▪ Models

▪ Wiki text

▪ MS Word

▪ Source code

▪ Synchronization mapping markers for

text

▪ Synchronization mapping markers for

models

▪ Linking between master source ->

slave target

▪ Desynchronization detection with

navigation to editors

▪ Validation of re-synchronizations

▪ Desynchronization

report

Unique Selling

Proposition(s):

▪ Desynchronization detection between source code / models /

documentation

▪ Work with several tools (any text based or EMF based Eclipse tools)

▪ No-intrusive

▪ Reliable to modifications

▪ Open Source

Integration

constraint(s):

▪ No-intrusive (no modification required to any input files)

▪ Creation of a new connector to support any new format

Intended user(s): ▪ M&T Architect of Sirius community

▪ System Engineers

▪ Requirement Engineers

▪ Enterprise Architects

▪ Pre-sales

Provider: ▪ OBEO, France

Contact point: ▪ Etienne Juliot etienne.juliot@obeo.fr

Condition(s) for

reuse:

▪ EPL (Eclipse Public License)

Source Codes ▪ https://github.com/ModelWriter/Source

Publications F. Erata et. al. ModelWriter: Text and Model-Synchronized Document

Engineering Platform. Automated Software Engineering Conference

(ASE 2017)

https://modelwriter.github.io/Tarski/publications/ASE2017.pdf

Website ▪ https://www.eclipse.org/intent/

 Latest update: 2017-08-25

mailto:etienne.juliot@obeo.fr
https://github.com/ModelWriter/Source
https://modelwriter.github.io/Tarski/publications/ASE2017.pdf
https://www.eclipse.org/intent/

4

Exploitable Results by Third Parties

9140014 ModelWriter

Name: Semantic Parser

Input(s): Main feature(s) Output(s):

▪ English Sentences

▪ Grammar and

Lexicon

▪ Ontology (optional)

▪ Generic framework – can take inputs

from different domains.

▪ Robust to unseen words in input; can

skip over them to produce partial

parse output

▪ Optionally, can add the parse outputs

to existing ontology for enrichment.

▪ Description Logic

representation of

input sentences.

▪ Enriched ontology

with new concepts,

relations and

complex axioms

Unique Selling

Proposition(s):

▪ TAG (Tree Adjoining Grammar) based semantic parser

▪ Robust and capable of producing partial semantic parse outputs

▪ Parse output can be added to existing ontology for enrichment and

inference.

▪ Open source

Integration

constraint(s):

▪ Linux Operating System

▪ Availability of (or expertise to produce) grammar and lexicon.

Intended user(s): ▪ Researches in NLP (Semantic Parsing)

Provider: ▪ LORIA, CNRS, France

Contact point: ▪ Claire Gardent claire.gardent@loria.fr

Condition(s) for

reuse:

▪ GNU General Public License (GNU GPL)

Source Codes ▪ https://github.com/ModelWriter/WP2

Publications ▪ C. Gardent et. al. Mapping Natural Language to Description Logic.

European Semantic Web Conference (ESWC 2017).

https://doi.org/10.1007/978-3-319-58068-5_17

▪ F. Erata et. al. ModelWriter: Text and Model-Synchronized Document

Engineering Platform, IEEE/ACM Automated Software Engineering

Conference (ASE 2017),

https://modelwriter.github.io/Tarski/publications/ASE2017.pdf

Website ▪ https://modelwriter.github.io/SemanticParser (under construction)

 Latest update: 2017-08-25

mailto:claire.gardent@loria.fr
https://github.com/ModelWriter/WP2
https://doi.org/10.1007/978-3-319-58068-5_17
https://modelwriter.github.io/Tarski/publications/ASE2017.pdf
https://modelwriter.github.io/SemanticParser

5

Exploitable Results by Third Parties

9140014 ModelWriter

Name: Natural Language Generator

Input(s): Main feature(s) Output(s):

▪ Semantic

representation (e.g.

Flat Semantics)

▪ Grammar and

Lexicon

▪ Generic framework – can take inputs

from different domains.

▪ Ability to produce partial results in

case of failure to process the full

input.

▪ Fast and Scalable

▪ English Sentence

verbalizing the

concepts and

relations present in

the input.

Unique Selling

Proposition(s):

▪ TAG (Tree Adjoining Grammar) based generator.

▪ Fast, generic and capable of producing partial results.

▪ Open source.

Integration

constraint(s):

▪ Linux Operating System

▪ Availability of (or expertise to produce) grammar and lexicon.

Intended user(s): ▪ Researches in NLP (Natural Language Generation)

Provider: ▪ LORIA, CNRS, France

Contact point: ▪ Claire Gardent claire.gardent@loria.fr

Condition(s) for

reuse:

▪ GNU General Public License (GNU GPL)

Source Codes ▪ https://github.com/ModelWriter/WP2

Publications ▪ C. Gardent et. al. Mapping Natural Language to Description Logic.

European Semantic Web Conference (ESWC 2017).

https://doi.org/10.1007/978-3-319-58068-5_17

Website ▪ N/A

 Latest update: 2017-08-25

mailto:claire.gardent@loria.fr
https://github.com/ModelWriter/WP2
https://doi.org/10.1007/978-3-319-58068-5_17

6

Exploitable Results by Third Parties

9140014 ModelWriter

Name: Tarski: Automated Reasoning about Traces using Configurable Formal Semantics

Input(s): Main feature(s) Output(s):

▪ Artifacts and traces

(Traceability

Information)

▪ Configuration file

written in First-order

Relational Logic

▪ Tarski supports the management of

traces between software artifacts,

which is relevant for any development

team that wants to maintain

consistency of the artifacts and their

traces.

▪ Maintains synchronization using the

trace semantics defined by the user

▪ New inferred traces

among artefacts

▪ Inconsistency report

▪ Visualize traces

among locations in

the artifacts

Unique Selling

Proposition(s):

▪ Tarski supports traceability between diverse development artifacts

(requirements, architectural models, source codes, test cases etc.)

▪ The platform allows users to specify artefacts and traces between them,

as well as new trace types and their semantics.

▪ Tarski is built on top of the Eclipse platform, and uses Kodkod and

Alloy, two well-known tools that ensure a solid technical base.

Integration

constraint(s):

▪ Integrated version only runs on Eclipse IDE

▪ Standalone version can be used through the API of the tool.

Intended user(s): ▪ Software and System Engineers / Knowledge Engineers

Provider: ▪ UNIT Information Technology R&D Ltd., Turkey

Contact point: ▪ Ferhat Erata ferhat@computer.org

Condition(s) ▪ EPL (Eclipse Public License)

Source Codes ▪ https://github.com/ModelWriter/Tarski

Publications ▪ F. Erata et. al. A Tool for Automated Reasoning About Traces Based on

Configurable Formal Semantics, ACM SIGSOFT Foundations of

Software Engineering Conference (ESEC/FSE 2017),

http://doi.org/10.1145/3106237.3122825

▪ F. Erata et. al. Tarski: a platform for automated analysis of dynamically

configurable traceability semantics, ACM SIGAPP Symposium on

Applied Computing (SAC 17), http://doi.org/10.1145/3019612.3019747

▪ F. Erata et. al. ModelWriter: Text and Model-Synchronized Document

Engineering Platform, IEEE/ACM Automated Software Engineering

Conference (ASE 2017),

https://modelwriter.github.io/Tarski/publications/ASE2017.pdf

Website ▪ https://modelwriter.github.io/Tarski

 Latest update: 2017-08-25

mailto:ferhat@computer.org
https://github.com/ModelWriter/Tarski
http://doi.org/10.1145/3106237.3122825
http://doi.org/10.1145/3019612.3019747
https://modelwriter.github.io/Tarski/publications/ASE2017.pdf
https://modelwriter.github.io/Tarski

7

Exploitable Results by Third Parties

9140014 ModelWriter

Name: High Performance CDCL-based Traceability Solver for Detecting Inconsistencies

Input(s): Main feature(s) Output(s):

▪ Artifacts and traces

(Traceability

Information)

▪ High performance reasoning support

for traceability

▪ Conflict-driven Clause Learning

▪ Evaluated in an industrial setting.

▪ Detect new traces

and inconsistent

ones.

Unique Selling

Proposition(s):

▪ The fastest traceability solver on the planet!

▪ Tailored to a well-known traceability semantics which is expressible

enough to model any kind of dependency relation, requirements model,

feature models etc.

▪ Repairs broken traces

▪ Fast Visualization of traces

▪ Domain Specific Language for providing input traces.

▪ Open source.

Integration

constraint(s):

▪ Linux Operating System

▪ Fixed Semantics (The Semantics is embedded in the solver and cannot

be changed)

Intended user(s): ▪ System Analysts, Requirement Engineers

Provider: ▪ UNIT Information Technology R&D Ltd., Turkey

Contact point: ▪ Ferhat Erata ferhat@computer.org

Condition(s) for

reuse:

▪ MIT License

Source Codes ▪ https://github.com/ModelWriter/TraceabilitySolver (private until the

algorithm and the data structures are published)

Publications ▪ F. Erata et. al. High Performance CDCL-based Traceability Solver for

Detecting Inconsistencies among Million Artefacts. (work in progress)

Website ▪ https://modelwriter.github.io/TraceabilitySolver (under construction)

 Latest update: 2017-08-25

mailto:ferhat@computer.org
https://github.com/ModelWriter/TraceabilitySolver
https://modelwriter.github.io/TraceabilitySolver

8

Exploitable Results by Third Parties

9140014 ModelWriter

Name: AlloyInEcore: Deep Embedding of First-order Relational Language into

Essential Meta-object Facility (MOF) for Model Completion

Input(s): Main feature(s) Output(s):

▪ MOF Metamodel /

UML Class Model

(EMF Ecore Model)

▪ Partial XMI Instance

(which conforms to

given EMF Model)

▪ First-order

Relational

Constraints as

Invariants (optional)

▪ Upper and/or Lower

Bounds (optional)

▪ Synchronizes Ecore types with Java

types

▪ Extends incomplete models to

maintain consistency based on formal

semantics given in First-order

Relational Logic by the user,

▪ Enhanced Projectional Text Editor to

define EClass, ERerefence,

EAttirbute, EEnum, Invariants, Bounds

▪ Text Editor supports syntax

highlighting, content assists, content

outline, and Error reporting

▪ Complete XMI

Instances within the

bounds defined by

the user (The

system infers new

EObjects and Slots

on the partial

instance)

▪ If no solution found,

the reason of the

inconsistency is

reported to the user.

Unique Selling

Proposition(s):

▪ Model Completion support EMF partial models.

▪ Infers instances of EReferences and EClasses based on the formal

semantics defined by the user.

▪ Fully integrated with Eclipse Modeling Framework (EMF).

▪ Supports EMF Generics and Template Parameters.

▪ Integrated with Java Compiler for type checking.

Integration

constraint(s):

▪ Works on top of Eclipse IDE

▪ Minimum Unsatisfiability (MUS) feature works only on Linux OS

Intended user(s): ▪ Modelers, Language Engineers, Data Engineers

Provider: ▪ UNIT Information Technology R&D Ltd., Turkey

Contact point: ▪ Ferhat Erata ferhat@computer.org

Condition(s) for

reuse:

▪ EPL (Eclipse Public License)

Source Codes ▪ https://github.com/ModelWriter/AlloyInEcore (private until the approach

and the tool are published)

Publications ▪ F. Erata et. al. AlloyInEcore: Deep Embedding of First-order Relational

Language into Essential Meta-object Facility (MOF) for Model

Completion International Conference on Software Engineering (ICSE

2017) (submitted)

Website ▪ https://modelwriter.github.io/AlloyInEcore (under construction)

 Latest update: 2017-08-25

mailto:ferhat@computer.org
https://github.com/ModelWriter/AlloyInEcore
https://modelwriter.github.io/AlloyInEcore

9

Exploitable Results by Third Parties

9140014 ModelWriter

Name: Mantis Ontology API

Input(s): Main feature(s) Output(s):

▪ CSV or RDF

formats.

▪ API requests in

queries in

ontologies.

▪ Allows import in

RDF/OWL formats.

▪ Mantis Ontology API provides

mechanisms to create concepts in

ontologies and execute semantic

queries.

▪ All functionalities are also available as

web services.

▪ Assures flexibility and guarantees

accuracy.

▪ SPARQL format manipulation and

RDF language for querying the data.

▪ Delivers rapid

results in triples in

ontology.

▪ Returns the results

in RDF, Turtle, N3,

N-Tripler formats.

Unique Selling

Proposition(s):

▪ Easy import/export of ontology is in widely accepted data standards.

▪ Rapid query creation, returns swift responses and results.

▪ Supports SPARQL Protocol and RDF Language

▪ Efficient rapid search through Ontologies

▪ Consistency and validation checks of triples inside the ontology

▪ API and Web Services use OWL (W3C Web Ontology Language)

▪ Ease of use and integration.

Integration

constraint(s):

▪ Linux Operating System (recommended for ease of setup)

▪ Platform Independent

Intended user(s): ▪ Data Scientists, Architects, Modelers, Language Engineers, Data

Engineers

Provider: ▪ MANTIS, Turkey

Contact point: ▪ Guven Kose guvenkose@mantis.com.tr

Condition(s) for

reuse:

▪ License Agreement

▪ Limited time license for academic use

Source Codes ▪ Closed Code

Publications ▪ N/A

Website ▪ www.mantis.com.tr

 Latest update: 2017-08-25

mailto:guvenkose@mantis.com.tr
http://www.mantis.com.tr/

